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SUMMARY 

Pathologies that result in highly modulated intensities in macromolecular crystal 

structures pose a challenge for structure solution. To address this issue two studies have 

been performed: a theoretical study of one of these pathologies, translational non-

crystallographic symmetry (tNCS), and a practical study of paradigms of highly modulated 

macromolecular structures, coiled-coils. 

tNCS is a structural situation in which multiple, independent copies of a molecular 

assembly are found in similar orientations in the crystallographic asymmetric unit. Structure 

solution is problematic because the intensity modulations caused by tNCS cause the 

intensity distribution to differ from a Wilson distribution. If the tNCS is properly detected and 

characterized, expected intensity factors for each reflection that model the modulations 

observed in the data can be refined against a likelihood function to account for the 

statistical effects of tNCS.  

In this study, a curated database of 80482 protein structures from the PDB was analysed 

to investigate how tNCS manifests in the Patterson function. These studies informed the 

algorithm for detection of tNCS, which includes a method for detecting the tNCS order in 

any commensurate modulation. In the context of automated structure solution pipelines, the 

algorithm generates a ranked list of possible tNCS associations in the asymmetric unit, 

which can be explored to efficiently maximize the probability of structure solution. 

Coiled-coils are ubiquitous protein folding motifs present in a wide range of proteins that 

consist of two or more α-helices wrapped around each other to form a supercoil. Despite 

the apparent simplicity of their architecture, solution by molecular replacement is 

challenging due to the helical irregularities found in these domains, tendency to form fibers, 

large dimensions in their typically anisometric asymmetric units, low-resolution and 

anisotropic diffraction. In addition, the internal symmetry of the helices and their alignment 

in preferential directions gives rise to systematic overlap of Patterson vectors, a Patterson 

map that indicates tNCS is present, and intensity modulations similar to those in true tNCS. 

In this study, we have explored fragment phasing on a pool of 150 coiled-coils with 

ARCIMBOLDO_LITE, an ab initio phasing approach that combines fragment location with 

Phaser and density modification and autotracing with SHELXE. The results have been 

used to identify limits and bottlenecks in coiled-coil phasing that have been addressed in a 

specific mode for solving coiled-coils, allowing the solution of 95% of the test set and four 

previously unknown structures, and extending the resolution limit from 2.5 Å to 3.0 Å.  
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LIST OF ABBREVIATIONS AND ACRONYMS 

ACC    Accuracy 

ADPs    Anisotropic Displacement Parameters 

AMF    Atomic Modulation Function 

CC    Correlation Coefficient 

CCP4   Collaborative Computational Project Number 4 

CCTBX  Computational Crystallography Toolbox 

CV    Characteristic Vector 

FN   False Negative 

FP   False Positive 

FPR   False Positive Rate 

LLG   Log Likelihood Gain 

LTD    Lattice-Translocation Defect 

MAD   Multiple-wavelength Anomalous Dispersion 

MIR   Multiple Isomorphous Replacement 

MPD   Mean Phase Difference 

MR    Molecular Replacement 

OD   Order-Disorder 

PDB    Protein Data Bank 

PREC   Precision 

PyPI    Python Package Index 

rmsd   root-mean-square deviation 

SAD   Single-wavelength Anomalous Dispersion 

SN   Sensitivity 

TLS    Translation-Libration-Screw 

tNCS   translational Non-Crystallographic Symmetry 

TN   True Negative 

TP   True Positive 

vrms   root-mean-square derived from the likelihood variance 

wMPE   weighted Mean Phase Error 
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INTRODUCTION  

1. X-ray crystallography 

Crystallography allows us to conclusively establish a three-dimensional model of the 

atomic structure of the molecules down to the atomic level, so knowing the precise 

stereochemistry of these proteins, we can understand their function and interaction with 

other molecules. This result has fundamental relevance to structural studies underlying 

biotechnology and biomedicine, such as the design of catalysts and new drugs.  

The word “crystallography” has its origin in the Greek word krystallos, meaning “clear ice 

or ice cold” and was originally used to refer to materials that looked similar to ice, such as 

quartz. However, the formation of crystals is not a unique property of minerals. There are 

also crystals of organic compounds, nucleic acids, proteins, and viruses. Crystals are 

formed by atoms, ions, and/or molecules that pack together in ordered and periodic 

arrangements in the three dimensions of space, thanks to interatomic and/or intermolecular 

interactions (Janin & Rodier, 1995). 

X-ray diffraction has been the main method used during the past 100 years to determine 

the three-dimensional structure of crystals. This enables the description of the geometrical 

arrangement of atoms in the crystals by diffraction patterns obtained through exposure to 

X-rays (Friedrich et al., 1913; Laue, 1913). Diffraction patterns are arrays of spots called 

reflections, each reflection is the sum of different waves originated by the diffraction of all 

atoms in the crystal (Bragg, 1913). As the diffraction pattern depends on the scattering 

contributions of all the atoms, it will be affected by structural heterogeneity of the protein 

molecule, the nature of packing interactions (weaker or stronger in different directions), and 

the large volume fraction of water in the macromolecular crystals, ~50% on average. Thus, 

the structure gives rise to the diffraction pattern, and from the diffraction pattern, the 

structure can be determined. 

During the diffraction experiment, the measurable parameters are the position and the 

intensity of each reflection, whereas the phases are lost. This gives rise to the phase 

problem, a bottleneck in the determination of macromolecular crystal structures (Bragg & 

Bragg, 1913; Hendrickson, 2013), that may be solved through three kinds of methods.  

Where the data are high-resolution and the number of atoms in the asymmetric unit of the 

order of a few hundred atoms or less, the phases for the structure factors that are missing 

from the results of diffraction experiment can be obtained by ab initio phasing (Karle & 

Hauptman, 1956; Sheldrick et al., 2012; Woolfson, 1987), exploiting probabilistic relations 
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and the possibility of evaluating many starting phase sets through reliable figures of merit. 

Phases can also be obtained by experimental phasing, using heavy-atom derivatives 

(Green et al., 1954) or anomalous scattering at particular wavelengths (Hendrickson, 

1991). Experimental phasing is a two-step procedure, first, the heavy-atom substructure is 

determined by ab initio, Patterson or dual-space methods, and then the phases of the 

entire structure are derived using this substructure. Alternatively, phases can be obtained 

by molecular replacement (MR) (Navaza, 1994; Read, 2001; Rossmann, 1972), which uses 

previous structural knowledge from a similar structure. Phases calculated from this similar 

structure placed in the unit cell with a low root-mean-square deviation (rmsd) to the atoms 

of the target structure are used to estimate the unknown phases and bootstrap structure 

refinement. 

 

2. Statistics of an ideal crystal, the Wilson distribution 

The probability distribution of the intensities in the X-ray diffraction pattern was first 

considered by Wilson (Wilson, 1949). The eponymous Wilson distribution assumes that the 

atoms are independent and randomly distributed within the crystal. The Wilson plot shows 

the falloff in intensity as a function in resolution, this trend is due to the falloff of atomic 

scattering factors (Debye, 1913). It is the plot of ln	( 𝐼&'( / 𝑓+,
-

+ )  against (𝑠𝑖𝑛-𝜃)/𝜆- , 

where 𝐼&'(  represents the average intensity (on a relative scale) collected for a given 

interval of 𝜃 (the Bragg angle), 𝑓 are the atomic scattering factors in that angular range, 

and (𝑠𝑖𝑛-𝜃)/𝜆- is the inverse resolution squared. The plot should give a straight line with a 

slope -2B, where B is the isotropic overall B-factor.  

A linear fit to the high-resolution region of a Wilson plot allows to estimate the Debye-

Waller factor, temperature factor or overall B-factor, which is a general measure of the 

scattering attenuation and describes the overall thermal motion (Debye, 1913). It 

represents the decrease of intensity in diffraction due to crystal disorder, it includes both 

the static disorder in the crystal and the dynamic disorder caused by thermal vibrations. It is 

an approximation of the average atomic B-factors which may be later obtained in 

refinement. The Wilson distribution can be used to bring the data onto an absolute scale 

and correct the data through the French and Wilson procedure (French & Wilson, 1978). 

Theoretically, the Wilson plot gives a straight line, but if the atoms are not randomly 

distributed this will cause characteristic departures from linearity (Morris & Bricogne, 2003). 

At low-resolution this is caused by the presence of solvent regions, where the electron 

density is much more constant than in the protein regions, at intermediate resolutions 
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(round 5-3 Å) this is caused by the regular peptide structure in secondary structure 

elements such as the pitch of helices and the translation in beta sheets. Further deviations 

of the Wilson plot from the expected plot may reveal any anomalies or pathologies in the 

data. The expected plot is based upon an analysis of high-resolution datasets in the Protein 

Data Bank (PDB) (Berman et al., 2000; Burley et al., 2018), which takes into account the 

non-random distribution of atoms within the crystal. Some deviation from this plot is to be 

expected, however, significant deviation may indicate problems (figure 1).  

 
Figure 1. Wilson plots for a) a regular structure (PDB entry 3twe), b) a structure with severe 

anisotropy (PDB entry 2jee), c) a structure with tNCS (PDB entry 2o1j), d) a structure with 

merohedral twinning (PDB entry 3v86). The plot from the problem structure is coloured in red, 

whereas the expected plot is coloured in blue. These plots were generated using TRUNCATE 

(French & Wilson, 1978) from CCP4 (Winn et al., 2011). 
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3. Crystal pathologies in macromolecular 
crystallography 

In the context of this work, I use the term “pathology” to denote the systematic deviation 

of identifiable subsets of reflections from the expected intensity distribution with a 

deleterious effect on structure solution and refinement. Pathologies are generally 

considered to be relatively rare in macromolecular crystallography, but this is biased by the 

population of the PDB with solved structures, which are more likely to not display 

pathologies. For some classes of proteins, it is more common to encounter crystals with 

pathologies than high-quality well-diffracting crystal. Therefore, to better understand the 

deviations from an ideal crystal, the following sections provide an introduction to five 

common pathologies that occur in macromolecular crystallography, highlighting how to 

identify and overcome them. 

 

3.1. Anisotropy 
Anisotropy is the property of being directionally dependent, implying a variation of 

certain physical properties as a function of direction, as opposed to isotropy. In 

crystallography, a physical property of the measured X-ray diffraction data that is the 

diffraction limits can be anisotropic, also can be anisotropic, the displacement of the atoms 

that results in the attenuation of the diffracted intensity. 

Diffraction anisotropy is a common phenomenon for macromolecular crystals, and it is a 

directional dependence in diffraction quality when reflections have measurable intensities at 

higher resolution in one direction, not in another. So, resolution limits vary significantly in 

different directions in reciprocal space (Sheriff & Hendrickson, 1987). This is related with 

the attenuation of diffraction, caused by the displacement of the atoms from its mean 

position due to thermal vibrations, static or dynamic disorder that causes a phase change 

of the diffracted wave depending on the diffraction angle (Matthews & Czerwinski, 1975; 

Shakked, 1983; Sheriff & Hendrickson, 1987; Trueblood et al., 1996). Thermal vibrations or 

disorder in a protein crystal is frequently anisotropic given by the irregular and flexible 

shape of a protein molecule, as crystal packing interactions can be more uniform in one 

direction than another, that is, adequate intermolecular interactions may exist in two 

dimensions or in layers, while contacts in the third dimension may be weak (Janin & Rodier, 

1995). If the displacement disorder in a crystal structure varies in different directions of 

reciprocal space, the diffraction of resolution limits will be anisotropic as well. 

Anisotropic properties can be described with the anisotropic displacement tensor U, a 
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three-by-three symmetric matrix, which can be graphically represented as a symmetric 

ellipsoid (figure 2b) with its principal axes given by the diagonal elements from U 

(Trueblood et al., 1996). Because of the symmetry of the ellipsoid, six components of the 

symmetric anisotropic displacement tensor - the diagonal and off-diagonal terms - suffice to 

describe the orientation and principal axes of an ellipsoid. Anisotropy is subject to the 

symmetry constraints of the crystal system, which may lead to a reduction of the 

parameters. In the extreme case of cubic system, anisotropic diffraction is not possible. 

Another prominent application, which is subject to the same formalism is the description of 

anisotropic motion of individual atoms, described below and exemplified in figure 2a. 

 
Figure 2. a) Anisotropic displacement tensor U describing the anisotropic motion of an atom. 

The tensor elements Uij are the squares of the displacements uij from the coordinates in the 

crystal structure and at angles to these directions. The diagonal (isotropic) elements U11, U22 

and U33 consider the displacements along cell edges and the other (anisotropic) elements the 

displacements at angle to the cell edges. b) The anisotropic tensor can be visualized as an 

ellipsoid with principal axes uij, where the displacement of atoms is of different magnitude along 

the three principal axes. 

 

3.1.1. Degree of anisotropy 

The observed reflections follow a typical intensity falloff as a function of resolution 

according to different directions in reciprocal space. This directional dependence of the 

intensity falloff with resolution can be measured with the anisotropic delta-B factor, which 

also indicates the degree of anisotropy.  

The magnitude of the anisotropy is parameterized by three principal components (β11, 

β22, β33) one for each direction of the crystal, that can be interconverted to anisotropic B 

factors by a mathematical relationship (Grosse-Kunstleve & Adams, 2002). They are the 

exponential scale factors used to correct for anisotropy.  If the falloff is nearly the same in 

all three directions, the three principal components will be approximately equal and close to 

zero. If the falloff has a strong directional dependence, then the component describing the 

weakest diffracting direction will be large and positive and the component describing the 

strongest diffracting direction will be large and negative. Regardless of the degree of 

anisotropy, the sum of the three components is constrained to add up to zero. The 
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anisotropic delta-B is defined as the difference between the two components with the most 

extreme values (Trueblood et al., 1996). An anisotropic delta-B over 10 Å2 indicates mild 

anisotropy, an anisotropic delta-B over 25 Å2 indicates strong anisotropy and an anisotropic 

delta-B over 50 Å2 indicates severe anisotropy (Sawaya, 2014).  

 

3.1.2. Anisotropy correction 

In the absence of a model for the contents of the crystal, a first statistical correction of 

the anisotropy can be done for structure solution. Anisotropic correction is done using the 

method of Popov & Bourenkov (Popov & Bourenkov, 2003). The six anisotropy parameters 

of the anisotropy tensor and a scale factor are determined by refinement to maximize the 

likelihood function given by the Wilson distribution of the data. This essentially weights up 

the reflections in the poor direction and attenuates the strong direction, removing the 

anisotropy so creating an isotropic data set. 

The first problem for using anisotropic data in phasing and refinement is the inclusion of 

numerous poorly measured reflections in the data when there is a single (isotropic) 

resolution cut-off.  Ideally, anisotropic correction terms should be applied to both structure-

factor amplitudes (F) and their errors (σF), to obtain corrected normalized structure-factors 

amplitudes (E values) and their errors (σE values), and target functions for phasing and 

refinement should take into account the sigmas in weighting the contribution from each 

reflection. If the target functions for phasing and refinement that do not account for the 

sigmas, this procedure is only acceptable as long as the anisotropy is not too severe. If the 

anisotropy is severe, target functions that do not make effective use of the sigmas should 

be used with data that have been subjected to ellipsoidal truncation (Sawaya, 2014; Strong 

et al., 2006; Tickle et al., 2018). In this, an ellipsoidal resolution boundary is imposed on the 

data so that the weak reflections falling outside this boundary will be discarded from the 

data set. Alternatively, data with low information content may be removed explicitly. 

When calculating electron density maps, a blurring or sharpening factor is normally 

applied to improve map connectivity and interpretation. If the data is isotropic, then the 

sharpening factor is normally the Wilson B value. For anisotropic data, it is common to 

either use the average value of the anisotropic tensor, or the most negative value of the 

tensor (Sawaya, 2014; Strong et al., 2006). 

 

3.1.3. Anisotropic refinement 

In the presence of an atomic model for the contents of the crystal, the anisotropy can be 
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refined more accurately. There is the need for an anisotropic scale factor for comparing the 

observed (Fobs) and the calculated structure factors (Fcalc) (Usón et al., 1999). The 

agreement between Fobs and Fcalc is very poor if Fobs has a directional dependence and Fcalc 

does not.  

At resolution of ~ 1.4 Å or higher is it possible to refine individual atomic B-factors 

anisotropically. The anisotropic displacement parameters (ADPs) provide a description of 

the anisotropic displacement of an atom from its mean position. The description of an 

anisotropic B-factor requires six parameters instead of one parameter for the isotropic B-

factor (Merritt, 1999; Sheldrick & Schneider, 1997). A difficult task in the parameterization 

of macromolecular structure models is accounting for correlated dynamic or static 

displacement, that is the anisotropic motions of the atoms. For example, long side chains 

have more freedom to swing perpendicularly to bond directions than along the much more 

tightly restrained bond length. This can be accomplished adding restraints to model a 

physically sensible behaviour (Sheldrick & Schneider, 1997; Thorn et al., 2012). 

An economic description of correlated atomic motion intermediate between individual 

ADPs and isotropic B-factors is the TLS (Translation-Libration-Screw) parameterization, 

which describes the movement of whole molecules as rigid bodies within the crystal lattice. 

This parameterization is appropriate at resolutions lower than 1.4 Å as the TLS description 

allows to parameterize the model in a physically sensible form with significantly (orders of 

magnitude) fewer parameters than a description with individual ADPs would require: the 

TLS parameterization contributes with only 20 parameters per molecule (Murshudov et al., 

1998). 

 

3.2. Twinning 
A formal definition of twinning is the following: "Twins are regular aggregates consisting 

of crystals of the same species joined together in some definite mutual orientation" 

(Giacovazzo, 2002). Twinning arises when the crystal is composed of separate domains of 

differing orientations related by a symmetry operation (Yeates, 1997), so that reciprocal 

lattices of twin domains overlap in at least in one dimension (Parsons, 2003). This is 

produced by a defect of crystal growth, which may be caused when the crystal grows too 

quickly or is subjected to abrupt variations in the crystallization conditions, such as changes 

of temperature or pressure, although the cause is not always known. 

Twinning is a relatively common phenomenon in protein crystallography (Lebedev et al., 

2006) and can be a potentially dangerous crystal pathology, because it can easily be 

overlooked, hampering structure determination and refinement. It can be a problem as a 
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twinned crystal does not produce a simple diffraction pattern, the recorded data is the sum 

of the crystal domains in different orientations. On the other hand, if twinning is identified, it 

is generally a manageable situation and structure determination is often possible 

(Thompson, 2017). 

Twinning can be characterized by the twin law and the twin fractions. The twin law is a 

set of symmetry operators that relate the different orientations of the twin domains, in 

protein crystallography the only possible twin laws are rotation axes. The twin law can be 

expressed as a matrix that transforms the hkl indices of one species into the other. The 

twin fraction quantifies the fractional volume of the crystal occupied by the twin domains, 

the sum of the twin fractions for all twin domains must be one (Campeotto et al., 2018; 

Parsons, 2003). In addition to describing volumes in real space, the twin fraction has an 

important manifestation in reciprocal space, as the contribution to the observed diffraction 

intensity from each reciprocal lattice is weighted by its twin fraction (Thompson, 2017). 

 

3.2.1. Types of twinning 

Crystal twinning can be classified under four types, which are defined according to the 

specific way in which the twin domains are oriented relative to one another: non-

merohedral, merohedral, pseudo-merohedral and by reticular merohedry (Yeates, 1997). 

Non-merohedral twinning  

In non-merohedral twinning, the twin domains are oriented in a way that produces an 

overlapping of the crystal lattices in two-dimensions. Therefore, the reciprocal lattices do 

not overlap exactly, so this situation produces diffraction patterns where only a subset of 

reflections from the twin domains overlap (Herbst-Irmer & Sheldrick, 1998; Sevvana et al., 

2019), as shown in figure 3. The twin law does not belong to the crystal class of the 

structure or to the metric symmetry of the cell, it is an arbitrary operator (Thompson, 2017). 

A large number of systematic absences and the appearance of one or more unusually 

long axes can be indicators of non-merohedral twinning, this may cause problems with cell 

determination and indexing, since more than one orientation matrix is needed to index all 

reflections (Herbst-Irmer & Sheldrick, 1998). It can usually be identified at the data 

collection, where software for integrating these data sets, such as TWINABS, can be 

employed (Sheldrick, 2002a). Structures arising from crystals where the pathology is 

addressed are rare in the PDB. 



	

	
11 

 
Figure 3. Non-merohedral twinning with two domains that have a unit cell axis which is exactly 

twice as long as a second axis. a) The relationship of the unit cells in different domains is a 90° 

rotation. b) Diffraction patterns from the two different domains in the crystal (blue and yellow 

points), and the diffraction pattern produced when the reciprocal lattices are rotated and 

superimposed, where only some reflections are overlapped (green points). Image adapted from 

(Thompson, 2017). 

Merohedral and pseudo-merohedral twinning 

In merohedral twinning, the twin domains are oriented in such a way that produces an 

overlapping of the crystal lattices in three-dimensions (Dauter, 2003). Therefore, the 

reciprocal lattices of the different twin domains are perfectly superimposable, and the 

twinning is not directly detectable from the reflection pattern (figure 4). The twin domains 

are related by rotations that are symmetry operations of the crystal system but not of the 

point group itself. Thus, the rotational symmetry of the crystal lattice must be higher than 

that of the space group. This is possible for certain space groups in tetragonal, 

trigonal/hexagonal and cubic lattices (Thompson, 2017). 

Additionally, pseudo-merohedral twinning can occur for lattices with lower symmetry if 

their unit-cell parameters are close to fulfilling the higher symmetry crystal system 

requirements. For example, an orthorhombic crystal can become pseudo-merohedrally 

twinned if a ≈ b, making the lattice approximately tetragonal, or a monoclinic if β ≈ 90°, 

making the lattice approximately orthorhombic. The coincidence of the reflection profiles is 

close but not required by the crystal symmetry (Thompson, 2017). Otherwise, pseudo-

merohedrally twinned crystals have characteristics identical to the classic merohedral twins.  

The vast majority of reported cases of merohedral twinning are hemihedral twins, 

meaning that there are only two different orientations of twin domains are present (most 

often related by a 180° rotation) (Yeates & Fam, 1999). Higher forms of merohedral 
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twinning then exist as for example: tetartohedral (four twin domains) and ogdohedral (eight 

twin domains) (Parsons, 2003; Roversi et al., 2012). Hemihedral twins with a twin fraction is 

0.5 are said to be “perfectly twinned” and the space group may be mistaken for one of 

higher symmetry. If the twin fraction is lower than half, the twinning is partial. As the twin 

fraction deviates from 0.5, the true space group become easier to identify. 

 
Figure 4. Merohedral twinning. a) The relationship of the unit cells in different domains is a 180° 

rotation. b) Diffraction patterns from the two different domains in the crystal, and the diffraction 

pattern with averaged twin reflections, which cause the diffraction pattern to mimic higher 

symmetry. The twin fraction is 0.5, that is, both domains are present in equal amounts. Image 

adapted from (Thompson, 2017). 

Twinning by reticular merohedry 

In twinning by reticular merohedry some of the reflections overlap exactly, while others 

are non-overlapped. The most frequent example is an obverse/reverse twin in case of a 

rhombohedral crystal (Herbst-Irmer & Sheldrick, 2002). 

 

3.2.2. The warning signs for merohedral twinning 

There are several characteristic warning signs of twinning. The data can appear to have 

erroneously high symmetry, the merging statistics for a higher symmetry Laue group may 

be marginally, but statistically significantly, worse than for a lower symmetry one. 

Occasionally, the asymmetric unit cell volume assigned to the lattice is too small for the 

size of the molecule or there is an unreasonably high packing density. In some cases, the 

systematic absences apparent are not consistent with any known space group (Herbst-

Irmer, 2016). Additional signs include an inability to solve a structure even though the data 

have high signal to noise ratio and high-resolution, and, if a model could be built, high R-

factors or very noisy difference electron-density maps (Murshudov, 2011).  
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3.2.3. Effect of twinning on diffraction intensities 

The separate twin domains scatter X-rays independently, and therefore, each measured 

intensity is the sum of the intensities of the individual twin domains. In contrast, within the 

regular domains, the diffracted X-rays would interfere and the total scattering will 

correspond to the vector sum of amplitudes (Dauter, 2003). As a consequence, the 

intensity distribution corresponding to a twinned crystal deviates from the standard Wilson 

statistics (Wilson, 1949). 

This can be explained as a single crystal is characterized by a certain low fraction of 

very weak and very strong reflections. In a twinned crystal, reflection intensities are added 

up in sets related by the twin laws, and there is a low probability that the twin operations 

connect only very weak or very strong reflections, although this will occasionally occur. The 

diffraction data of a twinned crystal therefore has fewer very weak or very strong intensities 

than predicted by the Wilson distribution (Stanley, 1972). 

 

3.2.4. Detection and statistical tests for merohedral twinning 

Since diffraction patterns originated from all twin domains overlap perfectly, twin 

detection can be done analysing intensity statistics following two approaches (Dauter, 

2003). One is based on the overall statistical properties of diffraction data, such inspection 

of the Wilson ratio <F2>/<I> (Wilson, 1949), higher moments of intensity distribution or 

average intensity ratio <I²>/<I>² (Stanley, 1972) and the cumulative intensity distribution 

N(z)-test (Rees, 1980). Furthermore, the mean value for |E2-1| is much lower than the 

expected values of 0.736 for the non-centrosymmetric case, being for a perfect twin 0.541 

(Herbst-Irmer & Sheldrick, 1998). For these tests, it does not matter whether the data have 

been merged in the crystal or the lattice symmetry. The second approach is based on the 

comparison of twin-related reflection intensities, such as the S(H)-test (Yeates, 1988; 

Yeates, 1997), negative intensity Britton test (Britton, 1972; Fisher & Sweet, 1980), and 

Murray-Rust test (Murray-Rust, 1973). These tests require that the diffraction data are 

merged in the proper low-symmetry point group and can be used also to estimate the twin 

fraction. 

Twinning tests are complicated by the fact that some other pathologies, such as 

translational pseudosymmetry or anisotropy if present, also perturb the intensity 

distribution. The L-test or Yeates-Padilla test (Yeates, 1988; Yeates, 1997) is especially 

robust in such cases. Furthermore, it can be performed successfully without knowing the 

twin operator, and it is also insensitive to data reduction in the wrong space group. The L-

test is based on analysing the cumulative distribution of a ratio, |L|, which is calculated by 
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selecting two intensities proximally located in reciprocal space but not related by any 

twinning operation, and dividing their difference by their sum. In particular, the cumulative 

function N(|L|) is linear for untwinned crystals and has a curved shape for twinned ones. 

The multivariate Z-score for the L-test allows the construction of empirical decision rules to 

detect twinning. 

 

3.2.5. Structure solution and refinement of twinned data 

Once the pathology has been identified, structure determination in the correct space 

group can often proceed under favorable circumstances. If the hemihedral twin fraction 

does not approach 0.5, data can be detwinned (Yeates, 1997). This procedure may be 

useful for the purposes of structure solution, although, the structures can often be solved 

from the original, not the detwinned data (Yang et al., 2000). Nevertheless, for refinement it 

is preferable to refine against the original twinned data set as detwinning has the potential 

to introduce substantial additional error and twinning can be accounted for during 

refinement (Fisher & Sweet, 1980). 

Molecular replacement typically works well with twinned data, although better models 

are generally required than for the equivalent untwinned data. Experimental phasing with 

single-wavelength anomalous diffraction (SAD) or multiple-wavelength anomalous 

diffraction (MAD) is also possible as diffraction data are usually collected from a single 

specimen with a constant twin fraction, but can be more difficult to both find an initial 

substructure and interpreting the twinned electron density (McCoy & Read, 2010). Whereas 

with multiple isomorphous replacement (MIR), the phasing procedure can be severely 

impaired, as the twin fractions of derivative and native crystals may differ significantly 

(Dauter, 2003). Thus, more than two derivatives may be necessary for phasing (Yeates & 

Rees, 1987). 

In MR, if calculations are performed on the twinned data, the contrast of the rotation 

function decreases as it produces multiple solutions from the different orientations of the 

twin domains with corresponding weights corresponding with the twin fraction. In the 

translation function, the smaller twin domain contributes with additional noise, but the 

principal solution should correspond to the main domain (Dauter, 2003). 

Refinement of a model against merohedrally or pseudo-merohedrally twinned data can 

be done using a program with an appropriate twin refinement protocol. The diffraction 

patterns from the twin domains overlap, so each observed intensity is a weighted sum of 

the twin-related domains independent crystallographic intensities according to the fractional 

contribution of the twin fraction. It is necessary to include the twin law relating the twin 
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domains as an additional parameter (usually it is input in the form of a 3x3 matrix), which 

can then be applied to the calculated structure factors and used to refine the twin fraction. 

Programs that allow twinning refinement are SHELXL (Bernhardt & Herbst-Irmer, 2020; 

Herbst-Irmer & Sheldrick, 1998; Sheldrick, 2015), CNS (Brunger et al., 1998), Refmac 

(Murshudov et al., 1997) or phenix.refine (Afonine et al., 2012). 

R-factors may not be directly comparable, as they are lower than in single crystals 

(Murshudov, 2011). In particular, the gap between Rfactor and Rfree values as well as their 

individual values need to be monitored during refinement. Also, difference density maps 

might have fewer features, as the twinned reflections add noise. 

 

3.3. Order-disorder twinning 
Order–disorder twinning is a type of crystal-growth irregularity (Dornberger-Schiff, 1956, 

1966; Dornberger-Schiff & Dunitz, 1965; Dornberger-Schiff & Grell-Niemann, 1961), that 

has been observed for protein structures in several cases deposited in the PDB (Rye et al., 

2007; Trame & McKay, 2001; Wang et al., 2005). Order–disorder structures or OD 

structures arise when a single molecular configuration is maintained in a 

crystallographically ordered fashion in one layer, but successive layers contain the 

molecule in an alternative crystallographically ordered fashion. The perfect order within 

each layer is intercalated with a zone of transition or disorder in the mutual relation of pairs 

of successive layers, hence the name of the phenomenon (Pletnev et al., 2009). 

In these structures, the differently oriented molecules are related by specific operations 

(translational or rotational) that break the crystallographic symmetry (Thompson, 2017). 

Although cases are known where the distinction between alternate molecular configurations 

is a difference in orientation also known as rotational OD structures (Pletnev et al., 2009), 

most cases occur as a difference in relative position between molecules in different layers 

(Hare et al., 2009; Tsai et al., 2009; Zhu et al., 2008). These cases are also termed as 

crystals with lattice-translocation defects (LTD) (Wang et al., 2005), in which successive 

layers of molecules are shifted with respect to each other in a particular direction by a 

positive or negative fractional displacement in a more or less random fashion while 

preserving equivalent mutual contacts. 

In translational OD structures, the layers of molecules are stacked in such a manner that 

two or more different stacking vectors can relate neighbouring layers to form geometrically 

identical interfaces between them. Depending on the sequence of stacking vectors, three 

types of OD structures can be classified (Lebedev, 2009). Large domains with the same 

internal organization are individual crystals of OD-twin (figure 5a), and the domains have 
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the same symmetry. An allotwin (figure 5b) contains domains with different sequences of 

stacking vectors and different crystallographic symmetries. A structure with an irregular 

sequence of stacking vectors is called disordered OD-structure (figure 5c). 

 
Figure 5. OD structures in which layers are related by two kinds of staking vectors, s1 and s2. a) 

OD-twin with two crystal domains (grey and blue) with local C2 symmetry, the intermediate layer 

(green) can be assigned to any of the two connected crystal domains. b) An allotwin with two 

different domains (grey and blue) with different crystallographic symmetries P21 and P212121. c) 

A disordered OD-structure with an irregular sequence of stacking vectors. Image reproduced 

from (Lebedev, 2009). 

Such irregularity of stacking between the layers introduces a modulation of the 

intensities of specific reflections. In the diffraction pattern, depending on the degree of 

randomness and the amount of the shifts in the consecutive layers, OD defects are 

manifested by the coexistence of streaked or diffused and weak reflections, and strong and 

sharp reflections (Bragg & Howells, 1954; Cochran & Howells, 1954; Dornberger-Schiff, 

1956). Another manifestation is the presence of high non-origin Patterson peaks 

corresponding to the offsets of the consecutive layers from their positions. If interpreted as 

vectors between molecules, as in tNCS, they are too short to be a physically possible 

packing. Figure 6 shows an order–disorder twin crystal of L-2-haloacid dehalogenase (Rye 

et al., 2007) and illustrates this situation. The presence of a strong-weak/sharp-streaked 

diffraction pattern is an important feature of this LTD, and helps to distinguish it from tNCS 

(Dauter & Jaskolski, 2016). Nevertheless, in some cases, structure determination and 

analysis of crystal packing may be required to distinguish between LTD and tNCS (Hare et 

al., 2009). Despite the presence of high peaks in the Patterson map and modulation in the 

diffraction pattern, OD-twinning may be unnoticed. Although structure solution can succeed 

in some cases (Hare et al., 2009), in others, a correction for this effect can be vital for 

structure solution (Trame & McKay, 2001). 
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Figure 6. a) A section of the native 

Patterson map contoured at 4.5σ. 

Vectors t, 2t and 3t define the positions 

of non-origin peaks. b) Organization of 

the crystal with C2 space-group 

symmetry that has two consecutive 

crystal domains in which layers are 

related by stacking vectors s1 (grey) 

and s2 (blue). The intermediate layer 

(green) can be assigned to any of the 

two connected crystal domains. 

Vectors t, 2t and 3t define the offsets of 

three consecutive layers from their 

positions, these translations are in 

agreement with the observed non-

origin peaks in the Patterson map. 

Image reproduced from (Lebedev, 

2009; Rye et al., 2007). 

Furthermore, during the refinement, the map could have parts with uninterpretable 

density. Thus, applying a procedure to demodulate the data is advisable for the refining 

step. Several approaches then exist as the ones that rely on the translocation vector being 

an integral fraction of a unit-cell dimension (Wang et al., 2005) or on the possession of a 

partially refined model (Tanaka et al., 2008). A more straightforward procedure minimizes 

the intensity modulation and the non-origin peaks with a demodulation function that is an 

inverse of the original modulation function that directly subtracts the contribution from the 

additional lattice to the observed diffraction intensities (Hare et al., 2009). 

 

3.4. Translational non-crystallographic symmetry 
Translational non-crystallographic symmetry (tNCS) arises when the asymmetric unit 

contains two or more copies of a component that are oriented in (nearly) the same way and 

can be superimposed by a translation that does not correspond to any symmetry operation 

in the space group (Rossmann & Blow, 1964). 

It is particularly insidious when the tNCS operators are very close but not exactly equal 

to true crystallographic symmetry operators; this situation is referred to as translational 

pseudosymmetry and is often seen in protein crystallography (Dauter et al., 2005; Zwart et 
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al., 2008). In the simplest form, tNCS relates a pair of components, but it can relate any 

number (n) to give n-fold pseudo-translation. Although the vectors between the related 

components in n-fold tNCS can differ, the components are commonly related by the same 

vector. If the n copies in the asymmetric unit are related to each other by translating one-

nth of the unit cell in one or more directions, this type of translation is called n-fold 

commensurate modulation, and its diffraction will show a pattern of one strong reflection at 

every n spots (Chook et al., 1998; Wang & Janin, 1993). An example of a two-fold pseudo-

translation with commensurate modulation is shown in figure 7. In this case the tNCS 

operator is very close to a lattice-centring operator, the effect can be denoted as pseudo-

centring (Zwart et al., 2008). This situation produces a diffraction pattern with systematically 

strong and weak reflections that closely approximates a space group with half the unit cell 

volume (Chook et al., 1998).  

 
Figure 7. a) A crystal with two parallel molecules shifted by a translation vector of almost ½ of 

the vertical lattice (0.48, 0, 0). b) The diffraction pattern of that crystal where the reflections of 

the odd rows are systematically weak while those in even rows that are systematically strong. If 

the translation in the vertical lattice were to be exactly ½, the odd reflections would be 

systematically absent, and the unit cell would halve in volume. 

The overall modulation of the intensities (systematically strong and systematically weak 

intensities) arise because the contribution to a structure-factor of molecules related by 

tNCS have the same (or similar) amplitudes but have relative phases determined by the 

projection of the translation vector on the diffraction vector, indeed the planes affected by 

intensity modulation are perpendicular to the translation vectors between copies related by 

tNCS. As a result, they interfere constructively for some reflections and destructively for 

others, so that there is a systematic modulation of the sum of their contributions. Whereas 

in the absence of tNCS, contributions of atoms from symmetry-related molecules are 

independent. 

This effect can also be seen in the intensity distribution, for a structure without tNCS the 

intensity distribution follows the Wilson distribution, but when tNCS is present, this leads to 

a systematic broadening of intensity distribution (Read et al., 2013). 
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The presence of tNCS can cause difficulties in all stages of crystal structure 

determination, from indexing the diffraction pattern to refining the structure (Read et al., 

2013). During the data processing, programs may misindex the reflections, reduce the 

diffraction images in a unit cell that is too small and/or assign an incorrect space group 

(Zwart et al., 2008). Structure determination and refinement is problematic if the systematic 

modulation is not accounted for, because the intensity modulation caused by tNCS breaks 

the implicit assumption used in likelihood-based methods that the intensities, and the errors 

in predicting the intensities from the model, follow an isotropic Wilson distribution (Wilson, 

1949). Without accounting for the intensity modulations, any placement of components in 

the same orientation and separated by the appropriate translation vector will reproduce the 

intensity modulation, improving the fit to the data without necessarily being a correct 

solution (Sliwiak et al., 2015).  

 

3.4.1. Accounting for the statistical effect of tNCS 

The Patterson map can be used to determine the translation vectors between copies 

related by tNCS (tNCS vectors). The degree of modulation is less significant if there are 

rotational and/or conformational differences between the copies, and decreases with 

increasing resolution. For that reason, in addition to the tNCS vector it is also necessary to 

estimate any small rotational differences in their orientations (tNCS rotations) and the size 

of random coordinate differences (tNCS rmsd) caused by conformational differences in 

order to correctly account for tNCS modulation.  

The parameters characterizing tNCS (tNCS vector, tNCS rotation and tNCS rmsd) are 

used to generate expected intensity factors (epsilon factors) for each reflection that model 

the modulations observed in the data (Read et al., 2013). Note that the total expected 

intensity factor for a reflection includes the usual integer factor for the number of times the 

miller index of a reflection is identical under all the distinct pure rotational symmetry 

operations of the space group (Stewart & Karle, 1976). The tNCS component of the 

expected intensity factor that models the modulations observed in the data is non-integer 

(Read et al., 2013), being below 1 for the systematically weak reflections and above 1 for 

the systematically strong reflections. After initial estimation, the parameters of the tNCS 

model are refined, via the expected intensity factors for each reflection derived from the 

tNCS model, using a likelihood function given by the Wilson distribution of the data (McCoy 

et al., 2007). 

A simulation of the probability distributions describing the statistical effects of tNCS 

illustrates the effects of random coordinate differences and differences in orientation on the 
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strength of modulation for structure factors obtained from a crystal containing two spherical 

molecules related by tNCS (figure 8). Rotational and conformational differences between 

the copies can have a similar effect on the strength of the intensity modulation, but there is 

a direction-dependence of the effect of the rotation difference: a rotation around the 

diffraction vector has no effect on the modulation along the reciprocal lattice vector 

corresponding to the tNCS vector (as it does not change the positions of the atoms relative 

to the Bragg planes), whereas a rotation around an axis perpendicular to the diffraction 

vector has a large effect (Read et al., 2013). 

 
Figure 8. Predicted average intensity in the direction parallel to c* for a crystal in space group 

P1 containing two copies [separated by a fractional translation of (0.47, 0.47, 0.47), i.e., 

approximately body-centered] of a spherical molecule (r = 20 Å). The solid lines show when the 

two copies have the same conformation but differ by a 5° rotation around the x axis (black line) 

or around the z axis (grey line). The dashed line shows when the two copies are in the same 

orientation but have rmsd of 1.5 Å. Image from (Read et al., 2013). 

Furthermore, it is well known that the presence of tNCS can mask the effects of twinning 

on the intensity statistics (Zwart et al., 2008). Twinning usually decreases the number of 

very weak intensities, this effect is offset by tNCS, which gives rise to systematically weak 

and strong intensities (Lebedev et al., 2006). Nevertheless, it was showed that by 

accounting for the statistical effects of tNCS, it is possible to unmask the competing 

statistical effects of twinning and tNCS and to more robustly assess the crystal for the 

presence of twinning (Read et al., 2013).  

 

3.4.2. Types of tNCS 

tNCS does not necessarily associate two components in the asymmetric unit but may 

relate three or more (n) components associated by a series of vectors that are multiples of 

1, 2, 3 ... (n-1) times a translation vector. The order of the tNCS is called n and indicate it 

as tNCSn. Where n times the basic translation vector equates to (or is very close to) a unit 

cell translation vector, the tNCS represents a pseudo-cell, and this case is known as 
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commensurate modulation. Thus, tNCS can range from the very simple case of there being 

only a single tNCS vector, representing the translation between two molecular assemblies, 

to cases where multiples of a vector describe the translation between multiple molecular 

assemblies. Also, different subsets of molecular assemblies in the asymmetric unit may be 

related by tNCS vectors in different directions. Hence, depending on the type of tNCS that 

the crystal has, the tNCS correction factors that are going to be applied will differ.  

The effect of tNCS on structure-factor intensity statistics (Read et al., 2013) has been 

better characterised and novel maximum-likelihood algorithms that account for the 

structure-factor modulations induced by tNCS have been developed during the last years 

(McCoy et al., 2007). These algorithms account for three different scenarios. The first case 

is where pairs of molecular components are related by a tNCS vector. The relationship is 

modelled not as a perfect translation but is rather a translation combined with a small 

rotation (typically less than 10º), and the tNCS related copies can have conformational 

differences. Hence, the parameters that are going to be refined are the tNCS vectors, tNCS 

rotations and tNCS rmsd. The second case is higher-order tNCS, where more than two 

molecules are related by multiples of the same vector. In these cases, only the tNCS 

vectors and tNCS rmsd are going to be refined. This necessary simplification is justified, 

because with more molecules, the rotational differences between the copies and the 

resulting intensity modulations become less significant. The third case is complex tNCS, 

where the tNCS copies are related by vectors in different directions. The modulations of the 

intensities will be much less significant, and probably structure solution will be achieved 

without any tNCS correction factors being applied, correcting one modulation at a time. 

 

3.4.3. tNCS detection 

Detection of translational non-crystallographic symmetry (tNCS) can be critical for 

success in crystallographic phasing, particularly when MR models are poor or anomalous 

phasing information is weak. The presence of tNCS is evidenced by the presence of a 

strong off-origin peak in the Patterson function, caused by the overlap of multiple parallel 

and equal-length inter-atomic vectors. The Patterson function can be calculated from the 

measured intensities alone and reveals the interatomic vectors in a structure (Patterson, 

1935). The Patterson function represents a convolution of electron density with itself and 

corresponds to a map of vectors between each pair of atoms in the structure. Thus, when 

there are copies related by tNCS, each atom is related to itself in the other copy by the 

same translation vector, so these vectors will fall on top of each other, giving a peak of a 

significant percentage of the origin peak. 
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In phenix.xtriage, tNCS has been flagged as present if a Patterson function calculated 

with data from 5-10 Å has a peak at least 20% of the origin peak height and at more than 

15 Å from the origin (Zwart et al., 2005). The rationale for the resolution limits is to enhance 

the signal for the low-resolution molecular transform. Data are truncated since the effect of 

the disordered (bulk) solvent dominates at low-resolution, and the high-resolution atomic 

details are not necessary for this purpose. The rationale for the distance threshold is to 

exclude the Patterson origin peak and internal pseudo-translational symmetry such as in 

helices; the origin of the cell is the highest peak since every atom is at a distance zero from 

itself, and at distances shorter than 15 Å, artefacts can be found caused by the periodicity 

of peptides in secondary structure elements and these also represent predominantly intra-

molecular vectors. In addition, peaks heights in the Patterson function are normalized with 

respect to the origin peak, the peak height in a Patterson map is expressed as a fraction or 

percentage of the height of the origin peak. 

 

3.5. Modulation 
A normal periodic crystal is built by repeating the unit cell by translation along the three 

directions of space. This translational symmetry generates a periodicity in three-

dimensional space as illustrated in figure 10a. In modulated crystals, the short-range 

translational order from one unit cell to the next is lost, so the atomic structure can no 

longer be defined by the contents of a single unit cell. However, such modulations possess 

long-range order that can be used to restore periodicity with a periodic Atomic Modulation 

Function (AMF) (Lovelace et al., 2013; Petricek et al., 1995; Porta et al., 2011). This AMF is 

a mathematical description of the modulation that describes the systematic or smoothly 

varying disorder (van Smaalen, 2007), distinguishing modulated structures from randomly 

disordered structures.  

These modulations can be caused by several phenomena, such as displacement of 

atomic positions and/or occupational modulations (Schönleber, 2011), due to the weak 

nature of the crystal packing interactions (Janin & Rodier, 1995). 

Modulated structures can be detected from the diffraction pattern from the presence of 

weak satellite reflections surrounding the Bragg reflections (Porta et al., 2011). The strong 

main reflections will correspond to the underlying basic unit cell and the much weaker (and 

closely spaced) satellite reflections will correspond to the periodic AMF wave (Dauter & 

Jaskolski, 2016). For a periodic crystal, all reflections can be indexed using the three 

integer indices (hkl) such as: 

𝐇 = ℎ𝐚∗ + 𝑘𝐛∗ + 𝑙𝐜∗					(1) 
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where a*, b* and c* are the reciprocal lattice vectors of the main reflections of the basic unit 

cell. 

The satellite reflections indicate a violation of the three-dimensional periodicity, but in a 

specific, regular way. The satellite reflections are at positions different from that of the 

reciprocal lattice position, but as they are regularly distributed, they can be indexed 

adding by one or more additional vectors to the reciprocal basis. So, the position of a 

satellite reflection from a modulated crystal is given by (van Smaalen, 2004): 

𝐇 = ℎ𝐚∗ + 𝑘𝐛∗ + 𝑙𝐜∗ + 𝑚@𝐪𝟏 + 𝑚-𝐪𝟐 + ⋯+	𝑚E𝐪𝒅					(2) 

where the q vectors (q1, q2, ... qd), called modulation vectors describe the satellite locations 

(the direction and distance relative to the main reflections), and m (m1, m2, ... md) are the 

satellite index that describe the diffraction order of the satellite reflection. Reflections with m 

= 0 are the main reflections, the satellites that are closest to the main reflection are the first 

order (m = ±1) and the next closest are second order (m = ±2) etc., as shown in figure 9. 

With satellite reflections, the diffraction pattern becomes (3 + d) dimensional, where d is 

the number of satellite directions. The simplest and more frequent case is a four-

dimensional crystal with modulation in only one direction (one AMF wave) as shown in 

figure 9a. Satellite reflections can be indexed by the introduction of a single q vector such 

that: 

𝐇 = ℎ𝐚∗ + 𝑘𝐛∗ + 𝑙𝐜∗ + 𝑚𝐪					(3) 

 
Figure 9. a) A four-dimensional modulated diffraction pattern with a single q vector with first-

order satellites (m = ±1) along the b* direction. b) A six-dimensional modulated diffraction 

pattern with three q vectors. The first q vector (q1) has four satellites described by m = ±2, the 

second q vector (q2) has six described by m = ±3, and the third q vector (q3) has two satellites 

described by m = ±1. c) Schematic representation of the main reflections (large black circles) 

and the satellite reflections (smaller grey circles). Image adapted from (Lovelace et al., 2008; 

Lovelace et al., 2013). 
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Modulation can be commensurate or incommensurate with the main lattice and can be 

distinguished by the spacing of the satellite reflection from the main reflection. For 

commensurate crystals, all components of the q vector are rational, and for 

incommensurate crystals, at least one component is irrational and cannot be calculated 

with a simple fraction (Lovelace et al., 2008). 

Commensurate modulation can be described with an integer-multiple relationship to the 

main lattice (Lovelace et al., 2010), that is, that the periodicity is restored after an integer 

number of unit cells, as in figure 10b. In this case, the modulation can be interpreted as a 

case of tNCS (Dauter & Jaskolski, 2016), and the diffraction pattern can be indexed 

normally by three integer indices and then solved and refined using a supercell consisting 

of several adjacent unit cells (Wagner & Schönleber, 2009). 

Incommensurate modulation cannot be described using integers along the main lattice 

(Lovelace et al., 2010), as shown in figure 10c. Its proper description is possible within the 

higher-dimensional superspace approach (Wolff et al., 1981), which allows the recovery of 

the periodicity of the crystal. This approach consists of a three-dimensional unit cell with 

modulation of one, two, or three additional dimensions. The additional dimension(s) are 

described with the q vectors. As a workaround, incommensurately modulated structures 

can be described not only within the higher-dimensional superspace approach but also by 

applying the supercell approach, while approximating the irrational component of the 

modulation wave vector q by a rational number (Schönleber, 2011). Finally, such structures 

are challenging as they are very difficult to solve and refine with currently existing software 

(Lovelace et al., 2008; Porta et al., 2011). 

 
Figure 10. Three types of crystal periodicity. a) Schematic illustration of a perfectly periodic 

structure with identical unit cells. b) A commensurately modulated crystal where the periodicity 
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is restored after four unit cells, with a q vector = 1/4. c) An incommensurately modulated crystal 

with a q vector = 1/3.57, an irrational number, here the modulation period is 3.57 unit cells, so in 

this case, the structure will never repeat on a unit-cell boundary. In b) and c) the sinusoidal 

curves represent the AMF and the blue rectangles the modulation period. Protein structure from 

PDB id 3v86. Image adapted from (Porta et al., 2011). 

While modulation is a well-studied phenomenon in small-molecule crystallography in 

macromolecular protein crystallography it is rarely reported, and as a consequence, 

structural modulations in this context are poorly understood (Porta et al., 2011). This if 

probably because samples with modulated diffraction patterns are discarded for being 

problematic and unsolvable. Nevertheless, in the last years incommensurate crystals of 

protein structures have been reported (Lovelace et al., 2008), indexing software that can 

process such data has been developed (Porta et al., 2011; Schreurs et al., 2010), and in 

silico simulations of modulated structures have been performed (Lovelace et al., 2013).  
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OBJECTIVES 

The overall objective of the thesis is to better understand pathologies that results in 

highly modulated intensities in macromolecular crystal structures, which pose a challenge 

on structure solution. This goal has been pursued through two main studies. 

The first objective was to carry out large-scale studies on crystallographic pathologies 

that are present in these highly modulated structures, specifically on translational non-

crystallographic symmetry. In particular, it has focused on the following aspects: 

• Develop an optimal way to characterize tNCS and determine the initial parameters 

for the model of tNCS so that the refinement of tNCS intensity correction factors can 

proceed and the statistical effect caused by the modulation in the data can be 

corrected in Phaser. 

• Test the traditional parameters to detect tNCS. tNCS has been flagged as present if 

a Patterson function calculated with data from 5-10 Å has a peak over the 20% of the 

origin peak height and at more than 15 Å from the origin. 

• Determine the degree of modulation in the data. 

The second objective is to analyse a set of highly modulated macromolecular structures 

deeply. In proteins, paradigms of these structures are coiled-coils. Thanks to the solution of 

the structure of these proteins, we can better understand their biological performance that 

has a great biomedical and biotechnological relevance. It has focused on the following 

aspects: 

• Identify the difficulties and bottlenecks in coiled-coil phasing, trying to solve each of 

the structures in a diverse test set of coiled-coils and analysing the performance of 

the software by comparing its results against the known structures.  

• Propose the improvements required to achieve success and implement a specific 

way to solve general cases of coiled-coils structures. 

• As these highly helical structures frequently render resolution worse than 2.5 Å, 

which is the resolution limit currently set for ARCIMBOLDO, the objective is to extend 

this limit to at least 3 Å resolution. To this end, another aim is to develop a strategy 

for discriminate solutions at low-resolution and thus validate these solutions. 

• Distribute the developed software making it available to the crystallographic 

community. 

• Use the new methods and implementation to phase unknown structures. 
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MATERIALS AND METHODS 

1. Computing setup 

The hardware used in this study is described for reproducibility and to provide a 

framework for performance quantification. 

The tNCS calculations were performed in multiprocessing on a workstation with two 

quad-core Intel Xeon processors X5560 at 2.80 GHz and 24 GB RAM, and on an eighteen-

core workstation with Intel(R) Core(TM) i9-9980XE at 3.00 GHz and 64 GB RAM, both with 

the operating system Debian GNU/Linux 9. 

The coiled-coil tests were run on the eight identical eight-core machines of an HP 

ProLiant BL460c blade system, using them as single, independent workstations with dual 

quad-core Xeon E5440 processors at 2.83 GHz and 16 GB RAM, and with Debian 

GNU/LINUX 8.4 operating system. ARCIMBOLDO_LITE adjusts the calculations to the 

available hardware, so that a problem, which failed to be solved on a given setup, might 

have been solved on a more powerful workstation or on a grid. For example, in 

multiprocessing, the number of SHELXE expansion jobs is equal to the number of physical 

cores available in the workstation minus one. In contrast, in the case of distributed grid 

computing, the default is to expand 60 solutions. Hence, additional tests were run on a 

machine with two 12-core Xeon processors (E5-2680; 2.5 GHz and 128 GB RAM). 

The unknown coiled-coil structures described in the results section 2.6.1. were solved in 

a supercomputing frame, distributing calculations over a grid with HTCondor v.8.4.5 

(Tannenbaum et al., 2001) integrated by a maximum of 160 nodes adding up to 250 

GFlops. The structures described in the results section 2.6.2. and 2.6.3 were solved on a 

single machine with six-core Intel processors (i7-3930K, 3.20GHz, and 16 GB RAM) with 

operation system Debian GNU/Linux 9.  

 

2. Software versions 

2.1. tNCS software 
The database was generated and queried with SQLite3 (Hipp et al., 2015). The data 

stored in the database were loaded with Python scripts (version 2.8) written for this 

purpose, calculating in multiprocessing. 
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The atomic coordinates of structures deposited with the PDB were analysed and tNCS, 

if any, was identified using the ncs package from the mmtbx module of the Computational 

Crystallography Toolbox (cctbx) (Grosse-Kunstleve et al., 2002). In this algorithm, chains 

with high sequence identity were identified. Then, these were structurally superimposed, 

testing each crystal symmetry operation, including the identity, and if they superimposed 

with a translation, the pair was added to a growing list of tNCS-related chains in the 

asymmetric unit. The translation can include a rotational tolerance defined by an angular 

threshold. After all combinations of sequence-matched chains and symmetry operations 

had been considered, the list was analysed to find the largest tNCS order. Importantly, the 

analysis forced the tNCS related molecules to form a closed group; so, for example, if the 

rotational tolerance was 3°, and A superimposes on B with a 2° rotation, B superimposes 

on C with a 2°	 rotation and A superimposes on C with a 4°	 rotation, then A, B and C form a 

tNCS group order three even though A and C do not superimpose within the tolerance of 

3°. In the limit of high angular tolerances, high order rotational symmetry may be 

misidentified as high-order translational symmetry (e.g., PDB id 2gtt (Albertini et al., 2006)). 

The package reports the chain identifier of the tNCS related chains, the tNCS vector in 

fractional and orthogonal coordinates, the rotational difference, and the percentage of total 

scattering for the pairs of molecules related by tNCS. 

The Patterson function was calculated from the deposited data with Phasertng (McCoy, 

2020). Where mean intensities were available, reflections recorded as net positive were 

used for the calculation. If only anomalous intensities were available, a mean intensity was 

calculated as a simple average of the Friedel mates, or using the singleton intensity if only 

one Friedel mate was present. If only structure factor amplitudes were available and these 

had been generated by the French and Wilson (French & Wilson, 1978) procedure, then 

the transformation was reversed to obtain intensities (Read & McCoy, 2016); the 

information loss meant that reflections with negative experimental intensity were set to zero 

intensity. If only structure factor amplitudes were available and these had not been 

subjected to the French and Wilson algorithm, the intensity was taken as the square of the 

structure factor amplitude. All data were used without applying an I/s(I) selection criterion.  

The tNCS correction terms were calculated with the Phasertng software package using 

algorithms like those implemented in Phaser (Jamshidiha et al., 2019; McCoy et al., 2007; 

Read et al., 2013; Read & McCoy, 2016; Sliwiak et al., 2014). When the tNCS order was 

greater than 2, the relative orientations between the components related by tNCS were not 

included in the model for tNCS but their effect was absorbed approximately by the tNCS 

rmsd parameter. Correction terms were applied to the observed and calculated structure 

factors during all likelihood calculations involved in MR. 
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The decision tree was generated using the scikit-learn python library (Pedregosa et al., 

2011). 

 

2.2. ARCIMBOLDO_LITE 
ARCIMBOLDO_LITE is deployed for Linux and Macintosh and can be downloaded 

through the Python Package Index (PyPI) (https://pypi.org/project/arcimboldo/) or as part of 

the CCP4 program suite starting from release 7.0 (Winn et al., 2011). Requires Python 

versions between 2.6 or newer, Phaser version 2.8 or higher from the PHENIX (Liebschner 

et al., 2019) or CCP4 (Winn et al., 2011) distributions for fragment-placement and SHELXE 

(Usón & Sheldrick, 2018) version 2018 or higher from SHELX distribution server for density 

modification and autotracing. 

The figures of merit used in decision making were: 

• Phaser’s intensity-based log-likelihood gain (LLG) (Read & McCoy, 2016) explains 

how the model fits the data by calculating the difference between the likelihood of the 

model and the likelihood calculated from a Wilson distribution, so it measures how 

much better the data can be predicted with the model than with a random distribution 

of the same atoms. The more positive the LLG, the higher will be the signal in a MR 

search. 

• Correlation coefficient between observed and calculated normalized intensities (CC) 

(Fujinaga & Read, 1987) was calculated by SHELXE (Sheldrick, 2002b). It measures 

the linear correlation between the native structure factors and those calculated from 

the partial structure.  

• Structure-amplitude-weighted mean phase errors (wMPE) (Lunin & Woolfson, 1993) 

were calculated with SHELXE against the refined models from the PDB to assess 

performance. 

 

2.3. Data analysis, model building and refinement 
For data analysis and subsequent refinement, crystallographic software has been used 

notably from the program suites: PHENIX (Liebschner et al., 2019), CCP4 (Winn et al., 

2011), and SHELX (Sheldrick, 2008b). 

XPREP v.2015/1 (Sheldrick, 2008a) and phenix.xtriage (Zwart et al., 2005) were used 

for data analysis. Additionally, Phaser (McCoy et al., 2007) was used to calculate the 
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anisotropic delta-B factor in the coiled-coil study. 

Model and maps were examined with Coot v.0.8.7 (Emsley et al., 2010). It was also 

employed for manual model building in the solution of the unknown coiled-coil structures. 

Phenix.refine (Afonine et al., 2012) was used to refine the unknown coiled-coil structure 

described in section 1.6.1., BUSTER (Bricogne et al., 2017) was used to refine the 

structure described in section 1.6.2., and the twinning refinement in SHELXL (Sheldrick, 

2015) was used to refine the structure described in the results section 2.6.3. 

For the structures described in the results sections 2.6.2. and 2.6.3. further completion 

was done modelling side chains with SEQUENCE SLIDER (Borges et al., 2020), another 

program developed in our laboratory. SEQUENCE SLIDER models side chains on partial 

polypeptide traces in a brute force approach. At resolution of 2 Å or worse, the electron 

density maps generated from partial ARCIMBOLDO solutions may not display density to 

distinguish side chains. All possible sequence assignments allowed by the known 

sequence may be assembled and individually tried. Whereas the distributed SEQUENCE 

SLIDER uses an ancillary program, SPROUT, to model side chains, the alpha version used 

in this work relied on Scwrl4 (Krivov et al., 2009). The sequence may be matched to the 

trace based on the secondary structure prediction to reduce the number of possibilities. 

Possible models are sent to refinement, and crystallographic indicators are used for 

discrimination. The model extension and improvement of phases for correct models allows 

model completion. Iteration reveals better discrimination among the possibilities evaluated. 

 

2.4. Graphics 
Figures were prepared with the PyMOL Molecular Graphics System v.1.2r2 

(Schrodinger, 2015) and Matplotlib v.1.5.3 (Hunter, 2007). 

 

3. Test data 

3.1. tNCS database 
The database was derived from an initial subset of 90083 crystal structures from the 

PDB (Berman et al., 2000; Burley et al., 2018) deposited between 1976 and 2018 and for 

which there were also deposited X-ray intensities or amplitudes.  
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3.2. Coiled-coils test set 
The test set is composed of two pools of coiled-coil crystal structures from the PDB. 

The first pool was adopted from a previous study (Thomas et al., 2015) and comprises 

94 cases with resolutions ranging between 0.9 and 2.9 Å, sizes between 15 to 618 residues 

distributed in the asymmetric unit in one to four chains that belong to 32 different space 

groups in which C2 predominates, followed by P212121 and P21. They were deposited with 

the PDB between 1997 and 2012. Eight structures, PDB entries 1s9z, 2pnv, 3h00, 3h7z, 

3ra3, 3s0r, 3v86, and 4dzk, are annotated as merohedrally twinned.  

The PDB entries for these 94 structures are: 1byz, 1d7m, 1deb, 1env, 1ezj, 1g1j, 1gmj, 

1jcd, 1k33, 1kql, 1kyc, 1m3w, 1m5i, 1mi7, 1n7s, 1nkd, 1p9i, 1s35, 1s9z, 1t6f, 1uii, 1uix, 

1usd, 1wt6, 1x8y, 1y66, 1ybk, 1yod, 1zv7, 1zvb, 2akf, 2b22, 2bez, 2efr, 2fxm, 2ic6, 2ic9, 

2no2, 2ovc, 2pnv, 2q5u, 2q6q, 2qih, 2v71, 2w6a, 2w6b, 2wpq, 2xu6, 2xus, 2xv5, 2ykt, 

2zzo, 3a2a, 3ajw, 3azd, 3bas, 3cve, 3cvf, 3etw, 3h00, 3h7z, 3hfe, 3hrn, 3k29, 3k9a, 3ljm, 

3m91, 3mqc, 3ni0, 3okq, 3p7k, 3pp5, 3q8t, 3qh9, 3ra3, 3s0r, 3s4r, 3s9g, 3swf, 3swk, 3swy, 

3t97, 3trt, 3twe, 3tyy, 3u1a, 3u1c, 3v86, 3vgy, 3vir, 3vp9, 4dzk, 4dzn and 4e61.  

This test set was expanded with a second pool of 56 structures selected from the PDB 

in the range of 2-3 Å resolution and sizes spanning 45-635 amino acids arranged in one to 

12 chains. These structures, which were deposited in the years 2001–2016, belong to 26 

different space groups, with P21, C2 and P212121 predominating. Three of them, PDB 

entries 3miw, 4bl6, and 5ajs, are merohedrally twinned.  

The PDB entries for these 56 structures are as follows: 1kdd, 1pl5, 1t3j, 1u4q, 1unx, 

1urq, 1w5h, 2ahp, 2b9c, 2jee, 2nps, 2o1j, 2oqq, 2wz7, 3a7o, 3cyo, 3efg, 3g9r, 3iv1, 3m9h, 

3miw, 3nwh, 3onx, 3r3k, 3r47, 3r4h, 3thf, 3tul, 3v2r, 4bl6, 4bry, 4cgc, 4gif, 4hu6, 4l2w, 4ltb, 

4m3l, 4n6j, 4nad, 4oh8, 4pn8, 4pn9, 4pna, 4pxj, 4pxu, 4qkv, 4w7y, 4xa3, 4yv3, 5ajs, 5c9n, 

5cx2, 5d3a, 5djn, 5eoj and 5jxc. 

The joint set thus covered 0.9-3 Å resolution, asymmetric unit contents ranging from 15 

to 635 amino acids, and 38 different space groups. No isomorphous structures were 

included, although PDB entries 3mqc and 3nwh are closely related. Table 1 characterizes 

both test sets. 
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Table 1. Characteristics of the test sets used. 

 Test Set 1 Test Set 2 

Number of structures 94 56 

Range of resolution limit (Å) 0.9 - 2.9 2.0 - 3.0 

Residues in the asymmetric unit 15 - 618 45 - 635 

Polypeptide chains in the asymmetric unit 1 - 4 1 - 12 

Nº of different space groups 32 26 

Most frequent space groups 
(and presence in the test set) 

C2 (13.8%) 
P212121 (12.8%) 

P21 (10.6%) 

P21 (17.9%) 
C2 (14.3%) 

P212121 (7.1%) 

Used previously in (Thomas et al., 2015)  
 

3.3. Unknown coiled-coil structures 
Four novel coiled-coil crystal structures were solved in our group thanks to the 

coiled_coil mode implemented in ARCIMBOLDO_LITE and their characteristics are 

described below. 

Mus musculus SYCP3 homotetramer in two crystal forms (P21 and P1) 

The structures of the synaptonemal complex protein 3 (SYCP3) from Mus musculus in 

two crystal forms (P21 and P1) (West et al., 2018; West et al., 2019) have been deposited 

in the PDB with the codes 6dd8 and 6dd9 respectively. 

The P21 data set was generated by merging three individual data sets from different 

crystals collected at the Advanced Photon Source, beamline 24ID-E obtaining an R(int) of 

0.2245, and cut to a final resolution of 2.5 Å. Data were used as intensities. The unit-cell 

parameters are a=45.89 Å, b=49.49 Å, c=150.56 Å, α=90º, β=90.79º, and γ=90º. The 

asymmetric unit contains a single tetramer, totalling 576 residues, along with 50% of 

solvent content. 

The P1 data set was generated by merging five independent data sets collected at the 

Advanced Photon Source beamline 24ID-E and the Stanford Synchrotron Radiation 

Lightsource beamline 14-1, obtaining an R(int) of 0.1935, and cut to a final resolution of 2.2 

Å. Data were used as intensities. The unit-cell parameters are a=45.84 Å, b=52.40 Å, 

c=75.33 Å, α=94.73º, β=103.99º and γ=110.47º. The asymmetric unit contains a single 

tetramer, totalling 576 residues, along with 47% of solvent content. 
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A peptide-based nanotube with tNCS 

The data set was generated by merging all equivalents (including Friedel pairs) to give 

7142 reflections and an R(int) of 0.2245 and an R(sigma) of 0.058. The resolution of the 

data set was 2 Å, and data were used as intensities. The crystal belonged to space group 

P1, with unit cell parameters a=23.48 Å, b=27.92 Å, c=45.43 Å, α=93.60º, β=90.81º and 

γ=113.13º. The asymmetric unit contains four helices, totalling 128 residues, corresponding 

to a solvent content of 36%. 

A peptide-based nanotube with twinning 

The resolution of the data, available as intensities, was 1.3 Å. The crystal presented 

space group R3 with the hexagonal unit cell of a=b=40.45 Å, c=59.34 Å, α=β=90º and 

γ=120º. The asymmetric unit contained one helix of 36 residues, corresponding to a solvent 

content of 44%. 
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RESULTS AND DISCUSSION 

1. DETECTION OF TRANSLATIONAL NON-
CRYSTALLOGRAPHIC SYMMETRY IN PATTERSON 
FUNCTIONS 

1.1. Introduction 
Translational non-crystallographic symmetry (tNCS) arises when the asymmetric unit 

contains two or more copies of a component that are oriented in (nearly) the same way and 

can be superimposed by a translation that does not correspond to any symmetry operation 

in the space group (Rossmann & Blow, 1964).  

This causes an overall modulation with systematically strong and weak intensities 

(Chook et al., 1998), affecting structure determination and refinement. The maximum-

likelihood methods used for MR depend on an accurate statistical model and they are 

highly sensitive to the difficulties to account for the statistical effects of tNCS. For that 

reason, it is fundamentally important to address this pathology for structure solution. 

To characterize the statistical effects of tNCS accurately, it is necessary to determine 

the translation relating the copies (tNCS vectors), and the size of random coordinate 

differences caused by conformational differences from exact translation. In the case of a 

pair of molecules related by tNCS, the algorithm implemented in Phaser models a small 

rotation (tNCS rotation) and a rms deviation (tNCS rmsd). For higher-order tNCS, rotation 

differences are not modelled explicitly. These parameters are used to generate expected 

intensity factors for each reflection that model the modulations observed in the data (Read 

et al., 2013), which are refined against a likelihood function (McCoy et al., 2007) given by 

the Wilson distribution of the data.  

The Patterson map can be used to determine the translation vector(s) relating the 

copies. To this end, the Patterson map is traditionally calculated with data truncated from 5-

10 Å and inspected to find a Patterson peak over the 20% of the origin peak height and at 

more than 15 Å from the origin (Zwart et al., 2005). However, there has been no systematic 

study of the parameters underlying this approach, nor an assessment of how accurate it is 

in the detection of tNCS. Also, this approach does not automatically give the order of the 

tNCS, which is critical for correcting the modulations. We are also interested in ranking 

alternative hypotheses for tNCS, in the context of developing automated structure solution 

strategies. 
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1.2. Database curation 
The database was derived from an initial subset of 90083 crystal structures from the 

PDB. Curation of this database was essential to carry out this study, to ensure control on 

tests and correct rating of results. Curation included the following checks on data quality:  

Retracted entries were deleted, and obsolete structures were replaced by their 

respective valid entries as of October 2018. Also, a small subset of structures for which our 

scripts failed was substituted with data or coordinates from PDB_REDO (Joosten et al., 

2009) whenever possible, if that solved the issue, or else deleted without further 

examination of the causes. 

When PDB entries contained MTRIX cards that represent NCS operators, to reconstruct 

the crystallographic asymmetric unit, the phenix.pdb.mtrix_reconstruction script was used 

(Liebschner et al., 2019). The first matrix is a unit matrix and it is trivial since it corresponds 

to the deposited coordinates in the PDB file. Other MTRIX records will appear only when 

other transformations are required to generate the entire asymmetric unit. These 

transformations operate on the coordinates to apply non-crystallographic symmetry 

operations. 

Similarly, some structures required taking into account the operations present on their 

SCALE remarks that contain the transformation required to place the model in the 

asymmetric unit, these remarks have the transformation from the orthogonal coordinates to 

fractional crystallographic coordinates.  

Furthermore, data in the form of unmerged intensities were converted to merged 

intensities with phenix.reflection_file_converter using the --non-anomalous option 

(Liebschner et al., 2019). 

Additionally, various structural classes with characteristic high intensity modulation even 

in the absence of tNCS as collagen, structures containing nucleic acids, or highly α-helical 

proteins (75% or more helical content), such as coiled-coils were excluded. 

The helical content was calculated following the distribution of characteristic vectors (CVs) 

(Medina et al., 2020) defined by the centroids of α-carbons and carbonyl oxygens from 

consecutive and overlapping heptapeptides. The intensity modulations generated by the 

helical repeats in these structures cannot be corrected by modelling them as tNCS-

generated modulations, and so are beyond the scope of this study. 

Also excluded from the database were viruses, small non-proteins (antibiotics and 

peptides), structures that have been refined as ensembles, disordered structures with a 

mean occupancy less than 0.75, and structures where only the C-α atoms are deposited. 
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Finally, since the tNCS modulations of intensities becomes less pronounced at high 

resolution, where data extended to high-resolution they were truncated to 3 Å resolution to 

save run time in the calculations. Also, in the course of this study, initially unforeseen 

criteria were found to play a role. This is the case for data completeness, as will be 

reported. To account for our findings, cases with completeness below 80% were 

segregated in the database. So, the primary database was further curated to remove cases 

where the data were less than 80% complete, and a separate database maintained to 

further study the effects of incompleteness.  

The final curated database contains 80482 structures. Its characteristics and genesis 

are summarized in table 2. The small database of structures with data completeness less 

than 80% consisted of 1294 cases.  

Table 2. Summary of database curation. The removed structures are shown in red and the 

replaced ones in blue. 

Initial database 90083 

Obsolete pdb files 296 

Substituted by data from PDB_REDO 357 

Failure of our scripts and not in PDB_REDO or still error 331 

MTRIX | The script could not apply the MTRIX cards 15 | 2 

SCALE 16 

Structures refined as ensembles 79 

Disordered structures, mean occupancy < 0.75 92 

C-α-only structures 21 

Contains nucleic acids 5445 

Highly helical structures (coiled-coils, transmembrane proteins...) 1712 

Collagen 32 

Virus 202 

Antibiotics 36 

Peptides 59 

Overall completeness below 80% 1294 

Final database 80482 
 

It is worth mentioning that although this is a vast database, it is biased to the structures 

that have been solved. Prior to the correction of maximum likelihood target functions for 

tNCS modulations, structure solution was severely hindered by this pathology, and MR 

solution was usually possible only in the cases where good models and good data were 

available, or where the tNCS intensity modulation less severe. 
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1.3. tNCS in real space 
The first question to arise when studying tNCS is “What constitutes tNCS?” This is not a 

simple question to answer. The effects of tNCS form a continuum between exact tNCS and 

molecules in the asymmetric unit oriented with large rotation angles with respect to one 

another (general NCS). 

Our initial approach was to use the coordinates for decision making. Whether or not 

coordinates have tNCS depends on the choice of a rotational tolerance. In our experience 

in tNCS parameter refinement, tNCS rotations can refine to values up to 10º (Read et al., 

2013). Coordinate analysis was therefore carried out exploring a wide range of rotational 

tolerances, from 0º to 20º. The results are shown in table 3.  

Table 3. Results of the coordinate analysis depending on different rotational tolerance ranges 

(cumulative). The results show the number of structures with tNCS and the percentage of the 

total database (including monomeric structures), the number of structures with 2 molecules 

related by tNCS and the structures with more than 2 molecules related by tNCS. 

Rotational tolerance tNCS tNCS order = 2 tNCS order > 2 

0-2º 2523 (3.13%) 2375 148 

0-5º 4818 (6%) 4332 486 

0-10º 7503 (9.3%) 6660 843 

0-15º 9549 (11.86%) 8396 1153 

0-20º 11230 (13.95%) 9822 1408 
 

At small angular tolerances, less than 5º, one in 20 structures in the database were 

flagged as having tNCS; at 10º tolerance, this had increased to nearly one in ten; and by 

20º it was one in seven. Furthermore, in some cases the order of the tNCS also increased 

with tolerance; 6% of the tNCS was higher-order tNCS (n>2) at 2º tolerance and 14% at 

20º tolerance. Most of the increase in the order of the tNCS was observed when increasing 

the tolerance from 2º to 5º because higher-order tNCS often has subsets of components 

more closely related than others, and what, at small tolerances, appears to be complex low 

order tNCS reduces to a simple high order tNCS at larger tolerances, for definition of these 

categories see the introduction section 3.4.2. We refer to the coordinates-based test for 

tNCS as the pdb-tNCS(rº), where the angle r is the angular tolerance, and the value is 

true/false. 
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1.4. Patterson vector length threshold 
Patterson function intra-molecular vectors cluster around the Patterson function origin 

peak. These peaks, which constitute noise in the context of searching for tNCS vectors, 

can be excluded by setting a minimum vector length threshold. The shortest tNCS vector 

that is possible in any given case will depend on the shortest extent of the molecules, and 

this distance could be used a constraint on the tNCS vector. However, the shortest extent 

is not known before structure determination; only by assuming a spherical molecule could a 

reasonable estimate of the average molecular extent be made from the molecular weight 

for a completely unknown structure. Independently, there is a need to exclude short vectors 

because of pseudo-symmetry in secondary structure elements, such as alpha-helices and 

beta-sheets. The distances arising from these pseudo-symmetries are less than 15 Å, 

which has been used as the threshold distance for exclusion (Zwart et al., 2005).  

To determine whether this distance was larger than any tNCS vectors in the PDB, the 

vector relating the copies was used to calculate the vector length that corresponds to the 

distance from the origin of the Patterson peak. The shortest tNCS vector in the database 

was 22.4 Å, for PDB entry 3i57 (MacKenzie et al., 2009) with a fractional translation vector 

of (0.5, 0, 0) and a rotational tolerance of 6.7º. The structure of 3i57 is shown in figure 11a 

and its Patterson function in figure 11b. We conclude that the 15 Å distance from the origin 

of the Patterson peak is suitable for excluding self-vectors while not excluding any true 

tNCS vectors. 

 
Figure 11. a) tNCS related molecules of PDB id 3i57.  b) Patterson function of PDB id 3i57, 

drawn in 3D perspective projection, showing the origin peaks and the peak 22.43 Å from the 

origin, which corresponds to the tNCS translation (0.5, 0.0, 0).  
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1.5. Patterson peak threshold 
The next step was to investigate the correlation of the pdb-tNCS with the peak heights in 

the Patterson function. Several resolution ranges to calculate the Patterson were explored: 

3-10 Å, 4-10 Å, 5 -10 Å, 3-15 Å, 4-15 Å and 5-15 Å. As stated above, only peaks further 

than 15 Å from the origin peak were considered. Figure 12 shows the histograms for the 

distribution of top non-origin Patterson peak heights, results are shown for Patterson 

functions calculated with data between 5-10 Å and with different pdb-tNCS(rº) angular 

tolerances. 

The top non-origin peak was expressed as a percentage of the height of the Patterson 

origin peak and as a Z-score value (number of standard deviations above the mean value 

of all the peaks). The mean height of the Patterson is disproportionately affected by the 

large origin peak. However, since all Pattersons have a large origin peak, the effect of this 

on the mean was relatively consistent across all Pattersons, and therefore the Z-score was 

a valid discriminator even though it was not a good absolute measure of significance. 

For pdb-tNCS(2º), figure 12 showed that the traditional Patterson-20% origin peak 

threshold was broadly correct; this gave an accuracy (defined below) of 96%. However, for 

pdb-tNCS(15º) the accuracy began to break down (94%), and by pdb-tNCS(20º) was 92%.  

Correspondingly, the appendix figure A2 provides graphs for other resolution ranges, a) 

and b) illustrate the decrease in modulation for structures with tNCS as rotational tolerance 

increases for all the resolution ranges used for calculating the Patterson map. Appendix 

figure A2 c) and d) show that the majority of the structures without tNCS have a low 

Patterson peak. 
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Figure 12. Non-cumulative histograms of the number of structures leading to different values for 

the highest non-origin peak, depending on rotational tolerances. The Patterson function was 

calculated with data from 5-10 Å. The first and second columns display cases with tNCS, 

whereas the third and fourth columns show cases without tNCS; the first and third columns 

express the maximal non-origin peak height as a percentage of the origin peak height, while the 

second and fourth columns express it as a Z-score. A red line is drawn at Patterson-20%, which 

is the previous threshold for determining the presence of tNCS. 
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1.6. Decision tree 
To develop criteria for distinguishing between the presence and absence of tNCS 

depending on the height of the Patterson highest non-origin peak a decision tree was 

employed (Breiman et al., 1984), which is a predictive modelling approach used in 

statistics, data mining, and machine learning.  

The database was divided randomly into a training set (75%) and a test set (25%). The 

Gini index, that is a measure of statistical dispersion, was used as a criterion for calculating 

discrimination. A value of zero indicates no discrimination, and a value of one indicates 

maximal discrimination. 

The training set was used to train the algorithm and included information on pdb-tNCS, 

and the highest non-origin Patterson peaks. The algorithm resulting from the decision tree 

was then applied to the test set which only had the information for the highest non-origin 

Patterson peak. Since there was only one parameter to fit for each decision tree (the height 

of the Patterson peak) cross-validation to avoid overfitting was not performed. A confusion 

matrix was generated in order to compute the Accuracy (ACC), Sensitivity (SN), Precision 

(PREC) and False Positive Rate (FPR) of the algorithm, where, given TP are true positives, 

TN are true negatives, FP are false positives, and FN are false negatives. 

𝐴𝐶𝐶 = 	 KLMKN
LMN

= 	 KLMKN
KLMKNMOLMON

  (4) 

𝑆𝑁 = KL
KLMRS

     (5) 

𝑃𝑅𝐸𝐶 = KL
KLMOL

     (6) 

𝐹𝑃𝑅 = OL
KNMOL

     (7) 

The Patterson function resolution ranges explored were: 3-10 Å, 4-10 Å, 5-10 Å, 3-15 Å, 

4-15 Å, and 5-15 Å. Following the study of the length of tNCS vectors, only peaks further 

than 15 Å from the origin peak were accepted.  

Tables 4 and 5 shows that whatever the Patterson resolution or pdb-tNCS(rº) rotational 

tolerance, suitable Patterson thresholds based on either percentages of the origin peak or 

Z-scores could be found for high accuracy decision making; we call the associated 

threshold t values the Patterson-t% and Patterson-Zt, respectively. Smaller rotational 

tolerances favoured the use of higher resolution data.  
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Table 4. Accuracy (ACC) of the decision trees and best value of Patterson-Zt, depending on the 

rotational tolerance and resolution ranges used for calculating the Patterson function. The cell 

highlighted in grey has the highest accuracy for pdb-tNCS(10º) and is discussed in the text 

(figure 13). 

 0-2º 0-5º 0-10º 0-15º 0-20º 

 ACC Z-score ACC Z-score ACC Z-score ACC Z-score ACC Z-score 

3-10 Å 98.10 46.81 98.23 28.90 96.97 12.81 94.96 9.80 93.10 9.80 

4-10 Å 97.68 33.70 98.19 20.33 97.17 11.49 95.14 10.35 93.20 9.60 

5-10 Å 97.22 24.97 97.94 16.51 97.36 10.82 95.29 9.35 93.36 8.65 

3-15 Å 98.03 46.91 98.23 28.82 97.07 12.86 95.31 10.09 93.28 9.57 

4-15 Å 97.67 36.00 98.09 21.04 97.26 10.84 95.45 9.63 93.47 9.60 

5-15 Å 97.02 26.39 97.74 17.90 97.59 11.36 95.63 9.66 93.83 9.06 

 
 

Table 5. Accuracy of the decision trees and best value of Patterson-t%, depending on the 

rotational tolerance and resolution ranges used for calculating the Patterson function. The cell 

highlighted in grey is the prediction for the traditional resolution range of 5-10 Å for pdb-

tNCS(10°) and is discussed in the text.  

 0-2º 0-5º 0-10º 0-15º 0-20º 

 ACC Percent ACC Percent ACC Percent ACC Percent ACC Percent 

3-10 Å 97.95 28.13 97.66 15.83 95.99 8.31 94.05 7.63 91.97 8.31 

4-10 Å 97.75 32.38 97.59 18.17 96.21 11.86 94.17 11.70 92.05 11.59 

5-10 Å 97.34 34.39 97.37 19.85 96.46 16.80 94.39 15.40 92.31 15.53 

3-15 Å 98.04 30.48 97.65 15.52 96.16 8.31 94.36 7.523 92.21 7.55 

4-15 Å 97.79 34.20 97.56 18.67 96.39 11.62 94.43 10.71 92.30 10.73 

5-15 Å 97.22 36.25 97.24 19.24 96.61 16.41 94.70 15.56 92.64 15.52 

 

Taking pdb-tNCS(10º) as a useful measure of tNCS, the best predictions, with 97.6% 

accuracy (figure 13b, 13c), used Patterson functions calculated between 5-15 Å and a 

Patterson-Zt where t=11.36 threshold (figure 13a). Only slightly poorer accuracy, at 96.5% 

(figure 13e, 13f), could be obtained using the traditional 5-10 Å resolution range and a 

Patterson-t% threshold, but this required t=16.8% (figure 13d) rather than the traditionally 

used t=20%, implying that the previous Patterson-t% threshold for tNCS is too 

conservative. Since altering the resolution range and using a Patterson-Zt threshold had a 

marginal effect on accuracy, we decided to use the traditional 5-10 Å resolution range and 

Patterson-t% threshold for our algorithm, although with lowered threshold value from 20% 

to 16.8%. Using the narrower resolution range also guards against any technical problems 

with collecting data at low resolution. 
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Figure 13. a), b) and c) represent the best prediction using 5-15 Å resolution and a Patterson-Zt 

where t=11.36. d), e) and f) represent the prediction using the traditional resolution cut-off of 5-

10 Å and a Patterson-t% where t=16.8%. a) and d) show the decision trees for pdb-tNCS(10°). 

b) and e) are the confusion matrix for the test set (25%), the accuracies calculated from the 

confusion matrices, using equation 4, are 97.6% and 96.5% respectively. c) and f) display the 

confusion matrix for the entire database (100%), where the overall accuracies given by the 

confusion matrices from the entire database yield 97.5% and 96.5% respectively. 

The false negatives and false positives were further investigated. The sensitivity 

(equation 5) of the algorithm was 85% and the precision (equation 6) was 88%, while the 

false positive rate (equation 7) was 1%, indicating that the algorithm identifies cases of no 

tNCS exceptionally well, but fails to identify some cases with tNCS. With only one 

parameter to fit, there is a simple trade-off between identifying false negatives and false 

positives. The bias in the classifier towards no tNCS comes about because the database 

contains a higher proportion of structures without tNCS. If we assume that novel datasets 

will be no more biased towards having tNCS than deposited structures, then the bias is 

appropriate for accuracy. It is possible that the proportion of crystals that grow with tNCS is 

higher than that represented by the database, because these structures are less likely to be 

solved, however we cannot quantify this. 

Both false negatives and false positives will impact structure solution by MR or 

experimental phasing. False negatives occurred where the Patterson peak was below the 

threshold proposed by the decision tree but where pdb-tNCS(rº) was true. False negatives 

will mean that intensity modulations are not corrected, and structure solution by MR will 

then require high-quality models to succeed, or, for SAD phasing, the anomalous signal will 

need to be strong. False positives occurred where the top peak in the Patterson was above 

the threshold but pdb-tNCS(rº) was false. False positives are particularly severe in the 

context of structure solution with Phaser because tNCS will be forced to apply to the 

components in the asymmetric unit (whether MR models or heavy atoms) when there is 
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none. Therefore, the false positive rate (equation 7) of 1% was significant for practical 

applications even though low. 

 

1.7. tNCS in reciprocal space, epsilon factor distribution and 
completeness (addressing the false negatives) 

Some of the false negatives in the pdb-tNCS(10º) confusion matrix could be rescued by 

considering a larger angular tolerance. Indeed 353 out of 869 of the false negatives from 

the best decision tree (figure 13c) have tNCS according to pdb-tNCS(20º). Note that this is 

not equivalent to using the decision tree generated with pdb-tNCS(20º), which includes 

additional false negatives. This phenomenon was true for every pdb-tNCS(rº) analysed; 

false negatives could be rescued by considering larger perturbations in the rotation angles. 

The studies in real space showed that using a Patterson function peak threshold gave 

high accuracy for detecting tNCS when using pdb-tNCS(rº) as the definition of tNCS. 

However, the optimal Patterson function peak threshold depended critically on the rotation r 

used for the classification, with the Patterson function peak threshold getting lower as r 

increased. Furthermore, an increasing number of structures that did not have pdb-tNCS(rº) 

were detected as having tNCS as the Patterson function peak threshold was lowered. The 

studies using the real space classifier clearly demonstrated the problem of tNCS being a 

continuum between exact tNCS and NCS. The problem of false negatives lay not in the 

threshold, but in the real space classifier of pdb-tNCS(rº). 

There are several reasons why pdb-tNCS(rº) may not correspond with significant 

modulations in the data. If the tNCS-related components are large, the radius of the 

molecular G-function (Rossmann & Blow, 1962) is small so that the modulations fall off 

faster with orientational differences (Read et al., 2013). If the tNCS-related copies differ 

substantially in conformation, the modulations fall off faster with resolution. Finally, if the 

symmetry-related tNCS vectors are very different, modulations arising from the symmetry-

related copies will tend to cancel. 

The scope of this study is to determine initial parameters for the model of tNCS so that 

the refinement of tNCS intensity correction factors can proceed. Therefore, if the resulting 

modulations are not significant, then tNCS is effectively not present for our purposes, and 

there is nothing to correct: if the (insignificant) tNCS epsilon factors are omitted there will be 

no impact on structure solution.  

Thus, we examined the distribution of epsilon factors after refinement as a classifier for 

the presence or absence of tNCS. Refined epsilon factors that cluster around one define 
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unmodulated data, while those that refine to the extremes of the distribution define high 

modulation. Epsilon factors measure the statistical weight of a reflection and constitute the 

scale factors applied for having a Wilson distribution, so if the intensity of a reflection is 

multiplied by one no correction is taking place. The variance about one (s1
2) is used as the 

statistical metric for measuring the degree of modulation. 

𝜎@- =
@
Y

𝑥 − 1 -
Y  (8) 

This indicator is called eps-tNCS, and takes a range of values between 0 and 

(n/2)2+(n/2-1)2, although in practice it is less than one in all but extraordinary circumstances. 

Histograms showing examples of the distribution of epsilon factors and their associated 

eps-tNCS are presented in figure 14.  

 
Figure 14. Histograms showing the distribution of refined tNCS epsilon factors for a) 2cc0 with 

s1
2=0.63 for tNCS2 (Taylor et al., 2006) and b) 4n3e with s1

2=0.61 for tNCS7 (Sliwiak et al., 

2014).  

The distribution of eps-tNCS values versus Patterson-t% is shown in figure 15. There is 

a clear linear relationship between the two: Patterson peak height is directly related to 

modulation in the data. The Patterson-Zt had a lower correlation coefficient (0.82) with the 

eps-tNCS than Patterson-t%. The correlation coefficient between eps-tNCS and Patterson-

t% was 0.934, and was calculated with eps-tNCS refined against 5-10 Å data and 

Patterson functions calculated with 5-10 Å data. 

This analysis demonstrated that the false negatives in the algorithm, as determined by 

pdb-tNCS (a binary measure) were cases where the eps-tNCS (a real number) was low, 

and therefore their mis-classification should not strongly impact structure solution. It also 

demonstrates that the Patterson function peak height is a good measure for the ranking of 

a tNCS hypothesis. 
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Figure 15. Scatter plot showing the distribution of refined tNCS epsilon factor variances about 

one (s1
2; one-variance; equation 8) for all cases with pdb-tNCS(20°). Data range 5-10 Å. 

It has long been known that complete, good quality data are key for successful MR 

using Patterson methods (Navaza, 1994). In the course of the study, became apparent that 

the completeness of the data has a significant effect on the accuracy of the Patterson-

based decision tree. Figure 16 shows that low completeness data resulted in several 

outliers in the Patterson-t% versus s1
2 scatter plot. Figure 17 shows how the accuracy of 

the decision tree deteriorated with decreasing completeness.  

 
Figure 16. Scatter plot showing the distribution of refined tNCS epsilon factor variances for all 

cases with pdb-tNCS(20°) and data completeness less than 80%, which were excluded from the 

database. Many outliers are present in the distribution, with eight cases in the bottom right part 

of the plot (3c6o (Hayashi et al., 2008), 1jpn (Padmanabhan & Freymann, 2001), 1sxh 

(Schumacher et al., 2004), 1n8o, 1eam (Hu et al., 1999), 1wwr (Kuratani et al., 2005), 3it5 

(Spencer et al., 2010) and 1lbs (Uppenberg et al., 1995)) having high Patterson peaks but no 

significant epsilon factor dispersion. There was one outlier in the top right part of the plot (3he1 

(Osipiuk et al., 2011)) with one-variance of nearly 1.6 for tNCS6, the only case that was 

observed for which the s1
2 was greater than one. 
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Figure 17. Histogram showing how the completeness of the data affects the accuracy of the 

decision tree. Low data completeness causes the algorithm to become much less reliable. 

Distribution of missing data in these data sets was not investigated; however, when 

large percentages of data are missing, it is normally because the user has failed to collect a 

wedge of data, either through initial miss-identification of the true space group, radiation 

damage, ice rings, or severe overlapping of a section of the data (e.g., due to one long unit 

cell dimension). Lacking a wedge of data will impact the eps-tNCS refinement because 

systematic omission of data for a direction in reciprocal space leaves parameters in real 

space perpendicular to that direction undefined. In addition, missing wedges of data 

complicate data processing, and if due to overlaps, some reflections may be integrated 

including partial intensity from a neighbouring reflection causing a strong modulation, but 

also measuring intensity from neighbours can affect the weak reflections leading to missing 

modulation, affecting the Patterson and so the study of the modulation. 

 

1.8. Calculated data and lattice translocation disorder 
(addressing the false positives) 

Several entries in the database had significant Patterson peaks despite not having 

tNCS. For these cases, Patterson functions were calculated from the coordinates and 

compared with the observed ones (figure 18).  

Although it is demonstrated before that the epsilon factor distribution is a better decision 

algorithm than the decision tree, for illustrating this example, the traditional 20% threshold, 

resolution cut-off of 5-10 Å, and a rotational tolerance of 20° were chosen. There were 213 

false positives, where pdb-tNCS(20°) was false, and the highest non-origin Patterson peak 

from the observed data was above the 20% threshold. For 158 cases (75%) the highest 

non-origin Patterson peak from the calculated data was below the 20% threshold. In these 

cases, modulation of the data could not be explained by the calculated intensities. 
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Figure 18. Scatter plot showing the distribution of highest non-origin Patterson peaks in the 

calculated and observed data, as a percentage of the origin peak, for cases with pdb-tNCS(20°) 

false and observed Patterson-20% true. Above the red line cases with calculated Patterson-

20% true, and below the line cases with calculated Patterson-20% false. 

It is possible that these structures show a degree of lattice translocation disorder, with 

stacking heterogeneity between mosaic blocks (Dauter et al., 2005; Rye et al., 2007). 

Interestingly, the distribution of space groups in these structures differed significantly from 

the distribution across all deposited structures, with space group P21 present at three times 

the number expected (see table 6). The 21 screw axis has been implicated as an important 

component of polytropism for crystals (Aquilano et al., 2002). Furthermore, the low 

symmetry space groups such as P21, C2 and P1 might be affected by poor scaling, given 

the lack of symmetry equivalents. For instance, if the beam is unstable, showing a periodic 

flux oscillation, frames of strong and weak reflections will be measured. 

Table 6. Space group propensity for 158 cases where there was no tNCS in coordinates and a 

high peak in the Patterson from the observed data was absent when using calculated data. PDB 

average following (Wukovitz & Yeates, 1995).  

Space group Number Percent PDB average 

P21 60 38% 11.1% 

C2 30 19% 6.1% 

P1 23 15% 2.6% 

P212121 8 5% 36.1% 

P21212 5 3% 3.7% 

C2221 5 3% 3.7% 

R32 5 3% — 

R3 5 3% — 

Other space groups with only 4 
or less structures in each one 

17 11% — 
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One of the cases that had significant Patterson peaks despite not having tNCS was the 

proteolytic domain of Archaeoglobus fulgidus Lon protease (1z0v (Dauter et al., 2005), a 

structure known to be an allotwin (Lebedev, 2009). Individual crystals belonged to the 

space group P21 and P212121, with the transition layers in plane space group P2121(2) 

giving a sequence of stacking vectors. 

Another case was Lipase B from Candida antarctica, also known to be an OD-twin. In 

this case, the two space groups involved were C2 and P212121, with the transition layers 

again in plane space group P2121(2). The deposited data for 1lbs (Uppenberg et al., 1995) 

were processed in the larger, orthorhombic lattice, which resulted in apparent data 

completeness of 27.5% although the completeness in the actual C2 space group was 

82.4%. In terms of the study, this structure was included in the small database of structures 

with less than 80% complete data, however, had it been included in the main database, it 

would have been the most extreme false positive outlier.  

In another case, Ftsk motor domain from Escherichia coli (2ius) (Massey et al., 2006) 

the indexing and space group determination for the crystal was problematic (Jan Löwe, 

pers. comm.). We thus hypothesize that these outliers are as a result of a structure with a 

lattice-translocation defect, rather than tNCS. In the context of automated structure 

determination, it is therefore important to consider the absence of tNCS even in the context 

of large Patterson peaks being present.  

 

1.9. High order tNCS 
In the course of the study, a few cases in which sub-groups of components were related 

by different tNCS vectors were noted. These cases tended toward pseudo-centring in 

multiple directions. For example, a small ligand-bound complex of von Hippel-Lindau (VHL) 

E3 Ubiquitin Ligase and the Hypoxia Inducible Factor (HIF) Alpha Subunit (PDB id 4w9d, 

P4122) (Galdeano et al., 2014), showed a pseudo-centring in the a (0.5, 0.04, 0.0) and a-b 

diagonal (0.54, 0.5, 0.0)) directions, and similarly, the crystal structure of SOAR domain 

(PDB id 3teq, P41212) (Yang et al., 2012) showed pseudo-centring in the a (0.49, 0.01, 0.0) 

and a-b diagonal (0.49, 0.51, 0.0) directions. If there are sub-groups of components related 

by different tNCS vectors or if only some components of the asymmetric unit are related by 

a tNCS vector, then the modulations of the expected intensities due to the tNCS will be 

much less significant, and structure solution may be achieved without any tNCS correction 

being applied, as indeed was the case in these examples. However, if structure solution 

fails, detecting and correcting the dominant order of tNCS within the asymmetric unit may 

be enough. 
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1.10. tNCS detection 
An algorithm for characterizing and ranking tNCS hypotheses by analysis of the 

intensities prior to structure solution was developed. Correct identification of tNCS can have 

a profound impact on the ability to place components in the asymmetric unit, whether they 

be components by MR or heavy atoms by experimental phasing. In the context of a pipeline 

for structure solution with Phaser, the fastest route to structure solution on average should 

be by exploring the tNCS hypotheses in order of ranking by our criteria. 

Our algorithm for tNCS detection not only determines the tNCS vector and the tNCS 

order but also involves tests that aim to exclude pathological cases. First, a Patterson 

function is calculated from the data, by default using 5-10 Å resolution data. Peaks are 

picked in the Patterson function and filtered by two criteria; the peak height must be over a 

given percentage of the origin peak height and the peak distance must be above more than 

a given distance from the origin. As guided by this study, the default distance threshold is 

15 Å and the default Patterson function threshold is 16.8%. Cases where at least one of the 

unit cell dimensions is less than the origin distance threshold, are considered pathological 

(most likely peptides) and are excluded from further analysis. If there are no surviving non-

origin distinct peaks over the Patterson-% threshold, the algorithm terminates with status 

“tNCS not indicated”, otherwise the algorithm proceeds to the analysis of the tNCS order.  

The simplest interpretation of surviving peaks is that each (if there are more than one) 

presents an independent tNCS2 vector and with Patterson-% indicating the strength of the 

associated modulation, which provides a ranking for the hypotheses.  

Then, further analysis was performed to determine if the Patterson peaks are due to a 

higher-order tNCS commensurate modulation and, if so, the order of that commensurate 

modulation. Noise in the Patterson function is removed by setting all values below 8% of 

the Patterson origin peak to zero, and the noise-reduced Patterson function is transformed 

to reciprocal space, where commensurate modulation is detected as strong low order 

Fourier terms. The hypothesis for a given commensurate modulation will predict a set of 

equal-height peaks in the Patterson function. In practice, because the components are not 

related by a perfect translation (as previously discussed), these predicted peaks will have 

different heights, and some may be below the Patterson-t% threshold of the analysis. 

Following the studies on eps-tNCS and the high correlation with the height of the highest 

Patterson peak, we rank commensurate modulations that predict the highest-ranked peak 

higher than those that do not. The result of the algorithm is a ranked list of tNCS 

modulations representing high-order commensurate tNCSn and commensurate and non-

commensurate tNCS2. Following the observation that high Patterson peaks in the data may 

be due to order-disorder effects, the case of no tNCS is also always included in the list of 
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hypotheses. Note that the ranking is not necessary for structure solution. In the context of 

an automated pipeline, as long as the correct hypothesis is in the list, it will be explored. 

The ranking only affects the order in which the hypotheses are explored, and hence the 

efficiency of structure solution. 

An unoptimized part of the algorithm attempts to prevent the misclassification of coiled-

coils and amyloid peptide repeats as having tNCS. As previously discussed, pseudo-

symmetry in secondary structure elements generates large peaks in the Patterson function 

close to the origin. Although coiled-coils were excluded from our curated database, by 

looking at a small number of cases it was observed that the 15 Å minimum vector exclusion 

around the origin was not sufficient to exclude peaks generated by the coiled-coil pseudo-

symmetry (Kondo et al., 2008). Taking a heuristic approach, we exclude peaks from the 

tNCS analysis if they cluster together within the short distance separation characteristic of 

coiled-coils. Future work will perform a systematic study of coiled-coils and amyloid peptide 

repeats to optimize the tNCS detection algorithm in these cases. 

Finally, in this work, to model either the tNCS-rotation or the tNCS-rmsd from the 

Patterson function was not attempted. This decision is in line with having seen the limited 

sensitivity of the Patterson as compared with the epsilon refinement, since some 

information about these parameters is contained in the Patterson peak height relative to the 

origin peak, with lower peak heights indicating more deviation from perfect translation, 

there may also be information about rotational deviations in the 3-dimensional Patterson 

peak shape. However, in practice, refinement of these parameters to correct the 

modulation starting from several different tNCS-rotation perturbations works extremely well, 

and in most cases, all perturbations converge on refinement to the same final tNCS-rotation 

and tNCS-rmsd. 

To conclude, an analysis of a curated database of protein structures from the PDB to 

investigate how tNCS manifests in the Patterson was performed. These studies informed 

our algorithm for detection of tNCS, which includes a method for detecting the number of 

vectors involved in any commensurate modulation (the tNCS order). Our algorithm 

generates a ranked list of possible tNCS associations in the asymmetric unit, for 

exploration during structure solution. 
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2. COILED-COILS 

2.1. Introduction 
Coiled-coils are protein structure domains that consist of two or more α-helices wrapped 

around each other to form a supercoil (Mason & Arndt, 2004). The sequences underlying 

this fold contain characteristic repeats of seven residues leading to left-handed coiling or 11 

residues in the case of right-handed coiling (Lupas & Gruber, 2005). The helices are 

packed together in a specific knobs-into-holes manner (Crick, 1953), with interhelical 

interactions playing a dominant role in folding (Burkhard et al., 2001). The architecture of a 

coiled-coil domain determines its oligomerization state, so slight variations in the knobs-

into-holes packing and different degrees of supercoiling cause these structures to adopt a 

wide range of geometries and topologies (Burkhard et al., 2001; Lupas & Gruber, 2005; 

Rackham et al., 2010). 

These ubiquitous protein folding motifs represent a substantial portion of structural 

studies due to their versatility, as they are found in a variety of proteins involved in a wide 

range of biological functions (Lupas, 1996) of which notable examples are transcription, 

ATP synthesis, catalytic activity, molecular spacing, intracellular transport, transmembrane 

signalling, membrane fusion and re-modelling, proteostasis, the formation of the 

extracellular matrix and several cytoskeletal and nuclear structures of the eukaryotic cell or 

mediation of protein-protein interaction (Baxevanis & Vinson, 1993; Kuhn et al., 2014; Mier 

et al., 2016; West et al., 2019). These diverse functions agree with the fact that 

approximately 10% of the eukaryotic proteins are coiled-coils (Liu & Rost, 2001).  

Furthermore, they have a widespread biomedical significance, since different 

oligomerization states have been associated with disease-causing mutations (Kalman et 

al., 2020). Also, thanks to their self-assembling nature, they have been exploited in the 

biomaterials field to construct self-assembled materials such as peptide-based nanotubes 

that are highly attractive for many biomedical applications such as drug delivery, scaffolds 

for tissue engineering, and many others (Burgess et al., 2015). Their ubiquity and versatility 

underlines the importance of developing computational methods to solve these structures. 

In general, mainly helical structures constitute favourable cases for phasing with 

ARCIMBOLDO_LITE, where polyalanine helices provide ideal search fragments as they 

are constant, rigid, and nearly ubiquitous. Despite the apparent simplicity of the coiled-coil 

architecture, the modulation dominating the data causes problems in the case of 

experimental phasing and MR (Blocquel et al., 2014; Dauter, 2015; Franke et al., 2014; 

Franke et al., 2011; Thomas et al., 2020). 
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Several factors act in combination to make coiled-coils notoriously difficult for phasing. 

They are highly sensitive to experimental conditions of crystallization; long proteins formed 

with these domains tend to aggregate into fibers instead of rendering single crystals (Lupas 

& Gruber, 2005), compromising the obtaining of high-resolution structures. Besides this, 

their filamentous nature can lead to crystalline lattices with lateral association of the 

molecules, which also entails highly anisotropic dimensions of their asymmetric units and 

anisotropic diffraction. Moreover, deviations from the canonical repeat cause helical and 

superhelical fold irregularities (Lupas & Gruber, 2005) making the solution of the structures 

by MR difficult. In addition, SAD and/or MAD phasing by seleno-methionine incorporation is 

significantly hampered by the repetitive nature of their sequences that are often deficient in 

methionine (Franke et al., 2011). 

Phasing of coiled-coil crystal structures with fragments has been implemented in the 

AMPLE (Sanchez Rodriguez et al., 2020; Thomas et al., 2015; Thomas et al., 2020) and 

CCsolve (Rämisch et al., 2015) pipelines, which combine de novo structure prediction (Das 

et al., 2009), MR search and autotracing (Sheldrick, 2010) or automated model building 

(Terwilliger et al., 2008). In addition, recent notable improvement in methods for phasing 

coiled-coils structures have been added. Such as the ab initio modelling of elongated 

helices and oligomeric coiled-coils from two to four helices (Thomas et al., 2020), and the 

use of libraries of helical ensembles (Sanchez Rodriguez et al., 2020). 

In the present work, fragment phasing on a pool of 150 coiled-coils have been explored, 

and the results have been used to identify hurdles, develop ways to overcome them and 

equip ARCIMBOLDO_LITE (Millán et al., 2015) with a specialized protocol with optimized 

strategies and parameters values for coiled-coil structures.  

 

2.2. Overall performance of ARCIMBOLDO_LITE 
The name of the phasing method ARCIMBOLDO came from the analogy with the 

paintings from Giuseppe Arcimboldo, who used to compose portraits out of fruits, 

vegetables and flowers, as the program assembles secondary structure elements to 

compose the structure of a protein. Since the fragments represent a low fraction of the total 

scattering mass, most attempts remain a “still-life” but if these fragments are properly 

placed, density modification and main-chain tracing reveals the true portrait of the protein. 

There are three implementations of the ARCIMBOLDO method depending on the most 

suitable search model for the problem structure. ARCIMBOLDO_LITE (Millán et al., 2015; 

Sammito et al., 2015) employs small and very accurate model fragments such as 

polyalanine α-helices, ARCIMBOLDO_BORGES (Sammito et al., 2013) libraries of local 
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folds and ARCIMBOLDO_SHREDDER (Sammito et al., 2014) libraries of fragments from 

an homologous template.  

The ARCIMBOLDO (Rodríguez et al., 2012; Rodríguez et al., 2009) workflow 

schematized in figure 19 starts when Phaser (McCoy et al., 2007; Read & McCoy, 2016) 

sequentially locates the search fragments that will depend on the implementation of 

ARCIMBOLDO used. In the first stage performs a rotation search, then the rotation peaks 

are clustered and translation search is performed for each of these rotation groups. Finally, 

if there are any clashes between atoms because the solution is not compatible with the 

crystallographic symmetry restrictions imposed by the space group, the solution will not 

pass the packing filter. After all fragment-location operations have been performed, 

SHELXE (Sheldrick, 2010) performs iterative density modification and main-chain autotracing 

starting from all selected substructures, to expand them into a nearly complete structure. 

 
Figure 19. The ARCIMBOLDO workflow. 

This study focused on ARCIMBOLDO_LITE with ideal polyalanine α-helices as search 

fragments. It was employed to attempt phasing a set of 150 coiled-coil test structures with 

resolutions ranging from 0.9 to 3 Å, sizes from 15 to 635 residues, and including 38 

different space groups. 94 structures in this test set were adopted from an earlier study on 

coiled-coil phasing with AMPLE (Thomas et al., 2015). The lower resolution range was 

supplemented with a further 28 structures at 2.0–2.5 Å resolution and 28 at 2.5–3.0 Å 

resolution as the negative impact of poor resolution had been previously identified in their 

study. Those cases were selected by resolution, aiming at a distribution in size and space 

group. A few low-resolution cases discussed in the CCsolve (Rämisch et al., 2015) paper 

were also adopted, if not already in the previous test set. 

In general cases, correct solutions can be distinguished from wrong ones by the 

correlation coefficient (CC) of the partial structure against the experimental data, a CC of 

25% or higher indicates successful SHELXE expansion results (Thorn & Sheldrick, 2013). 
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This indication is correlated with small values of weighted mean phase error (wMPE), that 

confirms the indication provided by the CC. This value is calculated against the refined 

models available from the PDB (Sheldrick, 2002b), and their values span from 0 to 90º, if 

smaller than 80º indicate not random solutions and correlation between the phases under 

study with respect to the true phases. The CC is reliable at atomic resolution with individual 

atoms (Sheldrick et al., 2012), at lower resolution a polypeptide trace that takes into 

account the context is needed. But even with a polypeptide trace, in the case of coiled-

coils, a random partial structure can show high CC values when the modulation of the data 

is explained. For that reason, to ensure the reliability of the results and for the purpose of 

this study, a structure is considered solved when the wMPE versus the reference deposited 

with the PDB was below 65º. 

An initial baseline to identify cases that could be solved straightforwardly with 

ARCIMBOLDO_LITE was set running the program with general default parameters on the 

pool of 150 structures. The fragment search was configured to find four polyalanine helices 

of 18 residues and using the standard resolution-dependent SHELXE parameterization 

(Sammito et al., 2015). This straightforward approach was successful in 78 out of the 150 

cases (52%) and led to the identification of the most interesting cases. It is worth 

mentioning that the high success rate achieved with minimum intervention underscores the 

generality of the ARCIMBOLDO_LITE approach and robustness of its default 

parameterization in solving the most disparate cases of coiled-coils.  

The following sections describe the particular problems that prevented some of the 

remaining 72 structures from being immediately solved. Solutions to these problems are 

then proposed and tested. 

 

2.2.1. Number of fragments to search and helix length 

In general, choice of search fragments is based on the secondary-structure prediction 

for the contents of the asymmetric unit and the signal that can be expected from a fragment 

of a given size for the particular data (McCoy et al., 2017; Oeffner et al., 2018). 

Furthermore, some trial and error may be necessary, as seen in a case where the effect of 

helix length was systematically tested (Schoch et al., 2015). 

A first search configured to find four helices of 18 residues demonstrated that this could 

be a good starting strategy, but the structures that were not solved in the first blind run 

were run again selecting a more appropriate helix length and the number of helices to be 

placed. The helix sizes spanned from six to 50 residues, and the number of fragments 

placed was from one to 12. 
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In the case of high-resolution structures, the best results were obtained employing 

shorter helices as the model is very accurate and does not account for the deviations in the 

helices. In the case of structures with long and curved helices, trying to search for the entire 

helix with the full length, straight model helix built into ARCIMBOLDO_LITE may do not 

lead to any solution, while dividing the search in two or three shorter helices that can adopt 

different orientations along the true helix can lead to a successful expansion in SHELXE. 

Finally, it is worth mentioning that the minimum percentage of the total structure that is 

required to phase depends on the structure. As demonstrated in previous studies (Millán et 

al., 2015), a bare 15% of the main-chain atoms is enough to solve a structure at 2 Å, but as 

the high helical content of coiled-coils is known, there is no reason to artificially limit the use 

of model helices. 

 

2.2.2. rmsd and vrms 

MR requires the location of a model of a known structure close enough to the target 

structure, which can subsequently be used to derive starting phases. The degree of 

similarity between the target and model is quantified in terms of rmsd. This value can be 

inferred by the sequence identity (Chothia & Lesk, 1986), as the target structure is yet 

undetermined. It is worth mentioning that a recent study improved prior estimates of the 

coordinate error (Hatti et al., 2020; Oeffner et al., 2013). In most cases of successful MR, 

the protein of interest shares at least 35% sequence identity with its structural homologous, 

corresponding to an rmsd around 1.5 Å (Abergel, 2013). This rms coordinate error 

expected for the model along with the scattering power in the asymmetric unit that this 

model contributes is used to compute the Sigma(A) curve, which estimates how the 

accuracy of the model falls off as a function of resolution and is fundamental to how Phaser 

uses the models (Read, 1986). 

When phasing with ideal helices, the rmsd cannot be inferred by sequence identity. In 

addition, the ideal 14-residue polyalanine helix typically used in ARCIMBOLDO_LITE as 

search fragment usually represents a small percentage of the scattering. For this reason, 

only parts of the target structure presenting a low value of rmsd are susceptible of being 

located, so our choice is setting a default value of 0.2 Å for the fragment search in Phaser. 

Furthermore, at low rmsd values, the sampling of conformational space is finer, so that one 

of our models is expected to have an rmsd of 0.2, which increases the probability of finding 

a more accurate solution. 

Longer helices were used in most of the test cases, and the accumulated curvature in 

coiled-coils was expected to lead to higher deviations, but in practice, all structures but one 
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were solved by setting the rmsd to 0.2 Å. PDB id 3thf in space group P21212 with 349 

independent residues at 2.7 Å was only solved by increasing the rmsd to 0.5 Å. 

In Phaser’s rigid-group refinement stage the input rmsd parameter can be refined to 

maximize the LLG (Oeffner et al., 2013) through the root-mean-square derived from the 

likelihood variance (vrms) and consequently increase the accuracy in the determination, 

improve the scoring of alternative solutions and thus the probability of MR success. In the 

context of ARCIMBOLDO, the LLG serves two purposes, to evaluate if the fragments are 

properly placed or not, and to prioritize solutions that will be expanded. 

In solved structures, the vrms refined to values around 0.1 Å, ranging from 0.05 to 0.53 

Å. This roughly corresponds to the default rmsd parameterization, and therefore refining the 

rmsd as a parameter does not have a large effect. The only exception was noted for PDB id 

3v86 at 2.91 Å, structure which is merohedrally twinned, and where the correct 

substructure was only discriminated by refining the rmsd. All other cases were insensitive 

to this parameter. As it has not been observed to have adverse effects in any case, this 

calculation is activated by default in the coiled_coil mode. 

 

2.2.3. Translational non-crystallographic symmetry 

Translational non-crystallographic symmetry (tNCS) arises when the asymmetric unit 

contains components that are oriented in nearly the same way and can be superimposed 

by a translation that does not correspond to any symmetry operation in the space group. 

See the introduction section 3.4 for more details. 

The presence of translational non-crystallographic symmetry (tNCS) is deduced by the 

currently distributed Phaser (version 2.8) from the presence of peaks separated from the 

origin by more than 15 Å and above 20% of the origin peak in the Patterson function 

calculated using data from 5 to 10 Å resolution. If tNCS is identified, Phaser will correct the 

effect of the modulation in the input data and search for pairs of molecules (groups in a 

more general case) related by the tNCS vector (Sliwiak et al., 2014). Parameters describing 

the translation, small rotation, and conformational differences between copies are 

determined and used to compute correction factors to the target function (Read et al., 

2013). By default, ARCIMBOLDO_LITE exploits this feature in Phaser, simultaneously 

placing tNCS-related copies associated with a given rotation.  

In the case of coiled-coils, the internal symmetry of a single helix along with the 

accidental overlap of vectors derived from the systematic alignment of helices along 

predominant directions gives rise to strong peaks in the Patterson function (Urzhumtsev et 
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al., 2016). In these cases, the Patterson function looks like rosary beads, with peaks near 

the origin indicating the direction of the helices, and other peaks that are related to the 

molecular position and the rotation angle between the helices (Urzhumtsev et al., 2016). 

This has been frequently observed in RNA and DNA, which are molecules with pseudo-

helical symmetry that are usually packed more or less parallel to each other (Kondo et al., 

2008). Additionally, in coiled-coils it has been observed that preferential orientation along a 

common axis produces linear arrays of Patterson peaks separated by 5.1 Å, which arise 

from the pitch along the coiled-coil axis of 5.1 Å per α-helical turn, that are orientated in the 

same direction and indicate the direction of the coiled-coil axis (Thomas et al., 2020). 

Therefore, the correction for tNCS should be disabled when high peaks in the Patterson 

are due to internal repeats in the coiled-coiled rather than true tNCS. The coiled_coil 

keyword entails its deactivation. 

Within the first pool of 94 structures, 19 cases show peaks in the Patterson function, 

which would trigger tNCS pairwise location. Of these, PDB entries 1byz, 1g1j, 1kyc, 1nkd, 

1p9i, 1x8y, 1yod, 2b22, 2bez, 2ic6, 2wpq, 3bas, 3hfe, 3k9a, 3m91, 3p7k, 3v86 and 3vgy 

have been solved, while 3mqc remains unsolved. Within the second, lower resolution pool 

of 56 structures, tNCS was identified from the Patterson function in ten solved cases: PDB 

entries 2ahp, 3efg, 3r3k, 5c9n, 1unx, 2wz7, 1w5h, 2o1j, 3v2r and 3nwh. A further three 

cases, PDB entries 3iv1, 3tul, and 4pna, remain unsolved. These structures are 

summarized in appendix table A1. 

Notwithstanding, structures containing several helices in the asymmetric unit may 

display true tNCS, as illustrated in figure 20a. This was the case for the PDB entries 1g1j, 

2o1j and 3nwh, where phasing was only successful accounting for this feature and placing 

tNCS-related pairs. 

In the cases with apparent tNCS, as a fragment of a helix can be translated and 

superimposed onto another part of the helix, aiming to place tNCS-related copies might 

cause fragment overlap and structure solution to fail. All of these structures were tried with 

pairwise placement turned off (keyword tNCS: False); that is, placing single helices 

sequentially as well as placing pairs of tNCS-related helices. In eight cases, either setting 

led to a correct solution as no overlap between fragments occurs. Figure 20b shows the 

case of PDB id 3efg, with a single copy in the asymmetric unit, which could not display real 

tNCS, where the fragments related by tNCS did not overlap. In 17 cases, a solution was 

only found by placing single-fragment copies sequentially, whereas pairs of fragments 

placed as related by the translation vector derived from the Patterson map were either 

misplaced despite their high scores or discarded at the packing check because of partial 

overlap with symmetry equivalents. For example, PDB id 3p7k in space group P6322 at 2.3 
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Å resolution, whose packing is shown in figure 20c, contains a single, curved helix of 45 

amino acids in the asymmetric unit. Displacing it by 52.2 Å in the direction of the c axis 

partially superimposes it on two symmetry equivalents, one of them in the reversed 

direction. The corresponding Patterson peak displayed in the figure is the maximum 

identified by Phaser, but generating pairs of helices related by such a translation would, in 

this case, prevent the location of a correct solution. Thus, to solve this structure, the 

pairwise placement feature needs to be turned off.  

As differentiating genuine tNCS from Patterson artefacts is difficult in the presence of 

fragment-derived modulation, the default behaviour in ARCIMBOLDO_LITE for coiled-coils 

will be to avoid the tNCS-related search, but if no solution is achieved this alternative 

should be tried. 

 
Figure 20. a) PDB id 2o1j with true tNCS, the helices coloured in blue and yellow are pairs of 

molecules related by tNCS. b) The structure 3efg could be solved placing tNCS-related copies 

because there was no fragment overlap. c) Apparent translational non-crystallographic 

symmetry in the case of PDB id 3p7k. The structure is shown as a blue cartoon, with symmetry 

equivalents as a grey cartoon and the Patterson map contoured at 2 σ as black mesh. The 

yellow helix corresponds to PDB id 3p7k translated 52.2 Å by the vector corresponding to the 

Patterson function peak. It coincides with different portions of symmetry-related helices. 
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2.2.4. Packing filter at translation search 

Partially overlapping solutions are usually discarded after the translation search, during 

the packing filter: if there are any clashes between atoms the ensuing structure renders a 

physically impossible model or it is not compatible with the crystallographic symmetry 

restrictions imposed by the space group. 

The selection of translation function solutions is done in relationship with the maximum 

value the function adopts. The number of peaks that will pass to the packing check is 

defined by a cut-off of 75% between the top solution and the mean value, where the value 

of the top peak is defined as 100% and the value of the mean is defined as 0%, shown in 

figure 21a. If the maximum corresponds to a very high value for a physically impossible 

solution, this and all other peaks selected may be discarded in the packing check. In space 

groups where proper rotational symmetry operations (i.e., not combined with translations) 

are present, a recurrent problem is that helices placed on pure rotation axes may be 

characterized by extremely high LLG scores, while correct solutions may be well below 

75% of these values. In all space groups, a second helix placed on top of a previous helix 

may also lead to disproportionately high LLG scores. In this case, no solution with feasible 

packing will be output in the list of translation-function solutions, and the process halts as 

the packing filter discard everything.  

To address this recurring problem in helical fragment searches a new packing filter 

within the analysis of the translation function was proposed (Caballero et al., 2018) and 

implemented by our collaborators in Phaser. This ensures that the top solution used as a 

reference for selection will not be rejected later in the packing check, shown in figure 21b. 

ARCIMBOLDO_LITE uses a very stringent default for either check, allowing no overlap at all. 

 
Figure 21. a) List of translation solutions without packing filter, selected solutions are above the 

75% cut-off. b) List of translation solutions with packing filter, the top solution used as a 

reference will pass later the packing symmetry check.  
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The cases of PDB entries 2v71 in space group C2, 1d7m in C2221, 4bl6 in P61, 3miw in 

P42, 5jxc in P21, 3r47 in P42, 4bry in I4122 and 3thf in P21212 could only be solved when 

ARCIMBOLDO_LITE was run activating Phaser’s packing filter at translation. The only 

drawback is an increase in running time, but for coiled-coils activating this option is the 

default, as this issue frequently hinders solution, especially at resolutions worse than 2 Å. 

 

2.3. Performance of ARCIMBOLDO_LITE at resolutions between 
2 and 3 Å 

From the outset, it became evident that lower resolution posed particular difficulties. This 

prompted us to extend the original test set with 56 structures at resolution worse than 2.0 Å 

to a total of 106. Among them, 43 corresponded to resolutions between 2.5 and 3.0 Å (15 

structures in the first set and 28 in the second). Five of the eight structures that remain 

unsolved correspond to the lower resolution span. 

 

2.3.1. Reversed helices 

At resolutions worse than 2 Å it was observed that placement of the first helices 

occasionally took place in the correct position but in reversed direction since properties of 

the helix account for main low-resolution diffraction features in either direction. This is 

illustrated in figure 22a. 

This problem can be solved by phasing with substructures with reversed helices but first 

was required to generate a template in reversed direction, shown in figure 22b. 

ARCIMBOLDO_LITE has a template of an ideal a-helix of 70 residues which is cut 

depending on the length of the search fragment. To generate its reverse model first this 

ideal helix was manually reverted with Coot, after that, to achieve the best position, the 

helix was shifted along its axis 0.5 Å obtaining several models. Then, as this phenomenon 

was observed for the first time in the case of PDB entry 3miw, these models were 

submitted to rigid body refinement (McCoy et al., 2017) against the experimental data. The 

one rendering better results, which was the one where the Ca and the carbonyl Carbon 

atom coincide, was selected for using it as a reversed template. 
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Figure 22. a) Helices in both directions with the electron density map contoured at 1.5 σ 

obtained from ARCIMBOLDO_LITE from the correct solution of PDB entry 3miw. b) The ideal 

helix from ARCIMBOLDO_LITE and its reversed model, this is an example of 30 residues that 

was cut from the template of 70 residues. 

Some examples with substructures with reversed helices are PDB entries 3p7k at 2.3 Å 

resolution, 3h7z at 2.5 Å resolution, and 2nps at 2.5 Å resolution, where coexisting correct 

substructures led to a full solution, even though some of the substructures with reversed 

helices were sent to expansion as well. In the case of 3p7k, 37.8% of the substructures 

present at least one helix in reversed direction, for 3h7z this value is even higher 65.6%, 

and for 2nps only the 12.7% of the substructures render reversed helices. As mentioned 

before, the final solution was accomplished by a substructure with all the helices in the 

correct position and in no case by these partially incorrect substructures. 

In the cases of PDB id 3onx at 2.9 Å resolution, PDB id 2jee at 2.8 Å resolution, PDB id 

2fxm at 2.7 Å resolution and PDB id 3miw at 2.5 Å resolution all the substructures have 

reversed helices and this issue prevented solution of the structure. Such non-random but 

partially incorrect solutions are often not corrected by SHELXE’s density modification and 

autotracing, as the initial fragments cause phase bias in the map to be traced. Therefore, 

the incorrect helices are found and built again every cycle and the process is locked on 

these errors, despite showing deceptively promising figures of merit and trace extension. 

Even though the presence of reversed helices in the substructure tends to persist 

throughout tracing, the problem can be solved by also phasing with substructures with 

reversed helices, after the placement of several fragments. After rigid-body refinement and 

rescoring, discrimination of the correct, more complete partial substructures improves, 

allowing solutions where some of the first fragments had been reversed to be rescued. If 

combinatorial perturbation of helix direction produces less than 1000 solutions, all of them 

will be explored. Otherwise, a sparse selection of them will be trialled to make the number 

of solutions tractable. 
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One example is the case of PDB id 3onx, where the best solution displays three helices 

correctly located and one helix in reversed direction, illustrated in figure 23a. After three 

cycles of iterating density modification and autotracing, SHELXE could not revert this helix 

and the final solution was characterized by a wMPE of 61.1º for 146 residues traced and a 

misleading high CC of 34.4%, figure 23b shows the lack of progress during the tracing. In a 

run probing the helix direction, a solution with all the helices in the correct direction was 

reached by reversing the first helix, which was the one incorrect. After density modification 

and autotracing, this solution renders a CC of 41.3% a wMPE of 51.3º and 181 residues 

traced out of 250. 

In the case of PDB id 2jee the best solution, in terms of best CC, presented five of six 

helices in reversed direction and one helix mistranslated, the CC of this solution was 

35.8%, with a wMPE of 83.3º and 111 residues traced. Reversing the helices during 

SHELXE tracing gave a correct solution with all the helices in the proper direction; during 

the course of the run, two of the six helices were reversed. After the expansion, a CC of 

37.9% and a wMPE of 64.3º was reached and 158 residues were traced out of 312. 

In the case of PDB id 2fxm, all helices placed by ARCIMBOLDO_LITE were in the 

correct direction, but the six were mistranslated, and the solution has a CC of 35.1% with a 

wMPE 89.5º and 144 residues traced. Performing the run with helix reversal leads to a 

solution with all the helices in the correct positions and directions and characterized with a 

CC of 53.9% with a wMPE of 44.3º and 190 residues traced out of 238. 

Another example is provided by PDB id 3miw, which contained ten chains of 53 residues 

in the asymmetric unit and where the deposited data present severe anisotropy and 

twinning. After a search configured to find ten helices of 30 residues followed by two cycles 

of density modification and autotracing, a solution was identified that was characterized by 

298 traced residues and a CC of up to 35.4%. Its wMPE was 62.9° and it contained 7.9% 

incorrect trace. Examination of the original solution revealed that of the ten placed helices, 

two were reversed. A fresh run with the version of ARCIMBOLDO_LITE that probes the 

helix direction rendered a substructure with all fragments correctly placed. This solution 

was reached by reversing three of the ten helices during the course of the run. The final 

solution was characterized by a wMPE of 59.7° for 301 residues traced out of 530. 

Remarkably, the errors in the trace decreased to 3.7% while the CC increased to 37.8%. 

Furthermore, solution of this structure was accomplished on a more powerful hardware, 

with three times more cores, that leads to the generation and extension of a larger number 

of partial solutions. Figure 23 displays the electron-density map for the partially incorrect 

(figure 23c) and the correct (figure 23d) solutions.  
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As can be seen from the CC values quoted above, the discrimination between correct 

and partially incorrect solutions can be narrow; therefore, the coiled_coil mode triggers 

systematic probing of both helix directions. 

 
Figure 23. a) PDB id 3onx at 2.9 Å resolution with three helices correctly placed in blue and one 

helix placed reversed in red; fragments placed, shown as sticks, are superimposed on the 

origin-shifted PDB structure shown as grey cartoon. b) Lack of progress in three cycles 

SHELXE autotracing for PDB id 3onx. The first two blocks represent the length of the 

polypeptide chains traced by SHELXE, with the rmsd of the traces colour-coded from blue (<0.3 

Å rmsd), green (<0.6 Å rmsd) and yellow (<1.0 Å rmsd) to red, where no trace can be matched 

within 2.0 Å rmsd. The third block represents the length of traced residues that cannot be 

assigned to any part of the correct structure. The consistent orange-coloured sections, 

indicating up to 2.0 Å rmsd, correspond to persistent reversed traces. c) Electron density map 

contoured at 1 σ after density modification and autotracing of an inverted helix in the solution for 

PDB id 3miw with errors. d) Electron density for the same region in the correct structure. 

 

2.3.2. SHELXE autotracing with helical restraints 

Whereas for coiled-coils with diffraction data to resolutions of 2.0 Å or better are 

generally solved using the standard resolution-dependent SHELXE parameterization 

(Sammito et al., 2015), as the resolution becomes more limited the coverage of the traced 
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model generated by SHELXE tracing decreases. Electron density in areas where the 

helices are bent degrades, leading to extended rather than helical polypeptide traces. As 

automatic map interpretation stalls, the discrimination of solutions becomes more uncertain. 

At resolutions worse than 2.5 Å this often leads to incorrect traces that are nevertheless 

characterized by a CC above 30%. High numbers of false positives are why 

ARCIMBOLDO_LITE generally fails to find a solution in coiled-coils structures if the 

experimental data does not reach better than 2.0 Å resolution. 

A helically constrained main-chain tracing has been incorporated into SHELXE (Usón & 

Sheldrick, 2018). This choice is automatically triggered within the coiled_coil mode and 

leads to all autotracing cycles apart from the last being seeded from longer helices and 

extension of the main chain with helical restraints for Ramachandran angles or helical 

sliding. The last cycle reverts to SHELXE defaults, allowing the tracing of missing non-

helical areas such as loops. The model characterized by the best CC will be kept. 

All test structures with resolutions between 2.0 and 3.0 Å were subjected to different 

parameterizations of SHELXE in its standard and constrained autotracing modes to derive 

default parameters for ARCIMBOLDO_LITE in its coiled_coil mode. Figure 24 displays the 

results of a range of parameterizations on six challenging cases with low-resolution and/or 

a small fraction of the complete structure to start the extension. These graphs show how 

helically constrained autotracing is decisive in extending the trace and in lowering the 

weighted mean phase error, allowing a solution to be reached in cases where the standard 

autotracing would not lead to a solution. While the constrained autotracing (-q8 to -q14) 

uses larger helical seeds of eight to 14 residues and constraints on the extension of each 

amino acid to Ramachandran angles in the helical region, the sliding autotracing (-Q) 

additionally extends the sliding helical fragments of the polypeptide chain and is used by 

default for coiled-coils.  

Additionally, the lack of completeness can introduce systematic aberrations and errors 

that greatly affect the quality of the map. The “free lunch algorithm” implemented in 

SHELXE was used to extrapolate reflections at different the resolution limits. The algorithm 

basically invents the unmeasured data and to use density-modification techniques to 

extrapolate the phases of these data improving the interpretability of the electron-density 

maps (Usón et al., 2007). Table 8 summarizes the default coiled-coil resolution-dependent 

SHELXE parameterization, including the resolution limit of the extrapolated reflections. 

Leaving the SHELXE line unset in the input .bor file will activate SHELXE defaults in the 

coiled_coil mode that differ from the standard defaults. Finally, ARCIMBOLDO will stop by 

default once a solution characterized by a CC above 30% has been reached, but in coiled_coil 

mode, it will continue to complete the predetermined number of SHELXE expansion cycles. 
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Figure 24. Scatter plots summarizing the results of different parameterizations of three alternative 

autotracing algorithms in SHELXE on six different structures. The colour represents the resolution 

limit of extrapolated reflections (-e) and the shape represents the autotracing algorithms. In the 

shelxe_line, -m sets the number of density-modification cycles, -a the main-chain autotracing 

cycles, -v the density-sharpening factor, -t the time factor for peptide searches and -y the highest 

resolution for the starting phases from the model; -I leads to the use of extrapolated reflections in 

all density modification cycles. 
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Table 8. SHELXE resolution-dependent parameterization for the case in coiled-coils. 

Resolution shelxe_line 

<= 1.0 
-m200 -a8 -s0.25 -v0.5 -t10 -Q -I200 -y(resolution) -e1.0 

-m200 -a1 -s0.2 -v0.5 -t10 -q -I200 -y(resolution) -e1.0 

]1.0, 1.3] 
-m100 -a8 -s0.35 -v0.5 -t10 -Q -I100 -y(resolution) -e1.0 

-m100 -a1 -s0.3 -v0.25 -t10 -q -I100 -y(resolution) -e1.0 

]1.3, 1.5] 
-m50 -a8 -s0.45 -v0.1 -t10 -Q -I50 -y(resolution) -e(resolution-0.3) 

 -m50 -a1 -s0.4 -v0.1 -t10 -q -I50 -y(resolution) -e(resolution-0.5) 

]1.5, 2.0] 
-m15 -a8 -s0.5 -v0 -t10 -Q -I15 -y(resolution) -e(resolution-0.3) 

-m15 -a1 -s0.45 -v0 -t10 -q -I15 -y(resolution) -e(resolution-0.5) 

]2.0, 2.5] 
-m10 -a8 -s0.6 -v0 -t10 -Q -I10 -y(resolution) -e(resolution-0.3) 

-m10 -a1 -s0.55 -v0 -t10 -q -I10 -y(resolution) -e(resolution-0.5) 

]2.5, 3.0] 
-m5 -a8 -s0.6 -v0 -t10 -Q -I5 -y(resolution) -e(resolution-0.3) 

-m5 -a1 -s0.55 -v0 -t10 -q -I5 -y(resolution) -e(resolution-0.5) 

 

2.3.3. True solutions, non-random solutions and false solutions, and how 
to distinguish them 

ARCIMBOLDO, along with other fragment-based phasing methods, uses the extension 

of the main-chain trace output by SHELXE and the CC characterizing it to identify correct 

solutions. Cases where the resolution extends to 2 Å or better usually afford a good 

correlation between the CC of the trace and the wMPE of the structure, and hence a clear-

cut discrimination of correct solutions. In such cases, a CC value above 30% typically 

corresponds to a trace covering over two-thirds of the true structure and a map in which 

side chains can be recognized unequivocally. Exceptions have been observed for false, 

mistranslated solutions (i.e., solutions containing incorrectly positioned helices but in 

correct orientations). Side-chain assignment in coiled-coils tends to be obscured compared 

with the main chain. Partially correct solutions containing mistranslated or reversed helices 

may be characterized by high figures of merit more frequently than in other kinds of 

structures, with the exception of DNA (Urzhumtsev et al., 2016). We were interested in 

investigating the discrimination of best-scoring incorrect solutions from true solutions within 

the pool of coiled-coil test structures in order to avoid misleading program users with an 

incorrectly identified outcome of the phasing process. 

Figure 25 shows bars representing the CC and coverage of the traces for correct and 
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best-scoring incorrect solutions for 18 difficult coiled-coil test cases, ordered by resolution. 

In this graph, correct solutions tend to exceed CC values of 40% and in all cases, the 

correct solution was characterized by a CC at least 4.5% above that of the incorrect 

solution. At resolutions of 2.5 Å or better, both the CC and the percentage of traced 

residues show a clear-cut difference between correct and incorrect solutions. The situation 

becomes more complicated as the resolution decreases, especially since the graph 

compares the correct solution with partially incorrect solutions in which one or more of the 

helices in the starting substructure were reversed. Such cases include PDB entries 3p7k at 

2.3 Å resolution (one reversed fragment), 3h7z at 2.5 Å resolution (two reversed 

fragments), and 2nps at 2.5 Å resolution (three reversed fragments). Thus, incorrect 

solutions are not random. Although the trace coverage tends to be significantly higher for 

the correct solution, this is not true in the case of two of these structures (3p7k and 3h7z), 

in which the reversed helix is also extended. It is not possible to give an absolute number 

differentiating both situations, as CC values above 40% have been observed for incorrect 

solutions, such as PDB id 2o1j at 2.7 Å resolution. This structure displays true tNCS of 

order two and could only be solved by accounting for it in Phaser as well as placing 

fragments pairwise. Such pathologies tend to arise in coiled-coils, and, as seen in figure 23, 

even in manual building, error identification may not be trivial. Thus, unfortunately, partially 

correct solutions cannot be distinguished from the correct solution without the latter’s higher 

CC value for comparison, that is without the observation of a bimodal distribution in the 

figures of merit rendered. Therefore, an additional step has been proposed and 

implemented to verify the final solution. 

 
Figure 25. Bar plots representing correct (left) and best-scoring incorrect (right) solutions of the 

18 most challenging test cases ordered from high to low-resolution. The wMPE versus the 

deposited structure is colour-coded from red (random) to blue (solved). a) Structure coverage in 

the trace. b) CC of the trace. 
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2.3.4. Final verification of the best-ranking solution 

The general mode of ARCIMBOLDO has a resolution limit currently established at 2.5 Å, 

the rationale is not an absolute impossibility that the program would produce correct 

solutions at lower resolutions, but rather barring the risk of yielding false positives, which 

might go unidentified. Thus, the addition of a verification step that could rule out the false 

positives allows us to extend the resolution limit of our methods in the case of coiled-coils 

and should be extended to other lower resolution scenarios in ab initio phasing. 

So, given the concern raised about partially correct solutions bearing good figures of 

merit, the incorporation in the coiled_coil mode in ARCIMBOLDO_LITE of an additional 

step that generates perturbations of the substructure leading to the best solution and 

compares their scores before and after extension is derived from the present work. In view 

of the obtained results, this step is compulsory and activated if the resolution is lower than 

2 Å, allowing us to extend the resolution limit from 2.5 Å for the general mode of 

ARCIMBOLDO_LITE to 3.0 Å for the coiled_coil mode. 

First, two types of perturbations were generated, a random solution and a group of 

substructures by reversing the direction of the helices. The random solution was generated 

by applying a fractional translation vector of (0.1, 0.1, 0.1), except for the space group P1, 

where half of the helices were translated by a vector of (0.5, 0.5, 0.5) and the other half 

remained in the same position. This is necessary because in P1 there is no symmetry 

within the unit cell, and translating the substructure would not modify the solution. In the 

case where this strategy did not give a clear random solution (where the mean phase 

difference (MPD) of the random solution with respect to the best solution was similar and 

less than 70º), correct from incorrect solutions cannot be discriminated. Regarding the 

substructures with reversed helices, taking the Phaser substructure that led to the best final 

CC, a systematic reversal of the helices in the substructure was performed, generating a 

maximum of 999 additional substructures, so the sparsity or completeness depended on 

the number of fragments. 

Subsequently, rigid-body refinement and rescoring in Phaser is performed and then a 

maximum of 58 best-scoring combinations in terms of LLG and CC are subjected to 

extension in SHELXE together with the randomly translated solution and the best solution, 

totalling 60 substructures. An illustration of the substructures that are involved in the 

verification step is shown in figure 26. 

The results of the extensions are then compared for evidence of discrimination between 

the randomly translated solution or groups of consistent solutions. The rationale is that if 

the discrimination from the best solution and the random solution persists or the final 
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solutions are equivalent, confidence in this solution will be justified. Thus, the best solution 

is validated if it can be clearly discriminated from the random solution or if different 

perturbations develop into a group of equivalent solutions. Conversely, it is not validated if 

the best solution cannot be discriminated from the random solution or the extension of 

inconsistent solutions leads to inconclusive results with structurally different structures 

characterized by comparable figures of merit. 

 
Figure 26. Substructures involved in the verification step for the case of PDB id 1deb. a) 

Substructure leading to the best solution of ARCIMBOLDO_LITE. b) Randomly translated 

solution generated by applying a fractional translation vector of (0.1, 0.1, 0.1), behind there is 

the picture of the best solution for comparison. c) Group of substructures with reversed helices, 

the arrows indicate the direction of the helices. This is an illustration of the type of substructures 

that will be generated, as in the real case, with four helices the number of possible combinations 

is 16, as each helix could be in two directions.  

This procedure was tested in all the cases in the test set presenting a resolution 

between 2 and 3 Å. Three scenarios in the solved structures were found, as reversed 

helices can sometimes be corrected by iterative tracing in SHELXE. In the first scenario, 

SHELXE has successfully reversed all the helices that were in reverse direction (figure 

27a), in the second scenario, SHELXE has successfully reversed all the helices or none 

(figure 27b), in the third scenario, SHELXE has successfully reversed all the helices, some 

helices or none (figure 27c).  

In all these scenarios, the best solution can be clearly discriminated from the random 

solution, since the difference between their correlation coefficients is greater than 15%. In 

the unsolved structures, all the traces are random and the figures of merit similar to the 

wrong solution (figure 27d). In these cases, the best solution cannot be discriminated 
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against from the random solution and the difference between their correlation coefficients is 

less than 9%. 

 
Figure 27. Verification results in the case of a) PDB id 1deb, where the final traces are 

equivalent and correct, two differentiated groups can be observed, the random solution and the 

group of substructures with all the helices corrected by SHELXE within the best solution. b) 

PDB id 3efg with two differentiated groups, the random solution with some substructures with all 

the helices in reversed direction and the best solution with some substructures with corrected 

helices. c) PDB id 4oh8 with a disperse group where SHELXE has corrected all the helices, 

some of them or none. d) PDB id 3tul that remains unsolved and there is one group where the 

substructures are close to the random solution. The x axis is the CC of the trace (%) and the y 

axis is the MPD (º) with respect to the best substructure, which is also coloured from green 

(more structurally similar) to red (more structurally different). 

There is an interval where the difference between the CC from the best and the wrong 

solution, between 15% and 9%, is not enough to discriminate if a structure is solved or not. 

In all these cases, the group of substructures with reversed helices have a similar CC, 

either because there are equivalent correct solutions or because there are structurally 

different structures characterized by comparable CC. We observed that if all are correct 

solutions, they have small structural differences, as all are the same solution, whereas if 

the structure is not solved, the inconsistent solutions are structurally different. Furthermore, 

in the case of solved structures, the structural difference between the random solution and 
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a correct solution is larger than in the case of unsolved structures. This is illustrated by the 

case of PDB entries 3vir (solved) and 4pna (not solved) in figure 28. 

 
Figure 28. Verification results in the case of a) PDB id 3vir, the substructure expansion led to 

equivalent correct solutions where tracing had reversed the incorrect portions. The minor 

differences in CC or MPD are irrelevant and are derived from slight differences in the extension 

of the trace and its deviation from the ideal geometry. b) PDB id 4pna, the extension of 

inconsistent solutions leads to inconclusive results with structurally different structures 

characterized by comparable CC. The MPD is calculated with respect to the best solution, the 

difference between the minimum and maximum value of MPD of the reverse group is smaller in 

solved structures and larger in unsolved structures. In contrast, the difference between the MPD 

of the random solution and the maximum value of the of MPD of the reverse group is larger in 

solved structures and smaller in unsolved structures. 

Figure 29 shows a workflow to decide whether a structure is solved, unsolved or no 

conclusive discrimination can be reached. The verification step will only be performed if the 

best scoring solution from ARCIMBOLDO_LITE has reached a CC above 25% and thus it 

is susceptible of being correct. 

As mentioned above, in the case that the generation of a random solution failed, the 

MPD between the best solution and the random one (MPDw) will be small (less than 70º), 

and in this case, no conclusive distinction between the best solution and the random one 

could be reached. In those cases, the user could attempt model building and refinement to 

see whether the structure refines to acceptable R-values. A good approach is the use of 

SEQUENCE SLIDER (Borges et al., 2020), since the correct assignment of the sequence 

in coiled-coils is challenging and this strategy generates all possible sequence hypotheses 

which then are refined. 

A structure is solved if the difference between the CC between the best (CCbest) and 

the wrong or random solution (CCw) is above 15%. In contrast, it is not solved if this 

difference is less than 9%. 
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If this value is between 15% and 9% first it is necessary to check that the group of 

substructures with reversed helices have a similar CC. Thus, the difference between the 

highest CC and the lowest CC (diff_CC) must be lower than 13% and their coefficient of 

variation (CV_CC), calculated dividing the standard deviation by the mean of the MPD of 

the reversed group and multiplied by 100, must be lower than the 10%. Then structural 

differences are examined. The verification step will output that the structure is solved if the 

difference between the minimum and maximum value of MPD of the reverse group 

(maxMPDr - minMPDr) is lower than 16º and the difference between the MPD of the 

random solution and the maximum value of the of MPD of the reverse group (MPDw – 

maxMPDr) is above 21º, on the contrary, the verification step will output that the structure is 

not solved. 

 
Figure 29. Decision workflow representing the verification step. Colours represent if a structure 

is solved (green), not solved (red), or not discriminable (yellow). 

 

2.4. Unsolved Structures 
Only eight of 150 structures have remained unsolved. The percentage of unsolved 

structures for the first pool was 3.2% (three in 94), and for the second pool was 8.9% (five 

in 56). The unsolved structures can be classed as having very poor data or a large content 

in their asymmetric unit. 

Three structures (PDB entries 3azd, 4pna and 3s4r) diffract at resolution better than 2.5 
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Å. PDB id 3azd shows an alarming validation report, with an unusually high clash score and 

poor side-chain geometry. Furthermore, its deposited data are extremely incomplete, the 

resolution of the deposited data spans from 0.9 to 2.7 Å, but it totally lacks resolution data 

below 2.7 Å. Also, over one half (57.57%) of the amplitudes have their associated sigmas 

set to zero. Improving the diffraction experiment and/or correcting an error during 

deposition would likely increase the chances of solving this structure, but this is outside the 

scope of this work. PDB id 4pna is affected by anisotropy and ice rings and could not be 

solved. It is noteworthy that the related PDB id 5f2y (not in the test set), which is a point 

mutant of the same protein in space group I2 that diffracted to the same nominal resolution 

and also affected by anisotropy, was trivially solvable. PDB id 3s4r also has completeness 

issues (data are only 85% complete) and severe anisotropy. Indeed, this structure could be 

solved with ideal data calculated from the model. 

The remaining five structures (PDB entries 3iv1, 1u4q, 4xa3, 3tul, and 3mqc) all 

diffracted to 2.5 Å resolution or worse. Data from PDB id 4xa3 were highly anisotropic so 

the authors (Taylor et al., 2015) performed ellipsoidal truncation and anisotropic scaling 

applying a reciprocal space resolutions cut-offs of 3.3 Å, 2.5 Å, and 2.6 Å for a*, b*, and c* 

respectively. Thus, the deposited data then have completeness issues (data are only 77% 

complete) due to anisotropic truncation. PDB id 3mqc has a large number of outliers in the 

data and anisotropy, and is isostructural with the solved PDB id 3nwh, although the former 

contains a somewhat longer construct. PDB entries 4xa3 and 3mqc could be solved with 

ideal data calculated from the model. PDB entries 1u4q (635 residues), 3iv1 (624 residues) 

and 3tul (521 residues), with more than 500 residues in the asymmetric unit are 

characterized by an expected LLG (Oeffner et al., 2018) of 11.2 or less for placement of a 

helix of 30 residues due to the limits imposed by the number of reflections; thus, it is not 

surprising that they cannot be solved on a workstation even with ideal data calculated from 

the model to the experimental resolution. 

These structures have not been solved, and they provide good examples of the 

reliability of the figures of merit as a metric for identifying correct solutions, as illustrated in 

table 9. Only 3azd has a resolution better than 2 Å, and at atomic resolution, the CC 

indicates unequivocally that the structure is not solved. For the other structures at 

resolution worse than 2 Å, PDB entries 3iv1 and 1u4q have a CC lower than 25%. For the 

other five structures, this figure of merit cannot be used to discriminate if a structure is 

solved or not, but thanks to the verification step, introduced in the present work, the final 

solution can be discriminated as incorrect. So, in a real case, despite having wrong 

solutions with good figures of merit, with the verification step confidence in the result will be 

justified. 
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Table 9. Results for the unsolved structures and decision of the verification step. The 

verification step is not performed if the CC is below 25%. 

PDB Resolution 
(Å) 

# of 
residues CC (%) Residues 

traced wMPE (º) Verification 

3azd 0.98 60 5.2 26 88.9 Not performed 

4pna 2.1 208 42.4 173 86.4 Not solved 

3s4r 2.45 179 31.0 159 89.7 Not solved 

3iv1 2.50 624 24.8 257 89.6 Not performed 

1u4q 2.50 635 16.6 143 89.1 Not performed 

4xa3 2.55 284 28.2 144 89.0 Not solved 

3tul 2.79 521 33.6 275 89.6 Not solved 

3mqc 2.80 400 40.2 239 87.3 Not solved 
 

2.5. Performance of the coiled_coil mode 
Figure 30 summarizes the single-workstation performance of ARCIMBOLDO_LITE on 

the set of 150 test structures. The previous sections describe the particular problems that 

prevented some of the remaining 72 structures from being immediately solved and 

solutions for these problems, which led to phasing solutions in a further, previously 

unsuccessful, 64 cases. In total, of the 150 structures, 142 (95%) were solved. Appendix 

table A2 condenses characteristics and results for each of the structures probed. 

Figure 30. Performance of ARCIMBOLDO_LITE 

on a pool of 150 coiled-coil test structures. A total 

of 142 structures, corresponding to 95% of the 

cases were solved. Structures phased on eight-

core machines are represented by blue dots. 

Open dots mark cases where more powerful 

hardware (a 24-core workstation) was required. 

The red dots mark the eight unsolved cases. The 

abscissa represents the resolution and ordinate 

represents the asymmetric unit content 

characterizing the test cases. 

Regarding the characteristics of successfully solved cases, they covered the full range 

of resolution data in the set, from the highest resolution structure with 0.9 Å (PDB id 1byz) 

to the lowest resolution structure with 3 Å (PDB id 4qkv). In terms of length and complexity, 

a wide range is covered as well, from the smallest structure with just a single chain in the 

asymmetric unit comprising 15 residues (PDB id 1kyc) to the largest structure with four 
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chains in the asymmetric unit totalling 618 residues (PDB id 2efr). 

The total run time for ARCIMBOLDO_LITE jobs in coiled_coil mode typically took a few 

hours but ranged from five minutes for PDB id 1s9z searching for one helix of 18 amino 

acids to 19 hours for PDB id 5jxc searching for 12 helices of 18 residues, when the data 

extended resolutions better than 2 Å and when executed on the eight-core machines 

described in materials and methods. Lower resolution cases required more intensive 

computations owing to helix-orientation reversion and verification of potential solutions, 

which proved to be critical for ruling out false positives. 

This coiled_coil mode in ARCIMBOLDO_LITE incorporates a new search algorithm to 

probe and verify alternative helix directions. It relies on advances in the MR search (Oeffner 

et al., 2018) and autotracing (Usón & Sheldrick, 2018). Finally, the results of our tests show 

that the new mode substantially extends the range of data suitable for fragment phasing of 

coiled-coil structures, and thus the resolution limit has been extended from 2.5 Å for the 

general mode of ARCIMBOLDO_LITE to 3.0 Å for the coiled_coil mode. 

 

2.6. Practical application: unknown coiled-coil structures  
This section describes four novel structures that were solved with the coiled_coil mode; 

two structures of the synaptonemal complex protein 3 (SYCP3) in two crystal forms (P21 

and P1), and two structures of peptide-based nanotubes. In addition to the complications of 

a typical coiled-coil, the solution of the peptide-based nanotubes was complicated by one 

structure having tNCS and the other having twinning. 

 

2.6.1. Mus musculus SYCP3 homotetramer in two crystal forms (P21 and P1) 

The synaptonemal complex protein 3 (SYCP3) is an axis core protein that plays a key 

role in meiotic chromosome organization and recombination. It consists of a coiled-coil 

assembly that further oligomerizes into micron-length filaments. 

Crystals of this protein were obtained and described in (West et al., 2018; West et al., 

2019) and belonged to two different space groups (P21 and P1), at 2.5 Å and 2.2 Å 

resolution respectively. Both crystal forms contain a single tetramer in the asymmetric unit, 

totalling 576 residues. Crystals were expected to contain a heterotetramer of M. musculus 

SYCP2 and SYCP3. However, upon solution and model building, it was apparent that these 

crystals contained SYCP3 homotetrameric complexes. 
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The coiled_coil mode implemented in ARCIMBOLDO_LITE allowed the solution of the 

structure in both space groups with a search configured to find four helices of 30 

polyalanine residues. The best solution of the structure in the P21 crystal form coming from 

the ARCIMBOLDO_LITE run, which had an initial CC of 22.4%, and after seven cycles of 

iterative density modification and main chain autotracing with SHELXE reached a solution 

with a final CC of 38.9% and 393/576 amino acids placed. The structure in the P1 crystal 

form was successfully determined after eight cycles of expansion with SHELXE, which 

improved the starting CC from 17.2% to 35.6% and traced 371 of 576 residues. Finally, the 

verification step confirmed the confidence in these solutions. 

The partial structures rendered by ARCIMBOLDO_LITE after SHELXE autotracing were 

completed through iterative manual building in Coot (Emsley et al., 2010) and refinement 

using phenix.refine (Afonine et al., 2012). Coordinate files and structure factors for 

structures in both monoclinic and triclinic crystal forms have been deposited in the Protein 

Data Bank with PDB codes 6dd8 and 6dd9 respectively. Data collection and refinement 

statistics are shown in table 10 and the structures are represented in figure 31. 

Table 10. Data Collection and Refinement Statistics of the Mus musculus SYCP3 homotetramer 

in two crystal forms (P21 and P1). 

 Mm SYCP3CC P21 (6dd8) Mm SYCP3CC P1 (6dd9) 

Data collection   
Space Group P21 P1 

Unit Cell Dimensions (a, b, c) Å 45.89, 49.49, 150.56 45.84, 52.40, 75.33 
Unit cell Angles (α, β, γ) º 90, 90.79, 90 94.73, 103.99, 110.47 

Resolution (Å) 47 – 2.5 48.26 - 2.2 
Completeness % 99.86 99.67 

Overall I/s 15.0 16.1 
Refinement   

Rwork % 25.4 28.7 
Rfree % 32.3 33.1 

 
Figure 31. Cartoon representation of the homotetramer of SYP3 in a) monoclinic (P21) and b) 

triclinic (P1) crystal forms. 
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2.6.2. A peptide-based nanotube with tNCS 

Peptide-based nanotubes are self-assembling peptides that undergo spontaneous 

assembling into ordered nanostructures. These artificial tubular constructs constitute a new 

class of biomaterials that are highly attractive for many biomedical applications such as 

drug delivery, scaffolds for tissue engineering, molecular electronics and many others 

(Burgess et al., 2015). The motifs are usually based on repeat motifs that form helical 

assemblies that can potentially close into peptide-based nanotubes. Naturally occurring 

self-assembly motifs are coiled-coils. 

One of these structures belongs to space group P1 at 2 Å resolution and contains four 

copies of a helix, totalling 128 residues in the asymmetric unit. In the analysis of tNCS 

carried out by Phaser, a peak in the Patterson function was found separated from the origin 

peak by 11.7 Å, a height of 57.7% of the origin and a translation vector of one half in the 

direction (0.5, 0, 0), corresponding to a tNCS order of two with pseudo-centring. The 

epsilon factors follow a bimodal distribution (figure 32), demonstrating the presence of 

tNCS. 

 
Figure 32. Histogram showing the distribution of refined tNCS epsilon factors. The structure 

presents clear modulation in the data indicated by a variance about one (s1
2) of 0.36. In the 

abscissa, there are the values of the epsilon factors. 

The calculation of the epsilon factor distribution is essential to detect if a coiled-coil 

structure presents true intramolecular tNCS, as the internal symmetry of the helix itself can 

generate significant Patterson peaks in the absence of tNCS, and trying to place tNCS-

related copies might cause fragment overlap and structure solution to fail. 

So, the ARCIMBOLDO_LITE run with the coiled_coil mode was performed activating the 

search for pairs of helices related by tNCS. The structure was solved with a search for four 

helices of 20 polyalanine residues, followed by eight cycles expansion with SHELXE. A 

final solution with CC of 42.2% and 98 residues traced was reached and confirmed by the 

verification step. 
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Beyond the solution obtained with ARCIMBOLDO_LITE, further completion was done 

modelling side chain with SEQUENCE SLIDER (Borges et al., 2020), another program 

developed in our laboratory that supports solution of coiled-coil and partial model structures 

extending polyalanine helices with all possible sequence assignments compatible with the 

structure. 

The model coming from the ARCIMBOLDO_LITE run with a CC of 42.2% is composed 

of four chains; chain A with 36 residues, chain B with 31, chain C with 21 residues and 

chain D with 14 residues. Terminal residues were eliminated due to lack of electron density. 

Long refinement of this polyalanine model with BUSTER (Bricogne et al., 2017) gives an 

R/Rfree of 36.5%/44.3%. Table 11 shows the results of the first run of SEQUENCE SLIDER. 

Table 11. Results for the first run of SEQUENCE SLIDER. 

Chain # of residues # of models generated # of distinguished solutions 

A 27 11 2 

B 28 10 1 

C 19 19 - 

D 12 26 1 
 

Results for chains A, B and D had clear discrimination between correct and incorrect 

placements. The best map from SEQUENCE SLIDER was used to complete the original 

polyalanine model by extending helix C to 32 and D to 29 residues respectively. This 

polyalanine model improved R/Rfree factors to 35%/43.3% and the side-chain electron 

densities of chains A and D were in agreement with SEQUENCE SLIDER solutions. 

Subsequently, established sequences were assigned and modelled onto chains A and 

D, while chains B and C were left as polyalanine. Side-chains correctness was further 

supported by improvement in R/Rfree upon refinement with BUSTER, 31%/38.2%. This new 

model was used for a fresh SEQUENCE SLIDER run evaluating only chains B and C (table 

12). 

Table 12. Results for the second run of SEQUENCE SLIDER. 

Chain # of residues # of models generated # of distinguished solutions 

A 27 fixed fixed 

B 29 9 1 

C 32 6 1 

D 29 fixed fixed 
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Upon phase improvement, a clear distinction among the models generated for chains B 

and C was obtained. Therefore, the correct sequence was set for all chains and further 

manual building with Coot build all residues for which electron density could be seen, that 

results in the total number of residues that the structure has, 128. A final refinement with 

BUSTER gave R/Rfree of 24.6%/33.2%. All the refinement steps and results are 

summarized in table 13, the data collection and refinement statistics are shown in table 14, 

and the structure is represented in figure 33. 

Table 13. Summary of the refinement steps and results. 

 R (%) Rfree (%) 

Solution from ARCIMBOLDO_LITE without some terminal residues 
(polyAla) containing four chains and 86 residues. 36.5 44.3 

Previous model with helices enlargement (polyAla) containing four 
chains and 117 residues. 35.0 43.3 

Model from the first run of SEQUENCE SLIDER with chains A and D 
containing side chains and B and C composed of polyalanine. Four 
chains and 117 residues (56 residues containing side chains). 

31.0 38.2 

Model from the second run of SEQUENCE SLIDER with all chains 
containing side chains and enlarged to 32 residues. Four chains and 
128 residues. 

24.6 33.2 

 

Table 14. Data Collection and Refinement Statistics of the peptide-based nanotube with tNCS. 

Data collection  
Space Group P1 

Unit Cell Dimensions (a, b, c) Å 23.48, 27.92, 45.43 
Unit cell Angles (α, β, γ) º 93.60º, 90.81º, 113.13º 

Resolution (Å) 17.63 - 2.0 
Completeness % 99.82 

Overall I/s 12.2 
Refinement  

Rwork % 24.6 
Rfree % 33.2 

 
Figure 33. Cartoon representation of the peptide-based nanotube. 
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2.6.3. A peptide-based nanotube with twinning 

Another peptide-based nanotube at 1.3 Å resolution was solved with the coiled_coil 

mode in the presence of twinning. 

During the space group determination, XPREP indicated two equally probable space 

groups, R3 and R32. After a cell content analysis with Phaser, one copy of the peptide 

could only fit in space group R3 and not in R32, making it clear that the correct space group 

was R3. As data appear to have erroneously high symmetry, this led us to think that the 

crystal could be twinned, and indeed, twinning in R3 may give apparent R32 symmetry. 

For that reason, data analysis was made with phenix.xtriage. The results showed that 

the intensity statistics are significantly different from those expected from untwinned data, 

indicating merohedral twinning. The values are summarized in table 15. Furthermore, the 

twin fraction was estimated by the H test of Yeates and the negative intensity Britton test 

giving a twin fraction of 0.46 and 0.44 respectively. Eventually confirmed by refinement, 

with a twin fraction of 0.48.  

Table 15. Intensity statistics from phenix.xtriage. 

Type of statistic Value Reference values 
<I²>/<I>² 1.764 untwinned: 2.0, perfect twin: 1.5 

<F>²/<F²> 0.841 untwinned: 0.785, perfect twin: 0.885 
<|E²-1|> 0.626 untwinned: 0.736, perfect twin: 0.541 

<|L|> 0.434 untwinned: 0.5, perfect twin: 0.375 
<L²> 0.248 untwinned: 0.333, perfect twin: 0.2 

Multivariate Z-score L-test 4.256 values > 3.5 indicates twinning 
 

The analysis also indicates tNCS as there is a significant peak of 25% height of the 

origin peak. With one copy in the asymmetric unit, genuine tNCS is not possible. But high 

peaks in the Patterson are frequently present in coiled-coils due to the internal periodicity of 

the helix itself. 

The solution of the structure was accomplished with the coiled_coil mode. A run 

configured to find one helix of 18 residues results in 32 residues traced out of 36, and is 

characterized by a CC of 34.1%. 

Correct assignment of the sequence in coiled-coils is challenging. Our SEQUENCE 

SLIDER strategy generates all possible sequence hypotheses, which are refined with 

SHELXL (Sheldrick, 2015). To account for twinning during the refinement, the twin law 

must be specified. The twin law is: h,-h-k,-l, and this is input in the form of the 3 × 3 matrix 

components (1  0 0 -1 -1 0 0  0 -1). 
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Nine different assignments of the sequence were tested, the hypothesis with the best R-

factors gives an R/Rfree of 22.2%/32.3% and the worse an R/Rfree of 25.8%/37.7%. After ten 

cycles of iterative refinement and model building of the best hypothesis with SHELXL and 

Coot, an R/Rfree of 17.3%/23% was accomplished, the structure is represented in figure 34a 

and the data collection and refinement statistics are shown in table 16.  Incorporating 

hydrogen atoms in riding positions to the model leads to an increase in the gap between R 

and Rfree (16.9%/23.2%) and therefore, hydrogens were left out.  

R-factors have higher values if twinning is not accounted for in the refinement step. If the 

R-factors with (figure 34b) and without twin refinement (figure 34c) are compared, the last 

model without twinning refinement gives an R/Rfree of 26.4%/35.4% in comparison with 

17.3%/23% with twin refinement. 

Table 16. Data Collection and Refinement Statistics of the peptide-based nanotube with twinning. 

Data collection  
Space Group R3 

Unit Cell Dimensions (a, b, c) Å 40.45, 40.45, 59.34 
Unit cell Angles (α, β, γ) º 90º, 90º, 120º 

Resolution (Å) 16.8 - 1.3 
Completeness % 92.69 

Overall I/s 19.8 
Refinement  

Rwork % 17.3 
Rfree % 23 

 
Figure 34. a) Cartoon representation of the peptide-based nanotube in dark grey with its 

symmetry equivalents in light grey. Comparison between equivalent portions of the electron 

density map contoured at 2 σ without b) twinning refinement and c) with twinning refinement.  
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CONCLUSIONS 

The results of these studies led to the following conclusions. 

In the first study, tNCS was analysed using a curated database of 80482 protein 

structures, to inform an algorithm for the detection of tNCS, which includes a method for 

detecting the number of vectors involved in any commensurate modulation (the tNCS 

order) (Caballero et al., 2020). Our algorithm generates a ranked list of possible tNCS 

associations in the asymmetric unit, for exploration during structure solution. 

• The parameters used in the Patterson function to detect tNCS were determined in 

the course of the following analysis: 

- A coordinate analysis was performed to detect tNCS depending on the choice of 

a rotational tolerance. Thanks to this, we can be sure that the 15 Å distance from 

the origin exclusion is safe. 

- Then the correlation of the tNCS in the coordinates with the Patterson highest 

non-origin peak was investigated and showed that up to 10º of rotational 

tolerance there is a clear modulation in the data. 

- A decision tree to predict the presence and absence of tNCS depending on the 

height of the Patterson highest non-origin peak was performed. The traditional 

resolution cut-off is maintained to 5-10 Å and the Patterson % threshold needs 

to be lowered from 20% to 16.8%. 

• We also determined if the modulation in the data is significant and needs to be 

corrected: 

- Data modulation can be quantified through their epsilon factor distribution. 

Refined epsilon factors that cluster around one define unmodulated data, while 

those that refine to the extremes of the distribution indicate high modulation.  

- Finally, high Patterson peaks in the data may be due to order-disorder effects, 

for that reason, the case of no tNCS is also always included in the list of 

hypotheses. 

The second study has led to the identification of limits and bottlenecks in coiled-coil 

phasing that have been addressed in a specific mode for solving coiled-coils (Caballero et 

al., 2018) that was implemented in ARCIMBOLDO_LITE. It allows the solution of 142 of 

150 test structures (95%), showing a higher success rate than the initial baseline, where 

only 52% of the test set was solved. This study significantly advances the phasing of 
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coiled-coils structures. 

• The problems identified for general cases of coiled-coils structures and their solution 

trigger the following defaults: 

- The ideal polyalanine helix used as a search fragment usually represents a 

small percentage of the scattering. For this reason, only parts of the target 

structure presenting a low value of rmsd are susceptible of being located, so our 

choice is setting a default value of 0.2 Å. Also, as rmsd refinement was required 

for solution identification in at least in one case, and it has not been observed to 

have adverse effects in any case, this calculation will be performed by default.  

- The internal symmetry of the helix itself can originate the same Patterson peaks 

derived from identical molecules related by tNCS. It makes it difficult to 

differentiate genuine intermolecular tNCS from Patterson artefacts, and 

overlapping solutions can occur. For this reason, the placement of pairs of tNCS 

related helices is deactivated. 

- Overlapping solutions may be characterized by extremely high LLG scores and 

no solutions pass the packing filter. The incorporation of a new packing filter 

during the translation search in Phaser was prompted by this study and its use 

will ensure that the top solution has acceptable packing. The peak height to 

accept further translation solutions will be relative to this first well-packed 

solution. 

• In addition to the previous bottlenecks, at low-resolution, more difficulties were found, 

but thanks to the following improvements, the resolution limit currently established for 

ARCIMBOLDO from 2.5 to 3 Å has been extended: 

- At low-resolution, the placement of helices occasionally took place in the correct 

position but in reversed direction. To avoid this, helices reversed in the same 

positions are generated and tested. 

- Also, at low-resolution, the geometry of helical trace can degrade. This problem 

is solved thanks to a new autotracing algorithm in SHELXE with restrictions for 

helical tracing, the use of larger helical seeds and the extension of the 

polypeptide chain by sliding helical fragments. 

- Finally, wrong solutions can have deceptively high figures of merit. Thus, to 

verify the most promising solution, its original substructure will be perturbed by 

helix reversal and a random translation. The results of the various extensions 

are compared for evidence of discrimination between groups of consistent 

solutions. 
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- Extension of the resolution limit imposed in ARCIMBOLDO from 2.5 to 3.0 Å in 

the case of coiled-coils has been enabled by the introduction of the verification 

step. 

• All these new features are available in ARCIMBOLDO_LITE, which is distributed 

through PyPI and CCP4. The coiled_coil mode can be activated by setting a keyword 

named coiled_coil to true in the instruction file, or via a checkbox in the CCP4 

interface. 

• Finally, this implementation has allowed solving four previously unknown structures. 
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Figure A1. Non-cumulative histograms of the number of structures with the highest non-origin 

peak value, depending on the rotational tolerances and the resolution used for calculating the 

Patterson map. a) Patterson peak percentages for structures with tNCS, with a red line drawn at 

20%. b) Patterson peak Z-scores for structures with tNCS. c) Patterson peak percentages for 

structures without tNCS. d) Patterson peak Z-scores for structures without tNCS.  
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Table A1. Structures where Phaser has found a significant Patterson peak. The third column 

displays whether a structure presents tNCS matching the vector derived in Phaser. 

PDB 
Chains 

& 
helices 

tNCS Patterson 
% Distance Vector tNCS 

corrected 
tNCS not 
corrected 

      CC wMPE CC wMPE 
1byz 4C 4H yes 30.5 16.3 0.5, 0, 0.5 50.8 15.6 48.9 14.0 
1g1j 2C 2H yes 28.3 33.9 0.5, 0.5, 0.375 33.5 57.1 31.0 87.6 
1kyc 1C 1H no 21.5 20.0 0.33, 0.67, 0.08 15.5 91.8 40.5 52.6 
1nkd 1C 2H no 23.2 17.5 0.1667, 0, 0.55 9.2 88.5 63.4 17.9 
1p9i 1C 1H no 20.1 21.1 0, 0.1528, 0.5 14.2 89.0 65.5 23.7 

1x8y 1C 1H no 25.2 37.8 0, 0, 0.5 Packing 
excludes all 

53.2 32.4 

1yod 2C 2H no 21.1 65.9 0.33, 0.67, 0.5 54.7 24.2 55.5 24.0 

2b22 1C 1H no 25.7 19.9 0, 0, 0.3750 Packing 
excludes all 

51.7 49.8 

2bez 2C 2H no 24.5 37.8 0.33, 0.67, 0.07 Packing 
excludes all 

59.0 24.5 

2ic6 2C 4H yes 29.6 29.3 0, 0.5, 0.1562 61.3 19.4 61.3 19.3 
2wpq 3C 3H no 37.2 89.2 0, 0, 0.5 35.0 56.4 35.4 57.7 
3bas 2C 2H no 50.7 19.9 0, 0, 0.5 26.7 88.2 49.0 45.8 
3hfe 3C 3H no 21.2 21.9 0.58, 0, 0.625 13.4 87.9 52.9 41.5 

3k9a 1C 2H no 30.3 77.5 0, 0, 0.5 Packing 
excludes all 

62.4 29.2 

3m91 4C 4H no 21.8 36.3 0.367, 0.5, 0.73 18.3 88.2 55.0 30.1 

3p7k 1C 1H no 30.7 52.2 0, 0, 0.3438 Packing 
excludes all 

53.0 33.6 

3v86 1C 1H no 24.9 26.0 0.33, 0.67, 0.6 43.5 82.6 49.4 51.7 

3vgy 2C 2H no 26.4 28.1 0.33, 0.67, 0.15 Packing 
excludes all 

58.2 38.4 

3mqc 4C 4H no 21.4 29.5 0, 0.5, 0 Unsolved 

2ahp 2C 2H no 22.1 17.7 0.067, 0.5, 0.75 Packing 
excludes all 54.9 44.0 

3efg 1C 1H no 23.6 40.9 0, 0, 0.5 57.3 41.7 58.3 42.3 

3r3k 3C 3H no 44.3 31.5 0.5, 0.5, 0 Packing 
excludes all 34.7 48.6 

5c9n 2C 2H no 46.5 60.0 0.5, 0.5, 0.5 43.4 31.6 51.2 29.0 
1unx 2C 2H yes 29.9 68.3 0.5, 0.5, 0.5 46.3 39.5 47.1 38.6 
2wz7 6C 6H no 22.0 51.2 0, 0, 0.2153 28.0 89.1 41.8 57.1 
1w5h 2C 2H yes 64.4 52.3 0, 0, 0.5 40.4 49.6 53.1 44.5 
2o1j 4C 4H yes 61.4 34.4 0.5, 0, 0.5 46.2 62.6 36.1 90.7 
3v2r 5C 5H no 22.0 29.0 0.5, 0, 0.5 34.1 84.8 38.0 62.8 
3nwh 4C 4H yes 28.4 80.9 0.25, 0.5, 0.53 48.1 57.9 35.2 88.6 
3iv1 8C 8H no 38.4 28.1 0, 0.5, 0 Unsolved 
3tul 4C 16H no 36.7 79.7 0, 0.5, 0.0938 Unsolved 

4pna 7C 7H no 33.8 31.1 0.5, 0.0125, 0.5 Unsolved 
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Table A2. Characteristics and results for the coiled-coil test set. 
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