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Abstract

The ConflUent System of Peak trajectories (CUSP) is a rigorous formalism in the framework of the peak theory
that allows one to derive from first principles and no free parameters the typical halo properties from the statistics
of peaks in the filtered Gaussian random field of density perturbations. The predicted halo mass function,
spherically averaged density, velocity dispersion, velocity anisotropy, ellipticity, prolateness, and potential profiles,
as well as the abundance and number density profiles of accreted and stripped subhalos and diffuse dark matter,
accurately recover the results of cosmological N-body simulations. CUSP is thus a powerful tool for the
calculation, in any desired hierarchical cosmology with Gaussian perturbations, of halo properties beyond
the mass, redshift, and radial ranges covered by simulations. More importantly, CUSP unravels the origin of the
characteristic features of those properties. In this paper, we culminate its construction. We show that all halo
properties but those related to subhalo stripping are independent of the assembly history of those objects, and that
the Gaussian is the only smoothing window able to find the finite collapsing patches while properly accounting for
the entropy increase produced in major mergers.

Unified Astronomy Thesaurus concepts: Galaxy dark matter halos (1880); Hierarchical cosmology (730)

1. Introduction

One fundamental limitation of the theory of structure
formation is the lack of an exact analytic treatment in a
nonlinear regime. Indeed, such a treatment is available for
monolithic spherical collapse. But the typical seeds of dark
matter (DM) halos are ellipsoidal, and so is their collapse.
Moreover, halos suffer major mergers, so their collapse is
rather lumpy. This is the reason that halo properties have been
traditionally studied by means of numerical simulations (see,
e.g., the review by Frenk & White 2012).

But simulations are not without problems. They are very
CPU time-consuming and hence only deal with moderately
large numbers of particles. As a consequence, their dynamic
range and spatial resolution are limited. In addition, their
analysis involves complex selection procedures similar to those
used in observations that may bias the results. Last but not
least, even though they are very useful for determining halo
properties, they are not well-suited to explain the origin of
those properties.

To shed light on that “dark side” of halos, structure formation
has also been studied by analytic means. Press & Schechter (1974)
used the top-hat spherical collapse approximation to infer the halo
mass function (MF) from the statistics of perturbations in the initial
Gaussian random density field. This approach was refined by
correcting for cloud-in-cloud configurations (Bond et al. 1991),
extended to calculate conditional MFs and merger rates (Bower
1991; Lacey & Cole 1993), and modified to account for ellipsoidal
collapse (Monaco 1995; Sheth et al. 2001; Sheth & Tormen 2002).
Some authors (Colafrancesco et al. 1989; Appel & Jones 1990;
Peacock & Heavens 1990; Bond & Myers 1996; Paranjape &
Sheth 2012) went a step further and took into account that halos
evolve from maxima (peaks) in the filtered initial density field
(Doroshkevich 1970; Bardeen et al. 1986, hereafter BBKS). One
particularly elaborate treatment along this line was the so-called
ConflUent System of Peak trajectories (CUSP) formalism
developed by Manrique & Salvador-Solé (1995, 1996), which

assumed the existence of a halo–peak correspondence, calibrated
by means of the results of simulations.
Other authors concentrated on deriving the density profile for

halos that result from the spherical collapse of the homo-
geneous mass distribution around a density perturbation, the
so-called secondary-infall model (Gunn & Gott 1972; Fillmore
& Goldreich 1984; Bertschinger 1985), or from the spherical
collapse of the perturbation itself (Avila-Reese et al. 1998;
Manrique et al. 2003; Salvador-Solé et al. 2007). This approach
was also pursued within the peak theory (Del Popolo et al.
2000; Ascasibar et al. 2004; MacMillan et al. 2006; Salvador-
Solé et al. 2012a, 2012b).
However, the analytic approach faces the following apparently

insurmountable fundamental difficulties (Ds).

1. D i) Even though halos seem to arise from the collapse of
patches with negative total energy corresponding to peaks in
the smoothed initial density field (Hahn & Paranjape 2014),
the relation between halos and protohalos in simulations is
not the expected one (Ludlow & Porciani 2011).

2. D ii) Moreover, there seems to be no one-to-one
correspondence between halos and peaks. Peaks of a
given density contrast are overcrowded (Appel & Jones
1990), and halo seeds often split in a few disjoint nodes
(Porciani et al. 2002).

3. D iii) The edge of a virialized halo1 is a fuzzy concept,
there being many possible halo mass definitions (e.g.,
Davis et al. 1985).

4. D iv) There is no clear argument in favor of any particular
smoothing window (e.g., Bond et al. 1988), and the mass
encompassed by a window of a given scale is unknown.2
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1 The virial relation we refer to throughout this paper includes the external
pressure term, so by virialized halos, we simply mean halos in (quasi)
equilibrium.
2 It is only known for the top-hat window, but there is no obvious relation
between the mass-dependent zeroth-order spectral moments for different
windows.
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5. D v) Peaks are triaxial (Doroshkevich 1970), and the time
of their ellipsoidal collapse, along one axis first
(pancakes), then another axis (filaments), and the third
axis in the end (Lin et al. 1965; Zeldovich 1970), is
unknown.

6. D vi) As DM is collisionless, monolithic collapse is
followed by shell crossing (Hénon 1964), with no
analytic treatment not even assuming spherical collapse.

7. D vii) In addition, the real collapse of halos is lumpy; i.e.,
they suffer major mergers that produce a violent
relaxation with no analytic treatment and a poorly known
final state (Lynden-Bell 1967; Shu 1978).

8. D viii) The material assembled in halos is a mixture of
diffuse DM (dDM) and other halos (Angulo &White 2010),
which become subhalos tidally stripped by the host potential
well. The situation is thus very complex (e.g., Ghigna et al.
1998).

9. D ix) In addition, massive subhalos suffer dynamical
friction and eventually merge at the halo center, whereas
the exact treatment of dynamical friction is only available
for infinite homogeneous systems (Chandrasekhar 1943).

Yet, using CUSP, Salvador-Solé et al. (2012a, 2012b) were
able to derive not only the typical density profile but also the
velocity dispersion and anisotropy profiles and even the
ellipticity and prolateness profiles of halos in CDM cosmol-
ogies (see also Viñas et al. 2012 for WDM cosmologies). Juan
et al. (2014a, 2014b) formally proved the basic hypothesis of
CUSP, that there is a one-to-one correspondence between halos
and peaks, and rederived the halo MF and density profile from
first principles and with no single free parameter. Lastly,
Salvador-Solé et al. (2021a, 2021b) and E. Salvador-Solé et al.
(2021c, in preparation) recently derived the properties of halo
substructure.

All CUSP predictions are in very good agreement with the
results of simulations, so this formalism can be used to extend
the halo properties beyond the radius, mass, and redshift ranges
and cosmologies covered by simulations. More importantly,
CUSP unravels the origin of all of those properties and their
characteristic features. Yet CUSP has not attracted much
attention, possibly because of its nonlinear construction over
many years, the lengthy mathematical developments included
in its development, and the fact that it has never been clearly
shown how CUSP solves or avoids the abovementioned Ds for
an accurate analytic treatment of structure formation, so the
prejudice that this is not possible remains.

More importantly, CUSP has two weak points. First, the
derivation of all halo properties is made assuming monolithic
collapse, while real halos suffer major mergers. The fact that
CUSP recovers, nonetheless, the results of simulations seems to
imply that the inner properties of halos do not depend on their
assembly history, perhaps because in major mergers, halos lose
the memory of their past history (Salvador-Solé et al. 2012a).
Some results of simulations indeed support this idea (Huss
et al. 1999; Hansen et al. 2006; Wang & White 2009; Barber
et al. 2012), but others point to the opposite conclusion
(Gottlöber et al. 2001, 2002; Sheth & Tormen 2004; Fakhouri
& Ma 2009, 2010; Hahn et al. 2009). Second, the properties of
the peaks from which all halo properties follow depend on the
particular smoothing window used to filter the initial density
field. CUSP employs the Gaussian window for practical
reasons (it greatly simplifies the calculations; BBKS), but the

reason why this particular window leads to such good results is
poorly understood.
In this paper, we address these issues. We prove that the

properties of halos do not depend on their assembly history
(except for the properties related to subhalo stripping) and
show that the use of a Gaussian filter is mandatory for the
filtering of the initial density field to properly trace DM
clustering. With these results, we culminate the construction
of CUSP.
Taking advantage of the opportunity, we provide a compact

orderly review of CUSP, skipping all detailed mathematical
developments and instead showing how CUSP solves or
circumvents the abovementioned Ds and clarifies some
intriguing questions (Qs) raised by simulations, listed at the
end of the paper. To this end, each time one D is solved or one
Q is answered, it is indicated in parentheses.
The layout of the paper is as follows. In Section 2, we

establish the halo–peak correspondence at the base of CUSP. In
Section 3, we derive the halo and subhalo MFs from peak
counts. The inner properties of halo seeds are derived in
Section 4, and those of halos following from them are given in
Section 5. The role of major mergers and the Gaussian window
is addressed in Section 6. The implications of our results are
discussed in Section 7. Throughout the paper, we provide some
figures in order to illustrate the goodness of the CUSP
predictions, calculated for the LCDM WMAP7 cosmology
and using the BBKS power spectrum with the Sugiyama (1995)
shape parameter.

2. Halos and Peaks

In hierarchical cosmologies with Gaussian density perturba-
tions, DM clustering is fully determined by the linear power
spectrum. Thus, by filtering the density field at any arbitrary
small time ti with varying graining scales so as to uncover the
collapsing patches of different masses, it should be possible to
reconstruct the growth, abundance, and inner properties of
halos at any time t> ti. But is there really any smoothing
window able to do that?
Given the isotropy of the universe, the window must be

spherical. On the other hand, as collapsing patches are finite,
the window must be of compact support. Lastly, even though
we do not understand why (see Section 6 for the explanation),
simulations with finite resolution converge, so the window
must also be of compact support in Fourier space. The
Gaussian is the only window satisfying these necessary
conditions, and, as shown next, it indeed works.

2.1. Ellipsoidal versus Spherical Collapse

In top-hat spherical collapse, all peaks with a fixed positive
density contrast δ th at any scale R th in the density field at ti
collapse at the same time t and give rise to halos with mass M
satisfying (e.g., Peebles 1980)

d d=t t t
D t

D t
, , 1th th

i c
i( ) ( ) ( )

( )
( )

pr
=R M t

M

t
,

3

4
. 2th

i
c i

1 3
⎡
⎣⎢

⎤
⎦⎥

( )
( )

( )

In Equations (1) and (2), ρc(t) is the cosmic mean density at t,
and d tth

c ( ) and D(t) are the critical linearly extrapolated density
contrast for spherical collapse at t and the linear growth factor
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(equal to 1.686 and the scale factor a(t), respectively, in the
Einstein–de Sitter cosmology). Equation (2) is equivalent to the
following one in terms of the zeroth-order top-hat spectral
moment sth

0 ,

s s=M t M t
D t

D t
, , , 3th th

0 i 0
i( ) ( ) ( )

( )
( )

which ensures that the seed of one halo at different ti
is the same evolving perturbation with height, n ºM t,th ( )
d s d s=t t M t t M t, , ,th th th th

i 0 i c 0( ) ( ) ( ) ( ).
However, in Gaussian density fields, peaks are triaxial (for

whatever filter), so the patches they encompass undergo
ellipsoidal collapse, which invalidates the previous relations.
Indeed, the time of collapse (along all three axes) tc depends in
this case not only on the mass and size but also on the triaxial
shape and central concentration of the patch, i.e., on the density
contrast δ, scale R, ellipticity e, prolateness p, and curvature x
(defined in Equation (13)) of the associated peak: tc= tc(R, δ, e,
p, x). It is thus not unsurprising that peaks with identical δ th(t)
but different R th(M) collapse at different times, and that the
masses of spherical patches with R th(M) differ from the masses
M of halos resulting from their collapse (D i).

Nonetheless, as the e and p probability distribution functions
(PDFs) of Gaussian-filtered peaks with δ and x at scale R are
very sharply peaked at their maximum values like the x PDF
itself (BBKS), we can take them with fixed values at the
respective maxima, emax, pmax, and xmax. Thus, provided that
there is some relation between the mass M of halos at the
cosmic time t (or the corresponding patches at ti) and the scale
R of their associated peaks as provided by any given halo mass
definition (see below), all ellipsoidal patches with different
masses M identified by triaxial peaks with a positive δ at the
scale R(M, t) will collapse at essentially the same cosmic time

d= +t t t R M t e p x, , , , ,i c max max max[ ( ) ], with t a monotonous
decreasing function of δ as in top-hat spherical collapse (D v).
Certainly, the small scatterΔ in the e, p, and x PDFs around the
respective maxima will translate into a scatter in the time of
collapse,

D = D =
¶
¶

D +
¶
¶

D +
¶
¶

Dt t
t

e
e

t

p
p

t

x
x, 4c

c c c ( )

which will propagate into the MF of halos at t,

D =
¶
¶

DN M t
N

t
t, , 5( ) ( )

as well as on the radius r of the ancestor at t of the halo with
final mass M, implying (in halos growing inside-out; see
below) a scatter in the value at r of any halo profile,

x
x

D =
¶

¶
Dr

d

dr

r t M

t
t

,
. 6( ) ( ) ( )

To calculate those scatters, we need the partial derivatives of tc
with respect to e, p, and x), which can be estimated through
numerical experiments. But the purpose of this paper is not to
derive such scatters but rather the mean halo properties, and
this can be done analytically.

2.2. Halo–Peak Correspondence and Halo Mass Definition

Thus, for any given halo mass definition, Gaussian ellipsoidal
collapse leads to a one-to-one correspondence between halos with

M at t and peaks in the density field at ti filtered on a scale R
similar to that found in top-hat spherical collapse. Moreover, to
guarantee the arbitrariness in ti, the functions δ(t) and R(M, t)
defining that correspondence must depend on ti just as in top-hat
spherical collapse,

d d= dt t r t t t, , , 7th
i i( ) ( ) ( ) ( )
=R M t t r M t R M t, , , , , 8th

i R i( ) ( ) ( ) ( )

or, using the zeroth-order Gaussian spectral moment instead of
the scale R,

s s= sM t t r M t M t, , , , . 9th
0 i 0 i( ) ( ) ( ) ( )

Hereafter, σj stands for the jth Gaussian spectral moment. Note
that the halo–peak correspondence does not depend on the
small-scale mass distribution within each patch determining
whether the collapse is monolithic or lumpy (i.e., Q ii).
Specifically, in all cosmologies, the consistency conditions

that all of the DM in the universe must be locked inside halos
of different masses and that the mass M of a halo must be equal
to the volume integral of its density profile allow one to find
(Juan et al. 2014a) the functions rδ(t) and rR(M, t) or rσ(M, t)
setting the correspondence associated with every specific halo
mass definition (D iii).3 In all cases of interest, these functions
are well fitted by the analytic expressions,

=dr t
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with the values of coefficients d, s0, s1, s2, and A for some
relevant cases, quoted in Table 1. (See Appendix A for an
approximate expression of rR(M, t).)
Strictly speaking, the previous halo–peak correspondence

does not take into account that, due to cloud-in-cloud
configurations, some nested peaks do not accomplish their
collapse at t because, before that, they are captured by the more

Table 1
Coefficients in the Halo–Peak Relations

Cosmology Mass d s0 s1 s2 A

Planck14a Mvir 0.928 0.0226 0.0610 0.0156 11.7
M200 0.928 0.0341 0.0684 0.0239 6.87

WMAP7b Mvir 1.06 0.0422 0.0375 0.0318 25.7
M200 1.06 0.0148 0.0630 0.0132 12.4

Notes.
a Planck Collaboration et al. (2014).
b Komatsu et al. (2011).

3 The usual ones are those dubbed SO(Δ) and FoF(b). In the former, the mass
defines a spherical overdensity Δ with respect to the mean cosmic density ρc(t)
(for instance, the virial mass Mvir corresponding to the virial overdensity
Δvir(t); Bryan & Norman 1998) or the critical cosmic density ρcrit(t) (for
instance, M200 corresponding to Δ = 200). In FoF(b), the mass encompasses
all DM particles that coalesce through the friends-of-friends algorithm with a
linking length b in the density field at t.
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massive halo corresponding to the host peak and become
subhalos. Thus, the previous halo–peak correspondence must
be corrected for failed halos and the corresponding nested
peaks in order to have a strict one-to-one correspondence
between real virialized halos and nonnested peaks. In turn,
similar one-to-one correspondences are foreseen between
subhalos and nested peaks at different levels (see below).

2.3. Halo Growth and Peak Trajectories

In hierarchical cosmologies, low-mass halos are much more
abundant than high-mass ones, so minor mergers are extremely
frequent and give rise to a smooth mass increase of the massive
partner called accretion. Accretion does not alter the quasi-
equilibrium state of the accreting object; there is just a gentle
virialization of the accreted matter through shell crossing. In
their turn, accreted halos survive as subhalos. In contrast, major
mergers are rare events causing the destruction of all partners
(usually two) and the virialization ex novo of the whole system
through violent relaxation. This relaxation takes a few crossing
times, so a substantial fraction of all halos at any time t (usually
the most massive ones, with longer crossing times and formed
more recently; e.g., Raig et al. 2001) are not fully virialized. It
is thus unsurprising that the seeds at ti of ∼15%–20% of them
still have multiple nodes (Porciani et al. 2002; D ii). Thus,
when calculating the halo MF at t, we will include all collapsed
halos at that time, regardless of whether they are fully virialized
or not, but when calculating their typical (steady) properties,
we will consider only virialized objects.

Taking into account the relation

d
d s

¶
¶

=  º -
r

r r
R

R
R R x R R R

,
, , 132

2
( ) ( ) ( ) ( ) ( )

satisfied by a Gaussian window, the Taylor expansion of δ(r, R)
at scale R+ΔR (ΔR= R) of a peak implies that there can only
be one peak within a distance ΔR from another at scale R
(Manrique & Salvador-Solé 1995). We can thus readily
identify the two peaks tracing any individual accreting halo.
All peaks with varying R tracing the same accreting halo
describe a continuous δ(R) trajectory in the δ–R plane. Note
that the peaks along any of those trajectories are not anchored
to a fixed point; their position r slightly sloshes around.
However, the series of (nonconcentric) patches of different
masses they encompass as δ diminishes are embedded within
each other because the separation of contiguous peaks at R and
R+ΔR is at most ΔR.

The continuous peak trajectory δ(R) traced by an accreting
halo satisfies the differential equation

d
d s= -

d

dR
x R R R, . 142( ) ( ) ( )

Similarly, the peak trajectory traced by a halo accreting at the
mean instantaneous rate satisfies the same equation but with the
curvature x(δ, R) replaced by the inverse of the mean inverse
curvature of peaks with δ at R (Manrique & Salvador-Solé
1995) or, given the very sharply peaked x-distribution, simply
the mean peak curvature dx R,ˆ ( ), calculated in BBKS.

For moderately high peaks, as it corresponds to halos of
galactic scales, dx R,ˆ ( ) is well approximated by γν, where γ is

s s s1
2

0 2( ) (BBKS), and Equation (14) leads to

d s
s
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d

d R

R

R
R
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ln
. 151

0

2
2⎡

⎣⎢
⎤
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( )
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Approximating the power spectrum by a power law,
P(k)≈ Ckn, we have d »d d R mln ln and δ(R)∝ Rm, with
m= [(n+ 3)/2]3/2, showing that the form of those peak
trajectories is nearly universal in all realistic cosmologies.
This result is what causes (Appendix A) all scaled halo profiles
to be nearly universal (Q i). Another interesting consequence is
that, in the limit of vanishing R, peak trajectories converge to a
finite value.
Note that, contrary to what happens in the excursion set (ES)

formalism (Bond et al. 1991), where the δ(R) trajectories describe
random walks, the δ(R) trajectories in CUSP are continuous
monotonously decreasing functions of R (Equation (14)). This is
well understood; the ES follows the variation in the mass of
patches around fixed points when the scale R of the smoothing
k-sharp window increases, whereas CUSP follows the variation in
the mass of patches around moving peaks when the scale R of the
smoothing Gaussian window increases. In the former case, the
density contrast at the point may increase or decrease, while in
the latter case, the curvature of the peak automatically determines
how much δ decreases. (The curvature of the peak is indeed
connected with the accretion rate of the corresponding halo; see
Equation (14).) Far from being a problem, the monotonous
decrease of δ(R) with increasing R better reflects the monotonous
increase of halo masses with increasing cosmic time. This
difference between the two formalisms is what allows CUSP to
monitor the growth of individual halos, while the ES can only
monitor the growth of halos in a statistical way (see also
Section 6).
But when an accreting halo suffers a major merger, its

associated peak trajectory is interrupted. No peak at R+ΔR
can be identified to the peak at R (in fact, the two merging
peaks become saddle points at the new scale; Cadioul et al.
2020), and a “new” peak with the same δ on a scale of R
substantially larger than those of the progenitors appears (it
cannot be identified to any peak at the previous scale R−ΔR),
which traces the newly formed halo. The rates at which peak
trajectories disappear or appear due to major mergers can be
used to calculate the halo destruction and formation rates (via
these events), as well as their formation and destruction time
PDFs (Manrique et al. 1998). The fact that, due to major
mergers, the number density of (nonnested) peak trajectories in
the δ–R plane progressively declines with increasing R is
precisely what motivated this formalism to be dubbed
ConflUent System of Peak trajectories.

3. (Sub)Halo MFs and Peak Abundances

When a halo is accreted by another halo or merges with it, it
becomes a subhalo or is destroyed, respectively. But its own
first-level subhalos are never destroyed. Either they become
second-level subhalos in the former case, or they are passed as
first-level subhalos in the new halo in the latter case, and so on
for higher-level subhalos.
Given the one-to-one halo–peak correspondence, this (sub)

halo behavior automatically leads to a similar behavior of
peaks. The result is a complex nesting network of peaks with
any fixed density contrast at different scales (Appel &
Jones 1990). But this network is not a problem; it simply tells
us that to count halos at any t, we must count nonnested peaks
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with the corresponding δ, and to count subhalos of any desired
level, we must count the nested peaks of the same level (D ii).

3.1. Halo MF and Abundance of Nonnested Peaks

The number density of peaks with δ at scales between R and
R+ dR is the number density of peaks at a scale R with a
density contrast d̃ greater than δ that cross such a density
contrast when the scale is increased to R+ dR or, equivalently,
with δ satisfying the condition

d d d s< + R x R dR. 162˜ ( ) ˜ ( )

Therefore, it is the integral of the density of peaks with height
n d s= R0˜ ˜ ( ) and curvature x̃, per infinitesimal ñ and dx̃,
calculated by BBKS, over d̃ within the range (16) and over x̃
within the whole range of possible values. The result is
(Manrique & Salvador-Solé 1995)

d
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where ν= δ/σ0(R) is the peak height, and Rå is defined as
s s3 1 2. As mentioned, the mean peak curvature, dx R,ˆ ( ), is

separable in a first approximation, as is Npk(R, δ).
But the number density (Equation (17)) refers to all peaks

with δ between R and R+ dR, while virialized halos correspond
to nonnested peaks only. The number density of nonnested
peaks with δ between R and R+ dR, N(R, δ)dR, is the solution
of the Volterra integral equation,

ò

d d

r
d d d
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1
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where d d¢N R R, ,pk
nst ( ∣ ) is the conditional density of peaks with δ

at R subject to being nested in a peak with d¢ at ¢R given below
(Equations (21)–(25)). The comoving density (Equation (18)) of
peaks with δ at R at ti is thus equal to the comoving density of
halos with M at t or MF, N(M, t), but for the change of variable
from R to M (Equation (8)).

The new change of variable from M to σ0 leads to the halo
multiplicity function at t, defined as

s
r

s
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f t
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N M t
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. 190

c

0

0
1

( )
( )

[ ( ) ]
[( ) ]

( )

And, using the variable ν= δc(t)/σ0[R(M, t)] instead of σ0, we
arrive at

n
n

r
n=f t

M t

t
N t,

,
, 20

c

( ) ( )
( )

( ) ( )

(see Figure 1), with the Gaussian height ν approximately equal
to [a(t)/D(t)] times the top-hat one, ν th (Appendix A).

As shown in Juan et al. (2014b), the FoF mass with linking
length b = 0.2, FoF(0.2), is equivalent to the spherical
overdensity (SO) mass with overdensity Δvir relative to the
mean cosmic density, SO(Δvir). This explains that the halo
multiplicity function for FoF(0.2) is privileged (Q iii) in the
sense that it has a roughly universal shape in top-hat filtering
(Juan et al. 2014b).

3.2. Subhalo MF and Abundance of Nested Peaks

Following the same procedure above but from the condi-
tional density of peaks with infinitesimal ñ and x̃ at R subject to
lying at a distance r (in units of the top-hat filtering radius
associated with R) of a peak with n¢ at ¢R , per infinitesimal
ñ and x̃ calculated by BBKS, we can also compute the
conditional number density of peaks with δ at scales between R
and R+ dR subject to being at a distance r (same units) from
such a peak,

d d
d d
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( ∣ ) ˆ ( )
( ) ( )

[ ( ) ( )]
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( )

where d d¢ ¢x R R r, , , ,ˆ ( ) is the mean curvature of peaks with δ and
R at a distance r from another peak with d¢ at ¢R , and n¢ r( ) stands
for d s¢ ¢ ¢r R g r R,0( ) ( ) ( ), where we have used the notation

= - e r r1 ,2( ) ( ) s s s= ¢ ¢ r R R R g r R,0
2

m 0 0( ) ( ) [ ( ) ( )] ( ),
= ¢R R Rm

2 , and d s¢ = - D ¢ ¢g r R r R, 1 2
0
2( ) [ ( )] ( ) , where

d¢ r( ) and dD ¢ r( ) are the mean and rms density contrast,
respectively, at r from a peak (BBKS).
Thus, the conditional number density of peaks with δ at

scales R to R+ dR subject to being nested in a peak with d¢ at
¢R is (Manrique et al. 1998)

òd d d d¢ ¢ = ¢ ¢N R R C dr r N R R r, , 3 , , , , 22pk
nst

0

1
2

pk( ∣ ) ( ∣ ) ( )

Figure 1. Multiplicity function of current halos predicted by CUSP with no
free parameter (red lines) compared to the Warren et al. (2006) analytic fit to
the nearly universal multiplicity function of simulated halos (blue dotted line)
for FoF(b = 2) halo masses. The solid line is the solution given here (Manrique
et al. 1998), and the dashed line is a practical approximate solution (Juan
et al. 2014b). For comparison, we also plot the Press & Schechter (1974) MF
(green dashed line).

5

The Astrophysical Journal, 914:141 (18pp), 2021 June 20 Salvador-Solé & Manrique



where factor

ò
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3 ,
3 , , , , 23

S3
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2
pk

( )
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( ∣ ) ( )

with S equal to the mean nonnested peak separation (same
units) drawn from their mean density (Equation (18)), is to
correct for the overcounting of host peaks, as some of them are
also nested.

But if we are interested in the number of first-level subhalos
in a halo (from now on, numbers are denoted by a calligraphic
 so as to distinguish them from number densities), the
conditional number density (Equation (22)) is not enough. We
need the conditional number of peaks with δ per infinitesimal
scale around R subject to being nested at the first level in a
nonnested peak with δ at ¢R . The result is

d d
r

d d¢ =
¢

¢ R R
M R

t
N R R, , , , , 24

c i

nst( ∣ ) ( )
( )

( ∣ ) ( )

where d d¢N R R, ,nst ( ∣ ) is the conditional number density of
peaks with the same characteristics subject to being nested in
nonnested peaks with identical δ at ¢R (Equation (22)) corrected
for nesting at any intermediate-scale R″ between R and ¢R ,
given by the solution of the Volterra equation,

ò

d d d d

d d d d
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Note that, in the integral on the right of Equation (25), we
have used the conditional number density of peaks with δ per
infinitesimal scale around ¢R subject to being directly nested
within peaks at R″ (i.e., without being nested in any smaller-
scale peak), d d¢ N R R, ,pk

d nst ( ∣ ), calculated in Salvador-Solé
et al. (2021a) to avoid overcorrection for intermediate nesting
(peaks can be nested in more than one intermediate-scale peak).

We remark that d d¢x R R r, , , ,ˆ ( ), like dx R,ˆ ( ), is very nearly
separable, in the subhalo mass range, in a function of R and
another function of the remaining arguments (Juan et al.
2014b). This separability then propagates (see Salvador-Solé
et al. 2021b for details) to the conditional number of nested
peaks, d d¢ R R, ,( ∣ ) (Equation (24)), which has the important
consequences mentioned below.

Given the one-to-one correspondence between first-level
subhalos and first-level nested peaks, the MF or number of
accreted subhalos per infinitesimal mass in halos with Mh at th,
 Macc

s( ), coincides, but for the change of variable from scale
R to subhalo mass Ms, with the number of peaks per
infinitesimal scale around R(Ms) and δ(th) that are directly
nested into a peak with the same density contrast at the larger-
scale R(Mh). The corresponding cumulative subhalo MF

> Macc
s( ) (see Figure 2) is essentially proportional to -Ms

1

(Q x) and very nearly universal when Ms is scaled to Mh (Q i).
The derivation of the MF of subhalos tidally stripped by the
halo potential well is postponed to Section 5.3.2.

4. Protohalo Properties

The typical halo properties, hereafter denoted by subscript h,
arise from those of the corresponding collapsing patches or
protohalos, hereafter denoted by subscript p. (Quantities with no
subscript refer to both objects indistinctly.) Specifically, since in
the linear regime, the velocity and density fields are tightly related,

protohalos are fully characterized by their spherically averaged
density, ellipticity, and prolateness profiles; that is, we need no
kinematic information. To obtain those structural protohalo
profiles, we should deconvolve the height, ellipticity, and
prolateness of the corresponding peaks. But this is not possible
because the Gaussian window used to find those peaks yields the
loss of information at large wavenumbers. Fortunately, as shown
next, for purely accreting halos, we can use the information on the
peaks along the full δ(R) trajectory to achieve the desired
deconvolutions. (The peak trajectories of ordinary halos suffering
major mergers are interrupted at those events, so we have no
access to that information.)
For this reason, until Section 6, we concentrate on halos

evolving by pure accretion (PA), the only ones for which we can
determine the properties of the corresponding protohalos. Then,
monitoring the collapse and virialization of those protohalos, we
can derive the properties of the final purely accreting halos. This
procedure can be followed for individual objects (provided their δ
(R) trajectory is known) or ensembles of halos with the same mass
and redshift so as to derive their typical properties. In the present
study, we concentrate on this latter application of the method.
Specifically, we derive the mean spherical averaged radial profiles
and global quantities of (proto)halos with Mh at th.

4.1. Density Profile

Taking the origin of the coordinate system on the peak at
scale R, the density contrast δ at rp= 0 is nothing but the
convolution with the Gaussian window of that radius of the
intrinsic density contrast field δp(rp) in the protohalo. We thus
have

òd
p

d= -
¥

R
R

dr r r
r

R

2 1
exp

2
26

3 0
p p

2
p p

p
2

2
⎛

⎝
⎜

⎞

⎠
⎟( ) ( ) ( )

Figure 2. Cumulative MF of accreted subhalos as a function of subhalo mass
predicted by CUSP with no free parameter (red line) for current halos with
Milky Way mass (Mh = 2.2 × 1012 Me), compared to the results of simulations
by Han et al. (2016; dashed black line) found for the A halo in the Aquarius
simulation (Springel et al. 2008).
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after integrating over the polar angles, where δp(rp) is the
spherical average of δ(r). Equation (26) shows that we can infer
the peak trajectory δ(R) traced by a purely accreting halo from
the density profile of its protohalo. Conversely, given the peak
trajectory δ(R) of a purely accreting halo, we can readily solve
the Fredholm integral equation of the first kind (Equation (26))
for δp(rp) (Salvador-Solé et al. 2012a). This can be done for
individual halos or halos with Mh at th accreting at the mean
instantaneous rate, leading to the mean spherically averaged
density profile δp(r) of the corresponding protohalos. Note that,
as in the limit of vanishing R, the peak trajectories converge to
a finite value (null asymptotic slope), so do the unconvolved
mean protohalo density profiles in the limit of vanishing rp.

4.2. Eccentricity Profiles

Similarly, reorienting the Cartesian axes j along the main
axes of the triaxial peak with δ at R, the squared semiaxes of the
peak, dA R,j

2 ( ), equal to the second-order spatial derivatives ¶ j
2

of the centered density contrast field δp(rp) scaled to the
Laplacian ( + + =A A A 11

2
2
2

3
2 ) are given by Salvador-Solé

et al. (2012b):
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Writing δp(rp) in terms of δp(rp) and the protohalo axis profiles
apj(rp) (Appendix C) and integrating over the polar angles, we
arrive at
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where we have taken into account that the axes Aj of the peaks
are well-known functions of their curvature (BBKS) and
introduced the function Gp(rp), defined in Appendix C.

Equation (28) shows that the Aj(R) trajectories of peaks can
be obtained from the semiaxis profiles of their protohalos.
Conversely, given a peak trajectory δ(R) determining the Aj(R)
trajectories, we can solve the Fredholm integral equation of the
first kind (Equation (28)) for the quantities a r a rjp1

2
p p

2
p( ) ( ), in

the same way as Equation (26). Then, from the quantities
a r a rjp1

2
p p

2
p( ) ( ), we can infer the ellipticity and prolateness

profiles or, equivalently, the primary and secondary eccen-
tricity profiles, òp(rp) and εp(rp), defined in Appendix C. We
can thus invert Equation (28) from the δ(R) solution of
Equation (15) (with the partial derivative ∂δ/∂R equal to the
total derivative), fixing the dA d dR R,j

2 ( ) trajectories, and

determine the profiles a r a r G rjp1
2

p p
2

p p p( ) [ ( ) ( )] for the three
orientations j, leading to the primary and secondary eccentricity
profiles, òp(rp) and εp(rp), for individual protohalos or halos
accreting at the mean instantaneous rate.

5. Halo Properties

The properties of purely accreting halos follow from those of
the corresponding protohalos thanks to the conservation in
ellipsoidal collapse and virialization of a few quantities
specified below. In fact, as the latter properties follow from
the peak trajectories traced by such halos, the properties of
purely accreting halos ultimately follow from the character-
istics of those peak trajectories.
The link between the properties of protohalos and halos is

provided by the conservation of three quantities during
ellipsoidal collapse and virialization: the mass inside the
corresponding radii, the total energy inside those radii, and the
volume delimited by them. The latter two quantities are not
conserved in an absolute way (the system expands and
contracts and loses energy through shell crossing during
virialization) but rather relative to those of the spherically
symmetrized system.

5.1. Density Profile

The one-to-one correspondence between halos and peaks
guarantees the conservation of the mass in the triaxial protohalo
at ti to that of the triaxial halo at t, Mh=Mp. As shown in
Appendix A, this equality and the halo mass definition implicit
in that correspondence fully determine the (roughly universal)
mean spherically averaged halo density profile in purely
accreting halos. However, to understand what is behind that
formal derivation, it is convenient to monitor in detail the
ellipsoidal collapse and virialization of the system. For the
reasons explained in Appendix B, this can be done assuming
spherical symmetry.
In the linear regime, homeoids expand radially by the factor

D(t) (hence, homothetically), with neither shell crossing nor
energy exchange between different regions. After reaching
turnaround, shells collapse and bounce, which causes them to
cross other shells. When a shell moving inward crosses another
one moving outward, some (potential) energy is transferred
from the latter to the former due to the change in the inner mass
they see. And when they again cross in the opposite direction,
the energy exchange is reversed. But the amount of energy
exchanged depends on the radius of the crossing; near
pericenter, they exchange more energy than near apocenter.
This difference causes a net energy flux outward, i.e., from
shells collapsed earlier, with smaller apocenters, to shells
collapsed later, with larger apocenters. This energy loss of the
shells causes their apocenter loci to shrink, so the shells cross
increasingly nearer the center and exchange less energy. On the
other hand, the correlation between their phases is slowly lost.
Thus, the Lagrangian energy outflow diminishes. In the end,
the energy exchange ceases, and the shell apocenters stop
contracting.
Note that shell crossing proceeds with no apocenter crossing.

Indeed, if particles in two different accreting shells did coincide
at apocenter (hence, with null radial velocity), they would
coincide along the whole trajectory, so they would not belong
to different accreting shells. Therefore, the particle apocenter
loci contract, due to the energy loss through shell crossing, in
an orderly manner until they stop. In other words, accreting
halos grow from the inside-out (D vi). This particular growth
allows one to relate the radius rh in the final object in
equilibrium to the protohalo properties within the corresp-
onding rp.
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The virial radius of the accreting halo increases with increasing
time as the object grows inside-out. We can thus virtually move
the shells reaching turnaround one after the other without any
crossing so as to match their apocenters in the final halo.4 The
energy profile of the resulting “toy object” inside any radius rh,~
E rh h( ), will differ, of course, from that of the real halo, Eh(rh),
because the latter accounts for the energy loss through shell
crossing, while the toy object is built with no shell crossing. In
fact,

~
E rh h( ) equals the total energy of the system at turnaround

or directly at the initial time, =
~
E r E rh h p p( ) ( ). The toy object is

of course not in equilibrium, but this can be fixed. As
-

~ ~
E r W rh h h h( ) ( ), where ~

W rh h( ) is the potential energy of a
homogeneous sphere with Mh(rh) at rh, must be positive,5 we
can expand virtually every inner shell, avoiding shell crossing,
so as to end up with a uniform density equal to the mean
density of the real halo inside rh and still have an excess of
spherical kinetic energy inside that radius. This kinetic energy
can then be redistributed over the sphere, exchanging the radial
and tangential components of the spherical velocity variance so
as to satisfy the spherical virial relation with null spherical
radial velocity variance. We are then led to a steady
homogeneous toy object with the same mass Mh(rh) and radius
rh as the real halo, though with potential energy

~
W Mh h( ) =

− GM r M3 5 h
2

h h( ), total energy =
~
E M E Mh h p p( ) ( ), and a null

surface term. It thus satisfies the virial relation

= -r M
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3
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h
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( )
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where =
~

E M E Mp p h h( ) ( ) is the nonconserved total energy of

the protohalo ( ¹
~
E M E Mh h h h( ) ( )), which is given in the

parametric form by
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with ρp(rp)= ρc(ti)[1+ δp(rp)] calculated in Section 4. Here Hi

is the Hubble constant at ti, and

p r
=

-
v r

G M r r t
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c i

i p
2

( )
[ ( ) ( ) ]

( )
( )

is the peculiar velocity caused by the mass excess within rp,
where we have neglected the velocity dispersion of DM
particles at ti and taken the cosmic virial factor f (Ω)≈Ω0.1 at ti
to be equal to 1. Note that Equation (29) explains why the virial
radius of halos is recovered in spherical top-hat collapse
assuming energy conservation (Q v), as if the system had not
lost energy through shell crossing. This result thus justifies the
definition of the halo virial radius (Bryan & Norman 1998).

The inversion of rh(Mh) given by Equation (29) leads to the
mass profile Mh(rh), and by differentiating it at the spherically
averaged density profile ρh(rh) (see Figure 3). Conversely, given a
purely accreting halo with mass profile Mh(rh), we can calculate

the total energy of its seed, Ep(Mp=Mh) (Equation (29)), and
determine ρp(rp) from Equations (30) and (31). Thus, there is in
PA a one-to-one correspondence between the density profile for
halos and protohalos. These previous results hold for the profiles
of individual halo–protohalo pairs, as well as for mean profiles.
In addition, the inner asymptotic protohalo density profile,

r µ arp p , implies µ a+M r rp p p
3( ) ( ) and µ a+E r rp p p

5( ) ( ).
Equation (29) then leads to r µ ar rh h h( ) , and, since α is null
(see Section 4.1), we conclude that there is strictly no cusp in
the mean spherically averaged density profile for CDM halos
(Q iv). Nevertheless, the finite central value is approached
slightly more slowly than in the Einasto profile.

5.2. Eccentricity and Kinematic Profiles

The kinematics and triaxial shapes of halos are determined
by the triaxial shapes of protohalos. Since this relation is not
included in the one-to-one halo–peak correspondence, there is
no shortcut in this case; the only way to derive it is by taking
into account the abovementioned conservation relations during
ellipsoidal collapse and virialization. Moreover, for obvious
reasons, we cannot assume spherical symmetry in this case.
However, we will take into account that, to leading order in the
departure from spherical symmetry, hereafter simply the
“asphericity,” all physical properties of evolving triaxial
systems coincide with those of their spherically symmetrized
counterparts (see Appendix B).
To leading order in the asphericity, the volume of ellipsoids

coincides at any time with that of the corresponding spheres in
the spherically symmetrized system. That is, the ratio between
the two volumes must be conserved, to leading order in the
asphericity, over the ellipsoidal collapse and virialization of the
system. We thus have

=
a r a r a r

a r a r a r

r

r
, 33h1 h h2 h h3 h

p1 p p2 p p3 p

h
3

p
3

( ) ( ) ( )
( ) ( ) ( )

( )

where a1, a2, and a3 are the semiaxes of the ellipsoids, and r is
their equivalent radius (see the definition in Appendix C), equal
to the radius of the corresponding sphere in the spherically
symmetrized system.
Similarly, to leading order in the asphericity, the total energy

within radius r of the triaxial system, E(r), coincides at any
time with that  r( ) in the spherically symmetrized system. Note
that the energy lost by a sphere of initial radius rp through shell
crossing during virialization is indeed accounted for in  r( ).
What is not accounted for is the energy exchange between the
sphere and the rest of the system in the triaxial system, so that
energy loss is included in the residual d r( ). Consequently, the
ratio between E(r) and  r( ) must be conserved to leading order
in the asphericity. This conservation has two consequences.
First, as d= + E r r r( ) ( ) ( ), it implies

d
d

=






r

r

r

r
, 34h h

p p

h h

p p

( )
( )

( )
( )

( )

with d r( ), given in Appendix B, dependent on the
eccentricities of the halo. Second, as  r( ) is the same in the
spherically symmetrized system, the transfer from the radial to
the tangential kinetic energy due to the nonradial motion
produced in the nonlinear evolution of the triaxial system must
go in parallel to a departure of the potential energy so as not to
alter the total spherical energy. In other words, the fractional

4 By “virtual” motion, we mean a motion where the energy is conserved,
although not the timing of the real motion.
5 The system at turnaround is less concentrated than the homogeneous toy
object.
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velocity variance transferred from the radial to the tangential
direction (equal to half the fractional 1D tangential velocity
variance generated) must be equal to half the typical fractional
deviation of the potential,

s
s

d
=

á F ñ
F

r

r

r

r
. 35t

2
h h

h
2

h

h
2

h

h
2

h

1 2
⎧
⎨⎩

⎫
⎬⎭

( ) ( )
( )

( )
( )

( )

Equation (35) relates the velocity anisotropy of halos with their
eccentricity (Q vi).

Those two conservation relations determine the triaxial shape
and kinematics of the halo (Appendix C). Indeed, the halo
eccentricity profiles, òh(r) and εh(r), arise from those of protohalos,
òp(r) and εp(r) (Equations (C7) and (C9)) through a relation
(Equation (C10)) that involves the halo velocity variance s rh

2 ( ).
This relation is enough to determine the halo eccentricities near
the center, where they coincide with those of protohalos with
well-known sharply peaked PDFs (BBKS). But to solve the
problem at any rh, the closure relation (Equation (35)) is required.

Writing the anisotropy βh(rh) as a function of the scaled
potential variance (Equation (35)), the latter as a function of the
halo eccentricities (Appendix C), and the eccentricities as
functions of the halo velocity variance and the protohalo
eccentricities (Equations (C8) and (C9)), the anisotropic
equilibrium equation to leading order in the asphericity
(Appendix B),

r s
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leads to a differential equation for s rh
2

h( ). Its solution for the
usual boundary condition of null velocity at infinity leads to a
pseudo-phase-space density profile r sr rh h h

3
h( ) ( ) of the same

power-law form as in Bertschinger’s (1985) spherical self-
similar collapse model. This characteristic pseudo-phase-space
density profile found in simulations (see Figure 4) is thus due to
the (quasi-)self-similar collapse of a (quasi-) homogeneous
mass distribution and the phase-mixing produced by shell

crossing like in Bertschinger’s (1985) model (Q vii). The only
difference, apart from the nonstrict similarity of the real
collapse, is that Bertschinger assumed spherical symmetry,
while CUSP takes into account the ellipsoidal collapse leading
to a partial conversion of the radial velocities in the linear
regime to tangential velocities (Equation (35)).
Once σh(rh) is known, we can compute the halo scaled

density potential covariance profile from that in the protohalo
(Equation (C8)) and then the scaled density and potential
variance profiles (Appendix C). The latter leads, through
Equation (35), to the velocity anisotropy profile βh(rh), which

Figure 3. Mean spherically averaged density profile predicted by CUSP with no free parameter (solid lines) for current halos with Mvir = 1013 Me, compared to the
usual analytic fitting expressions (dashed lines) for halos of that mass: the NFW (Navarro et al. 1996) profile (left panel) and the Einasto (1965) profile (right panel).
The residuals in the bottom show the same slight S-shape as found in the fits to the numerical profiles found in simulations.

Figure 4. Mean pseudo-phase-space density profiles predicted by CUSP with
no free parameter (dashed lines) for current halos with the Milky Way mass
(red line), 1013 Me (blue line), and 1014 Me (green line). The solid lines are
parallel to the black one with a constant slope equal to −1.875, as found in
simulations (Taylor & Navarro 2001).
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adopts the universal form (Hansen et al. 2006) found in
simulations (Q viii).

These kinematic profiles lead to the eccentricity profiles of
the halo from those of the protohalo (Equations (C8)–(C10)). In
peaks with small and moderately large average curvatures, the
typical ep and pp values peak at 1.7 and 1.3, respectively,
regardless of the values of δ and R (BBKS), implying that òp
and εp are about 0.81 and 0.64, respectively. Since U(rh) is
close to 1 (see Figure 2 in Salvador-Solé et al. 2012b), the
predicted mean òh(rh) and εh(rh) profiles at small and
moderately large radii are constant and close to 0.9 and 0.8,
respectively, consistent with the results of simulations (Q ix).
At large radii, the rms density fluctuation profile tends to a
power law of index ∼−0.1, the eccentricities are decreasing
outward, and the isopotential contours become more spherical
than the isodensity contours (Salvador-Solé et al. 2012b) as
found in simulations (Q ix).

Once again, not only are the kinematic and eccentricity
profiles of halos determined by the eccentricity profiles of the
protohalo, but the latter can be obtained from the former
(Equations (C8) and (C9)). And all of the previous results hold
for the profiles of individual halo–protohalo pairs, as well as for
their mean profiles.

5.3. Subhalo Number Density Profiles

5.3.1. Accreted Subhalos

According to the results of Section 3.2 and the inside-out
growth of halos in PA, the abundance of (first-level) subhalos
per infinitesimal nontruncated mass around Ms inside the radius
rh in halos with current mass Mh and virial radius Rh at th,

< r M,acc
h s( ), coincides, after the appropriate change of

variables, with the mean number per infinitesimal scale of
peaks with δ[t(rh)] at R(Ms) nested (at first level) in the peaks
with scale R{δ[t(rh)]} found along the mean peak trajectory of
those accreting halos, with a mean (spherically averaged) mass
profile equal to Mh(rh). We thus have

d d d
d

d

p
r

=

=






r M
dR

dM

d R R

d

d

dR

dR

dM

dM

dr

r
r

M
M

,
, ,

4 . 37

acc
h s

s

s

s

h

h

h

h
2 h h

h

acc
s

( ) [ ∣ ( ) ]

( )
( ) ( )

From now on, a bar on a function of r means its mean value
inside r.

The dDM mass fraction at rh in the halo with Mh at th
directly accreted from the interhalo medium, is essentially
equal to the dDM mass fraction f tdDM

acc ( ) in that medium,

òr
= -

¥
f t

t
dM M N M t1

1
, 38

M
dDM
acc

c min

( )
( )

( ) ( )

( >t tmin), at the time t= t(rh), being N(M, t) the halo MF at t
(Section 3). Indeed, halo clustering starts at some finite time
tmin with a minimum halo mass Mmin equal to the free-
streaming mass associated with the DM particle in the real
universe or the resolution mass in cosmological simulations.
Consequently, all of the DM that, at tmin, should lie in halos
with masses <M Mmin remains in the form of dDM that is
progressively accreted onto halos (D viii; see Figure 6).

As can be seen from Equation (37), the abovementioned
separability of d d d R R, ,s[ ∣ ( ) ] in a function of Rs and another
function of the remaining arguments propagates (with an extra

factor of Rs arising from the δ-derivative and the change of
variable from Rs to Ms) to the separability of the same kind
of  r M,acc

h s( ).
The mean spherically averaged number density profile for

accreted subhalos with Ms, nacc(rh, Ms), defined as
p r M r, 4acc

h s h
2( ) ( ), scaled to the corresponding total mean

number density, p= n R M M R, 3 4acc
h s

acc
s h

3¯ ( ) ( ) , is a func-
tion of r only. Taking into account Equation (38), it can be
written as
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Equation (39) shows that the mean spherically averaged
scaled number density profiles of accreted subhalos for all
massesMs overlap in one only profile, which follows the scaled
density profile of the halo. The ultimate reason for this result is
thus the abovementioned separability of the conditional number
of nested peaks (Q xi).

5.3.2. Stripped Subhalos

Soon after being accreted, subhalos begin to be tidally
stripped (or even disrupted) by the host potential well so that
they liberate other stripped subhalos and dDM previously
locked inside them and end up with smaller truncated masses,
Ms

tr. Note that, as halos undergoing PA grow inside-out, once
the subhalos are accreted, their orbits are kept unaltered, and
since their initial conditions at accretion are independent of
mass, the orbits are also. Certainly, subhalos suffer two-body
interactions between themselves and with dDM. But these
interactions do not affect the very numerous low-mass subhalos
because they are already accounted for in shell crossing (see the
discussion in Salvador-Solé et al. 2021a). Only rare massive
subhalos suffer an extra effect, the so-called dynamical friction.
However, the typical properties of substructure are defined
from large subhalo ensembles, so rare massive objects are
excluded from the present treatment (D ix).
The abundance  r M,stp

h s
tr( ) of stripped subhalos per

infinitesimal radius and truncated subhalo mass around rh and
Ms

tr is then given by
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where  r M,M t r,
stp

s
tr

h
( )[ ( )] is the differential abundance of

stripped subsubhalos with Ms
tr at r in a subhalo with mass M

when the host halo had mass M(rh). In Equation (40),
 v r M, ,acc

h( ) is the abundance of accreted subhalos per
infinitesimal mass, radius, and tangential velocity around Ms,
rh, and v, respectively, which factorizes in  r M,acc

h( )
(Equation [39]) times the mass-independent tangential velocity
distribution of the halo at rh, and R(rh, M) and R v r M, ,tr

h( ) are
the original and truncated radii of subhalos with original mass
M and tangential velocity v at rh, respectively. Double angular
brackets denote the average over the tangential velocity v of
subhalos at their apocentric radius rh.
The first term on the right of Equation (40) gives the

abundance of subhalos accreted at rh with the original
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nontruncated mass Ms that give rise by direct stripping to
subhalos with truncated mass Ms

tr, and the second term gives
the number of subhalos with truncated mass Ms

tr that are
released at rh from the stripping of more massive subhalos.

Indeed, after the subhalos are accreted (their apocenters are
stabilized) at rh, they begin to be repeatedly stripped and heated
at each passage by the pericenter at rper(v, rh), causing them to
reach a new equilibrium configuration at the next apocenter.
Taking into account the truncation undergone in every passage
under the impulse approximation (González-Casado et al.
1994), the subhalo ends up, after p passages by pericenter
(from t(rh) to th), with a truncated-to-original mass ratio given
by Salvador-Solé et al. (2021b),
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(Q xii), where the functions m(rh) and q(rh) can be calculated
from the mass and radius those subhalos would have had, had
they not suffered any stripping during virialization, and Qi(v,
rh) is the ratio of the subhalo radii after and before truncation at
the ith pericentric passage. The ratio Qi(v, rh) is the solution of
the equation
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where Q(v, rh) stands for rper(v, rh)/rh, and f (c) for
+ - +c c cln 1 1( ) ( ), in the case of the density profile of

halos (or subhalos), is adjusted by the Navarro–Frenk–White
(NFW; Navarro et al. 1996) analytic profile (see Juan et al.
2014b for the Einasto profile). In Equation (42), c(rh), equal to
rhc(Rh)/Rh is the concentration of the halo at t(rh), and ci(v, rh)
is the concentration of the subhalo when it reaches equilibrium
at apocenter after the ith pericentric passage, solution of the
recursive equation
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where h(c) stands for + -f c c c s c1 3 23 2 2 1 2( )( ) { [ ( )] },
being s2(c) the isotropic 3D velocity variance of objects with
mass M and radius R scaled to cf (c)GM/R, and u(v, rh) is the
heated-to-original subhalo energy ratio going together with
tidal truncation, assumed of the form
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For K= 0.77 and β=−0.5, very good agreement is found with
the results of numerical experiments (Salvador-Solé et al.
2021b). These two parameters are the only ones appearing in
the whole theory. They are necessary because subhalo stripping
and heating do not arise from the collapse and virialization of
peaks and hence must be modeled apart.

According to the previous relations, the truncated-to-original
subhalo mass ratio (Equation (41)) turns out to be independent
of the original mass of subhalos as a consequence of their

similar concentration when they are accreted and the way they
are truncated at pericenter (D xi; Salvador-Solé et al. 2021b).
After some algebra, the solution of the integral Equation (40)

takes the compact form (Salvador-Solé et al. 2021b)
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h s
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rel h h
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where μ(rh) is the v-averaged mass-independent truncated-to-
original subhalo mass ratio profile, and frel(rh) is the proportion
of stripped subhalos with Ms

tr at rh previously locked as
subhalos that have been released in the intrahalo medium when
their subhalo hosts have been stripped. The quantity frel, which
can be found by solving a Fredholm equation given in
Salvador-Solé et al. (2021b), never exceeds 6%, so it can be
neglected in a first approximation.
Equation (45) implies that the mean spherically averaged

scaled number density profiles for stripped subhalos with Ms
tr,

n r M,stp
h s

tr( ), defined as usual in terms of the corresponding
abundance  r M,stp
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str
h( ) and f rdDM
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h( ) are the dDM mass fractions of

stripped and accreted subhalos, respectively, at the radius rh of
the halo with Mh at th (D viii). The fraction fdDM

str is given by
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and a similar relation holds for f rdDM
acc

h( ) in terms of
 r M,cc

h s( ).
Equation (46) shows that the mean spherically averaged

scaled number density of stripped subhalos of different
truncated masses Ms

tr overlap in one only profile as a
consequence of the separability of the abundance of accreted
subhalos through Equation (45). But this profile is bent with
respect to the density profile of the halo because the dDM mass
fraction increases inwards (see Figure 5).
Taking into account the relation
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that follows from Equations (45) and (47) and the separability
of  r M,stp

h s
tr( ) and  r M,acc

h s
tr( ), the integration over rh of

Equation (45) leads to the relation
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s
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h
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s
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between the respective MFs. On the other hand, from the
f rdDM

stp
h( ) and f rdDM

acc
h( ) dDM mass fraction profiles (Figure 6),

we can compute the global total and accreted dDM mass
fractions in halos. We find that ∼70% of the mass of current
Milky Way–mass halos is in the form of dDM (Q xiii).
Notice that all halo profiles can be expressed in terms of

ρh(r), f rdDM
acc ( ), μ(r), and frel(r). Since ρh is roughly universal as

a function of the scaled radius, r/Rh, and the fdDM
acc profile

following from f tdDM
acc ( ) and t(r/Rh) is also universal (see

Appendix A), μ and frel are too (Salvador-Solé et al. 2021b).
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Thus, all properties regarding accreted and stripped subhalos in
purely accreting halos (or having suffered the last major merger
a very long time ago) are roughly universal (Q i).

6. Major Mergers and Gaussian Window

The imprints of tidal stripping on subhalos and dDM are
never erased, so these components retain the memory of the
halo’s past history. Thus, the abundance and radial distribution
of stripped subhalos and the associated dDM in halos depend
on the halo assembly history (see E. Salvador-Solé et al. 2021c,
in preparation, for their derivation from those of purely
accreting halos).
But all of the remaining halo properties, including those

regarding accreted subhalos and dDM, are independent of the
halo assembly history and can be obtained assuming PA (D
vii). This surprising result, shown next, explains the empirical
fact that all relaxed halos have similar properties regardless of
the time of their last major merger (see also the discussion in
Section 7).
In PA, all halo properties evolve in a continuous manner.

When a homeoid (or ellipsoidal shell) collapses, it crosses the
homeoids having previously collapsed with similar triaxial
shape and orientation. The energy outflow (in Lagrangian
coordinates) set in such shell crossings causes the particle
apocenter loci to contract (and change their triaxial shape) until
the correlation between the orbital phases of particles in
neighboring shells is lost. Virialization is thus achieved through
the randomization of orbital phases that goes together with the
contraction of the system. However, the order of the particle
apocenter loci is kept unaltered, implying that the radial
mapping of the system is essentially conserved. It is thus
unsurprising that the radial profiles and triaxial shape and
kinematics of halos can be inferred from those of protohalos,
and vice versa. Consequently, there is no increase of entropy,
meaning that the randomization of particle velocities through
shell crossing, which affects their orbital phases, is not a real
relaxation of the system.
On the contrary, there is no continuity of halo properties

interrupted in major mergers. Particles previously assembled in
each of the progenitors and orbiting within it suddenly fall
toward the new center of mass of the system, where they mix
up. This mixing yields a new phase of less symmetric shell
crossing around the center of mass and energy pumping
outward until the particle orbital phases are randomized, and
the system stops contracting, like in accretion. However, in this
case, the particle apocenter order within each progenitor is not
translated into the new structure, so there is a randomization of
both the particle phases and apocenters themselves, which
causes the scrambling of particles in the new system. Such
scrambling destroys and smears out the progenitors so that the
system becomes triaxial at all scales, from the largest one
corresponding to the peak tracing the new halo and downward.
In other words, the memory of the initial multipolar mass
distribution at small scales is lost, and the resulting mass
distribution cannot be inverted anymore. Consequently, there is
an increase of entropy, meaning that the randomization of
particle velocities, which in this case affects the order of their
apocentric radii and not just their orbital phases, is a real
(violent) relaxation of the system. Shortly, the entropy increase
in major mergers would be caused by the chaotic orbits
followed by particles during that virialization (Beraldo e Silva
et al. 2019).
Of course, the structural (mass density, number density of

accreted subhalos, and accreted dDM density), kinematic, and
eccentricity profiles of merged halos can be inverted as if they
had been set by PA. The result will be the structural (mass and

Figure 5. Scaled number density profiles of stripped subhalos predicted by
CUSP (red line) in purely accreting Milky Way–mass halos, compared to the fit
by Han et al. (2016), to the profile of the A halo (black dashed line) (Springel
et al. 2008). The solid black line is the scaled halo density profile. (A color
version of this figure is available in the online journal.)

Figure 6. Total dDM mass fraction as a function of radius (upper ticks) and
cosmic time when the halo reached that radius (lower ticks) predicted by CUSP
for current purely accreting Milky Way–mass halos in a 100 GeV WIMP
universe (solid red line) and an Aquarius-like Springel et al. (2008) simulation
(solid blue line). Dashed lines show the corresponding mass fractions of
accreted dDM. No results of simulations are available in this case. (A color
version of this figure is available in the online journal.)
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number density of nested peaks) and eccentricity profiles of
fake protohalos evolving into the merged halos by PA. The
mean profiles of real merged halos are thus equal to the mean
profiles arising from their respective fake protohalos. But the
latter mean profiles coincide with the mean profiles of real
halos evolving by PA from protohalos because the curvature of
a peak does not depend on the small-scale mass distribution
inside (and outside) the protohalo, so the mean curvature x̂ of
fake and real peaks evolving by PA with a given density
contrast and scale are the same. Thus, the differential
Equation (15) governing the respective mean peak trajectories
is also the same, and, since the two kinds of peaks have
identical characteristics at the scale R and time t of the final
halos, the two mean δ(R) trajectories coincide, just like the
respective mean ò(R) and ε(R) trajectories following from them.
Therefore, even though the small-scale mass distributions in the
protohalos of merged and purely accreting halos with a given
mass, triaxial shape, and kinematics at t are very different, their
respective mean unconvolved profiles coincide.

Moreover, not only do the mean profiles of both kinds of
halos coincide, but the profiles of every individual purely
accreting halo coincide with those of one merged halo, and
vice versa. Indeed, given a merged halo, we can reshuffle its
particles in the protohalo, keeping the convolved density profile
and triaxial shape of the peak unaltered. By doing this, the real
protohalo is converted into a fake protohalo evolving by PA
into the merged halo. Conversely, given a purely accreting
halo, we can concentrate its particles along the radial direction
in a few small-scale undulations, keeping the convolved
density profile of the peak unaltered, then along their home-
oids, keeping the triaxial shape of the peak unaltered, so as to
build up a few massive clumps (i.e., peaks on smaller scales)
within the large-scale peak without altering its convolved
properties. This way, the real protohalo of the purely accreting
halo is converted into a protohalo of a merged halo with the
same profiles as the original purely accreting halo.

Thus, both halo populations are indistinguishable, globally (the
whole ensemble) as well as individually (every single realization).
The only difference between them is in the entropy accompanying
their collapse and virialization; in halos evolving by PA, there is
no entropy increase because the radial mapping of the protohalo is
conserved, whereas in major mergers, the entropy increases due to
the reshuffling of particles produced in the merger at t or the
protohalo at ti causing the new protohalo to evolve by PA to the
same final halo. But the entropy increase in major mergers can
only be detected provided the initial configuration is known. This
is what happens in simulations where it is indeed seen that major
mergers cause an entropy increase with respect to the case of
accretion compatible with no increase (Obreschkow et al. 2000).

Thus, halo properties do not depend on their assembly
history (Q xiv). This result has, in turn, the following important
consequence for the smoothing window.

As the halo assembly process carries the loss of information on
small scales of collapsing patches, the smoothing window that
identifies those patches must filter out those small scales; i.e., it
must be of compact support in Fourier space. Any other window
with compact support in physical space, as required to have finite
collapsing patches, such as the top-hat one, has a Fourier
transform with nonnull values out to infinity. And any other
window with compact support in Fourier space, such as the k-
sharp window, does not encompass finite collapsing patches
because its inverse Fourier transform has nonnull values out to

infinity. The way this problem is circumvented in the ES
formalism is by using the k-sharp window with varying zeroth-
order spectral moments to identify the patches of different masses
that should collapse according to the top-hat window with
identical zeroth-order spectral moments. Unfortunately, there is no
reason for the masses seen by the two different windows with
identical zeroth-order spectral moments to coincide.
Thus, the Gaussian is the only smoothing window that

accounts for the entropy increase in halo clustering (due to
major mergers) and finds in a fully consistent manner the finite
patches with a known time of collapse and virialization (D iv).
In this respect, we remark that CUSP does provide the relation
between the zeroth-order spectral moments of the Gaussian and
the top-hat windows that see collapsing patches of the same
mass (Equations (9) and (11)).

7. Summary and Discussion

CUSP is a rigorous formalism for the analytic treatment,
from first principles and with no free parameters (except for the
modeling of subhalo tidal heating), of halo clustering in
hierarchical cosmologies. Taking advantage of the fact that the
properties of halos do not depend on their assembly history, it
uses the one-to-one correspondence between halos at t and
peaks with known properties in the smoothed density field at ti
to infer the abundance and properties of the final objects by
monitoring the monolithic ellipsoidal collapse and virialization
(through shell crossing) of their seeds.
The achievements of CUSP are multiple: it overcomes

numerous fundamental Ds for the analytic follow-up of DM
clustering; it allows one to extend the results of simulations to
any hierarchical cold or warm DM cosmology, halo mass
definition, and arbitrary halo radius, mass, and redshift; and it
unravels the origin of all macroscopic halo properties and their
characteristic features. In particular, it answers the following
intriguing Qs risen by simulations.

1. Why are the scaled spherically averaged profiles of halos
so nearly universal?

2. Why is the halo MF well predicted assuming monolithic
collapse?

3. Why does the halo multiplicity function privilege the FoF
(0.2) halo-finding algorithm?

4. What is the inner asymptotic slope of the halo density
profile?

5. Why is the virial radius of a halo equal to that of a
homogeneous spherical system having conserved the
energy during collapse and virialization?

6. What is the relation between the halo triaxial shape and
the velocity anisotropy?

7. Why is the pseudo-phase-space density profile a power
law of index −1.875?

8. Where does the universal anisotropy–density relation
come from?

9. What are the typical halo inner and outer asymptotic
ellipticity and prolateness?

10. Why is the subhalo cumulative MF close to a power law
of index −1?

11. Why is the number density profile of accreted subhalos
independent of subhalo masses and nearly proportional to
the halo density profile?

12. Why is the truncated-to-original subhalo mass ratio
independent of the subhalo mass?
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13. How much dDM is there in halos, and what is its spatial
distribution?

14. Why are the properties of halos with very different
assembly histories so similar?

15. Where does the halo assembly bias come from?

Furthermore, CUSP has led to the following findings: there
is a one-to-one halo (nonnested) peak connection, extensible to
subhalos and nested peaks of any level; during accretion, halos
grow inside-out so that virialization preserves the radial
mapping of the system; in major mergers, halos are scrambled
so that violent relaxation causes the memory loss of the system;
the inner properties of halos (except for those related to
stripping) do not allow one to distinguish whether and when
halos have suffered major mergers; the total abundance of
accreted and stripped subhalos coincides, except for their
normalization depending on the abundance of accreted and
total dDM; the stripping-related properties of ordinary halos
having suffered major mergers can be inferred from those
derived assuming PA (E. Salvador-Solé et al. 2021c, in
preparation); and the filtering of the initial density field
allowing one to monitor halo clustering must be carried out
by means of a Gaussian window for consistency with the
entropy increase produced in major mergers.

As mentioned, CUSP shows that the properties of halos do not
depend on their assembly history. What, then, is the origin of the
conflict between the results of simulations supporting this result
(Huss et al. 1999; Hansen et al. 2006; Wang & White 2009;
Barber et al. 2012) and those indicating that halo properties depend
on the frequency of major mergers, the so-called “assembly bias”
(Gottlöber et al. 2001, 2002; Sheth & Tormen 2004; Fakhouri &
Ma 2009, 2010; Hahn et al. 2009; Goh et al. 2019; Chen et al.
2020; Hellwing et al. 2021; Ramakrishnan et al. 2021; Wang et al.
2020)? According to CUSP, what really causes halo properties to
depend on the local density as found in the latter simulations is not
that halos lying in different local densities suffer major mergers at a
higher rate (Fakhouri & Ma 2009) but rather the different

background densities of their seeds. Indeed, the local density of
protohalos affects not only the frequency of major mergers, which,
as shown, has no repercussion in the inner halo properties, but also
and mainly their accretion rate (Fakhouri & Ma 2010), which sets
their inner properties through the inside-out growth of purely
accreting halos and halos suffering major mergers.
In fact, if instead of monitoring the mean δ(S) trajectory for

unconstrained peaks, we had monitored that trajectory for
peaks lying in backgrounds of different density contrasts d¢
(e.g., Manrique & Salvador-Solé 1995; Juan et al. 2014b), we
would have been led to the mean profiles of halos in the
corresponding final local densities. Clearly, these mean profiles
would be somewhat different from those found for all halos
regardless of their location. We thus see that the local density
of halos affects their typical inner properties, even though
major mergers leave no imprints on them (Q xv).
Even though CUSP solves the main issues regarding DM halos,

it can still be improved. We are not thinking so much of minor
effects, such as the mass loss by halos in encounters and its
eventual reaccretion (van den Bosch 2002; Wang et al. 2011) or
dynamical friction that alters the properties of substructure
regarding massive subhalos, but of more fundamental effects, such
as the gravitational torque between neighboring (proto)halos or the
gravitational drag of baryons. The former is at the base of the small
angular momentum and tidally supported elongation of halos
(Doroshkevich 1970; White 1984; Salvador-Solé & Solanes 1993),
and the latter yields notable deviations in halo structure from those
of pure DM objects derived here (Gnedin & Ostriker 1999; Gnedin
& Zhao 2002; Governato et al. 2012; Pontzen & Governato 2012).
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Appendix A
Analytic Approximation for the Halo Density Profile

Taking into account that, in limited mass ranges, the power spectrum is well approximated by a power law P(k)= Ckn with
effective index n, the jth spectral moment on a scale Rf for any window f with a Fourier transform Wf(kRf) takes the form

òs
p

»
+ +

¥
+ +R
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R
dx x W x

2
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n
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f 2

f 2
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3 2j 0

2 1 j
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2( ) ( ) ( ) ( )( )

Comparing the expression arising from the Gaussian and the top-hat windows, we arrive at (Equation (8))
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for any j, where WG and Wth are the Fourier transforms of the Gaussian and top-hat windows, respectively. For j= 0, we have
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being s0∼ 10−2, s a(t) 1, and [a(t)/D(t)]ν th(M, t) 1 (see Table 1).6 We thus have rσ≈ 1 (Equation (11)), » +r M t Q,R 0
n

2
3( ) , and

(Equation (2))
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The values of n and Q0 vary with mass range, cosmology, and halo mass definition, although in all cases of interest, they are about
−1.5 and 0.5, respectively.

Taking into account Equation (A4), the peak trajectory solution of the differential Equation (14) with d gn»x R,ˆ ( ) replacing x(R,
δ) and δ(t) given by Equations (7)–(10) leads to the following universal mean halo mass accretion history,

d d
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with m= [(n+ 3)/2]3/2, as found in simulations (e.g., Ludłow et al. 2013; Correa et al. 2015). Together with the definition of the
virial radius rh of the halo at t scaled to its value Rh= rh(th) at th,

r
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Equation (A5) yields an approximate parametric expression for the mean halo mass profile Mh(rh/Rh) according to the SO(Δvir) halo
mass definition, directly arising from the mean peak trajectory δ(R) (see, e.g., Henry 2000 for the analytic expressions of d tth

c ( ),
Δvir(t), and D(t)).7 Then, the relation
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following from the inside-out growth of accreting halos, together with the time derivatives of Equations (A5) and (A6), sets a
parametric expression for the closely universal mean spherically averaged halo density profile.

Appendix B
Spherical Quantities

Given any arbitrary mass distribution, the density and potential at a radius r from the center of mass of the system can be split as
the sum of their spherical average plus a residual,

6 Indeed, the quantity [a(t)/D(t)]ν th(M, t) is approximately equal to ν(M, t), shown in Figure 1.
7 Alternatively, we can plug the function t(Mh) inverse of Equation (A5) into Equation (A6) to directly obtain the mass profile Mh(rh) of the halo with mass Mh(th)
at th.
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r r dr d= + F = F + Fr r r rr r . B1( ) ( ) ( ) ( ) ( ) ( ) ( )

In triaxial systems, the variances 〈δρ2〉(r)/ρ2(r) and 〈δΦ2〉(r)/Φ2(r) and covariance |〈δρδΦ〉(r)/[ρ(r)Φ(r)]| over spherical surfaces of
radius r are always less than 1 (Salvador-Solé et al. 2012b). From now on, angular brackets mean spherical average.

Given those decompositions, any quantity F(r) inside r (or over the sphere of radius r) can also be split as the sum
of a function  r( ), with the same meaning as F(r), but holding for the spherically symmetrized system, hereafter simply
the the “spherical quantity,” plus a residual d r( ), with d < r r 1( ) ( ) (Salvador-Solé et al. 2012b).

In particular, we have d= + M r r r( ) ( ) ( ), being
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where s2(r) is the spherical velocity variance related to the real velocity variance through σ2(r)= s2(r)+ δs2(r) (Salvador-Solé et al.
2012b). Notice that  r( ) accounts for the energy lost by the system through shell crossing (if any) but not for the potential energy
exchange between the sphere and the rest of the system due to its asphericity, which is included in the residual d r( ).

If the system is, in addition, in equilibrium, the steady collisionless Boltzmann equation leads to the virial relation (Salvador-Solé
et al. 2012b)
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in terms of the spherical total energy  , spherical potential energy , and spherical surface term  , with the two latter respectively equal to
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2 ( ) is the spherical radial velocity variance related to the ordinary one through s d= +r s r s rr
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Differentiating Equations (B2), (B3), and (B4), we arrive at the relations
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These relations are independent of the asphericity of the system, so, contrary to the σ2(r) and s rr
2 ( ) profiles that involve the quantities

δs2(r) and ds rr
2 ( ) (Equations (B3) and (B6)), the M(r), ρ(r), s2(r), and s rr

2 ( ) profiles do not depend on the shape of the system. Thus,
as long as we are not concerned with the former quantities but just with the latter ones, we can assume spherical symmetry. This
concerns the expressions for both the halo and the protohalo, as well as the relations between the two objects.

It is worth mentioning that, since particle orbits are purely radial (particles collapse and bounce radially) in ideal spherically
symmetric halos, we have s s=r rh

2
h r

2
h h( ) ( ) ( ). Equation (B8) then leads to a differential equation for  rh h( ) that can be readily

integrated for the boundary condition = 0 0h( ) . The result is
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From Equations (B3) and (B9), we can compute the dissipation factor by shell crossing, D(Mh)≡ Eh(Mh)/Ep(Mp=Mh). The result is
such that ρh(rh) is necessarily decreasing outward (Salvador-Solé et al. 2012a).
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Appendix C
Eccentricities

Given a triaxial system, the homeoid with isodensity ρiso and semiaxes a1� a2� a3 can be labeled by means of the radius r,
defined as
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The density at the point r= (r, θ, j) over the homeoid then takes the form
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where the z axis is taken along the major axis, and, depending on the orientation of the x and y axes relative to the minor and
intermediate ellipsoid semiaxes, the primary or secondary eccentricities, ò and ε, are defined as

e= - = -
a

a

a

a
1 and 1 , C33

2

1
2

1 2
2
2

1
2

1 2

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )

or vice versa. Thus, the spherically averaged density at r is
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Dividing Equation (C2) by Equation (C4), we find

dr
r

q f
q f q

+ = +
-

+
-

r
r G r e r e r

1
3

sin cos
sin sin

1

cos

1
, C52 2

2 2

2

2

2
⎡
⎣⎢

⎤
⎦⎥

( )
( ) ( ) ˜ ( ) ( )

( )

and the definitions (Equation (C3)) then lead to a scaled density variance over the sphere of radius r given by
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On the other hand, the Poisson equation relates δΦ(r)/Φ(r) to δρ(r)/ρ(r), and, integrating over the solid angle, we can express the
scaled potential variance and density potential covariance profiles in terms of the scaled density variance, and, through
Equation (C6), the eccentricity profiles (Salvador-Solé et al. 2012b).

The rest of this appendix is devoted to relating the eccentricities of the halo and protohalo, taking into account the two
conservation conditions satisfied during ellipsoidal collapse given in Section 5.2.

Taking into account Equation (C3), Equation (33) takes the form
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On the other hand, replacing the expressions of d (Equation (B3)) in the halo and protohalo into Equation (34) and differentiating
them, we are led to
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And, taking the density potential covariance as a function of density variance and the relation between this latter and the
eccentricities (Appendix C), we arrive at
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with x g k g g= - - + -V r r r r r d d r1 1 1 ln ln( ) ( ) ( ){ [ ( )] ( ) } and ξ(r), κ(r), and γ(r) equal to the DM two-point correlation
function and the logarithmic derivatives of the density variance and the density potential covariance, respectively. At small radii,
Zh(r)− 1 is negligible ( sF ~r r GM r rh h h

2
h h h h∣ ( )∣ ( ) ( ) ), so, for U(rh)= 1, Equation (C9) becomes an identity relation like

Equation (C7). In fact, the algebraic Equations (C7) and (C9) are solvable only for a very narrow range of U(r) values around unity
(Salvador-Solé et al. 2012b).
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