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ABSTRACT

In Salvador-Solé, Manrique & Botella (Paper I), we used the ConflUent System of Peak trajectories (CUSP) formalism to derive
from first principles and no single free parameter the accurate abundance and radial distribution of both diffuse dark matter
(dDM) and subhaloes accreted on to haloes and their progenitors at all previous times. Here we use those results as initial
conditions for the monitoring of the evolution of subhaloes and dDM within the host haloes. Specifically, neglecting dynamical
friction, we accurately calculate the effects of repetitive tidal stripping and heating on subhaloes as they orbit inside the host halo
and infer the amount of dDM and subsubhaloes they release into the intrahalo medium. We then calculate the expected abundance
and radial distribution of stripped subhaloes and dDM. This derivation clarifies the role of halo concentration in substructure
and unravels the origin of some key features found in simulations including the dependence of substructure on halo mass. In
addition, it unveils the specific effects of dynamical friction on substructure. The results derived here are for purely accreting
haloes. In Salvador-Solé et al. (Paper III), we complete the study by addressing the case of low-mass subhaloes, unaffected by

dynamical friction, in ordinary haloes having suffered major mergers.
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1 INTRODUCTION

Halo substructure is a subject of paramount importance for its
multiple implications in many astrophysical issues. It has thus been
amply studied by all available means.

High-resolution N-body simulations (e.g. Diemand, Kuhlen &
Madau 2007; Springel et al. 2008, hereafter SWV; Angulo et al.
2009; Elahi, Widrow & Thacker 2009; Boylan-Kolchin et al. 2010;
Giocoli et al. 2010; Gao et al. 2011, 2012; Klypin, Trujillo-Gomez
& Primack 2011; Onions et al. 2012; Cautun et al. 2014; Lovell
etal. 2014; Ishiyama et al. 2021) and, more recently, hydrodynamical
simulations (Font et al. 2020; Richings et al. 2020; Font, McCarthy &
Belokurov 2021; see also Bose et al. 2016, 2020; Hellwing et al. 2016
for the inclusion of gas using a semi-analytic treatment) have allowed
to characterize their properties, while analytic models have been used
to try to understand the origin of those properties (e.g. Taylor & Babul
2001, 2004; Fujita et al. 2002; Sheth 2003; Zentner & Bullock 2003;
Lee 2004; Oguri & Lee 2004; Pefiarrubia & Benson 2005; van den
Bosch, Tormen & Giocoli 2005; Zentner et al. 2005; Kampakoglou
& Benson 2007; Giocoli, Tormen & van den Bosch 2008; Benson
et al. 2013; Pullen, Benson & Moustakas 2014; Griffen et al. 2016;
Jiang & van den Bosch 2016; van den Bosch & Jiang 2016).

The modelling of substructure is particularly hard. One must
account for the rate at which haloes of different masses are accreted
on to the host halo and converted into subhaloes, determine their
initial radial and velocity distributions, and monitor their fate as
they orbit inside the host halo. Subhaloes neither accrete gas (all
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cooled gas goes to the centre of the halo) nor merge with each
other (they have too large relative velocities; Angulo et al. 2009)
nor even suffer significant harassment (van den Bosch et al. 2018).
But they are tidally stripped and heated by the potential well of
the host halo in a complicate way that depends not only on their
initial location and velocity, but also on their varying mass and
concentration. In addition, the host haloes themselves have different
assembly histories, which translate into different evolving histories
of subhaloes. It is thus not surprising that, despite all the efforts
gone on this study using both (semi)analytic models plus numerical
experiments (e.g. van den Bosch & Jiang 2016; van den Bosch
et al. 2018; Green & van den Bosch 2019; Jiang et al. 2021) and
simulations (e.g. Ghigna et al. 1998; Hayashi et al. 2003), the origin
of the characteristic properties of substructure remains an open issue.
One interesting result along this line of research was obtained
by Han et al. (2016, hereafter HCFJ). These authors showed that
the properties of subhaloes found in simulations are encoded in the
following three conditions: (1) the scaled number density profiles
of subhaloes with original mass M, that were accreted on to the
halo or its progenitors at all previous times overlap in one curve
proportional to the scaled density profile of the host halo; (2) the
cumulative mass function (MF) of such accreted subhaloes is a power
law with logarithmic slope, ANV (> M,)/d In My, close to —1; and (3)
the truncated-to-original mass ratio of the final stripped subhaloes
only depends on their radial distance to the centre of the halo.
Strictly speaking, the two first conditions refer to ‘unevolved’ rather
than ‘accreted’ subhaloes, but both kinds of subhaloes coincide for
subhaloes with low enough masses unaffected by dynamical friction
(see Salvador-Solé, Manrique & Botella 2021, hereafter Paper I).
Unfortunately, what causes these conditions is unknown.
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With the aim to shed light on this issue, a novel approach was
applied in Paper I making use of the so-called ConflUent System
of Peak trajectories (CUSP) formalism (Manrique & Salvador-Solé
1995, 1996; Manrique et al. 1998). CUSP is a powerful analytic
formalism that, by monitoring the collapse and virialization of halo
seeds, i.e. peaks (or maxima) in the Gaussian random field of
density perturbations (Juan et al. 2014a), allows one to infer from
first principles and with no single free parameter all macroscopic
halo properties, namely the MF (Juan et al. 2014b) and the mean
spherically averaged density (Salvador-Solé et al. 2012a), velocity
dispersion and anisotropy profiles, and the prolateness and ellipticity
profiles (Salvador-Solé et al. 2012b, hereafter SSMG). Not only are
the predictions in full agreement with the results of simulations in
both cold dark matter (CDM,; all previous references) and warm dark
matter (WDM; Vifas, Salvador-Solé & Manrique 2012) cosmolo-
gies, but their derivation clarifies the origin of all these properties
and their characteristic features. A comprehensive review of CUSP
and its achievements is given in Salvador-Solé & Manrique (2021).

In Paper I, we extended the domain of application of CUSP to the
basic halo components: diffuse dark matter (dDM) and subhaloes.
We derived the MF and radial distribution of accreted subhaloes that
allowed us to explain the origin of the two first above-mentioned
HCFJ conditions. In this paper, we use those results as initial
conditions for the study of the fate of dDM and subhaloes within the
host haloes. For simplicity, we concentrate on haloes evolving by
pure accretion, which is enough to explain the third HCFJ condition.
The more realistic though complicated case of ordinary haloes
having suffered major mergers is postponed to Salvador-Solé et al.
(2021, hereafter Paper III).

The layout of this paper is as follows. In Section 2, we remind
the results of Paper I. In Section 3, we carefully model tidal
stripping of subhaloes by the host potential well. The abundance
and radial distribution of stripped subhaloes and of dDM are derived
in Sections 4 and 5, respectively, under the approximation that all
subhaloes have similar concentrations. In Section 6, we relax that
approximation and analyse the dependence of substructure on halo
mass. Our results are summarized and discussed in Section 7.

Throughout this paper our predictions are calculated for current
Milky Way (MW)-like haloes with virial mass, i.e. the mass out to
the radius encompassing an inner mean density equal to the virial
overdensity (Bryan & Norman 1998; Henry 2000) times the mean
cosmic density, of My, =2.2 x 10'> M, which according to Salvador-
Solé & Manrique (2021) correspond to the maximum extend of the
virialized part of haloes. These predictions are compared to the results
for the same kinds of haloes studied by HCFJ or SWV, who use the
masses Mooy = 1.84 x 10'2 M or M5y = 2.5 x 10'2 M, respectively,
i.e. out to the radius encompassing an inner mean density of 200 or
50 times the critical cosmic density. The cosmology adopted is the 7-
year Wilkinson Microwave Anisotropy Probe (WMAP7) cosmology
(Komatsu et al. 2011) as in those latter works. The CDM spectrum
we use is according to the prescription given by Bardeen et al. (1986)
with the Sugiyama (1995) shape parameter.

Given that in this paper we deal with both stripped and accreted
subhaloes, all properties referring to the former are denoted with
superindex ‘stp’, whereas those referring to the latter, derived in
Paper I, are denoted with superindex ‘acc’.

2 ACCRETED SUBHALOES

The main results of Paper I are summarized next (see that paper for
details).

1. Stripped subhaloes ~ 5317

(i) There is a one-to-one correspondence between haloes with
mass My at the time #, and their seeds, non-nested peaks with
density contrast § at the scale S, in the Gaussian random field of
density perturbations at an arbitrary initial time # smoothed with a
Gaussian window. See Paper I for the functions 8(#,) and S(My, t)
corresponding to the cosmology and halo mass definition of interest.

(i1) Consequently, the continuous time evolution of accreting
haloes is traced by continuous peak trajectories in the §—S plane
at t;. Those continuous trajectories are interrupted in major mergers,
where new continuous peak trajectories arise tracing the evolution of
the haloes arising from the mergers.

(iii) The previous correspondence yields in turn another one-to-
one correspondence between subhaloes of mass M; accreted by the
halo (or any of its progenitors) at any time ¢ < #, and peaks with
&(1) at the scale S(M) that become nested in the peak with the same
density contrast at a larger scale associated with the host halo.

(iv) When a halo is accreted on to another halo and becomes
a subhalo, its associated peak becomes nested in the peak tracing
the host halo. On the other hand, nested peaks are preserved like
subhaloes when haloes suffer major mergers. Thus, the dynamical
evolution of subhaloes of any level can be monitored through the
filtering evolution of nested peaks of the same level in the §—S plane.

(v) For the reasons explained in Salvador-Solé & Manrique
(2021), the properties of haloes including those regarding accreted
subhaloes do not depend on their assembly history. In other words,
they do not depend on whether haloes undergo monolithic collapse
(pure accretion) or lumpy collapse (including major mergers). Con-
sequently, to derive all these properties we have the right to assume
pure accretion with no loss of generality.

(vi) During accretion phases haloes grow inside-out, i.e. shells
accreted at a time #(r) when the halo reached the mass M(r),! are
deposited at the radius r without altering the inner structure of the
halo. By ‘deposited at * we mean that the subhalo orbits stabilize
with their apocentre at that radius.

(vii) The orbits of subhaloes accreted at #(r) are determined by
their random (tangential) velocities v at their apocentre at r, which
arise from the collapse and virialization of the halo,? so they do not
depend on the subhalo mass M.

(viii) The inside-out growth of purely accreting haloes allows one
to derive their mean spherically averaged density profile and the
abundance and mean spherically averaged number density profile
per infinitesimal mass of accreted subhaloes from the abundance of
nested peaks arising from Gaussian statistics.

(ix) CUSP also accounts for the dDM outside haloes arising from
the existence of a minimum halo mass due to the free-streaming mass
associated with weakly interacting massive particles (WIMPs) in the
real Universe or the halo resolution mass in simulations. When this
dDM is accreted on to haloes, it gives rise to a non-null dDM mass

acce

fraction, f,53(7), at each radius r of haloes.

3 TIDAL STRIPPING AND HEATING

To infer the properties of substructure regarding stripped subhaloes,
we must first determine the effects of tidal stripping and heating
on accreted subhaloes orbiting inside the accreting host halo. For

14(r) is given by the trajectory 8(S) tracing the halo growth, with the relations
8(1) and S(Mp, t) defining the halo-peak correspondence, and the mass profile
M(r) of the halo (see Paper I).

2The virial relation we refer to throughout this paper includes the external
pressure term, so by virialized haloes we simply mean relaxed ones.
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simplicity in the calculation of subhalo orbits, we will assume
all objects spherically symmetric. This makes a difference with
respect to Paper I. In that paper the results obtained, in the form
of mean spherically averaged profiles, held for real haloes with
different ellipsoidal shapes. Here, instead, the results we will obtain
strictly hold for spherically symmetric systems only. None the less,
they should hopefully be a good approximation for all haloes duly
spherically averaged.

3.1 Truncation

The truncated mass M{"(v, r, M) of subhaloes with original mass
M, can be calculated from their density profile (see below) and the
truncation radius R (v, r, M).

At present there is no consensus about how to estimate the
truncation radius (see the detailed discussion in van den Bosch et al.
2018). The most usual procedure is to adopt the tidal-limited radius
of the subhalo in a circular orbit at r, i.e. the radius of the subhalo
in equilibrium within the tidal field of the host halo at that radius.
But even this can be done in several ways, depending on whether
or not the centrifugal force (e.g. King 1962; Spitzer 1978; Tormen,
Diaferio & Syer 1998; Binney & Tremaine 2008; Tollet et al. 2017)
or resonant effects (Klypin, Gottober & Kravtsov 1999) are taken into
account, none of them being fully accurate (Read et al. 2006; Binney
& Tremaine 2008; Mo, van den Bosch & White 2010). However,
we do not need any accurate value of the truncation radius. For
our purposes here it is sufficient to consider that all the previous
procedures lead to similar results: the truncation radius encompasses
an inner mean density of the subhalo at r, pju, (-, of the order of the
mean inner density of the host at radius r, p(r) (e.g. Hayashi et al.
2003; Diemand et al. 2007; Penarrubia, Navarro & McConnachie
2008),

Pims,in[Rs(r, M) ~ p(r). (D

To write equation (1) we have used that accreted subhaloes with
apocentre at r were accreted there so that the truncation radius is
but the subhalo original radius R; at accretion. Hereafter, a bar on a
function of r denotes the corresponding mean value inside that radius
and subindex [M, 7] on a (sub)halo property means that the object
has a mass M at the time 7. However, in the case of the accreting host
halo we drop, for simplicity, the subindex [My, #,] or [M(r), t(r)].

However, this is not the whole story because subhalo orbits are
not circular but elliptical in general. Thus, the truncation radius of
subhaloes varies over their orbit, from the one set at the apocentric
radius r where stripping is less intense, well approximated by the
relation (1), to that set at the pericentric radius rp., where stripping
is maximum. In fact, given that subhaloes have large velocities at
pericentre, to calculate the truncation radius there it is preferable
to use the impulse approximation (Spitzer 1958). But, again, we do
not need to derive the accurate truncation radius according to the
mass loss calculated in the impulsive approximation (e.g. Gnedin &
Ostriker 1999; van den Bosch et al. 2018). For our purposes here it is
enough the result found by Gonzilez-Casado, Mamon & Salvador-
Solé (1994) that R"(v, r, M) also encompasses a mean inner density
in the subhalo of the order of that of the host at 7y (v, 7),

ﬁ[Mg,t(r)][Rs(r’ Ms)Qs(vs r, Ms)] ~ ﬁ[rper(v’ r)], (2)

where Qq(v, r, M) stands for their scaled truncated radius,
RY(v, r, My)/Ry(r, M). We remark that the truncation in the im-
pulsive approximations is not directly due to the local tidal field,
but to the heating produced in the subhalo at its rapid passage by
pericentre, which causes a more marked stripping to the subhalo.

MNRAS 509, 5316-5329 (2022)
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This is why this process is often referred as ‘tidal heating’ or ‘shock
heating’. In this work we call ‘truncation’ the stripping produced in
any of these two extreme ways, via tidal limiting radius or via shock
heating (or any mixture of them), and call ‘heating’ the small energy
increase that affects the part of the subhalo that remains bound after
being truncated.

After being stripped and heated at pericentre, all over their way
back to the apocentre, subhaloes tend to reach a new equilibrium
state limited by the tidal field at each point. As a consequence,
subhaloes can be stripped not only in the first half of their orbits,
with an ever increasing tidal field, but possibly also in the second
half (this depends on how quick is the response of the system to
any previous truncation). However, as the stripping is maximum
and much stronger via shock heating at pericentre than via tidal
limitation at any other point of the orbit, we adopt for simplicity the
viewpoint that the whole truncation (and heating) is concentrated at
the pericentre and that, at apocentre, subhaloes just reaccommodate
their structure according to the halo mean inner density there. We
remark, however, that this simplification should have no practical
consequence because, as shown below, we will make sure that the
total mass loss produced in any orbit is according to the results of
simulations.

Equations (2) and (1) lead to

ﬁ[Mg‘t(r)][RS(r7 MS)QS(U’ r, Ms)] ~ ﬁ[rper(va r)]

- - 3)
Pims. o[ Rs(r, My)] p(r)

Lastly, using the expression

Ms”(v,r, M) _ [ les(r) Os(v, r, My)] (4)

M, B Fles()]

holding for subhaloes with the original Navarro—Frenk—White
(NFW) density profile (Navarro, Frenk & White 1997) with concen-
tration ¢,(r) and the similar expression for the mass ratio M[rpe(r,
v)]/M, holding for the host, the relation (3) takes the form

fles( Qs r, Myl fle()Q, 1] )
flesMIQs(v, r, My)P

FleMIQ, NP’

where Q(v, r) stands for ry (v, r)/r and c(7) is the concentration of
the accreting halo with mass M(r), and f(c) is defined as In (1 4+ ¢) —
c/(1 + ¢) (see e.g. Salvador-Solé et al., in preparation for the Einasto
profile; Einasto 1965). For simplicity, the uncertainty factor of order
unity has been taken equal to 1.

Once the truncation radius or, equivalently, the ratio Qg(v, r) is
known, equation (4) gives the truncated mass M (v, r, M;). Note
that, for subhaloes accreted at r with similar concentrations c(r),
equation (5) implies that Qg does not depend on M, i.e. Q(v, r, M)
= Q,(v, r). Consequently, the mass ratio M_"/ M given in equation (4)
and its mean or median value over v are independent of M.

3.2 Heating

However things are not that simple. When subhaloes settle in a new
equilibrium state at apocentre, their density profiles adopt again the
NFW form (SWV) with a somewhat larger concentration ¢! due to
the heating produced at pericentre. Therefore, they will be further
stripped and heated at the next orbit and so on so forth. In other
words, stripping and heating is a repetitive process.

To calculate the mass loss produced in the next orbit we must deter-
mine the new concentration ¢!, which in turn depends on the heating
produced in the previous orbit. In the impulsive approximation, such
a heating mostly affects the outer regions of the subhalo, i.e. those
which are precisely lost, while the energy of the innermost regions is
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rather an adiabatic invariant (Spitzer 1978; Weinberg 1994; Gnedin
& Ostriker 1999; van den Bosch et al. 2018) so that the energy gain
of the non-truncated part of the system is quite limited. Taking into
account the form of the total energy for subhaloes with the NFW
density profile, we then arrive at the expression

h [c;r(v, r)]

tr 5/6
M, r, MS)] 7 ©
hles(r))

=U(,r) [ M.
where h(c) is defined as fic)(1 + c)/{c**[3/2 — 5*(c)]"}, being s*(c)
the isotropic 3D velocity variance scaled to cf(c)GM/R of a halo
with mass M, radius R, and concentration ¢, and U(v, r) is the ratio
between the total energies after and before the tidal shock of the part
of the subhalo that remains bound. Thus U(v, r) should be a function
of order unity of the strength of the shock or, equivalently, of the
subhalo truncated-to-original mass ratio. But the adiabatic shielding
against heating in the inner part of subhaloes suffering the shock
makes it hard to calculate it accurately. van den Bosch et al. (2018)
provide an approximate expression for the ratio between the total
energies of the subhalo after and before the shock, but those energies
refer to the whole system, not to the part that remains bound. We thus
assume, for simplicity, that in the relevant range of subhalo orbits
U(v, r) can be approximated by a power law,
tr B

U(v,r):K[ M.

The positive constant of order one K and the negative index with small
absolute value 8 will be adjusted below by comparing the predictions
of this model to the results of numerical simulations. Note that, unless
K is exactly equal to unity, the approximation (7) cannot be valid for
orbits close to circular because M (v, r, M)/ M and U(v, r) should
then approach unity in parallel. Fortunately, subhaloes with nearly
circular orbits are very rare (Tormen 1997; Zentner et al. 2005; Wetzel
2011), so this slight flaw of the model should have a negligible effect
in the results. In any event, disregarding its exact form, the function
U cannot depend on M; because M. (v, r, M)/ M does not, so ' /c,
does not depend on M; either (see equation 6).

3.3 Repetitive stripping

To calculate the final truncated mass of subhaloes with original mass
M accreted at #(r) on to a purely accreting halo with M;, at #,, we
must monitor the changes produced in subhaloes at every pericentric
passage between #(r) and #, in an iterative way. The result will depend
of course on the concentration c(r) of the host halo at #(r) inside which
subhaloes accreted at that time orbit and on the initial properties of
those subhaloes.

Given the inside-out growth of the host halo, c(r) is simply
rlrs, where rg is the core radius of the halo at the final time #,.
Regarding subhaloes, after turnaround they fall on to the halo and
start orbiting and being stripped and heated, so their mass M when
their apocentre is stabilized at r is somewhat smaller than the mass
M they would have had they evolved as free (non-accreted) haloes
until #(r). Since during virialization subhalo velocities vary randomly
independently of their mass, all subhaloes at » must have the same
velocity distribution (Jiang et al. 2015). Thus we can derive their
typical scaled truncation radius Qs from equation (5) from the initial
subhalo concentration ¢ given by the M—c relation for M at

S
t(r) and the function Q(r) equal to twice the velocity-average value

1I. Stripped subhaloes ~ 5319

obtained of subhaloes at  and #(r).> Then, plugging the solution Q
in equation (4), we obtain M,/ M}" and, using equations (6) and (7),
we are led to the concentration ¢ of accreted subhaloes.

According to the results of Section 3.1, provided all haloes with
different masses M} accreted at #(r) had similar concentrations
¢, the mass ratio M/M! would be a function independent of
M?", hereafter denoted as m(r), and so would also Qs and ¢,. The
derivation followed next makes that approximation in order to catch
the main effect of subhalo stripping; the slight dependence on subhalo
concentration on mass will be addressed in Section 6. Since this
derivation uses an iterative procedure, it is convenient to denote the
initial properties M,(r, M), Q(r), and cy(r) of accreted subhaloes
as Mo(r, M) (with My(r, M) < M(r)/3; see Paper I), Qy(r), and
co(r), respectively, and increase the subindex in one unit at each new
orbit.

At first pericentric passage after #(r), subhaloes are truncated at the
scaled truncation radius Q;(v, r) given by equation (5) and acquire
the mass M, (v, r, M) given by equation (4) or, taking into account
equation (5) also holding for M,/M", by the relation

M1 (U,}’, M:tr) _ M() (V,M:[r) |:Q1(v,r)]3
Mo (r,Mrr) M Q0(r)

As My/M? does not depend on M (see the discussion above),
M /M, does not either. Then, equation (6) leads to the new concen-
tration c; (v, r) when subhaloes reach apocentre.

Similarly, at second and successive passages, subhaloes with M;,
Q;, and ¢; are truncated at the scaled truncation radius Q; . {(v, r)
given by

flei, ) Qivi(w, 1] _ fle(r)Q(v, 1))

(®)

: = Al ©)
fleiw, MQi (v, r)  fle(m]Q*(v,r)
leading to a mass M; ; | satisfying
My (v, r, MM™) M (v, r, M™) {Q,-Jrl(v,r)}3 (10)
M; (v,r, M) Moy (vor, M) | Qi(u,r) |
and to a concentration ¢; . | according to
B+5/6
hlciyi(v,r)] Miy (v, r, M) an
hlei(v,r)] M; (v, r, M2v) '

This iterative process leads to a total truncated mass M!" at #, of
subhaloes with original mass My = M and scaled truncation radius
Qo = Qs equal to

M (vor M) 10, 0]
Mwﬂm)‘mmg{@m}’ 12

where v > 0 is the total number of constant orbits achieved by
subhaloes from #(r) to t,.

As shown in Fig. 1, for K = 0.77 and 8 = —1/2, the predictions of
the model for a wide range of orbits recover the results of numerical
simulations by Hayashi et al. (2003). As the best value of K is smaller
than unity, to avoid an artificial cooling in nearly circular orbits, i.e.
when M"/ M, approaches unity, we take from now on the expression
(7) bounded to unity.

3 According to the spherical collapse model (Bryan & Norman 1998) justified
by CUSP (Salvador-Solé & Manrique 2021), subhalo apocentric radii typi-
cally shrink a factor of 2 since turnaround, so do also their pericentric radius
T'per» implying that rpe/r for subhaloes at r was typically a factor of 2 larger
before being accreted.
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Figure 1. Predicted mass evolution of subhaloes with the NFW density profile and suited concentrations ¢ (green lines) suffering repetitive tidal stripping and
shock-heating within a halo also with the NFW density profile and concentration ¢(r) = 10 for three different values of rper(v, 7)/7, compared to the results
of a dedicated numerical experiment (thin black lines) performed by Hayashi et al. (2003). The smoother shape of the empirical curves is due to the actual
progressive stripping and response of subhaloes to the conditions found over the orbits, while the theoretical predictions focus on the maximum stripping taking

place at the pericentre and the recovery of equilibrium of the system at apocentre.

Equation (12) tells that the truncated-to-original mass ratio
MY/ M does not depend on M, and the same is true for its mean (or
median) value over v. We thus see that the reason for HCFJ condition
3 in the realistic case of repetitive stripping is the same as in single
orbits: the similar concentration of subhaloes at accretion and the
fact that subhaloes at r are truncated at the radius encompassing a
mean inner density of the order of that of the host halo at r.

3.4 Disruption

The possibility that subhaloes can be fully disrupted as a consequence
of tidal stripping is not clear. Hayashi et al. (2003) pointed out that
the total energy of subhaloes endowed with a NFW density profile
can become positive after truncation so that they can be disrupted.
However, van den Bosch et al. (2018) showed that, when a subhalo
is being stripped, its structure quickly responds to the departure
from equilibrium so that the total energy of the new truncated
system is not simply that of the part of the initial system out to
the effective truncation radius. Moreover, even if the system could
not immediately respond to stripping, the total energy of a severely
truncated subhalo with the NFW profile would only become positive
provided its velocity distribution was strongly tangential, while in
real (sub)haloes it is radially biased.

According to these arguments, the full disruption of subhaloes
would be a very rare event. However, numerical simulations do find
a significant disruption above the subhalo resolution mass. Whether
it is due to overmerging or any other numerical artefact as claimed
by van den Bosch et al. (2018) is not clear. In any event, if we are
to compare our theoretical predictions to the results of simulations,
we must account for it. Therefore, we will consider two scenarios:
one with negligible disruption and another one with disruption, less
marked than in the isotropic case though. The rest of this section is
devoted to this latter scenario.

The pericentric radius ryer = rQ(v, r) of a subhalo is related to its
tangential velocity v at the apocentre through

RPN { O(r) = P[rQv, 1)l } ’

1—Q%*v,r) 1
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where ®(r) = —GM(r)/r In[1+ c(r)]/ flc(r)] is the potential of
the host at r. To leading order, equation (13) leads to

rv2

e =2 GMey

(14)
Since accreted subhaloes become increasingly resistant to disruption
due to the increase of their concentration at each passage by the
pericentre. Since, they can only be disrupted at first pericentre pas-
sage when their concentration is co(7). Assuming that the condition
for disruption for subhaloes with concentration ¢ is R"/R = Qg ~
0.5/c,,* equation (5), with ¢; = co(r) and Q; given by equation (14),
leads to a tangential velocity for disruption at r, vg;s(7), satisfying the
relation
Sleo(r)] 2
[+ )]
7(0.5)
We thus see that vgs(r) is independent of M, (and M). From
equations (14) and (15) we also have that the minimum pericentric
radius for surviving subhaloes is

min_ flco(n)] { 0.5 r
Toor =17~ .
v £0.5) Leo(r)

The fraction of accreted subhaloes with original mass M, that
are destroyed, fgis(r, M), is thus equal to the integral of velocity
distribution function, N (v, r, My) up to vg(r) divided by the same
integral up to v (r) = [GM(r)/r)]"?, i.e. the maximum possible
value of v for subhaloes with apocentre at r. For any reasonable
(mass-independent) tangential velocity distribution of subhaloes
accreted at r, in particular that mentioned in Section 4, we arrive to
leading order at the following M;-independent disruption fraction:

rvg“(r)]a— Iy as)

2GM(r) 2GM(r)

(16)

vgis(r) _ rvgis(r)
v (1) GM(r)

Jais(r) = (17)

4The critical value for disruption found by Hayashi et al. (2003) for isotropic
NFW subhaloes is 0.77/cg.
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where vg;s(r) is the solution of equation (15). Note that fy(r) is
independent of the subhalo mass.

4 RADIAL DISTRIBUTION AND MASS
FUNCTION OF STRIPPED SUBHALOES

As shown in Salvador-Solé & Manrique (2021), the virialization
taking place in a major merger yields the memory loss of the
system, so the inner properties of the final relaxed object, including
those regarding accreted haloes, do not depend on its assembly
history. Taking advantage of this important conclusion, in Paper I we
concentrated on purely accreting haloes, which notably simplified
the calculations without affecting the general validity of the results.
Unfortunately, the situation regarding stripped subhaloes is very
different. Tidal stripping brakes that possibility because its effects
on individual subhaloes are not erased by virialization, so stripped
haloes retain the memory of their past history. As a consequence,
to derive the properties of substructure regarding stripped subhaloes
we must account for the assembly history of their host haloes.

In the rest of this paper we concentrate on the simplest case of
purely accreting haloes or, more exactly, of haloes having been
accreting for a long time.’ The more complex case of haloes having
suffered recent major mergers is addressed in Paper I11.

In these conditions, the mean number of stripped subhaloes per
infinitesimal truncated mass and radius within a halo with mass M},
(and virial radius Ry) at #, is

Umax (1) M(r)
NP (r, Mf') =N (r, Mf') + dv dm
vdis (1) M;
R(r,M)

x N, r, M)

R"(v,r,M)

dr' NPy 101 (f’/, M;r) ,

(18)

where ./\/’[s,,t;,,(,)](r/, M) is the abundance of stripped subsubhaloes at
7 inside subhaloes with M accreted at #(r). The first term on the right-
hand side of equation (18), N'"(r, M), gives the mean abundance of
stripped subhaloes directly arising from the truncation of subhaloes
accreted at r with suited original mass,

oy = [

vdis (1)

Vmax (1)

dv N*¢ [v, r, My (v, r, M:r)]

" oM, (v, r, MS“)

oMy 1

The second term gives the abundance of stripped subhaloes with M "
that arise from subsubhaloes at r between the non-truncated radius
R(r, M) and truncated one R"(v, r, M) of subhaloes with masses M
between M and M(r) at 1(r), Ny 1oy (r', MY). Note that we take
into account that such released subsubhaloes are not further stripped
in the host halo (see Appendix B).

As the kinematics of objects with apocentre at » does not depend on
their mass (see Section 3), the abundance N*(v, r, M;) of accreted
subhaloes per infinitesimal original mass, radius, and (tangential)
velocity in equation (21) factorizes in the velocity distribution
(Jiang et al. 2015) times the mean abundance of accreted subhaloes,
N3(r, M), equal to (equation 17 of Paper I)

N, M) = 4m2% N (M), (20)

5See Paper I for the relation between the time of the last major merger and
the radius from which the object has grown inside-out.
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Figure 2. Mean truncated-to-original subhalo mass ratio profile predicted
for purely accreting MW-mass haloes (solid red line) for subhaloes with
concentrations equal to that of haloes with 1072M(r) at 1(r) according to
the empirical M—c relation by Gao et al. (2008). For comparison we plot
the empirical median mass ratio profile of resolved (thick black lines) and
resolved plus orphan (thin black lines) subhaloes found by HCFJ in the Level
1 Aquarius halo A (thin and thick dashed black lines give the corresponding
upper/lower lo percentiles, respectively), which has been accreting since r
= 0.08Ry. We also plot the power-law median profile of index 1.3 used in
the HCFJ model (long-dashed black line) and the power-law extrapolation of
our theoretical mean profile (dashed red line) at the radius r < 0.08Ry,, from
which the halo A has evolved by accretion as considered in our model.

if My < M(r)/3 and zero otherwise. Thus, taking into account that
the MF of accreted subhaloes N*¢(Mj) is very nearly proportional
to M2 (Paper I), equation (19) leads to the simple expression

N (r, MT) = u(r)N* (r, MY) (1)

where p(r) stands for the average over v from zero (or vg;s(r) in case
of significant disruption; see Section 3.4) to vy, (r) of the truncated-
to-original mass ratio M_"/M; of subhaloes with original mass M, <
M(r)/3 at r.° Note that, N*(r, M) is separable (equation 20), so is
also N'(r, M™).

The w(r) profile can be readily calculated by monitoring the mass
loss through repetitive stripping and heating (equation 12) of accreted
subhaloes with suited initial properties (see Section 3) and taking
the velocity averages for the velocity distribution function given in
Appendix C. The typical concentration of subhaloes accreted by the
host halo at #(r) is taken equal to that of haloes with 1072M(r) at
that time according to the (time-varying) M—c relation found by Gao
et al. (2008) in simulations similar to those used by SWV and HCF]J.
The result is very little sensitive, however, to the particular subhalo
mass chosen provided it is between 10~'M(r) and 1073 M(r).

The resulting p(r) profile, which coincides down to one thousandth
Ry, for the cases of null or moderate disruption, is shown in Fig. 2.
For comparison we also plot the results found by HCFJ for the
MW-mass halo A in the Level 1 (maximum resolution) Aquarius
simulation (SWV). Note that this halo is particularly well suited to

6By N2¢(M") we mean A/*° for a value of the accreted subhalo mass equal
to MY

MNRAS 509, 5316-5329 (2022)
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the comparison with the predictions of CUSP for purely accreting
haloes because it has been accreting since z ~ 6, i.e. it has been
growing inside-out from r/R, ~ 0.08 (see fig. 1 of Paper I). Thus,
the comparison is only meaningful down to that radius. To see how
sensitive the results are on the modelling below r = 0.08Ry,, we also
consider the theoretical u(r) profile extrapolated by a simple power
law to small radii. Of course, we cannot pretend that the predicted
1(r) profile coincides with that found by HCFJ in the A halo: ours
refers to the mean truncated-to-original subhalo mass ratio, while
HCEFJ’s refers to the median one. More importantly, as mentioned in
Paper I, the u profile derived by HCFJ is for subhaloes of all levels,
while ours holds for first-level subhaloes only. Since these latter
are the only subhaloes being stripped, including all level subhaloes
should notably enhance the resulting mass ratio. This would explain
that our mean p profile is substantially lower than the median p
profile found by HCFJ, contrarily to what would be expected for a
lognormal distribution of mass ratios referring to the same subhalo
population. Note also that the validity of our mean profile is supported
by the fact that, as we will see, it leads to the right amplitude of
the predicted MF of stripped subhaloes. On the contrary, were the
predicted mean p(r) profile raised to at least the position of the
empirical median profile, the resulting MF would be a factor of 2
higher. In Fig. 2, we also plot a power-law form with index 1.3,
proportional to the median truncated-to-original mass ratio profile in
the HCFJ model.

Once the pu(r) profile has been determined, defining 1+
Jrea(r, MT) as NS®(r, M5/ N (r, M), equation (18) can be rewrit-
ten in the form

N (r, MT) = [1 + fra ()] () N (r, MY) 22)

where f(r) is the proportion of stripped subhaloes previously locked
as subsubhaloes within accreted subhaloes per each stripped subhalo
directly arising from the truncation of an accreted subhalo. That
proportion is the solution of the Fredholm integral equation of second
kind that follows from equation (18) (see Appendix A),

FER S
1+ fra(r) =143 — / dr' r? F(r',r)
Rh 0

u(r') p@r’)
1(r) p(Rn)’

where F(r, r) is the cumulative velocity distribution function (see
Appendix C for the corresponding differential form) for the velocity
v such that Q,u, »(v, 1) = r, where Oy, n(v, r) is the ratio
of truncated-to-original subhalo radii after v(v, r) passages by
pericentre calculated in Section 3. As shown in Fig. 3, the fraction
Jre1(r) increases with increasing radius and reaches a maximum value
0f 0.06 in current haloes. We remark that even though the contribution
of subsubhaloes to the properties of substructure has been included
in previous analytic models (e.g. Taylor & Babul 2004; Zentner et al.
2005) and simulations (e.g. Han et al. 2012, 2018), a quantitative
estimate of the contribution of released subsubhaloes as that given
here was missing.

Note that f,(r) depends on disruption through F(r, r). Yet,
like in the case of w(r), we have found no significant difference
down to one thousandth Rj, between null and moderate disruption.
Thus, disruption does not affect the predicted abundance of stripped
subhaloes, N*°(r, M), which supports the claim by van den Bosch
et al. (2018) that it is likely a numerical effect (see also Errani &
Penarrubia 2020).

Equation (22) states that the abundance of stripped subhaloes is
proportional to the abundance of accreted subhaloes with propor-

X [1+ fra(r)]

(23)
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Figure 3. Function f(r) predicted for MW-mass haloes. At the scale of the
figure, the solutions corresponding to a SWV-like simulation and a real 100
GeV WIMP universe overlap.

tionality factor equal to [1 + fi(r)] (7). This resembles the relation
found in the HCFJ model with the median truncated-to-original
subhalo mass ratio playing the role of n(r). We remark, however,
that the relation with the mean truncated-to-original subhalo mass
ratio profile is essentially exact (see equation 21, but see Section 6),
while the equivalent one in the HCFJ model is a relation between
typical quantities holding for subhaloes.

From equations (22) and (20) we see that NSP(r, M) is separable
like N*¢(r, M"). This is the reason that the mean number density
profile per infinitesimal mass of stripped subhaloes, n*?(r, M{") =
NP, MY)/ (47tr?), scaled to the mean number density per infinites-
imal mass of such subhaloes, *P(Ry,, M) = 3N*P(M')/(4TR}),
takes the mass-independent form (see equations 20-22)

' (r M) [+ fau) p(r)
P (Ry, M)~ (T4 fra)u(Ru) A(Ry)’

(24)

Thus the scaled number density profiles of stripped subhaloes of
different truncated masses MY overlap in one single profile (but
see Section 6), as found in Paper I for accreted subhaloes and in
agreement with the results of SWV (see also Ludlow et al. 2009).
However, contrarily to what happens with the profile of accreted
subhaloes that of stripped subhaloes is not proportional to p(r) but
bends downwards at small radii (Fig. 4) also in agreement with
the results of simulations (Ghigna et al. 1998; Diemand, Moore &
Stadel 2004; Gao et al. 2004; Nagai & Kravtsov 2005; Diemand
et al. 2007; SWV). Equation (22) shows that such a bending is
due to the factor w(r), which, as we will see in Section 5, entails
an increasing abundance of dDM towards the halo centre. More
importantly, the predicted profile recovers that found in the Aquarius
halo A regardless of the exact form of j(r) below r = 0.08Ry,, showing
that the agreement between our prediction for purely accreting haloes
and the properties of the halo A is compelling regardless of the
growth of the halo before z = 6. We thus find the same result as the
HCFJ model using the median truncated-to-original subhalo mass
ratio profile instead of the mean one. This could be foreseen since
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Figure 4. Scaled number density profiles for stripped subhaloes of different
masses and similar concentrations predicted for purely accreting MW-mass
haloes from the two versions of the 11(r) profiles obtained using the Gao et al.
(2008) M—c relation shown in Fig. 3 (same lines). For comparison we plot
the profile of the form ocr!'3 p(r) (long-dashed black line) providing a good fit
to the scaled subhalo density profile of the Level 1 Aquarius halo A (HCFJ)
and the scaled mass density profile p(r) of that halo (solid black line). The
vertical dotted line marks the radius out of which the halo A has evolved by
accretion as considered in CUSP.

any constant shift between the two profiles cancels when deriving
the ‘scaled’ density profile.

Integrating over r the abundance of stripped subhaloes given in
equation (22), we obtain the differential MF of stripped subhaloes
per infinitesimal mass,

NP (MT) = (T fradi(R N (M) . (25)

According to this relation, A*P(> M) is proportional to N*¢(>
M), which agrees with the results of simulations (HCFJ) at least at
intermediate and low masses (see below). As shown in Fig. 5, the
corresponding cumulative MF is in fairly good agreement with that
found in simulations. Specifically, at low masses it is approximately a
power-law form with a logarithmic slope of ~—0.95 (the logarithmic
slope of the MF of accreted subhaloes varies from —0.94 to —0.97
from high to low subhalo masses; Paper I), which is intermediate
between the slopes of —0.9 and —1 reported by SWV and Diemand
et al. (2007), respectively, and very close to —0.94 (Boylan-Kolchin
et al. 2010; Gao et al. 2011) and —0.95 at M /M, ~ 10> (HCFTJ;
Han et al. 2018).

5 ABUNDANCE AND RADIAL DISTRIBUTION
OF DIFFUSE DARK MATTER

The total mass density of the halo at r results from the contribution

of stripped subhaloes and dDM. We thus have that the total dDM
. stp .

mass fraction fyp\(r) at r satisfies

Lo
R L (R GRS P
T J Miin

where M, is the minimum halo mass at the origin of dDM (see
Paper I). Taking into account equations (22) and (20), equation (26)
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Figure 5. Cumulative MF of stripped subhaloes predicted in purely accreting
MW-mass haloes from the mean wu(r) profile (solid red line) and its
extrapolation to r < 0.08R} (dashed red line) compared to the MF of the
Level 1 Aquarius halo A obtained by SWV (short-dashed black line) and the
general MF for haloes of that mass found by Han et al. (2018) (long-dashed
black line).
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Figure 6. Total (accreted plus stripped) dDM mass fraction profiles in purely
accreting MW-mass haloes predicted in a real 100 GeV WIMP universe (solid
red line) and a SWV-like simulations (solid blue line). Dashed lines give the
corresponding accreted dDM mass fraction profiles derived in Paper 1.

leads to
L= faa@) = 1+ fra(] () [1 = £35,(0)] - @7

In Fig. 6, we plot the total dDM mass fraction profile fiyh,(r)
for purely accreting MW-mass haloes (equation 27) for the same
illustrative cases as used in Paper I to calculate the accreted dDM
mass fraction at r, f,i5§,;(r) (also plotted in Fig. 6): (1) areal 100 GeV
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WIMP universe with minimum halo mass M,,;,, = 10~° Mg and fpin
equal to the time of decoupling; and (2) a SWV-like simulation
starting at #,,;, = 0.0124 Gyr (zpmin = 127) and with a resolution mass
of My, = 4.4 x 10° Mg. As can be seen, the dDM mass fraction in
current haloes is quite large; it is still ~0.75 at R, where it reaches the
minimum value. Moreover, a substantial fraction has been stripped
from subhaloes. Specifically, in the 100 GeV WIMP universe, we
find that 92 per cent of the total mass of MW-like haloes is in the
form of dDM, with 33 per cent directly accreted from the intrahalo
medium (Paper I; see also Angulo & White 2010). And in SWV-like
simulations, 95 per cent of the total mass of those haloes is typically
in the form of dDM, with 51 per cent directly accreted (Paper I; see
also Wang et al. 2011).

The relation (27) allows one to rewrite the scaled subhalo number
density of stripped subhaloes (24) in the form

w (r, M) ) p(r)
A (Ry, MY) — fo(Rn) A(Rn)’

where f(r) is the stripped to accreted subhalo mass ratio profile,
equal to [1 — ;]SPM(r)] /11 — fi5u(r)]. Comparing expressions (28)
and (24), we see that the bending of the scaled number density profile
of stripped subhaloes with respect to the scaled density profile of
the host halo found in simulations, shown to obey the factor [1 +
frea(m)]u(r), can also be seen to obey the factor [1 — ES)M(;’)]/[I —
fidm(r)]. Thus, such a bending is due to the increasing abundance of
dDM mass towards the halo centre due to the stripping of subhaloes
(SWV; Angulo et al. 2009; Gao et al. 2012; Hellwing et al. 2016;
Fielder et al. 2020). Likewise, taking into account the relation (27),
the MF of stripped subhaloes, equation (25), can be rewritten in the
form

NP (MY) = fu(Ry) N* (M) . (29)

(28)

6 THE EFFECT OF THE MASS-DEPENDENT
CONCENTRATIONS

In Sections 4 and 5, we have taken into account that subhaloes
accreted at different times #(r) have different typical concentrations.
But halo concentration also slightly depends on their mass. In this
section we explicitly account for this latter dependence.

A first important consequence of such a dependence is that,
according to the results of Section 3, the HCJF condition 3 would
be only approximate. This is not contradictory with the results of
simulations. That condition, which followed from the HCFJ stripping
model where subhaloes were approximated by isothermal spheres
with mass-independent density profiles, was shown by these authors
to be consistent with the results of simulations but not confirmed
by them. Certainly it was shown to lead to a mass-independent
scaled number density profile of stripped subhaloes as found in
simulations (e.g. SWV; Ludlow et al. 2009). But this latter result
has also been shown to be only approximate. The more detailed
study carried by Han et al. (2018) has found, indeed, that the scaled
number density profile of subhaloes actually depends on their mass
(see the discussion below). On the other hand, as shown next, our
stripping model in its more accurate version taking into account
the mass dependence of halo concentration also leads to the same
approximate result, so we must not worry about the idea that the
HCEFJ condition 3 is approximate just as our previous results.

Having said this, we can follow essentially the same steps as in
Section 4 using the full time and mass dependence encoded in the M—
crelation. Of course, if we are to recover the radial abundance and MF
of stripped subhaloes observed in simulated haloes, we should use
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Figure 7. Mean truncated-to-original subhalo mass ratio profile predicted
in purely accreting MW-mass haloes for different subhalo masses (coloured
lines) from the respective u(r, Ms) profiles obtained using the CUSP M—c
relation (solid lines) and the extrapolated 14(r, M) profiles obtained from the
Gao et al. (2008) M—c relation (dashed lines). As references, we also plot
the empirical median truncated-to-original subhalo mass ratio profile found
by HCFJ in the Level 1 Aquarius halo A (solid black line) and its modelled
version (long-dashed black line), both depicted in Fig. 4.

the empirical M—c relation found by e.g. Gao et al. (2008) affected
by the limited mass resolution of simulations giving rise to those
empirical properties as done in Section 4. But we are also interested
in deriving the real (unbiased) radial abundance and MF of stripped
subhaloes predicted by CUSP, so we will use, in addition, the M—c
relation directly arising from our formalism (see Salvador-Solé et al.,
in preparation) and see the differences in the results obtained from
both M—c relations.

In Fig. 7, we show the p profiles obtained for several subhalo
masses. At large r the solutions arising from the two M—c relations are
very similar. This is not unsurprising since both relations behave very
similarly at low-z. Specifically, the solutions obtained for different
subhalo masses are more or less shifted vertically as expected, though
the amplitude of those shifts slightly depend on the particular M-
¢ relation used due to their slightly different shape.” At r < 0.2Ry,
however, the solutions drawn from the two M—c relations deviate from
each other. In the case of the empirical relation, the (extrapolated)
curves for different masses converge at r < 0.02R;, and are kept
with the same power-law shape as at larger radii. (The reason for
their convergence is that the log—log M—c relation provided by Gao
et al. becomes a horizontal line at z somewhat higher than 3, meaning
that all subhaloes with different masses have identical concentrations
there.) While, in the case of the theoretical M—c relation, the curves
for the different subhalo masses show the same vertical shifts as at
large r but deviate from a power law of index ~1.3 and become
increasingly less steep towards the centre.

TAt z = 0, Gao et al. (2008) M—c relation is linear in log—log, while that
predicted by CUSP becomes slight shallower towards small masses.
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Figure 8. Scaled number density profiles of stripped subhaloes of different
masses (coloured lines) predicted for purely accreting haloes using the M—c
relation found in simulations by Gao et al. (2008) (dashed lines) and the
theoretical M—c relation predicted by CUSP (solid lines). The long-dashed
black line is the HCFJ fit to the profile found for low enough mass subhaloes
in the Level 1 Aquarius halo A. The solid black line is the scaled halo density
profile. All empirical data have been converted to My,.

A good approximation for those p profiles, particularly for the
case of the CUSP M—c relation, is thus

imty 175 M) 2 a1 (s Mgo) G (M), (30)

with My an arbitrary mass and G(M;) equal to (M/Myy)* with o ~
—0.03 in the case of the CUSP M—c relation and the same expression
at r > 0.2Ry, (otherwise with no dependence on M) in the case of
Gao et al.’s M—c relation. Note that the concentration of the host halo
at 7(r) is not the typical concentration of haloes at that time but #/r
so that decreasing M, by some factor and keeping M, fixed is not
equivalent to keeping M, fixed and increasing M, by the same factor.
Consequently, ftim, 41, Ms) is not a power law of M, with index
—a.

Then, the same derivation leading from equation (19) to equa-
tion (21) leads to

Nt (rs M) = ge) [T+ fra (r M) oy (s M)

X Nt (7o M) (€}

with the factor g(«) equal to 1 or 1 — o depending on whether G(M;)
in equation (30) is unity or not. Note that the function f solution
of the differential equation (23) for the function iy, 4, (r, M) also
depends now on M!".

The resulting scaled number density profiles of stripped subhaloes
of different masses obtained from direct calculation not using the
approximation (30) are shown in Fig. 8. In the case of the empirical
M—c relation they are relatively close to the empirical profile of the
Aquarius halo A found by SWV and HCFJ, except for the fact that
they do not exactly overlap with each other owing to the fact that
the vertical shifts in the corresponding p profiles are not constant
over all radii. On the contrary, the constant vertical shifts found in
the case of the theoretical M—c relation go unnoticed in the scaled
number density profiles of stripped subhaloes of different masses,
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Figure 9. Ratio of the differential MFs of stripped and accreted subhaloes
predicted for haloes of different masses (with the appropriate scaling; see
text) obtained using the Gao et al. (2008) and CUSP M—c relations (dashed
and solid lines, respectively) compared to the ratio found in simulations by
Han et al. (2018) (long-dashed black line), both of them scaled with halo
mass as explained in the text. The two solutions depicted are those obtained
from the stripping model of Section 3 but accounting for the mass-dependent
subhalo concentration (red lines) and the same model with suppression of
stripping when the mass of subhaloes is larger than M(rper) (blue lines).

which thus overlap. Strictly speaking the profiles for different M;
show different cut-offs, which simply reflects that no subhalo with
a given mass M can be accreted by the halo of mass M(r) <
3M; as this would cause a major merger with the destruction of
the subhalo (see Paper I). However, the resulting number density
profile is in this case less bent with respect to the p(r) profile at
small radii than in the Aquarius halo A. This disagreement does not
mean, of course, that the theoretical prediction is wrong. Rather the
contrary, what would be biased is the empirical profile due to the
limited mass resolution of simulations affecting the M—c relation.
Our prediction suffers, instead, from the fact that, in its current
version, our stripping model does not include the effects of dynamical
friction that are particularly strong at the subhalo high-mass end (see
below).

Even though the scaled number density of subhaloes of different
masses nearly overlaps, the non-scaled ones do not because of the
different total number of subhaloes of different masses. In fact, the
detailed, non-scaled and scaled, number density profiles of massive
stripped subhaloes are found to be cuspier than those of less massive
subhaloes (Han et al. 2018). As discussed by these authors, this
result seems to be the consequence of dynamical friction, which
causes massive subhaloes to migrate towards the centre of the host
halo. In fact, dynamical friction would not only alter the ‘natural’
density profiles of stripped subhaloes but also their MF. Indeed, even
though the MF does not depend on the radial location of subhaloes,
it appears that dynamical friction also affects the stripping itself of
massive subhaloes and, hence, the MF of stripped subhaloes, too.

In Fig. 9, we depict the ratio between the differential MFs of
stripped and accreted subhaloes as function of the scaled mass
m = MY /M, that result from integration over r of the relation
(31) with the p profiles obtained from the two different M—c
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relations. The ratios for different halo masses have been multiplied
by I:L[Mh[)v[h](RhO’ MS())//,_L[Mth](Rh, MS()), where Mh() is an arbitrary
halo mass and Ry its corresponding virial radius so that the curves
for different halo masses overlap (see equations 30 and 31, with fi
neglected in front of unity). That scaling factor turns out to behave
as (My/My)" with n = —0.09 and —0.08 in the Gao et al. (2008) and
CUSP M—c relations, respectively. For comparison, we also plot the
ratio found for different halo masses by Han et al. (2018) multiplied
by the factor (My/Myo)~%!, which also causes those empirical curves
to overlap (Rodriguez-Puebla et al. 2016; Han et al. 2018). Note
that the empirical MF of stripped subhaloes plotted in this figure is
not normalized as the original MF in Han et al. (2018). The reason
for this is that the latter holds for subhaloes of all levels, while we
are interested in the MF of first-level subhaloes only. We have thus
shifted it downwards keeping the same proportion with respect to the
MF of accreted subhaloes correctly renormalized so as to hold for
first-level subhaloes only (see Paper I). Even though that empirical
MF of stripped subhaloes is more comparable to the predicted MF,
we cannot guarantee yet that its normalization is fully correct.

The theoretical ratios derived from both M—c relations substan-
tially deviate from the empirical one. While the former decreases
slowly with increasing m, the latter increases, shows a marked bump,
and rapidly falls to zero at the high-mass end (Jiang & van den Bosch
2016; Han et al. 2018). This disagreement is due to the fact that our
stripping model fails for massive subhaloes. Indeed, as pointed out by
Han et al. (2018), the tidal force from the host halo on very massive
subhaloes becomes less important than its self-gravity, so stripping
is less effective. Properly accounting for that effect is out of scope
of this paper because our model does not include dynamical friction,
while that effect alters the pericentre of subhaloes and, hence, the
mass of the host halo seen by subhaloes there, M[rpe (7, v)]. To see
the kind of effect this condition may have we depict in Fig. 9 the
result of suppressing stripping when the geometrical mean of M, and
MY (v, r, M) is more massive than M[rpe(r, v)].% As can be seen,
the trend of the new MF (normalized as the empirical one) greatly
improves, indeed.

However this effect increases the ratio towards high masses, which
goes in the opposite direction from that needed to find the exponential
cut-off at the high-mass end of the empirical ratio. That cut-off is
likely due, once again, to the effects of dynamical friction. Indeed,
extremely massive subhaloes rapidly migrate to the halo centre and
merge with the central subhalo, so they ‘disappear’ rather than stay a
little less stripped. Of course, even without that effect, the predicted
differential MFs of stripped subhaloes end up by falling off to zero
as M!" approaches M;/3 due to the similar cut-off present in the
differential MF of accreted subhaloes (see Paper I).

We thus see that accounting for the mass dependence of halo
concentration is not enough to reproduce the detailed differential
MF of stripped subhaloes. To do that we need, in addition, to include
the effects of dynamical friction. Nevertheless, our model finds the
dependence on halo mass of the MF of stripped subhaloes (the MF
of accreted subhaloes is universal; see Paper I). This result, which
is the direct consequence of the dependence of stripping on halo
concentration, is very robust as it is little sensitive to the particular
M-—c relation adopted. This success thus gives strong support to the
central role of halo concentration in subhalo stripping as considered
in our model (see also Chua et al. 2017). This would be the origin of

8That geometrical mean increases the mass of the stripped subhalo so as to
compensate that the real rpe; is smaller than calculated without dynamical
friction.
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Figure 10. Cumulative MF of stripped subhaloes predicted for several halo
masses (coloured lines). We plot the results obtained from our original
stripping model with mass-dependent subhalo concentrations according to the
Gao et al. (2008) M—c relation (solid lines) and the corrected and renormalized
version with suppression of stripping when the mass of subhaloes is larger
than M(rper) (dashed lines).

the mass dependence of the cumulative MFs of stripped subhaloes
(see Fig. 10) found in simulations (Zentner et al. 2005; Giocoli et al.
2008; Gao et al. 2011; Ishiyama et al. 2021).

7 SUMMARY AND DISCUSSION

Using the results of Paper I on accreted subhaloes and dDM, we
have calculated the typical (mean) abundance and radial distribution
of stripped subhaloes and dDM in current MW-mass haloes in a
ACDM cosmology. To do this we have modelled the repetitive tidal
stripping and heating suffered by subhaloes orbiting within purely
accreting host haloes ignoring the effects of dynamical friction.

Contrarily to the derivation followed in Paper I, which was
achieved from first principles and with no single free parameter,
that followed here has involved a model of subhalo tidal heating with
two free parameters. We remark, however, that these parameters have
not been tuned to get a good fit to the final properties of substructure
found in simulations, but just to fit the effect of repetitive stripping
and heating found in dedicated numerical experiments. As the general
conclusions reached do not depend on the particular values of these
parameters, we can thus still say that the derivation followed is
parameter free.

Our detailed treatment has paid special attention to the role of the
dDM and subhaloes previously locked within accreted subhaloes and
released in the intrahalo medium through the stripped material. The
proportion of stripped subhaloes arising from released subsubhaloes
per each accreted subhalo is only of 6 per cent at the outer radius
where it reaches the maximum value in current MW-mass haloes.
Thus, this contribution to the total abundance of stripped subhaloes
can be neglected in a first approximation. In respect to the proportion
of released to accreted dDM, it starts increasing with increasing halo
radius at r ~ 2 x 107*Ry, (12 x 1073R},), reaches a maximum of
about 3 (1.7) at r ~ 0.1Ry, (0.1Ry},), and then decreases until a value
of 2 (1) at the virial radius of current MW-mass haloes in a real 100
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GeV WIMP universe (and a SWV-like simulation). This represents
a total dDM mass fraction of ~0.95 in both cases. In other words,
the structure of current haloes is amply dominated, particularly in
the central region, by dDM, which has important consequences for
the boost factor of the theoretical DM annihilation signal.

We have clarified the origin of HCFJ conditions shown to encode
the properties of substructure. In Paper I, the conditions 1 and 2
were demonstrated to arise directly from the properties of peaks in
the Gaussian random field of density perturbations. In this paper,
we have shown that condition 3 stating that the truncated-to-original
subhalo mass ratio profile does not depend on subhalo mass arises
from the similar concentrations of accreted subhaloes, together with
the fact that subhaloes suffer maximum tidal stripping at pericentre,
where they are truncated at the radius encompassing a mean inner
density of the order of that of the host halo there. However, according
to our results, HCFJ condition 3 is only approximate because of the
weak but non-negligible dependence of subhalo concentration on
mass. None the less, this dependence has little effect on the scaled
subhalo number density profile, which is kept essentially independent
of subhalo mass as found in simulations (provided dynamical friction
is ignored; Han et al. 2018).

Given the dependence of subhalo concentration on mass, our de-
tailed quantitative results depend on the exact M—c relation assumed.
When we use the empirical M—c relation found in simulations by
Gao et al. (2008), our predicted scaled number density profile of
stripped subhaloes fully reproduces the empirical one found by
HCFJ in the Aquarius simulation halo A, which is substantially
shallower than the density profile of the host halo. This is so despite
that the predicted mean truncated-to-original subhalo mass ratio is
substantially lower than the corresponding empirical median profile
derived by HCFJ. This result, which is contrary to the expectations
for the lognormal distribution of truncated-to-original mass ratios,
is likely due to the fact that the median profile obtained by HCFJ
has been derived for subhaloes of all levels, while our predictions
are for first-level ones only. Since the number of subhaloes of any
mass at all levels is twice that of first-level subhaloes (Paper I), the
only ones undergoing stripping, it is not surprising that the truncated-
to-original profile for subhaloes of the former population is notably
higher than for the latter one, while they both have the same scaled
number density profile. When the unbiased M—c relation predicted
by CUSP is used, the predicted mean truncated-to-original subhalo
mass ratio somewhat changes, but the general trend is similar. In
particular, the corresponding scaled number density profile becomes
substantially steeper, but it is also kept less steep than the mass
density profile of the halo. This robust result is the consequence of
the higher concentration of dDM towards the halo centre. On the
other hand, the predicted subhalo MF reproduces the subhalo MF
and its dependence on halo mass found in simulations, regardless of
the particular M—c relation used.

All these results have been derived neglecting the effects of
dynamical friction. This is an important limitation for stripped
subhaloes with masses above 10~*M,, whose radial distribution
and MF are notably affected by that mechanism. This is the reason
why we are currently working in the implementation of an accurate
analytic treatment of dynamical friction in the stripping model.

On the other hand, the results presented hold for haloes having
grown by pure accretion. As shown in Salvador-Solé & Manrique
(2021), the violent relaxation that takes place in major mergers
causes the system to lose the memory of its past assembly history,
so the general properties inferred for purely accreting haloes also
hold for ordinary haloes having suffered major mergers. However,
that general rule does not hold for stripped subhaloes because the

1. Stripped subhaloes 5327

imprints of stripping are not erased by violent relaxation. Thus, even
though the results found here for purely accreting haloes reproduce
the properties of substructure found in the Level 1 Aquarius halo A
having been accreting since » ~ 0.08R;, and also seem to agree with
the properties of substructure found in simulated haloes in general,
we cannot discard that such properties slightly depend on the merger
history of haloes. The more realistic case of haloes having suffered
major mergers is addressed in Paper III, where we focus on very
low mass subhaloes whose properties should not be influenced by
dynamical friction.
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APPENDIX A: FRACTION OF RELEASED SUBSUBHALOES
Dividing equation (18) by N'"(r, M) and defining 1 + fri(r, M) as N*P(r, ME)/N(r, ML), we have

) (1, M)

M;

M(r) R(r.M) '/\[[9]37 .
]+frel(rvMer)=]+/ dMNaCC(",M) /I;t( )dr ./\/[[X,;()](r, M,)
T(v,r A ) s

.oy (' Ms) (Al
N (rome) )

The quantities /\f[s,:,‘,’,t(r)](r’, M) and N (', M) inside the integral on the right-hand side can be written in terms of the quantities fra ()
and p(r') with subindex [M, 1(r)]. All these quantities seen as functions of the scaled radius £ = r/R(r, M) are universal, so we can change
the subindex [M, #(r)] by subindex [M(r), t(r)] and, given the inside-out growth of the halo, by subindex [M},, #,] or simply drop the subindex.
(Of course, in this case, when rewriting the latter quantity as a function of the non-scaled radius, £ must be multiplied by Ry.) After all those
changes we have

M(r) R3 M 1
Lt g (M) =1 [ am r, py 2D [ @l faem)] € w& P& (A2)
My r Qv (v.r) wu(r) p(r)
Taking into account the relation (20) and the equality R3(r, M) = 3M /[47t5(r)] (equation 3), equation (A2) can be written as
. M (r) — M /‘ 5 "
rel (75 M =— (3 d 1 el (&, M . A3
ot (s M) ) = =S < oo 8 [ fr (6 M) 1 ®) 0 <s>> (A3)
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11. Stripped subhaloes ~ 5329

For any given subhalo mass M, equation (A3) holds for r satisfying the condition M* < M(r)/3. Near equality, where N*¢(r, M) vanishes,
Sra(r, M) falls rapidly to zero and, over all the remaining radii, M; in the denominator on the right-hand side of equation (A3) can be
neglected. Thus, fi(r, M) coincides for all subhalo masses M!" and we can drop its argument M_". Lastly, by performing through partial
integration the average over v on the right-hand side of equation (A3), we arrive at equation (23).

APPENDIX B: STRIPPING OF RELEASED SUBSUBHALOES

As shown in Section 4, the average over v of the Jacobian 0M"(v, r, M,)/d M is equal to the average over v of the M" (v, r, M,)/M, mass ratio,
which only depends on r. Taking into account this relation for subsubhaloes with truncated mass M\" released from first-level subhaloes into
the intrahalo medium, we arrive, after integrating over the velocities v in the host subhalo and v in the host halo at the following condition for
a new tidal stripping to take place,

tr.h oM™ N Agtrs oMt oM N Agtrs
Mo = (S ) )M = (S o) (5 )0 M, (B1)

where the extra index h or s going together with superindex s means that truncation takes place within the halo or the subhalo, respectively, r is
the apocentric radius of the subsubhalo within the host subhalo, and r is the apocentric radius of that subhalo (and of the released subsubhalo)
within the host halo. The condition for a new tidal stripping is thus

oM oMT\
< oM, >(r) h < oM, >(’ ) (B2)

The two partial derivatives are independent of the subsubhalo mass M. Since they refer to different hosts (to the halo that on the left-hand
side and to the stripped subhalo that on the right-hand side), condition (B2) seems hard to assess. In the hypothetical case that the host subhalo
accreted at #(r) was identical to its host at that moment, the two partial derivatives would correspond to the same host at different radii, with r
smaller than r. Since stripping is more intense near the halo centre (c¢(r) = ¢(My, t,) Ry /r), the partial derivative on the right-hand side (and the
associated v-averaged mass ratio) would be smaller than that on the left-hand side. Consequently, condition (B2) would not be satisfied and there
would be no new tidal stripping within the host halo (although there would still be repetitive stripping from that initial stripped configuration).
Actually, accreted subhaloes are always less massive than the accreting host at the time of their accretion, so subhaloes are necessarily (slightly)
more concentrated than the host and the stripping the subsubhalo suffers is stronger than the one it would suffer were the subhalo identical to
the host at accretion. Therefore, there is no additional initial tidal stripping in the realistic case (just the usual repetitive stripping).

This conclusion holds, however, after averaging over v and v'. In the case that v’ is very large, causing a very small stripping of the subsubhalo
inside the subhalo host, and v is very small, causing a very marked stripping of the released subsubhalo inside the host halo, subsubhaloes
will suffer a new stripping after being released in the intrahalo medium. But such a configuration should also likely cause the disruption of the
released subhalo so that surviving subhaloes having undergone a new stripping after being released from the stripping of other subhaloes are
expected to be very rare.

APPENDIX C: TANGENTIAL VELOCITY DISTRIBUTION FUNCTION

CUSP allows deriving the total (3D), radial and tangential velocity dispersion profiles of haloes (SSMG), but not their respective velocity
distributions. Thus, to perform some explicit calculations, the averages over the tangential velocity of (accreted or stripped) subhaloes with
apocentre at r have been performed using the (mass independent; Jiang et al. 2015) tangential velocity distribution function of the Tsallis
(1988) form,

g2 177
f;(U,r)O( v |:1+W:| s (Cl)
where o (r) is the 3D velocity dispersion profile, found for all particles in simulated haloes (Hansen et al. 2006).

Of course, this empirical distribution function must be adapted to our needs because it refers to all particles at r, while what we need is
the distribution function for particles with apocentre at that radius. As orbiting particles spend most of the time near apocentre, the particles
we are interested in dominate by far the total population at r. There are just a few more particles caught when they are crossing » from larger
apocentric radii (i.e. they belong to accreted shells that were not yet virialized at the time #(r)). Although they are not numerous, these particles
give rise to the otherwise null radial velocity dispersion at r. They also fill the tangential velocity distribution function (C1) beyond vy, a
region inaccessible to particles with apocentre at r, and likely also have a substantial contribution to that distribution function near v,,x where
the subhalo population with apocentre at r is small (Tormen 1997; Zentner et al. 2005; Wetzel 2011). However, at lower tangential velocities,
particles with apocentre at r should clearly pre-dominate. Therefore, the velocity distribution of subhaloes and dark matter (DM) particles with
apocentre at r should be well approximated by the Tsallis (1988) distribution function (C1) convolved with a Gaussian with central value equal
to unity and 30 equal to vy, This is the approximate form we adopt. Remember that when the possibility of disruption is considered, the
velocity distribution used to average over all surviving stripped subhaloes must also be taken null (in this case with a sharp cut-off) for v < vgjs.

Regarding the 3D velocity dispersion profile appearing in expression (C1), we could use that predicted by CUSP (SSMG). However, that
velocity dispersion was derived for realistic triaxial haloes, while we are assuming here spherical symmetry. Thus we simply adopt the solution
of the isotropic Jeans equation for spherically symmetric haloes endowed with the NFW profile with null boundary condition at infinity (Cole
& Lacey 1996).

This paper has been typeset from a TEX/I&TEX file prepared by the author.

MNRAS 509, 5316-5329 (2022)

220z Aienuer /| uo Jesn |yyD "euojsoleg ap 1elsiaAun Aq G011 L£9/91 £S//60S/3101e/SEIUW/ W0 dNo"olWapeoe//:sdny WwoJl papeojumoq



	1 INTRODUCTION
	2 ACCRETED SUBHALOES
	3 TIDAL STRIPPING AND HEATING
	4 RADIAL DISTRIBUTION AND MASS FUNCTION OF STRIPPED SUBHALOES
	5 ABUNDANCE AND RADIAL DISTRIBUTION OF DIFFUSE DARK MATTER
	6 THE EFFECT OF THE MASS-DEPENDENT CONCENTRATIONS
	7 SUMMARY AND DISCUSSION
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY
	REFERENCES
	APPENDIX A: FRACTION OF RELEASED SUBSUBHALOES
	APPENDIX B: STRIPPING OF RELEASED SUBSUBHALOES
	APPENDIX C: TANGENTIAL VELOCITY DISTRIBUTION FUNCTION

