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INTRODUCTION

Dyke swarms hold one of the keys to understanding 
the plate tectonics as they provide information on the 
extensional processes occurring in the continental and 
oceanic lithosphere (Peng et al., 2016). Mafic dykes 
in particular are the primary channels of deep magma 
transport into the crust from a source area in the mantle; 

they can thus be used to assess the nature of their parental 
magmas, location of magma reservoirs, emplacement 
mechanisms and/or regional paleostress conditions and to 
reconstruct ancient continental palaeogeographic regimes 
(Srivastava et al., 2019).

In the Variscan Belt of Western Europe, mafic dyke 
swarms are essential constituents of the two main tectono-
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magmatic and sedimentary cycles defined for the post-
collisional orogenic evolution (Cortesogno et al., 1998). 
The first cycle of Upper Carboniferous-Lower Permian age 
is ruled by an extensional, trans-tensional tectonic regime 
and is characterized by the calc-alkaline plutonic-volcanic 
magmatism and fluvio-lacustrine sedimentation. Dyke 
emplacement in the first cycle occurred diachronically 
in the Pyrenees, Iberian Ranges, Catalan Coastal Ranges 
(CCR) and Sardinia, and at different crustal levels (Lago et 
al., 2004; Perini et al., 2004; Ronca et al., 1999; Ubide et 
al., 2010; respectively). The second cycle is characterized 
by a plutonic-volcanic magmatism of alkaline geochemical 
signature associated with continental and shallow-marine 
sedimentation, generally developed from late Permian to 
early Triassic in south-western Europe, but was active since 
early Permian in some places (Cortesogno et al., 1998). It 
marks an extensional event disconnected from the collapse 
of the Variscan belt, and likely related with the post-
Variscan global re-organization of plates that would lead to 
the neo-Tethyan rifting in late Triassic times (Bonin, 1987; 
Orejana et al., 2008; Wilson et al., 2004).

The calc-alkaline mafic dyke swarms of the first cycle 
include, in some locations, potassium-rich varieties, such 
as lamproites, and calc-alkaline lamprophyres (spessartites, 
vosgesites, kersantites and minettes), that suggest the Variscan 
Subcontinental Lithospheric Mantle (SCLM) sources 
contained enriched domains in LILE (Large Ion Lithophile 
Elements: Ba, K, Rb, Sr, Th, U and Pb), HFSE (High Field 
Strength Elements: Hf, Nb, Ta, Ti, Zr and P) and REE (Rare 
Earth Elements), with high 87Sr/86Sri and low εNdi (Perini et 
al., 2004; Seifert, 2008; Soder, 2017). The general consensus 
is that these enriched domains are formed by metasomatism 
of the SCLM in suprasubduction zones when silica-rich, 
carbonatite-rich and/or asthenospheric melts penetrate mantle 
peridotite as vein networks (Foley, 1992; Prelević et al., 2004; 
Seifert, 2008; Soder, 2017). Then, when the enriched mantle 
domains are affected by low degree melting, potassium-rich 
mafic magmas with a hybrid crustal and mantle signature may 
form; this magma can differentiate during ascent and may 
emplace at different crustal levels (Awdankiewicz, 2007; Elter 
et al., 2004; Prelević et al., 2004; Soder, 2017).

Alkaline mafic dykes of the second cycle also include 
potassium rich varieties such as camptonites, but they have 
a distinctive Oceanic Island Basalt (OIB) trace-element 
character with enrichments in LILE, HFSE and Light Rare 
Earth Elements (LREE), positive Nb-Ta and Ti anomalies, 
low 87Sr/86Sri and high εNdi. This suggests an anorogenic 
nature of the magmas with no involvement of crustal and/
or subduction-related components (Orejana et al., 2008; 
Scarrow et al., 2009).

The Catalan Coastal Ranges (CCR), which conform 
the north-easternmost Variscan domain of the Iberian 

Peninsula, contain different sets of lamprophyric dyke 
swarms. In the locality of Aiguablava, at Costa Brava, dykes 
with a calc-alkaline geochemical signature appear crosscut 
by others of alkaline affinity (Enrique, 2009; Ubide et 
al., 2010). The former (mainly spessartites) intrude a ca. 
288Ma leucogranite and have been interpreted to be of 
Permian age (Enrique, 2009; Losantos, 2000). Structural 
analyses have shown that these dykes are oriented WNW-
ESE and intruded along a preexisting joint network in late-
Variscan batholiths during a post-collisional extensional/
transtensional tectonic regime (Martínez-Poza et al., 
2014). The second type of lamprophyres correspond to 
camptonites, which have 40Ar/39Ar ages of ca. 79.0±0.5Ma, 
unrelated to the Variscan orogeny (Ubide, 2013). This 
author interpreted the alkaline lamprophyres of CCR to 
represent the final stage of a series of alkaline magmatic 
pulses in NE Iberia that could have started during Triassic 
times, and lasted until the beginning of the Alpine orogeny, 
in relation with the continental rift setting developed in SW 
Europe during that period.

Vertical lamprophyric dykes also occur in Les 
Guilleries Massif, in the West-Central part of the CCR 
(about 50km west of Aiguablava), cutting metamorphic 
Paleozoic rocks (Fig. 1) and Variscan granitoids. Although 
they have been observed by many geologists, they have not 
been characterized yet. This study presents the petrography, 
geochemistry and geochronology of Les Guilleries 
Lamprophyre (LGL) dykes in order to evaluate their 
mantle source characteristics, melting conditions, time 
of emplacement, post-magmatic hydrothermal events and 
regional correlations. To facilitate correlations, geochemical 
data of the main Variscan magmatic occurrences of NE 
Iberia and nearby Paleozoic massifs are compiled and 
plotted alongside those of Les Guilleries.

GEOLOGICAL SETTING

Les Guilleries Massif, located in the north-western 
part of the CCR (Fig. 1A), mainly consists of Cambro-
Ordovician metasedimentary units and orthogneisses cut by 
Variscan syn- to post-collisional intrusions (Durán, 1985, 
1990). The massif is composed of three blocks separated 
by NE-SW striking normal faults. The deeper and higher-
grade metamorphic block, the Osor block, outcrops in 
the southern part of the massif and contains sillimanite-
grade metapelites with interlayered metapsammites, 
calc-silicates, amphibolites, and orthogneisses (Durán, 
1985, 1990; Martínez et al., 2008; Reche and Martínez, 
2002; Sebastian, et al., 1990). The Susqueda block is 
the intermediate one, which is composed of metapelites 
and metapsammites with quartzite layers and represents 
shallower levels of the crust, as the metamorphism reaches 
the andalusite-cordierite grade. The Osor and Susqueda 
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FIGURE 1. A) Location of les Guilleries Massif and Les Guilleries Lamprophyre (LGL) dykes within the Catalan Coastal Ranges. B) Detailed geological 
map of the study area and location of les Guilleries Lamprophyre dykes. C) Photograph of a lamprophyre dyke swarm cross-cutting Variscan 
leucogranites and granitic pegmatites. D) Photograph of lamprophyre dykes in a host marble. E) Photograph of lamprophyres (LGL) in a Variscan 
Granitic Pegmatite (GP) host.
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blocks contain sill-like bodies of orthogneisses that record 
essentially continuous magmatic activity beginning at the 
Cambro-Ordovician boundary (488±3Ma) and reaching 
a peak of intrusions volume during the late Ordovician 
(462±8 to 459±3Ma; Martínez et al., 2011). The northern 
and uppermost Sant Martí block is composed of Ordovician 
metavolcanic rocks interbedded with metagreywackes and 
metapelites (U-Pb age 452±4Ma; Martínez et al., 2011). 
Some Silurian and Devonian volcanosedimentary rocks 
also crop out in the northern part, although the sequences 
appear incomplete due to faulting (Durán, 1990).

Several Variscan igneous rocks intruded the 
metasedimentary sequences of Les Guilleries Massif. 
The oldest Variscan intrusive forms the Susqueda 
complex, the largest basic massif of the CCR, which 
is composed of quartz diorites and diorites with calc-
alkaline geochemical affinity, together with hornblende 
gabbros and hornblendites (Enrique, 1990; Esteve et al., 
2016). One syn-collision diorite sheet provided an U-Pb 
age of 323.6±2.8Ma (Martínez et al., 2008), and most 
mafic intrusives are considered younger and post-tectonic 
(Esteve et al., 2018). The Susqueda complex induces 
granulite-grade contact metamorphism and silica depleted 
melting in the host Susqueda block metasediments 
(Riesco et al., 2004). Younger granites 305-299Ma old 
(U-Pb zircon ages; Martínez et al., 2008) are abundant in 
the Osor block. Unpublished U-Pb Sensitive High Mass-
Resolution Ion Microprobe (SHRIMP) ages of 284±3Ma 
have been found for post-collisional porphyritic granitoids 
(F.J. Martínez personal communication), which agree 
with the age of similar mafic and felsic plutonic bodies 
in the nearby Montnegre Massif, that yield 40Ar/39Ar ages 
between ca. 291 and 285Ma (Solé et al., 2002). Ultrabasic-
basic to intermediate rocks also appear associated with 
late-Variscan calc-alkaline granites in the Montnegre 
Massif, showing mineralogical and geochemical 
characteristics typical of appinite suites, with cumulate 
hornblendites and gabbros crystalized from K-rich and 
fluid-rich magmas and a complex mingled zone between 
diorites and biotite granodiorites (Butjosa et al., 2013; 
Galán et al., 2017).

Several types of ore mineralizations have been found in 
Les Guilleries (Ayora, 1990). Epigenetic mineralizations, 
mainly skarns (Cu, Fe, Zn, Pb) and veins (F, Ba, Zn, Pb), 
seem to be related to hydrothermal fluid circulation induced 
by the post-metamorphic granitic intrusions (Ayora, 1990). 
The most important deposit occurs in the Osor block and 
consists of fluorite-barite veins with sphalerite and galena 
crosscutting Variscan porphyritic granites and metapelites. 
These veins show different stages of recrystallization that 
have been attributed to Variscan movements and subsequent 
rejuvenation during the Alpine orogeny (Campá-Viñeta and 
Montoriol-Pous, 1974).

To date, Permain basins haven’t been observed in 
Les Guilleries Massif. The area is thus interpreted as a 
topographic high since early Permian and affected by the 
Permo-Triassic erosional paleosurface, adjacent to pull-
apart basins developed in dextral transtensional settings 
(Innocent et al., 1994; Lago et al., 2004). Some of the 
nearest Permian records are found in the Eastern Pyrenees, 
90km to the NE (Serra del Cadí; Innocent et al., 1994) and 
in the Iberian Ranges, 300km to the SE. These Permian 
basins record several syn- and post-rift depositional cycles, 
with or without volcanism, and a marked transition from 
calc-alkaline volcanism in the early-mid Permian to alkaline 
volcanism in the late Permian (Arche and López-Gómez, 
1996; Innocent et al., 1994).

SAMPLING AND ANALYTICAL TECHNIQUES

Seven lamprophyre dykes and their wall-rocks were 
sampled in order to cover the differences encountered in 
the field. Petrographic analysis and Scanning Electron 
Microscope (SEM) characterization were performed at the 
Geology Department and Serveis de Microscòpia of the 
Universitat Autònoma de Barcelona. The representative 13 
samples were crushed and pulverized to 200µm and sent to 
ACTLABS, Ontario (Canada), for whole-rock geochemical 
analysis of 51 elements, including major, trace and rare 
earth elements. The analytical techniques used were lithium 
metaborate/tetraborate fusion with subsequent analysis by 
Ion Selective Electrode (ISE) for fluorine and Inductively 
Coupled Plasma Mass Spectrometry (ICP-MS) for the rest 
of the elements (SiO2, TiO2, Al2O3, Fe2O3, MnO, MgO, 
CaO, Na2O, K2O, P2O5, Li, Be, Sc, V, Cr, Co, Ni, Cu, Zn, Ga, 
Ge, Rb, Sr, Y, Zr, Nb, Sn, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, 
Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Tl, Pb, Th and 
U). Detection limits and analytical errors are presented in 
Table 1.

Sr-Nd isotopic analyses were carried out at the 
Geochronology Unit of Universidad Complutense de 
Madrid (UCM). For 87Sr/86Sr, a mass spectrometer VG 
Sector-54® was used, following data acquisition method of 
dynamic multicollection during 10 blocks of 16 cycles each, 
with beam intensity of 3V. Isotopic standards used were 
NBS 987 (87Sr/86Sr= 0.710248±0.000003, National Bureau 
of Standards Certificate of Analysis). For 143Nd/144Nd mass 
spectrometer TIMS-Phoenix® was used, following data 
acquisition method of dynamic multicollection during 160 
cycles with beam intensity of 1V. Isotopic standard used was 
JNdi-1 (143Nd/144Nd= 0.512115±0.000002; Tanaka et al., 
2000). Analytical errors referred to two standard deviations 
are 0.01% for 87Sr/86Sr and 0.006% for 143Nd/144Nd.

U-Pb age measurements were conducted for titanite and 
allanite grains of samples from two dykes. Thin sections 
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  Unit DL 
Dyke 
1 

Dyke 
2 

Dyke 
3 

Dyke 
4 

Dyke 
5 

Dyke 
6 QMonz Grd GrPeg LeuGr LeuGr LeuGr LeuGr 

SiO2  wt.% 0.01 49.82 51.19 51.78 53.53 51.85 50.49 70.67 67.45 74.99 70.95 71.67 68.32 66.81 

Al2O3  wt.% 0.01 16.46 15.24 16.44 15.75 16.17 15.53 14.94 16.14 13.99 14.96 14.73 15.36 15.84 

Fe2O3(T)  wt.% 0.01 8.09 9.02 9.09 8.66 8.45 9.15 3.49 4.06 0.75 2.67 2.69 2.75 3.12 

MnO  wt.% 0.001 0.188 0.165 0.169 0.193 0.141 0.134 0.169 0.15 0.046 0.046 0.052 0.052 0.056 

MgO  wt.% 0.01 6.16 6.75 5.39 6.34 6.38 6.66 0.81 1.61 0.3 1.3 1.15 1.48 1.65 

CaO  wt.% 0.01 6.42 5.72 5.65 3.61 6.35 6.56 2.31 2.51 0.63 1.03 0.81 0.99 1.06 

Na2O  wt.% 0.01 2.47 3.13 3.71 4.33 2.77 2.46 3.49 4.12 4.65 4.05 4.34 4.4 4.93 

K2O  wt.% 0.01 2.05 1.71 0.8 0.27 1.12 1.29 3.25 2.29 3.84 2.69 2.77 2.6 2.77 

TiO2  wt.% 0.001 1.409 1.318 1.453 1.376 1.306 1.418 0.338 0.498 0.051 0.351 0.356 0.387 0.421 

P2O5  wt.% 0.01 0.37 0.39 0.4 0.37 0.34 0.42 0.11 0.15 0.22 0.11 0.16 0.14 0.17 

LOI  wt.%  5.29 4.08 4.66 5.01 4.36 5.88 0.83 1.61 0.79 1.75 1.72 2.05 1.95 

Total  wt.% 0.01 98.72 98.72 99.56 99.44 99.23 100 100.4 100.6 100.3 99.9 100.4 98.54 98.77 

F  wt.% 0.01 0.08 0.06 0.06 0.07 0.03     0.02 0.02 0.03 0.03 

Sc ppm 1 27 25 27 26 26 25 7 9 5 6 6 6 6 

Be ppm 1 2 2 3 3 2 2 1 1 2 2 2 2 2 

V ppm 5 176 161 173 148 167 175 29 48 < 5 26 28 29 37 

Cr ppm 20 210 280 150 190 200 300 50 30 < 20 < 20 < 20 < 20 < 20 

Co ppm 1 29 33 44 32 41 32 47 27 67 28 38 33 23 

Ni ppm 20 80 100 50 70 80 110 < 20 < 20 < 20 < 20 < 20 < 20 < 20 

Cu ppm 10 < 10 30 40 < 10 30 30 40 10 10 < 10 < 10 < 10 < 10 

Zn ppm 30 130 130 170 230 90 110 40 50 < 30 40 40 50 40 

Ga ppm 1 22 19 21 20 19 18 18 19 13 18 18 18 19 

Ge ppm 0.5 1.6 1.7 2.4 2.3 1.2 2 1.8 1.9 2 1.1 1.1 1.3 1.2 

As ppm 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 

Rb ppm 1 68 51 29 9 47 46 74 58 95 73 74 69 71 

Sr ppm 2 391 295 360 296 349 310 309 371 135 243 199 204 230 

Y ppm 0.5 34.1 32.7 36.6 35.6 32.7 32.1 23.7 20.1 10 17.9 17.6 18.6 16.2 

Zr ppm 1 255 245 260 255 231 219 124 145 13 159 152 168 178 

Nb ppm 0.2 14.3 15.2 14.9 15 13.4 14.8 8 7.9 5.6 6.3 6.4 7.1 7.6 

                

TABLE 1. Whole-rock major and trace element concentration of LGL dykes
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  Unit DL 
Dyke 
1 

Dyke 
2 

Dyke 
3 

Dyke 
4 

Dyke 
5 

Dyke 
6 QMonz Grd GrPeg LeuGr LeuGr LeuGr LeuGr 

Mo ppm 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 

Ag ppm 0.5 0.8 0.7 0.7 0.7 0.7 0.6 < 0.5 0.5 < 0.5 0.5 < 0.5 0.6 0.5 

In ppm 0.1 0.1 < 0.1 < 0.1 < 0.1 < 0.1 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 

Sn ppm 1 2 1 1 1 < 1 1 1 1 4 < 1 < 1 < 1 1 

Sb ppm 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 

Cs ppm 0.1 2.2 1.4 1.3 0.6 1.7 2.6 2.2 1.4 2.5 1.9 2.1 3 1.9 

Ba ppm 2 776 483 348 61 412 619 783 624 452 772 644 619 627 

La ppm 0.05 40.2 43.2 42 38.3 37.5 39.1 34.3 31.8 4.69 27.8 27.1 30 30.5 

Ce ppm 0.05 86.2 89.3 90.2 82.4 80.5 83.8 69.7 64.5 9.98 56.3 56.1 60.6 60.7 

Pr ppm 0.01 10.5 10.9 11.1 10.1 9.79 10.3 7.9 7.39 1.18 6.41 6.37 7.04 6.95 

Nd ppm 0.05 41.7 43.7 43.4 40.7 39.3 42 30.4 28.1 4.38 24.3 24.3 26 26 

Sm ppm 0.01 8.58 8.32 8.9 8.22 8.09 8.5 6.1 5.41 1.62 4.76 4.59 5.26 4.98 

Eu ppm 0.005 1.91 1.87 2 1.72 1.83 1.91 1.04 1.11 0.413 0.999 0.964 1.01 1.11 

Gd ppm 0.01 6.82 6.87 7.46 7.03 6.58 6.92 4.84 4.57 1.64 3.72 3.82 3.91 3.7 

Tb ppm 0.01 1.04 1.07 1.13 1.1 1.04 1.08 0.74 0.65 0.33 0.56 0.57 0.6 0.56 

Dy ppm 0.01 6.39 6.07 6.84 6.46 6.12 6.09 4.16 3.64 2.03 3.24 3.18 3.5 3.21 

Ho ppm 0.01 1.2 1.12 1.3 1.21 1.18 1.18 0.8 0.72 0.37 0.61 0.61 0.65 0.58 

Er ppm 0.01 3.5 3.24 3.59 3.41 3.34 3.25 2.2 1.97 0.86 1.72 1.7 1.74 1.57 

Tm ppm 0.005 0.489 0.46 0.493 0.49 0.467 0.466 0.328 0.278 0.123 0.245 0.233 0.24 0.21 

Yb ppm 0.01 3.11 2.82 3.22 3.14 3.04 2.98 2.16 1.71 0.84 1.51 1.5 1.5 1.33 

Lu ppm 0.002 0.484 0.425 0.501 0.454 0.462 0.472 0.327 0.254 0.128 0.21 0.23 0.22 0.213 

Hf ppm 0.1 6 5.7 6.2 5.9 5.2 5.4 3.9 4.1 0.6 4 3.9 4.3 4.3 

Ta ppm 0.01 0.87 0.9 0.92 0.86 0.97 0.81 1.39 0.87 1.8 1.11 1.28 1.14 0.99 

W ppm 0.5 54.4 55.1 79.6 52.9 102 30.9 347 195 429 303 407 364 233 

Tl ppm 0.05 0.35 0.27 0.16 
< 

0.05 0.22 0.26 0.45 0.35 0.45 0.37 0.4 0.36 0.36 

Pb ppm 5 23 15 8 6 6 < 5 14 11 21 8 9 6 < 5 

Bi ppm 0.1 0.8 0.2 0.3 0.8 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 

Th ppm 0.05 5.53 6.13 5.72 5.5 5.29 5.8 9.89 7.69 1.41 7.23 7.22 7.33 7.96 

U ppm 0.01 1.15 1.06 8.31 2.04 0.91 0.99 1.36 1.12 2.26 1.62 1.99 1.62 1.73 

Mg#     60.1 59.7 54 59.1 59.9 59 31.49 43.99 44.20 49.09 45.85 51.60 51.16 

TABLE 1. Continued
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were sent to University of California (UC) Santa Barbara 
(United States of America) for in situ U-Pb dating via Laser 
Ablation Inductively Coupled Plasma Mass Spectrometry 
(LA-MC-ICPMS) following the procedures outlined in 
Spencer et al. (2013), Kylander-Clark et al. (2013) and 
Kylander-Clark (2020). Samples were ablated with a Photon 
Machines Excite 193 nm laser ablation system equipped 
with a HelEx cell, using a spot size of 25µm and a repetition 
rate of 5Hz. Aerosol from the laser was carried in a mixture 
of He and Ar and analyzed by a Nu Instruments Plasma High 
Resolution Multi Collector Inductively Coupled Plasma 
Mass Spectrometry (HR MC-ICPMS) for U-Pb analysis and 
by an Agilent 7700X for trace-element analysis. For titanite, 
Reference Material (RM) MKED (Spandler et al., 2016) was 
used to correct for instrumental offset of isotopic ratios, and 
BLR (Aleinikoff et al., 2007) and Y1710C5 (Kylander-Clark 
et al., 2008) were used to ensure accuracy; secondary RMs 
yielded ages within 2% of accepted values. Allanite analysis 
and data reduction required a two-step approach, first using 
NIST612 glass to correct for instrument drift and bias in 
207Pb/206Pb and 206Pb/238U ratios, followed by a correction 
of the 206Pb/238U ratio such that RMs SISS, BONA, and 
TARA yielded ages within 2% of accepted values (von 
Blanckenburg et al., 1992; Smye et al., 2014). Trace-elements 
were determined using NIST612 as the primary RM and 28Si 
as the internal standard, assuming 19.2 wt% in titanite and 
14 wt% in allanite.

In order to recognize possible genetic relationships 
between the LGL dykes, their host rocks and other Variscan 
magmatic occurrences, their chemical composition has 
been compared with those of several rocks that represent 
some of the compositional end members of Variscan 
magmatism of Western Europe. These are calc-alkaline 
lamprophyres and lamproites to represent different extents 
of SCLM enrichment, Permian calc-alkaline volcanic 
andesites and alkaline basalts from eastern Pyrenees and 
the Iberian Ranges, Permian alkaline lamprophyres from the 
Iberian Central System (ICS) to represent asthenospheric 
influences, and ultramafic (appinites) to felsic intrusives 
of the Catalan Coastal Batholith and appinites from NW 
Iberia to represent main Variscan mantle-crust magmatism 
(compiled data in Appendix I).

FIELD OBSERVATIONS AND PETROGRAPHY

Les Guilleries lamprophyres crop out in a narrow 
zone (<2km2) on the walls of a unique meander of the Ter 
River, which formed by Alpine rejuvenation of the terrane. 
The meander probably reflects the strength to weathering 
of the Variscan granitoids that host the lamprophyres. 
This zone is highly fractured and highly altered in some 
places, reflecting multiple superimposed processes 
heterogeneously affecting the rocks at the meter scale.

Les Guilleries lamprophyres appear as a vertical to 
sub-vertical dyke swarm with branching dykes of some 
centimeters to meters in width and tens of meters in length, 
emplaced in the intersection of two perpendicular fault 
systems oriented NE-SW and NW-SE (Fig. 1A-B). They are 
dark colored that contrasts with the white to red granitoid 
hosts (quartz-monzonites, granodiorites, leucogranites and 
granitic pegmatites) and the grayish lower Paleozoic schists 
and marbles (Fig. 1C-E). The dykes are approximately 
E-W oriented although segmentation of the dykes in other 
directions is noticeable at decimeter- to centimeter-scale, 
along fractures and joints. The dykes have sharp contacts with 
their host rocks, with no evident fracturing at the tips of single 
veins (Fig. 1C). In hand specimens, all lamprophyres present 
a fine porphyritic texture with millimetric green phenocrysts 
and some sulfides in a micrometric groundmass, with variable 
spatial distribution of the phenocrysts at a centimetric scale.

The phenocrysts consist of mostly light green chlorite as 
seen in thin section, possibly altering pyroxene, amphibole and/
or phlogopite crystals, with variable amounts of secondary 
epidote, albite and calcite, with some pyrite and chalcopyrite 
inclusions (Fig. 2A-C). These altered phenocrysts varied 
in shape and size (0.5 - 1.5mm). Millimeter size subhedral 
anortithe-albite phenocrysts are also present in all samples with 
varying proportions, commonly showing sericite and hematite 
inclusions (Fig. 2C). Millimetric dark brown amphibole 
phenocrysts up to 1.5mm, strongly replaced by chlorite and 
albite, are only present in some dykes, which appear to be 
the less altered (Fig. 2D). Some dykes contain millimetric 
xenocrysts of rimmed alkali feldspar whereas quartz occurs 
sporadically in others (Fig. 2E). Veins of epidote, calcite or 
both, of micrometric to millimetric width, are present in all 
dykes but are more common in the most altered ones (Fig. 2F).

The groundmass of the less altered dykes is composed 
of primary amphibole (actinolite to hornblende with cores 
slightly enriched in titanium and alkalis), anortithe, albite, 
K-feldspar and minor titanite, epidote, calcite, ilmenite, 
allanite, fluoroapatite, spinel, zircon, and pyrite together 
with secondary calcite, epidote, chlorite, albite, titanite and 
quartz (Fig. 2G-H). A diminishing content of amphibole, 
anorthite and K-feldespar along with an increasing content 
of albite, chlorite, epidote, titanite and quartz are observed 
with increasing alteration. Thus, the most altered dykes are 
dominated by secondary chlorite and albite phenocrysts, 
with a groundmass dominated by albite and chlorite (Fig. 
2I) and minor epidote, titanite, ilmenite, quartz and rutile.

WHOLE-ROCK MAJOR AND TRACE 
ELEMENT CHEMISTRY

Major- and trace-element concentration of the LGL dykes 
are presented in Table 1. Even though some dykes appear 
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more altered than others, they all present similar values of 
MgO (5.3-6.8%; Mg# 54-60), Al2O3 (15.2-16.5%), Fe2O3T 
(8.0-9.2%), TiO2 (1.3-1.5%), P2O5 (0.37-0.42%), MnO (0.13-
0.20%) and Loss On Ignition (LOI, 4.08-5.29%). However, 
the concentration is more variable in SiO2 (49.8-53.6%), CaO 
(3.6-6.6%), Na2O (2.4-4.4%) and K2O (0.2-2.1%). These 
compositions plot in the calc-alkaline field (Fig. 3A) in the 
Na2O+K2O vs SiO2 diagram of Rock (1991); ranging from 
the limit of the shoshonite to low-K calc-alkaline suites (Fig. 
3B) in a K2O vs SiO2 diagram (Peccerillo and Taylor, 1976). 
These lamprophyres contain more iron than magnesium 
(Fe2O3T>MgO), more sodium than potassium (K2O/Na2O<1), 
and the K2O content is generally inversely correlated with that 
of Na2O (Fig. 3C). Silica concentration is directly proportional 

to Na2O concentration and inversely related to CaO and K2O 
contents; these compositional variations are in agreement with 
the abundance of albite, anorthite and K-feldspar described in 
the Petrography section. All dykes show similar immobile Zr/
Ti and Nb/Y ratios, corresponding to andesite to sub-alkaline 
basalt affinities (Fig. 3D).

Enrichments in LILE (K, Ba, Cs, Rb, Th) and HFSE (Zr, 
Hf), positive Pb and negative Nb, Ta, Sr and Ti anomalies 
can be observed for most dykes in a trace-element pattern 
normalized to primitive mantle values diagram (Fig. 4A). 
These are common features for calc-alkaline lamprophyres 
(Rock, 1991) and are also observed in Aiguablava dykes 
(Ubide et al., 2010).
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FIGURE 2. Photographs (A-F) and Back-Scattered Electron (BSE) images (G-I). A) Chloritized phenocrysts with inclusions and rims of epidote, in a fine 
grained matrix of mainly chloritized domains (green) and feldespatic domains (white), with opaque minerals mainly altered amphibole and titanite 
(black). B) Figure 2A in cross-polarised light. C) Glomeroporphyritic texture of chloritized mafic phenocrysts and albitized anorthite phenocrysts, with 
minor epidote and calcite, and pyrite inclusions. D) Elongated dark brown amphibole phenocrysts in a less altered sample. E) Sporadic rimmed alkali 
feldspar xenocryst. F) Chloritized phenocryst surrounded by tiny crystals of amphibole, chlorite and anorthite-albite (commonly known as “ocelli”) 
reflecting disequilibrium conditions. Reddish hematitized albite phenocryst and epidote-calcite veins are also shown. G) Representative sample 
of the less altered dykes. It shows primary amphibole (mainly actinolite and hornblende), anorthite, K-feldspar, titanite, ilmenite, F-apatite, zircon 
and secondary chlorite, epidote, albite and quartz. H) Magmatic allanite-(Ce) affected by epidotization, chloritization and albitization (in that order). 
Some allanite crystals are surrounded by epidote coronas (not shown). I) Representative sample of the most altered dykes, showing predominance 
of secondary albite in the lamprophyre matrix, followed by chlorite and minor epidote, titanite and rutile. In the top left, part of a quartz xenocryst 
shows slightly reabsorbed boundaries. Ab: albite. Aln-(Ce): allanite-(Ce). Amph: amphibole. An: anorthite. Cal: calcite. Chl: chlorite. Ep: epidote. 
F-Ap: fluoroapatite. Ilm: ilmenite. Kfs: k-feldespar. Py: pyrite. Qtz: quartz. Rt: rutile. Ttn: titanite. Zrn: zircon.
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Chondrite-normalized REE patterns also show similar 
fractionation for all dykes, independent of their alteration 
degree, with enrichments up to two orders of magnitude 
with respect to chondrite, enrichments in LREE with 
respect to Middle Rare Earth Elements (MREE) and 
HREE, and negative Eu anomaly (Fig. 4B). In spite of the 

similarities, significant variations among LGL dykes show 
up for mobile elements and the highest differences occur 
for F, Ba, Sr, Cr, Zn, Ni, Rb, Pb and Cs concentrations. 
Figure 5 shows that Ba, Rb and Cs concentrations decrease 
with increasing Na2O content. A similar trend is observed 
for Pb, Sr, Cr and Ni concentrations, although it is less 
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(Sardinia), Ronca et al. (1999); Permian volcanic calc-alkaline andesites and alkaline basalts from eastern Pyrenees (Serra del Cadí, Innocent et al., 
1994) and the south-eastern Iberian Ranges (Lago et al., 2004; Lago et al., 2012). Variscan spessartites, kersantites and minettes from the inner 
parts of the Variscan Belt are from: minettes, kersantites and spessartites from Vosges, Schwarzwald and Black Forest, Soder (2017); kersantites 
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evident. On the other hand, Zn concentration increases 
with Na2O (Fig. 5).

LGL dykes have major- and trace-element concentrations 
similar to the Aiguablava spessartites, but slightly more 
enriched in most HFSE and REE (Fig. 4A). With respect to 
other Variscan K-rich mafic dykes, the LGL dykes present 
lower enrichments in LILE, HFSE and REE in general, 
but within the ranges of variation of Variscan spessartites 
(Fig. 4A). LGL dykes also show major- and trace-element 
concentrations similar to high-K basaltic andesite dykes 
from Sardinia (Fig. 4A).

The plots of Figure 6 show that Variscan enriched mafic 
dykes show a wide variation in the concentration of several 
elements at similar MgO content, with clear differences 
between calc-alkaline (orogenic) and alkaline (anorogenic) 

lamprophyres, as the later show higher TiO2 and Fe2O3 content. 
LGL dykes cluster together with Aiguablava spessartites 
and high-K basaltic andesite dykes from Sardinia, showing 
characteristic high values of Al2O3, Fe2O3 and low values of K2O 
and total REE, which are closer to average lower crustal values 
than spessartites, kersantites, minnetes and lamproites located 
in more internal positions within the Variscan belt (closer to 
the Rheic suture, here referred for simplicity as “Inner Variscan 
Belt”). LGL dykes also show Al2O3, CaO, Fe2O3, K2O and 
LOI similar to some calc-alkaline basalts and andesites from 
Permian basins in the Eastern Pyrenees and Iberian Ranges, but 
with generally higher TiO2, P2O5 and REE contents.

With respect to Variscan intrusives of the Catalan Coastal 
Batholith, LGL dykes have higher concentrations in K2O, 
TiO2, P2O5 and LOI at the same silica content, whereas in the 
rest of major-element concentrations, LGL dykes are similar 
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to those of gabbros from the appinite suits of Susqueda and 
Montnegre and fall within the known calc-alkaline trend of 
post-collisional Variscan magmatism in the CCR (Fig. 7).

Sr-Nd isotopes

Whole-rock Sr-Nd isotopic compositions of LGL 
dykes are presented in Table 2. 87Sr/86Sri values range from 

0.708510 to 0.711272 ±0.000005, where the highest values 
are found in the most altered samples. 143Nd/144Nd ratios 
show a narrower range, between 0.512231 and 0.512246 
±0.000002, with calculated ɛNdi from -5.23 to -4.63 (Fig. 
8). Initial Sr-Nd isotopic compositions of LGL dykes 
plot within the ranges of variation of Variscan minnetes, 
kersantites and spessartites from Erzgebirge, Schwarzwald, 
Vosges and Pyrenees, with high 87Sr/86Sri and low ɛNdi 
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typical of variably enriched lithospheric mantle sources 
(Fig. 8A). In the ICS the isotopic composition of pyroxenitic 
and hornblenditic xenoliths overlap with the lamprophyre 
compositional fields, implying that the mantle beneath the 
ICS has a “two-pole composition”: one pole is a depleted 
isotopic component with high ɛNdi  (3.5 to 7.1) and low 
87Sr/86Sri (0.7029 to 0.7044); the second pole is an enriched 

lithospheric mantle with low ɛNdi  values (0.9 to 1.5) and 
relatively high 87Sr/86Sri (0.7043 to 0.7051) (Orejana et al., 
2006). LGL dykes show even higher 87Sr/86Sri (up to 0.7112) 
and lower ɛNdi  (-5.23 to -4.63), clustering together with 
high-K basalts from Sardinia, and Permian calc-alkaline 
volcanics from the Iberian Ranges and Eastern Pyrenees 
(Fig. 8A).
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Other SCLM domains in Western Europe present 
different Sr-Nd isotopic compositions in geochemically 
similar enriched mafic dykes. In southwest Britain, 
post-Variscan ultrapotassic lamprophyres emplaced 
north of a main boundary, fall on the mantle array, 
with ɛNdi ranging from -1 to +1.6, related to the 
Avalonia terrane, while those south of the boundary 
are enriched in radiogenic Sr, have initial ɛNdi values 
of -0.3 to +3.5, and are isotopically indistinguishable 
from similar-aged lamprophyres in Armorican massifs 
in Europe (Dijkstra and Hatch, 2018). Lamprophyres 
from Vosges and Black Forest show even lower ɛNdi 
values that overlap with LGL between -4 and -6, as 
well as the highest 87Sr/86Sri enrichments between 0.708 
and 0.712. Soder (2017) found a boundary between 
Saxo-thuringian granitoids and lamprophyres with 
higher ɛNdi and lower 87Sr/86Sri, and the Moldanubian 
granitoids and lamprophyres with lower ɛNdi and 
higher 87Sr/86Sri that cluster together with LGL dykes 
(Fig. 8B).

U-Pb ages in titanite

The lack of fresh phenocrysts, commonly used 
for lamprophyre dating, and the scarcity of zircons, 
make titanite and allanite from the matrix the only 
minerals suitable for dating. Allanite shows intense 
alteration and yields lower intercept dates with large 
uncertainties, therefore only titanite ages are taken into 
account. Additionally, only small crystals of titanite are 
present, so that it was not possible to obtain several 
spots from a single unzoned crystal. Therefore, the 
ages are an average of several titanite grains of up to 
50μm in length. The only reliable ages obtained come 
from two variably altered dykes. The less altered dyke 
yielded the best results with lowest Mean Square 
Weighted Deviation (MSWD = 0.89) and concordia 
ages from Tera-Wasserburg diagram of 262±7Ma (mid 
to late Permian), while the most altered dyke yielded 
255±17Ma with MSWD= 1.7 (Middle Permian to 
Middle Triassic; Fig. 9). Raw U-Pb data of titanite is 
presented in Table 3.

DISCUSSION

Petrographic classification and alteration

The similarities between all LGL dykes in terms of color, 
texture and mineral composition, as well as comparable 
HFSE, REE and some major-element contents (Figs. 3; 4) 
suggest that they formed from the same magmatic source. On 
the other hand, heteromorphism (differences in phenocrysts, 
microphenocrysts and matrix crystal sizes) coupled with 
similar chemistry of immobile elements suggests that dykes 
cooled at different rates and represent discrete low-volume 
pulses. But in spite of being discrete pulses, similarity in 
emplacement characteristics (orientation and space-filling 
features) suggests these pulses are close in time under the 
same tectonic regime. As secondary or alteration minerals 
are abundant and completely replace most phenocrysts and 
part of groundmass crystals, it is difficult to distinguish 
primary crystal features and evaluate processes of 
fractional crystallization and magma mixing. Nevertheless, 
as LGL dykes are similar to Aiguablava’s spessartites, the 
observed fully chloritized phenocrysts probably correspond 
to clinopyroxene with minor amphibole and olivine, as 
Aiguablava’s. This would explain the moderate MgO, Cr, and 
Ni concentrations, which are common in mantle-derived 
rocks. The occurrence of chloritized mafic phenocrysts 
of comparable sizes and shapes in dykes with different 
cooling rates (Fig. 2A-F), suggests that the phenocrysts did 
not crystalize during the late stage cooling but may have 
formed during either previous periods of stagnation or by 
mixing with another magma carrying these phenocrysts.

The principal criteria of lamprophyre classification 
is based on the relative abundance of primary mica and 
amphibole phenocrysts (Le Maitre et al., 2002), which 
appear chloritized in LGL dykes, and of plagioclase and 
K-feldespar, which are strongly modified by the alteration. 
Thus, alteration obliterates the primary composition and 
blurs the mineralogical classification. Nevertheless, the 
predominance of amphibole in the matrix, the predominance 
of primary plagioclase and the calc-alkaline geochemical 
affinity point towards a classification as spessartites. 

Table 2 Whole-rock Sr and Nd isotopic data of LGL. Initial 87Sr/86Sr and εNd were calculated 
at 262 Ma using λ87Rb=1.42E-11 y-1 and λ147Sm=6.54E-12 y-1, 147Sm/144Nd CHUR=0.1967, and 
143Nd/144Nd CHUR= 0.512638, respectively. 

  Dyke 1 Dyke 2 Dyke 3 Dyke 4 Dyke 5 
Rb 68 51 29 9 47 
Sr 391 295 360 296 349 
87Sr/86Sr  0.711277±5 0.710588±3 0.710924±4 0.711628±3 0.710086±5 
87Sr/86Sri  0.709242 0.708565 0.709982 0.711272 0.708510 
Sm 8.58 8.32 8.9 8.22 8.09 
Nd 41.7 43.7 43.4 40.7 39.3 
143Nd/144Nd  0.512238±1 0.512249±1 0.51224±1 0.512232±1 0.512246±2 
Ndi  -5.18 -4.63 -5.14 -5.23 -5.04 

 

TABLE 2. Whole-rock Sr and Nd isotopic data of LGL dykes. Initial 87Sr/86Sr and εNd were calculated at 262Ma using λ87Rb=1.42E-11 y-1 and 
λ147Sm=6.54E-12 y-1, 147Sm/144NdCHUR=0.1967, and 143Nd/144NdCHUR= 0.512638, respectively
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FIGURE 7. Harker variation diagrams showing LGL dykes major element trends with respect to host granitoids and rocks from the Catalan Coastal 
Batholith (Enrique, 1990). Comparison with appinite suits of the Sanabria complex in NW Iberia (Castro et al., 2003) is provided. Lines show the main 
trends defined by Castro et al. (2003): a high-Al trend (dashed line) and a low-Al trend (continuous line). The high-Al trend links monzodiorites and 
Bt-diorites with tonalites, granodiorites and migmatites. The low-Al trend links Hb-gabbros and Hb-diorites. The two trends converge at silica contents 
of 63wt% for most elements. LGL dykes, Aiguablava spessartites and high-K basalts from Sardinia plot between these two trends, with commonly 
higher K2O, TiO2, P2O5 and LOI at the same silica content. Data sources as in Figure 3. M-I: mafic and intermediate igneous rocks. GR: syn to post 
collisional Variscan granitoids. Hbd-Gabbro: Hornblendite and horndblende gabbros.
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Sample 207Pb/235U 2 206Pb/238U 2 rho 238U/206Pb 2 207Pb/206Pb 2 rho 208Pb/232Th 2 
GI7-Ttn1 2.35 0.13 0.0590 0.0018 0.73 16.95 0.53 0.2924 0.0113 0.50 0.0272 0.0014 
GI7-Ttn2 6.43 0.15 0.0907 0.0020 0.61 11.03 0.24 0.5113 0.0116 0.56 0.1490 0.0082 
GI7-Ttn3 2.91 0.35 0.0641 0.0033 0.14 15.60 0.79 0.3260 0.0405 0.32 0.0352 0.0038 
GI7-Ttn4 5.57 0.38 0.0880 0.0036 0.55 11.36 0.46 0.4670 0.0286 0.48 0.0628 0.0092 
GI7-Ttn5 9.39 0.80 0.1225 0.0069 0.71 8.16 0.46 0.5380 0.0309 0.34 0.1530 0.0911 
GI7-Ttn6 13.48 0.40 0.1502 0.0036 0.84 6.66 0.16 0.6503 0.0153 0.47 0.2130 0.0118 
GI7-Ttn7 10.87 0.96 0.1313 0.0095 0.86 7.62 0.55 0.5980 0.0295 0.41 0.4100 0.2801 
GI7-Ttn8 7.90 1.41 0.1040 0.0102 0.90 9.62 0.94 0.5110 0.0461 0.52 0.1270 0.0401 
GI7-Ttn9 11.72 0.75 0.1387 0.0103 0.82 7.21 0.53 0.6050 0.0278 0.28 0.0630 0.0121 
GI7-Ttn10 13.20 1.13 0.1493 0.0096 0.95 6.70 0.43 0.6400 0.0263 0.60 0.2040 0.0611 
GI7-Ttn11 13.50 1.33 0.1530 0.0114 0.94 6.54 0.49 0.6580 0.0239 0.53 0.3300 0.1202 
GI7-Ttn12 13.98 0.69 0.1599 0.0052 0.18 6.25 0.20 0.6240 0.0307 0.40 0.0920 0.0102 
GI7-Ttn13 18.00 1.54 0.1930 0.0126 0.96 5.18 0.34 0.6770 0.0217 0.61 0.1830 0.0213 
GI7-Ttn14 8.63 0.97 0.1136 0.0083 0.22 8.80 0.64 0.5560 0.0808 0.38 0.1500 0.1600 
GI7-Ttn15 24.75 0.53 0.2479 0.0056 0.58 4.03 0.09 0.7254 0.0160 0.50 0.2410 0.0129 
GI7-Ttn16 24.40 1.20 0.2413 0.0110 0.92 4.14 0.19 0.7320 0.0183 0.50 0.3510 0.0973 
GI7-Ttn17 23.79 0.85 0.2406 0.0075 0.23 4.16 0.13 0.7150 0.0262 0.52 0.2700 0.0553 
GI7-Ttn18 12.40 1.82 0.1510 0.0133 0.56 6.62 0.59 0.5950 0.0700 0.32 0.2730 0.0932 
GI7-Ttn19 26.50 2.36 0.2610 0.0187 0.94 3.83 0.28 0.7290 0.0325 0.25 0.2380 0.0472 
GI7-Ttn20 34.30 1.38 0.3340 0.0155 0.91 2.99 0.14 0.7500 0.0192 0.44 0.6300 0.1804 
GI7-Ttn21 35.70 1.94 0.3410 0.0156 0.95 2.93 0.13 0.7510 0.0180 0.43 0.2900 0.0306 
GI7-Ttn22 32.50 4.15 0.3150 0.0326 0.99 3.17 0.33 0.7450 0.0266 0.63 0.1200 0.0113 
GI7-Ttn23 35.20 1.57 0.3350 0.0129 0.94 2.99 0.11 0.7630 0.0188 0.32 0.3150 0.0258 
GI7-Ttn24 38.20 1.77 0.3600 0.0157 0.98 2.78 0.12 0.7652 0.0169 0.55 0.3950 0.0575 
GI7-Ttn25 36.00 8.83 0.3240 0.0653 1.00 3.09 0.62 0.7420 0.0265 0.36 0.2590 0.0453 
GI7-Ttn26 41.20 3.01 0.3790 0.0252 0.98 2.64 0.18 0.7860 0.0198 0.32 0.5000 1.0000 
GI7-Ttn27 45.59 1.03 0.4266 0.0097 0.90 2.34 0.05 0.7773 0.0163 0.36 0.5990 0.0398 
GI7-Ttn28 45.70 1.59 0.4260 0.0147 0.94 2.35 0.08 0.7776 0.0172 0.40 0.1629 0.0054 
GI7-Ttn29 45.50 1.67 0.4260 0.0147 0.95 2.35 0.08 0.7810 0.0174 0.32 0.2319 0.0085 
GI7-Ttn30 43.30 7.55 0.4040 0.0635 1.00 2.48 0.39 0.7740 0.0253 0.59 0.7300 0.3703 
GI7-Ttn31 47.20 2.58 0.4360 0.0227 0.95 2.29 0.12 0.7828 0.0178 0.60 0.2014 0.0099 
GI7-Ttn32 47.60 2.68 0.4430 0.0219 0.95 2.26 0.11 0.7770 0.0203 0.43 0.4130 0.0645 
GI7-Ttn33 52.90 5.50 0.4820 0.0509 0.99 2.07 0.22 0.8019 0.0186 0.18 0.7000 0.2204 
GI7-Ttn34 54.10 2.10 0.5020 0.0189 0.88 1.99 0.07 0.7810 0.0185 0.28 0.6950 0.0871 
GI7-Ttn35 53.40 8.17 0.4920 0.0677 0.99 2.03 0.28 0.7900 0.0240 0.61 0.7700 0.4902 
GI7-Ttn36 64.10 4.11 0.5740 0.0407 0.93 1.74 0.12 0.8120 0.0265 0.39 0.7400 0.2804 
GI7-Ttn37 70.20 2.13 0.6300 0.0188 0.95 1.59 0.05 0.8128 0.0172 0.31 0.5780 0.0397 
GI7-Ttn38 71.10 3.78 0.6280 0.0316 0.97 1.59 0.08 0.8179 0.0186 0.57 0.5900 0.3402 
GI7-Ttn39 89.80 2.69 0.8090 0.0228 0.96 1.24 0.03 0.8087 0.0170 0.30 1.3500 0.1820 
GI7-Ttn40 94.80 4.61 0.8380 0.0452 0.96 1.19 0.06 0.8120 0.0196 0.48 1.4000 1.3003 

TABLE 3. Titanite U-Pb data of measured ratios corrected for common Pb



E .  M e l l a d o  e t  a l . 

G e o l o g i c a  A c t a ,  1 9 . 1 5 ,  1 - 2 3  ( 2 0 2 1 )
D O I :  1 0 . 1 3 4 4 / G e o l o g i c a A c t a 2 0 2 1 . 1 9 . 1 5

Permian calc-alkaline lamprophyre dykes of Les Guilleries

16

The replacement of primary magmatic phases 
by secondary minerals typical of greenschist-facies 
metamorphism (calcite, chlorite and epidote) is a 
ubiquitous feature in many lamprophyres (Rock, 1991). 
This is sometimes understood as autometasomatic 
processes upon solidification of melts with high volatile 
content (Rock, 1991). In LGL dykes the calcite-chlorite-
epidote paragenesis occurs together with albite and 
hematite (Fig. 3H). Moreover, there is a systematic 
variation in Na2O, SiO2, K2O, CaO, F, Ba, Rb, Cs, Pb, Sr and 
Zn (Fig. 5) with the abundance of albite, chlorite, hematite, 
titanite, and their replacement textures (Fig. 2). Similar 
precipitation of minute hematite crystals and albitization of 
plagioclases have been observed in late-Variscan granitoids 
of the extended Montseny-Guilleries Massif (Fàbrega et 
al., 2019), Paleozoic rocks of the Variscan Morvan Massif 
in France (Parcerisa et al., 2010) and host granitoids from 
this study. Therefore, one or more post-magmatic processes 
of alteration must have affected LGL dykes additionally to 
common autometasomatic processes. The anomalously low 
concentration of K2O and K2O/Na2O ratios in LGL dykes 
with respect to lamprophyres from other massifs (Fig. 3C), 
seem to occur also in Aiguablava spessartites, according 
to the published geochemical data (Enrique, 2009; Ubide 
et al., 2010), which suggests albitization was a common 
process across the CCR in contrast to other Variscan 
domains. Recent studies have suggested that an albitization 
event developed under low-temperature subsurface 
conditions previous to erosion that led to the Lower Triassic 
paleosurface (Fàbrega et al., 2019; Parcerisa et al., 2010). 
Additionally, the elements that may have been remobilized 
by the albitization (Ba, F, Pb, Zn) in Les Guilleries are 
concentrated in epigenetic vein mineralizations nearby 
(Osor fluorite-barite-sphalerite-galena veins). As this 
mineral deposit is related to hydrothermal fluid circulation, 
the same hydrothermal event could have been responsible 
for the alteration of LGL dykes, although it is still not clear 
if there is a direct relationship between the lamprophyres 
and fluorite deposits.

Age of emplacement

From field observations, LGL dykes are younger than all 
late-Variscan syn-post collisional plutons of Les Guilleries 
and nearby massifs with ages ranging from 323.6±2.8Ma 
to 284±3Ma (Martínez et al., 2008; Solé et al., 2002). The 
new U-Pb titanite MSDW age of 262±7Ma is in agreement 
with the crosscutting relationships, although this age may 
be skewed towards younger ages due to the influence of 
secondary titanite related with post-magmatic alteration. 
Additionally, late crystallization and post magmatic events 
are known to yield up to 19Myr younger U-Pb ages in 
titanite than early crystallizing zircons in Variscan granites 
(Broska and Petrík, 2013). This suggests that LGL dyke 
emplacement may be slightly older than matrix titanite 

crystallization at 262±7Ma, but younger than the most 
felsic magmatism. An approximate E-W orientation of 
LGL dykes with gentle N-dipping and emplacement along 
fractures and diaclases are similar to what is observed in 
Aiguablava’s spessartites intruded in ca. 288Ma pluton, 
and considering the geochemical similarities, both dyke 
swarms may have resulted from related events. 

Relation with appinite suites of the Catalan Coastal 
Batholith

The REE parallel profiles of LGL dykes and their 
host rocks (Fig. 4B) suggest they have a common source 
and are related by fractionation processes (e.g. Fowler 
and Henney, 1996), which is common of appinite suites 
(Murphy, 2013). Indeed, the Catalonian Coastal Batholith 
plutonic and hypabyssal association forms a very complete 
post-collisional calc-alkaline igneous suite (Enrique, 1990; 
Martínez et al., 2008; Figure 7). The suite’s ultrabasic-
basic to intermediate rocks, with olivine hornblendites, 
hornblende melanogabbros-gabbros and leucogabbros, are 
associated with late-Variscan calc-alkaline granites in the 
Susqueda complex and Montnegre Massif, that have been 
interpreted as appinite suites (Butjosa et al., 2013; Galán et 
al., 2017). The most acidic rocks of the suite are hornblende-
biotite quartz diorites and monzodiorites. Although the 
evolutionary trend of this association is calc-alkaline, the 
hornblendites and the leucogabbros are thought to be derived 
from basic magmas enriched in K, whereas quartz diorites 
are considered hybrid rocks, generated by mixing of basic 
and felsic magmas (Butjosa et al., 2013). The mineralogical 
and geochemical characteristics of LGL dykes match those 
of the hypothesized basic parental magmas of the appinite 
suite, an amphibole-phlogopite-bearing melt with high 
potassium and high fluid content (Fig. 7). Therefore, the LGL 
dykes probably represent the least modified magmas from 
the SCLM beneath the CCR during Variscan times to reach 
crustal levels, along lithospheric-scale deep transcurrent 
faults, and could represent one of the deepest sources of heat 
and material of the Variscan-post-collisional magmatism. 
The lamprophyre magmas could have transferred fluids as 
well as LILE (K, Ba, Rb, Cs, Pb, Th), HFSE (Ti, P, Zr, Nb) 
and REE from the metasomatized lithospheric mantle to the 
crust, and thus probably played a significant role in crustal 
melting and formation of mineral resources.

The relationship between appinites and calc-alkaline 
lamprophyres has long been recognized (Rock, 1991). 
Examples of hornblendites related to granitoids and/
or migmatites exist in the Iberian Massif, Pyrenees and 
other Variscan terranes in the context of large scale dextral 
strike-slip tectonics produced by the interaction between 
Laurassia and Gondwana, and coeval lamprophyre dykes 
are present in all this places (Bea et al., 1999; Castro et al., 
2003; Roberts et al., 2000; Scarrow et al., 2009).
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Source characteristics and melting conditions 

The Th/Yb vs. Nb/Yb ratios (Fig. 10A) are usually 
interpreted to reflect source composition and/or crustal 
assimilation (Pearce et al., 2008), where subduction 
processes and crustal contamination usually result in an 
enrichment of Th with respect to Nb. The significantly 
high Th/Yb ratio for the most basic LGL sample, with 
49.82% SiO2, is unlikely to be explained only by crustal 
contamination, and probably reflects the extent of 
metasomatism during Variscan and/or older subduction 
events in the SCLM source. This is also consistent 
with Sr-Nd isotopic variations reflecting an enriched 
lithospheric mantle source with high 87Sr/86Sri and low 

ɛNdi (Fig. 8), although mixing with small proportions of 
crustal magmas or fluids cannot be discarded, as deduced 
by the presence of xenocrysts and hybridization textures. 
Ratios between Rb, Ba and Sr are commonly used to 
discriminate phlogopite vs. amphibole rich sources, 
which is not possible for LGL dykes as those elements 
have been remobilized by post-magmatic processes. 
However, the predominance of amphibole over phlogopite 
in most mafic lithologies is a common feature of appinite 
rocks from the CCR. Additionally, the ratios between 
LREE and HREE in LGL dykes could be explained by an 
amphibole lherzolite mantle source with a combination of 
spinel and garnet as aluminum phases. This is observed 
in the diagram of Figure 10B, C, where garnet-compatible 
Yb is compared with La, Sm and Gd-garnet incompatible 
elements (Rollinson, 1993). Additionally, the Sm/Yb vs. 
La/Sm diagram (Fig. 10C; Jung et al., 2006) also shows 
that a spinel and garnet lherzolite around 2% degree of 
melting could explain the observed ratios.

Integrating the above results, major, trace- and 
rare-earth-element ratios suggest that the LGL magma 
source was probably an enriched SCLM with the 
composition of an amphibole-bearing spinel-garnet 
lherzolite that underwent low degrees of partial melting. 
Similar sources have been proposed for post-collisional 
spessartites across the Variscan Belt in the Bohemian 
Massif, Vosges and Black Forest (Soder, 2017). However, 
lamprophyre dyke swarms related to the inner parts of 
the orogenic belt show a wide variety of lamprophyre 
types with higher LILE, HSFE, REE enrichments (Fig. 
3; 6), being the most extreme examples the lamproites 
and peralkaline minnetes from the Bohemian Massif 
and Black Forest, respectively, that formed from very 
low degree melting of enriched domains (Krmíček et 
al., 2015; Soder, 2017), not observed in the CCR. Figure 
11 shows there is a compositional continuum between 
high-K lamproites and low-K gabbros revealing different 
degrees of metasomatism in Variscan SCLM, variable 
melting conditions and complex differentiation stories. 
LGL dykes and high-K basaltic andesitic dykes from 
Sardinia represent moderately enriched SCLM in LILE, 
HFSE and REE closer to lower crustal values in most 
elements than most enriched species of the inner Variscan 
belt (Figs. 3; 6; 11). Although there is still few isotopic 
data to define precise lithospheric domains, the striking 
geochemical similarities between CCR and Sardinia’s 
mafic dykes with respect to dykes from other Variscan 
domains strongly suggest they come from a similar and 
compositionally unique domain of the Variscan SCLM, 
different from other parts of the Variscan Belt of western 
Europe. However, it is still not clear whether these 
geochemical features are related to the nature and source 
of the subducted continental material and/or conditions 
of partial melting and the nature of residual phases.
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FIGURE 8. Initial Sr–Nd isotopic compositions of LGL dykes at 262Ma. 
Isotopic compositions of post-collisional A) Variscan mafic rocks 
and previously defined B) Variscan SCLM domains are shown for 
comparison. Dashed lines represent Bulk Earth isotopic ratios from 
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REGIONAL CORRELATIONS

Post-collisional magmatism in NE Iberia happened 
several tens of million years after the main Variscan 
tectono-metamorphic event related to the Rheic suture in 
the Inner Variscan Belt, during Late Devonian to Early 
Carboniferous (Wilson et al., 2004). Most calc-alkaline 
lamprophyre dykes in the Inner Variscan belt are older than 
LGL dykes, with ages that range from Early Carboniferous 
to Early Permian (Seifert, 2008; Soder, 2017). However, 
calc-alkaline lamprophyre dykes with younger Permian ages 
and geochemistry similar to the one of LGL dykes are also 
present in this area (e.g. Western Carpathians, 259.0±2.8Ma, 
spessartites, Spišiak et al., 2019; Bohemian massif, 
kersantites and spessartites, Seifert, 2008). This suggests 
that these Mid to Late Permian calc-alkaline lamprophyres 
occurred in domains with similar characteristics with 
respect to the architecture of the Variscan Belt under a 
strike-slip regime previous to the extensional post-orogenic 
regime (Debon and Zimmermann, 1993). 

The age obtained in this study is also similar to a Rb-
Sr biotite age of 259±3Ma from a calc-alkaline basaltic 
andesite dyke from the Sarrabus batholith in Sardinia, where 
mafic dykes cross cut 290 to 270Ma metaluminous and 
peraluminous rhyolitic products. This age points to some 
mafic magmatism intruding after the felsic magmatism 
(Ronca et al., 1999), similar to what is observed in the 
CCR. This age also indicates that the change from a calc-
alkaline (orogenic) to an alkaline (anorogenic) signature in 
post-collisional magmatism, related to the transition from 
the first to the second cycle as defined by Cortesogno et al. 
(1998), did not occur before 262±7Ma in the CCR.

Such change from orogenic calc-alkaline to 
anorogenic alkaline magmatism is also present in 
lamprophyre dykes from the western Pyrenees (Debon 
and Zimmermann, 1993) and Sardinia (Bonin, 1987), as 
well as in volcanic rocks from Permian pull-apart basins 
of the Iberian Ranges and eastern Pyrenees, which 
occurred from Early Permian to Late Permian-Triassic 
(Arche and López-Gómez, 1996; Innocent et al., 1994). 
In summary, the calc-alkaline signature of LGL dykes 
represent the latest stage in the evolution from Early 
Permian strike-slip tectonics (associated or not with a 
Paleotethys subduction environment, Pereira et al., 2014; 
Perini et al., 2004) to Late Permian extension associated 
with the Neotethys opening.

CONCLUSIONS

Les Guilleries lamprophyre dykes constitute a mostly 
vertical dyke swarm that intrudes late Carboniferous to early 
Permian granitoids and lower Paleozoic metasediments of 
the Catalan Coastal Ranges.

The predominance of mafic phenocrysts, porphyritic 
texture, high MgO and volatile content, together with 
crustal-like trace-element patterns indicate that LGL 
dykes correspond to calc-alkaline lamprophyres, probably 
spessartites. The parallel REE pattern of lamprophyres and 
host rocks indicates a common magmatic source.

The geochemical characteristics of LGL dykes 
(enrichments in LILE, HFSE and REE) is a feature 
shared with the calc-alkaline lamprophyres from the CCR 
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(Aiguablava) and high K-basalts from Sardinia, as well as 
Permian calc-alkaline andesites from the eastern Pyrenees 
and Iberian Ranges.

High 87Sr/86Sr and low 143Nd/144Nd isotope ratios 
suggest an enriched subcontinental lithospheric mantle 
source similar to what is found in post-collisional K-rich 
mafic dykes from Sardinia, Permian calc-alkaline andesites 
from Iberian Ranges and other defined Variscan terranes 
like the Moldanubian domain.

The intrusion of LGL dykes occurred during Permian 
times, as reflected in the U-Pb ages of matrix titanite 
crystals that yield concordia ages of 262±7Ma. Mafic 
rocks from Sardinia have similar age and probably shared a 
similar SCLM.

The emplacement of LGL dykes was controlled by 
secondary faults of the main NW-SE strike-slip dextral 
system that emplaced the granitoids during the post-
collisional evolution. Thermal relaxing and lithospheric 
thinning after the Variscan continental collision allowed 
the emplacement of mantle-derived magmas at upper 
crustal levels in small volume short-lived magmatic 
pulses.

Post-magmatic processes of chloritization and 
albitization affected the lamprophyres causing the 
systematic variations of Na2O, SiO2, K2O, CaO, F, Ba, Rb, 
Cs, Pb, Sr, Tl, and Zn. They are also shared with granitoid 
host rocks, so that albitization must be unrelated to 
magmatic processes and may have occurred during early 
Triassic times, by comparison with other albitized rocks of 
the Catalan Variscan domain.

The calc-alkaline signature of LGL dykes marks them 
as the latest Variscan magmatism event, which is related 
to the Early Permian strike-slip tectonics, before the Late 
Permian extension associated with the Neotethys opening 
and anorogenic alkaline magmatism.
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