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Abstract: Five new mononuclear lanthanide complexes are synthesized by adding the several
lanthanide nitrate hexahydrate salts, which for lanthanide (Ln) are Eu, Tb, Dy, Er, and Yb, with
9-anthracenecarboxylic acid (9-Hanthc) and 2,2′:6,2′′-terpyridine (TPY) in mixed solution of methanol
and dimethylformamide (DMF). The general formula is [Eu(9-anthc)3(TPY)(DMF)]·H2O (1Eu) where
Eu(III) is ennea-coordinated or [Ln(9-anthc)3(TPY)(H2O)]·H2O·DMF (Ln = Tb (2Tb), Dy (3Dy),
Er (4Er), and Yb (5Yb)) where Ln(III) is octa-coordinated. For compounds 3Dy, 4Er, and 5Yb, the
dynamic ac magnetic study indicated field-induced single molecule magnet (SMM) behavior. The
photoluminescence studies in the solid state of these complexes show the sensitization of 4f -4f
transitions for 4Er and 5Yb in the NIR region.

Keywords: lanthanide(III) ions; coordination compounds; single-molecule magnets; luminescence

1. Introduction

In recent years, coordination complexes with lanthanide ions have been extensively
studied because of their interesting magnetic and luminescent properties. The magnetic
interest arises from the high magnetic momentum of the lanthanide ions and strong mag-
netic anisotropy of its ground state widely used in the molecular magnetism area to design
single-molecule magnets (SMMs) that provide potential in information storage, quantum
computation, and spintronics [1–8]. In SMMs lanthanide compounds, the energy needed to
reverse the magnetization, and the gaps energy between the emission contributions, result
in the sublevel structure of the Stark components. In addition, the magnetic relaxation
occurs through different process such as Orbach one, direct relaxation, Raman mechanism,
or Quantum Tunneling of the Magnetization (QTM). In many cases, these processes can
occur conjunctly. Therefore, to optimize the SMMs characteristics, the involved mechanism
in the magnetic relaxation and the factors that affect them have to be understood. One of the
used strategies to better understand the magnetic properties is to take advantage of the cor-
relation between the magnetic and optical properties of the luminescent SMM compounds.
Photoluminescent studies may allow spectroscopic detection of the energy splitting of the
mJ states of Ln(III) that can be compared with the magnetic results obtained [9–25].

Regarding the optical aspect, Ln(III)-based materials manifest exceptional lumines-
cence characteristics, with high emission quantum yields, narrow bandwidths, ligand-
induced large Stokes shifts, long-lived emission, and ligand-dependent luminescence
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sensitization [26]. Nevertheless, due to the limited extinction degree of the f –f transitions
prohibited by Laporte rules [27], the Lanthanide ions must be excited indirectly by the
energy transfer proceedings of organic ligands known as antenna that have a large ex-
tinction degree (ε). Then, the excitation energy is transmitted as characteristic narrow
f –f emission bands in the visible and/or in near-infrared (NIR) spectral ranges [28]. Lan-
thanide complexes emitting in the NIR region present interesting applications as solid-state
laser materials [29], in telecommunications [30], in optical communication systems [31], in
optical amplifiers [32], and in fluoroimmunoassay [33,34]. The intense luminescence from
complexes emitting in visible region as Eu(III) and Tb(III) has generated the development
of multiple applications [35–40].

Recently, we have reported three series of dinuclear lanthanide compounds with
formulas [Ln2(2-FBz)4(NO3)2(phen)2] [41], [Ln2(µ2-9-AC)4(9-AC)2(bpy)2] [42], and [Ln2(µ-
2-FBz)2(2-FBz)4(terpy)2]·2(H-2-FBz)·2(H2O) [43]. In these series, Nd, Er, and Yb dinuclear
compounds exhibit field-induced SMM behavior and NIR-luminescence; thus, they can
be considered as multifunctional compounds. We aim to enhance and expand the results
obtained in the synthesis of new complexes and induce structural change that may cause
variations in magnetic and luminescence behavior. Another reason that led us to such an
investigation is the scarce lanthanide metals with 9-anthracenecarboxylate compounds
described in the literature. According to the Cambridge Structural Database (CSD) [44],
barely twenty-two coordination complexes have been structurally characterized with only
lanthanide metals and 9-anthracenecarboxylate: one Yb(III) compound with mononuclear
structure, [45] twenty dinuclear compounds with different lanthanide metals where ten of
them are reported by us [41–43] and the other ten are described by Liu [46–48], Wang [49],
and Wu [50], and finally one dinuclear compound of Er(III) showing monodimensional
structure [45]. Thus, this time, we have combined the ligand 2,2′:6′,2′′-terpyridine (TPY), 9-
anthracenecarboxylic acid (9-Hanthc), and lanthanide sales. This has allowed the isolation
of five new mononuclear complexes of formula [Eu(9-anthc)3(TPY)(DMF)]·H2O (1Eu)
where Eu(III) is ennea-coordinated or [Ln(9-anthc)3(TPY)(H2O)]·H2O·DMF (Ln = Tb (2Tb),
Dy (3Dy), Er (4Er), and Yb (5Yb)) where the Ln(III) ions are octa-coordinated. The new
compounds were characterized by X-ray diffraction, and their magnetic and luminescent
properties were studied.

2. Results and Discussion
2.1. X-ray Crystal Structures

Complexes 1Eu–5Yb present two different structures depending on the atomic radii
of the lanthanide ion. For the largest Eu(III), the lanthanide ion is ennea-coordinated and
presents a type I structure. On the other hand, for small lanthanides, the coordination
is eight and presents a type II structure. As complexes 2Tb–5Yb are isostructural, only
the structures of compounds 1Eu and 4Er will be discussed in detail. The most relevant
parameters for single crystal determination are collected in Table 1 in the Materials and
Methods section.

2.1.1. Structural Type I: [Eu(9-anthc)3(TPY)(DMF)]·H2O (1Eu)

Complex 1Eu of formula [Eu(9-anthc)3(TPY)(DMF)]·H2O crystallizes in the monoclinic
space group P21/c. A partially labeled plot of the Eu(III) mononuclear complex is presented
in Figure 1a. Selected bond distances are listed in Table 2. The structure of 1Eu consists of
[Eu(9-anthc)3(TPY)(DMF)] molecules in which each Eu(III) ion is ennea-coordinated with
a EuN3O6 coordination environment formed by a tridentate TPY ligand, two chelating
9-anthc ligands, one monodentate 9-anthc ligand, and a coordinated DMF solvent molecule.
Three of the coordination sites around the central atom are occupied by the N1, N2, and
N3 atoms of a TPY ligand, with Eu–N bond distances equal to 2.552 (3), 2.606 (3), and
2.545 (3) Å, respectively. In addition, the Eu(III) central atom is coordinated to five oxygen
atoms from three different 9-anthc ligands. Two of the 9-anthc ligands show a chelating
coordination mode with Eu1–O1 and Eu1–O2 bond distances of 2.421 (3) and 2.574 (3) Å and
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Eu1–O3 and Eu1–O4 distances of 2.465 (3) and 2.599 (3) Å, while the third 9-anthc ligand
is coordinated in the monodentate mode with an Eu1–O5 bond distance of 2.279 (3) Å.
The ennea-coordinated sphere of Eu(III) is completed by the O7 oxygen atom from a DMF
solvent molecule with an Eu1–O7 bond distance of 2.410 (3) Å.
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Figure 1. (a) Structure of 1Eu partially labeled. Hydrogen atoms are omitted for clarity. Color code:
gray = C, blue = N, red = O and pink = Eu. (b) Coordination polyhedron of the Eu(III) ion in 1Eu.

Table 1. Crystallographic data and data collection details for the X-ray structures of 1Eu–5Yb.

1Eu 2Tb 3Dy 4Er 5Yb

Formula C63H47EuN4O8 C63H49N4O9Tb C63H49DyN4O9 C63H49ErN4O9 C63H49N4O9Yb
FW, g·mol−1 1140.01 1164.99 1168.56 1173.32 1179.10

System monoclinic monoclinic monoclinic monoclinic monoclinic
Space group P21/c P21/n P21/n P21/n P21/n

a, Å 10.3824 (6) 13.9192 (8) 13.9408 (7) 11.262 (1) 11.2612 (4)
b, Å 33.0002 (17) 25.6243 (15) 25.5845 (12) 17.3804 (16) 17.3724 (5)
c, Å 14.9696 (8) 14.5847 (9) 14.5560 (6) 26.931 (2) 26.9285 (9)

β, deg 99.981 (2) 98.792 (2) 98.892 (2) 90.316 (3) 90.313 (1)
V, Å3 5051.3 (5) 5140.8 (5) 5129.3 (4) 5271.3 (8) 5268.1 (3)

Z 4 4 4 4 4
T, K 100 (2) 100 (2) 100 (2) 100 (2) 100 (2)

λ(MoKα), Å 0.71073 0.71073 0.71073 0.71073 0.71073
Dcalc, g·cm−3 1.499 1.505 1.513 1.479 1.487

µ, mm−1 1.306 1.441 1.523 1.656 1.839
F(000) 2320 2368 2372 2380 2388

Collected 48902 145691 64730 10859 25695
Unique (Rint) 9615 (0.06) 15595 (0.024) 10446 (0.043) 10859 (0.053) 6774 (0.041)
parameters 693 725 699 692 715

R1 0.0449 0.0188 0.0230 0.0367 0.0312
wR2 0.0787 0.0535 0.0668 0.0756 0.0841

Goodness of fit 1.18 0.97 0.99 1.18 1.09

Table 2. Selected bond distances (Å) for 1Eu–5Yb.

1Eu 2Tb 3Dy 4Er 5Yb

Ln1–O1 2.421 (3) 2.2336 (11) 2.2156 (16) 2.199 (2) 2.176 (4)
Ln1–O2 2.574 (3) - - - -
Ln1–O3 2.465 (3) 2.3974 (10) 2.3772 (17) 2.358 (2) 2.336 (3)
Ln1–O4 2.599 (3) 2.4660 (9) 2.4552 (15) 2.430 (2) 2.407 (3)
Ln1–O5 2.279 (3) 2.2789 (11) 2.2698 (16) 2.269 (2) 2.256 (3)
Ln1–O6 2.410 (3) 2.4196 (11) 2.4084 (17) 2.344 (2) 2.314 (3)
Ln1–N1 2.552 (3) 2.5154 (10) 2.511 (2) 2.488 (3) 2.472 (3)
Ln1–N2 2.606 (3) 2.5522 (11) 2.5374 (19) 2.479 (2) 2.457 (3)
Ln1–N3 2.545 (3) 2.5098 (12) 2.497 (2) 2.508 (3) 2.489 (3)
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The estimation of the coefficients of distortion of the EuN3O6 coordination polyhe-
dron for 1Eu in reference to the ideal nine vertex polyhedral was made by employing the
continuous shape measure theory and SHAPE software [51,52], showing that the N3O6 dis-
position for 1Eu is intermediate between different coordination polyhedra. The best SHAPE
estimation led to Muffin (MFF-9, C2v), spherical-capped square antiprism (CSAPR-9, C4v),
and spherical-tricapped trigonal prism (TCTPR-9, D3h) geometries with continuous shape
measure (CShM) values of 1.678, 2.006, and 2.407, respectively. A graphical representation
of the metal coordination geometry of 1Eu is shown in Figure 1b.

The coordination of [Eu(9-anthc)3(TPY)(DMF)] forms a hydrogen bond with a molecule
of water through the hydrogen atom H1W and the oxygen atom O6 of the monodentate 9-
anthc ligand (Supplementary Materials, Table S2). In addition, each [Eu(9-anthc)3(TPY)(DMF)]
molecule forms a π–π type interaction with a neighboring molecule between the ring con-
taining the N1 atom (Cg(1) from the Supplementary Materials, Table S3) and the one
containing the N2 atom (Cg(2) from the Supplementary Materials, Table S3) of the respec-
tive TPY ligands. In addition, the mononuclear compound also forms an intermolecular
interaction of the same nature with another neighboring molecule via two anthracene
groups of the two corresponding 9-anthc ligands containing O1–O2 oxygens (contact Cg(4)-
Cg(4)’ from the Supplementary Materials, Table S3). The sum of the two intermolecular
contacts forms chains of [Eu(9-anthc)3(TPY)(DMF)] units along the direction [110] of the
crystalline network with Eu(III)· · ·Eu(III) distances of 8.748 Å (Figure 2).
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2.1.2. Structural Type II: [Ln(9-anthc)3(TPY)(H2O)]·H2O·DMF (Ln = Tb (2Tb), Dy (3Dy),
Er (4Er) and Yb (5Yb))

Complexes 2Tb–5Yb with formula [Ln(9-anthc)3(TPY)(H2O)]·H2O·DMF (Ln = Tb
(2Tb), Dy (3Dy), Er (4Er), and Yb (5Yb)) crystallize in the monoclinic space group P21/n.
Selected bond distances for compounds 2Tb–5Yb are listed in Table 1. As an example of
the structural type II, 4Er will be described below (Figure 3).

The structure of compound 4Er consists of [Er(9-anthc)3(TPY)(H2O)] molecules in
which each Er(III) ion is octa-coordinated. The Er(III) ion has an ErN3O5 octa-coordination
environment formed by a tridentate TPY ligand, a chelating 9-anthc ligand, two monoden-
tate 9-anthc ligands, and a water molecule. The octa-coordinated environment of the Er(III)
ion corresponds to four oxygen atoms of three different 9-anthc ligands (O1 and O5 from
two monodentate 9-anthc ligands and O3 and O4 from the chelating 9-anthc ligand, with
Er-O average distance of 2.314 Å), three nitrogen atoms of the TPY ligand (N1, N2 and
N3, with an average Er–N distance of 2.492 Å), and the oxygen atom from the coordinated
water molecule (O7, Er1–O7 bond distance of 2.344 Å).
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The estimation of the coefficient of distortion of the ErN3O5 coordination polyhe-
dron for 4Er in reference to the ideal eight vertex polyhedral was made by employing
the continuous shape measure theory and SHAPE software and shows that the N3O5
distribution in 4Er is intermediate between different coordination polyhedra. The best
SHAPE estimation led to triangular dodecahedron (TDD-8, D2d), biaugmented trigonal
prism (BTPR-8, C2v), or Johnson-biaugmented trigonal prism (JBTP-8, C2v) geometries
with continuous shape measure (CShM) values of 2.342, 2.426, and 2.516, respectively.
A graphical depiction of the metal coordination geometry of 4Er is shown in Figure 3b.
The result of the estimation of the coefficient of distortion of the LnN3O5 coordination
polyhedron for 2Tb–5Yb in reference to the ideal eight vertex polyhedral are reported in
Table S1 in the Supplementary Materials.

Compound 4Er presents an intramolecular hydrogen bond between H7A from the
water molecule coordinated to Er(III) and O6 from one of the 9-anthc ligands coordinated
in the monodentate mode. On the other hand, the other hydrogen of this H2O molecule,
H7B, forms another H bond with the crystallization water molecule (O1W). At the same
time, both hydrogen atoms of this water molecule also form hydrogen bonds, H1WA with
O2 of a monodentate 9-anthc ligand and H1WB with O1D from a DMF crystallization
molecule (Figure 4). The contact distances and angles for compounds 2Tb–5Yb are listed
in Table S2 from the Supplementary Materials.
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The compounds also present π–π stacking interactions between different aromatic
rings. One of them is given within each molecule [Ln(9-anthc)3(TPY)(H2O)] between the
TPY ligand rings (Cg(1) from the Supplementary Materials, Table S3) and the anthracene
group of the monodentate ligand containing the oxygen atoms O1 and O2 (Cg (6)′or Cg (7)′
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from the Supplementary Materials, Table S3). The intermolecular contacts vary slightly
according to the Ln(III) ion. In the case of the Tb(III) and Dy(III) compounds, the TPY
rings of each mononuclear unit interact with two different neighbor molecules via the
corresponding terpyridine ligands. Thus, there is an interaction between the ring that
contains the N1 atom with the ring that contains the N2 atom of a neighboring molecule
(Cg (1)–Cg (2)′ from the Supplementary Materials, Table S3) and another supramolecular
contact of the TPY ligand ring that contains the N3 nitrogen with the same ring of another
adjacent molecule (contact Cg (3)–Cg (3)′ from the Supplementary Materials, Table S3).
On the other hand, the compounds [Ln(9-anthc)3(TPY)(H2O)] with Ln (III) = Er and Yb
have a single supramolecular contact type π–π, which is also through the TPY ligands,
aromatic ring containing the N1 atom of the reference molecule with the ring containing
the nitrogen N3 of the neighboring molecule (Supplementary Materials, Figure S1).

2.1.3. Structural Discussion

The key to obtaining the structural types I and II for the described compounds by
using the same synthetic method is the contraction of the ionic radius within the series of
the lanthanide elements. As described, for the Eu(III) ion, with the largest ionic radius, the
nona-coordinate coordination sphere is due to the coordination of three carboxylate ligands
9-anthc, two in chelating mode and one in monodentate mode, and for the coordination
of a DMF molecule. For the Tb(III), Dy(III), Er(III), and Yb(III) ions, the compounds have
been obtained with an octa-coordinate environment since the decrease in ionic radius
causes two of the three 9-anthc anions to be coordinated in monodentate mode and the last
to be coordinated in chelating mode. This structural change is also accompanied by the
coordination of a molecule of water instead of a DMF molecule.

2.2. Magnetic Properties
2.2.1. dc Magnetic Studies

Magnetic susceptibility (χM) data on polycrystalline powder samples of 1Eu–5Yb
were collected under fields of 3000 G (300–30 K) and 200 G approximately (30–2 K). The
data are represented as χMT vs. T plot in Figure 5a.
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At 300 K, the χMT values for compounds 1Eu–5Yb are 1.16, 11.55, 12.15, 9.52, and
2.05 cm3 mol−1 K, respectively. These data are in good agreement with the expected
room temperature values for the corresponding Ln(III) centers [53]. In the case of the 1Eu
compound, the non-zero value of χMT reveals the presence of excited states that are very
close in energy to the fundamental one [54]. For compounds 2Tb and 4Er, the χMT values
remain practically constant as the samples are cooled to T ≈ 150 K. Below this temperature,
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the susceptibilities gradually decrease to values of χMT = 9.12 cm3 mol−1 K a T = 11 K for
2Tb and χMT = 7.68 cm3 mol−1 K a T = 30 K for 4Er. From these temperatures, the fall of
the χMT values accelerates to reach minimum values equal to 5.69 cm3 mol−1 K for 2Tb
and 4.70 cm3 mol−1 K for 4Er at T = 2 K. For the 3Dy complex, it is observed that the χMT
values are practically constant when decreasing the temperature. From T = 8 K, the χMT
values decrease quickly to χMT = 9.28 cm3 mol−1 K at 2 K.

Magnetization measurements at 2 K were also performed for complexes 1Eu–5Yb
and are depicted in Figure 5b. The magnetization saturation under an applied field
of 5T is only observed in compounds 3Dy and 5Yb, with M values equal to 4.75 and
1.85 NµB, respectively.

2.2.2. ac Magnetic Studies

Magnetic susceptibility measurements were performed on compounds 2Tb–5Yb at a
4 G ac field oscillating between 10 and 1488 Hz. Under zero dc magnetic field, no maxima
for the in-phase (χM

′) and out-of-phase (χM
′′) susceptibility components were observed for

any of the compounds, which was probably due to an important quantum tunneling of the
magnetization (QTM) process present in these systems. To suppress the QTM relaxation
process, an optimal external dc field of 1000G was applied for the complexes 2Tb–5Yb after
checking with low fields and basing on recent works reported by the authors [41–43]. Then,
slow relaxation of the magnetization was revealed (Figure 6 and Supplementary Materials,
Figure S2) for the compounds 3Dy–5Yb [55,56].
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Figure 6. Plot of the ac susceptibility νs. frequency (out of phase susceptibility) for (a) 3Dy, (d) 4Er,
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ln(τ) vs. T−1 for (c) 3Dy, (f) 4Er, and (i) 5Yb. Red and blue lines represent the fitting using the
Arrhenius equation and a combination of direct relaxation processes (see text).

For 2Tb, even under applied dc fields up to 4000 G, no frequency or thermal depen-
dency of χM

′ and/or χM
′′ were observed.

The ac magnetic susceptibility of compound 3Dy has been measured between 2 and
14 K. Figure 6a shows the out-of-phase component of the susceptibility (χM

′′) vs. the
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frequency of the ac field, with maxima for temperatures below 6.4 K. The curves measured
at temperatures between 6.2 and 3.4 K have been adjusted to the generalized Debye
equation [57]. The corresponding Cole–Cole diagrams (Figure 6b) show slightly elongated
semi-circular shapes, with α values between 0.13 and 0.06. The low distribution of the
relaxation times (Figure 6c from the Supplementary Materials, Table S4) indicates the
presence of a single relaxation process. The fitting of the thermal dependence of τ with
the Arrhenius law (Orbach relaxation mechanism) for temperatures higher than 4.5 K
reveals values of τ0 = 1.43 × 10−6 s and Ueff = 21.7 cm−1. To fit the values throughout the
range of temperatures, equation (Equation (1) was used, which also takes into account a
direct relaxation. The obtained parameters were τ0 = 8.47 × 10−7 s, Ueff = 24.0 cm−1, and
A = 30 K−1 s−1.

τ−1 = τ0
−1 [exp(−Ueff/kBT)] + AT (1)

For compound 4Er, the representation of χM
′′ as a function of the frequency between

temperatures of 5.0 and 1.8 K shows maxima for temperatures below 2.7 K (Figure 6d). The
fitting of the Cole–Cole diagrams (Figure 6e) shows a narrow distribution of relaxation
times with α values between 0.10 and 0.05 (from the Supplementary Materials, Table S5).
The relaxation time follows a linear dependence at temperatures above 2.3 K and can be
fitted according to the Arrhenius law. The parameters obtained were τ0 = 8.68 × 10−7 s
and Ueff = 9.33 cm−1 (Figure 6f). On the other hand, the data can be fitted throughout
all the range of temperatures, taking into account Orbach and direct relaxation processes
(Figure 6f). The parameters obtained from this second fitting are τ0 = 4.67 × 10−8 s,
Ueff = 15.4 cm−1, and A = 903 K−1 s−1.

Compost 5Yb shows a maxima of χM
′′ frequency dependents for temperatures lower

than 2.7 K (Figure 6g). The Cole–Cole plots for temperatures between 2.7 and 1.8 K
(Figure 6h) have a semi-circular shape. The fitting with the generalized Debye model
indicates a narrow distribution of the relaxation times (from the Supplementary Materials,
Table S6) with values of α between 0.12 and 0.24. Figure 6i shows the thermal dependence of
the relaxation times. For temperatures between 3.2 and 2.5 K, the τ values can be modeled
considering an Orbach relaxation mechanism with fitting parameters of τ0 = 7.94 × 10−6 s
and Ueff = 6.79 cm−1. At temperatures below 2.5 K, the values are deviated from linear-
ity, but they can be fitted considering a relaxation of the magnetization by Orbach and
direct processes. The parameter obtained are τ0 = 4.16 × 10−6 s, Ueff = 8.6 cm−1, and
A = 323 K−1 s−1.

2.3. Photoluminescence Properties

The emission properties of 1Eu–5Yb were studied in solid state at r.t. and 77 K.

2.3.1. Visible Emission

When compound 1Eu is excited at λex = 319 nm, the resulting emission spectrum
shows the characteristic Eu(III) transitions centered at 578 nm (5D0 → 7F0), 591 nm
(5D0 → 7F1), 616 nm (5D0→ 7F2), and 692 nm (5D0→ 7F4), as well as the residual emission
of the 9-anthc ligand as a broad band centered at 470 nm (Figure 7a). Meanwhile, the
emission spectra of compounds 2Tb and 3Dy (Supplementary Materials, Figure S3) only
show a broad band between 400 and 500 nm that corresponds to the 9-anthc ligand. This
may be because there is a water molecule directly bonded to the lanthanide atom, which
normally quenches the luminescence of such metals.
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2.3.2. NIR Emission

Complex 4Er shows a principal peak corresponding to the 4I13/2 → 4I15/2 transition
with a maximum at 1580 nm (Figure 7b). Decreasing the temperature to 77 K does not
permit us to increase sufficiently the resolution to have access to the crystal field splitting.
Compound 4Er, when measured at room temperature and at 77 K under an excitation
wavelength of 360 nm, shows broad peaks of residual emission of the ligands between 390
and 550 nm, in the absorption range of the 9-anthc ligand (Figure S4). As can be seen in
Figure 7b, under this same excitation energy and at T = 77 K, the compound also emits in
the area of the near IR, with a maximum of 1580 nm, which correspond to the transition
4I13/2 → 4I15/2.

Complex 5Yb shows the characteristic Yb(III) transition emission profile, with the
principal transition 2F5/2→ 2F7/2 at 1005 nm (Figure 7c, black spectrum). When decreasing
the temperature to 77 K (Figure 7c, red line), the emission band splits into four bands, with
the maxima at 980, 1005, 1014, and 1035 nm, which correspond to the four expected Stark
levels for a J = 7/2 in low symmetry [56,58]. This transition offers us information of the
crystal field energy diagram of the ytterbium ion in complex 5Yb and permits us to estimate
the energy between the ground and the first excited mJ states of the fundamental 2F7/2 level
of about 210 cm−1 (Figure 7d). The difference between this value and the effective energy
barrier value obtained from the Arrhenius fit of the ac data (≈7.0 cm−1) confirms that
relaxation of the magnetization takes place by direct and/or Raman processes instead of
only the Orbach one [59].

3. Experimental Section
3.1. Starting Materials

Ln(NO3)3·xH2O salts, 9-anthracenecarboxylic acid (9-Hanthc), 2,2′:6,2′′-terpyridine
(TPY), methanol, and N,N-dimethylformamide were obtained from Sigma Aldrich and
used without further purification.
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3.2. General Syntheses

Compounds 1Eu–5Yb have been synthetized by following the same experimental
procedure. To a solution consisting of 1.5 mmol 9-Hanthc and 0.3 mmol TPY in 15 mL
of MeOH, a solution of 10 mL DMF containing 0.25 mmol of Ln(NO3)3·xH2O is added
(Ln(III) = Eu (1Eu), Tb (2Tb), Dy (3Dy), Er (4Er), and Yb (5Yb). In all the cases, slow
evaporation of the methanol/dimethylformamide solution of the product gave prism-
shaped yellow monocrystals suitable for X-ray determination.

Data for 1Eu: Selected IR bands (KBr pellet, cm−1): 3418 (m, υH2O(O-H)), 1650 (s,
υas(COO-)a), 1597 (vs, υas(COO-)b), 1574 (vs, υ(C = N)), 1436 (m, υs(COO-)b), 1386 (s,
υs(COO-)a). C63H47EuN4O (1140.01): Calc. (%) C 66.37, H 4.15, N 4.91; Found C 67.1, H 4.5,
N 4.8.

Data for 2Tb: Selected IR bands (KBr pellet, cm−1): 3440 (s, υH2O(O-H)), 1664 (m,
υas(COO-)a), 1598 (s, υas(COO-)b), 1556 (s, υ(C = N)), 1443 (m, υs(COO-)b), 1385 (m,
υs(COO-)a). C63H49N4O9Tb (1164.99): Calc. (%) C 64.95, H 4.24, N 4.81; Found C 64.9,
H 4.6, N 4.8.

Data for 3Dy: Selected IR bands (KBr pellet, cm−1): 3444 (m, υH2O(O-H)), 1659 (s,
υas(COO-)a), 1596 (s, υas(COO-)b), 1559 (m, υ(C = N)), 1445 (m, υs(COO-)b), 1385 (m,
υs(COO-)a). C63H49DyN4O9 (1168.56) Calc. (%) C 64.75, H 4.23, N 4.79; Found C 64.5,
H 4.3, N 4.7.

Data for 4Er: Selected IR bands (KBr pellet, cm−1): 3442 (s, υH2O(O-H)), 1675 (s,
υas(COO-)a), 1598 (vs, υas(COO-)b), 1535 (s, υ(C = N)), 1448 (s, υs(COO-)b), 1385 (m,
υs(COO-)a). C63H49ErN4O9 (1173.32): Calc. (%) C 64.49, H 4.21, N 4.77; Found C 64.3,
H 4.3, N 4.9.

Data for 5Yb: Selected IR bands (KBr pellet, cm−1): 3455 (m, υH2O(O-H)), 1658 (vs,
υas(COO-)a), 1596 (vs, υas(COO-)b), 1555 (s, υ(C = N)), 1452 (s, υs(COO-)b), 1384 (m,
υs(COO-)a).C63H49N4O9Yb (1179.10): Calc. (%) C 64.17, H 4.19, N 4.75; Found C 63.9, H 4.4,
N 4.8.

(a) is 9-anthcencarboxylate in monodentate coordination mode and (b) is 9-anthcen-
carboxylate in chelate coordination mode.

3.3. Physical Measurements

Elemental analyses of the compounds were done at the Serveis Científics i Tecnològics
of the Universitat de Barcelona.

Infrared spectra (4000–400 cm−1) were registered from KBr pellets on a Perkin-Elmer
380-B spectrophotometer.

Luminescence spectra were registered on a Horiba Jobin Yvon SPEX Nanolog fluores-
cence spectrophotometer at rt. and at 77 K.

Magnetic measurements were done on polycrystalline samples in a Quantum Design
MPMS-XL SQUID magnetometer at the Unitat de Mesures Magnètiques (CCiTUB) of the
Universitat de Barcelona. To estimate the diamagnetic corrections, Pascal’s constants were
used and subtracted from the experimental susceptibilities to give the corrected molar
magnetic susceptibilities.

3.4. X-ray Crystallography

Crystal data, conditions retained for the intensity data collection, and some features
of the structure refinements for 1Eu–5Yb are summarized in Table 2. Crystals of 1Eu–5Yb
were selected and mounted in air on a D8VENTURE (Bruker) diffractometer with a CMOS
detector. All the structures were refined by the least-squares method. Intensities were
collected with a multilayer monochromated Mo-Kα radiation. Lorentz polarization and
absorption corrections were made in all the compounds. The structures were solved by
direct methods, using the SHELXS-97 software [60] and refined by the full-matrix least-
squares method, using the SHELXL software [61]. The non-H atoms were located in
successive difference Fourier syntheses and refined with anisotropic thermal parameters
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on F2. In the case of H atoms, isotropic temperature factors have been assigned as 1.2 or
1.5 times of the respective parent.

CCDC 2095083 (for 1Eu), 2095084 (for 2Tb), 2095085 (for 3Dy), 2095081 (for 4Er), and
2095082 (for 5Yb) contain the supplementary crystallographic data for this paper. These
data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html,
accessed on 7 July 2021.

4. Conclusions

Here, we have presented the structural, magnetic, and luminescence studies of new
five mononuclear Ln(III) complexes by employing 9-anthracenecarboxylic acid (9-Hanthc)
and 2,2′:6,2′′-terpyridine ligands. We have used a straightforward room-temperature
synthetic procedure, and the viability of the experimental processes adopted to obtain
low-nuclear coordination compounds with Ln(III) has been corroborated.

Structurally, the decrease on the ionic radii across the 4f row is translated into
two different structures obtained with formulae [Eu(9-anthc)3(TPY)(DMF)]·H2O (1Eu)
where Eu(III) is ennea-coordinated or [Ln(9-anthc)3(TPY)(H2O)]·H2O·DMF (Ln = Tb (2Tb),
Dy (3Dy), Er (4Er), and Yb (5Yb)) where Ln(III) are octa-coordinated.

From the same stoichiometric relationship between Ln (III) salt, 9-antracencarboxylic
acid, the secondary ligand 2,2′:6′,2′′-terpyridine (3 N-donors atoms), favors the production
of mononuclear structures while the ligands 2,2’-bipyridine or 1,10-phenanthroline (2 N-
donors atoms) favor the dinuclear structures.

To the best of our knowledge, the complexes 1Eu–5Yb reported in this work are
the first examples of mononucleares complexes of lanthanide(III) in combination with
secondary organic ligands.

Dynamic magnetic measurements indicate field-induced SMM behavior for complexes
3Dy, 4Er, and 5Yb.

Not all the compounds discussed in this work show the f –f emission luminescence.
The Eu(III) (1Eu), Tb(III) (2Tb), and Dy(III) (3Dy) compounds emit in the visible range,
while the Er(III) (4Er) and Yb(III) (5Yb) compounds emit in the NIR range.

Thus, compounds 4Er and 5Yb present both field-induced SMM and luminescent
behaviors; therefore, they can be considered as multifunctional compounds with possible
potential biomedical applications.

The results reported certainly will attract the interest of scientists working in the area
of multifunctional lanthanide compounds.

More and further investigations in this area with other lanthanide metal ions and
chiral organic ligands could be very interesting. Such investigations are under development
in our laboratories with promising results.
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