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Abstract 19 

SARS-CoV-2 variants are emerging worldwide and monitoring them is key in providing 20 

early warnings. Here, we summarize the different analytical approaches currently used 21 

to study the dissemination of SARS-CoV-2 variants in wastewater and discuss their 22 

advantages and disadvantages. We also provide preliminary results of two sensitive and 23 

cost-effective approaches: variant-specific reverse transcription-nested PCR assays and 24 

a non-variant-specific amplicon deep sequencing strategy that targets three key regions 25 

of the viral spike protein. Next-generation sequencing approaches enable the 26 

simultaneous detection of signature mutations of different variants of concern in a 27 

single assay and may be the best option to explore the real picture at a particular time. 28 

Targeted PCR approaches focused on specific signature mutations will need continuous 29 

updating, but are sensitive and cost-effective. 30 

 31 

Keywords: SARS-CoV-2, variants of concern (VOCs), variants of interest (VOIs), signature 32 

mutations, wastewater-based epidemiology (WBE), next-generation sequencing (NGS) 33 

 34 

 35 

Introduction 36 

Wastewater surveillance for SARS-CoV-2 has proved to be useful in monitoring the 37 

evolution of the COVID-19 pandemic. However, new emerging variants are posing new 38 

challenges. The SARS-CoV-2 variants α, β, γ and δ (also known as lineages B.1.1.7, 39 

B.1.351, P.1 and B.1.617.2, respectively) were first detected in the United Kingdom, 40 

South Africa, Brazil and India, respectively, and were immediately considered to be 41 

variants of concern (VOCs). Such variants, which have been associated with the 42 

fluctuations seen with the pandemic waves, possess mutations that affect viral 43 

infectivity and antigenicity. These mutations are mainly located in the gene encoding 44 

the viral spike (S) protein. In particular, mutations leading to the E484K and N501Y 45 

substitutions within the receptor-binding domain of the S protein have been 46 

demonstrated to give the S protein a greater affinity for the human ACE2 receptor 47 

(Harvey et al., 2021). The commonly applied PCR methods used to quantify the 48 

concentration of the virus in environmental samples use specific primers and probes 49 

targeting the nucleocapsid (N), envelope (E) or RNA-dependent RNA polymerase (RdRp) 50 
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regions. However, as stated above, the VOCs and the new variants of interest (VOIs) 51 

have most of their signature mutations within the S gene. Figure 1 summarizes the 52 

signature mutations identified in each VOC and VOI. 53 

Although the combination of genome sequence analysis of samples from COVID-19 54 

patients with epidemiological datasets has produced reliable assessments of the extent 55 

of SARS-CoV-2 transmission in the community (Oude Munnink et al., 2020), the time lag 56 

between infection and symptoms and the future decrease in sequencing will add further 57 

delays compared to the expected immediacy of the results from wastewater 58 

surveillance. At the beginning of October 2020, several new SARS-CoV-2 variants started 59 

to circulate globally (CDC, 2021). At that moment, the minimum number of clinical 60 

samples that had to be sequenced to find the α variant was 400, assuming that only 5% 61 

of the positive clinical samples had been sequenced and that the prevalence of this VOC 62 

in the population was 5% (Martin et al., 2020). Thus, the analysis of SARS-CoV-2 63 

genomes sequenced from clinical samples is limited to the fraction of the clinical 64 

samples subjected to whole-genome sequencing.  65 

Monitoring the circulation of variants in wastewater has its caveats when dealing with 66 

mixtures of variants and/or the presence of inhibitors. Although the environmental 67 

surveillance of other epidemic viruses (like noroviruses) have been observed to be 68 

sensitive in detecting variants (Kazama et al., 2017), the consensus sequences obtained 69 

from wastewater samples might lead to artificial genomes that do not represent an 70 

existing virus. However, SNPs can be linked to particular variant clusters or clades and 71 

give information about SARS-CoV-2 variants circulating in a region (Izquierdo-Lara et al., 72 

2021). Thus, the study of the viral RNA sequences found in wastewater is important to 73 

understand viral transmission patterns and to establish an alert system for new SARS-74 

CoV-2 variants.  75 

 76 

Recent trends in studies on SARS-CoV-2 variants in wastewater samples 77 

A recently published study using the EU Sewage Sentinel System for SARS-CoV-2 78 

provided an extensive report of “The HERA Incubator” (European Commission, 2021), 79 

with next-generation sequencing (NGS) information about the diversity of SARS-CoV-2 80 

variants and their associated mutations at the community level. It determined the 81 

relative abundance of each VOC based on the abundance of reads associated with 82 
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certain amino acid mutations (Gawlik et al., 2021). The categorization of the mutations 83 

as unique or shared was based on the percentage of the sequences for associated 84 

mutations submitted to GISAID. 85 

 86 

Quantitative RT-PCR based approaches 87 

New quantitative reverse transcription PCR (RT-qPCR) protocols targeting specific 88 

mutations or deletions have been described to differentiate between SARS-CoV-2 89 

variants. The first multiplex RT-qPCR assay was published by Vogels et al. (2021), which 90 

uses the deletion within the ORF1a gene (that exists in most of the VOCs) and the 91 

HV69/70 deletion (present in the α variant) to differentiate this variant from the rest. 92 

Other research groups have developed allele-specific RT-qPCRs for the α variant 93 

(Carcereny et al., 2021; Graber et al., 2021; Lee et al., 2021; Wurtzer et al., 2021) or 94 

multiplex assays for specific S protein mutations (L452R, E484K and N501Y) (Wang et al., 95 

2021). These RT-qPCR strategies can be used when there is already a high prevalence of 96 

the VOC in the community, or in other words, when SARS-CoV-2 RNA levels, measured 97 

with assays targeting the N gene for example, are high. Using the same basis, reverse 98 

transcription droplet digital PCR (RT-ddPCR) is an alternative that might be more 99 

sensitive and allows the discrimination of closely related sequences (Heijnen et al., 2021; 100 

Ciesielski et al., 2021; Abachin et al., 2017). Heijnen et al. (2021) designed an RT-ddPCR 101 

assay using two different probes to discriminate between wild-type sequences and 102 

sequences containing the N501Y signature mutation (present in the α, β, γ and θ 103 

variants) in wastewater.  104 

 105 

Amplicon sequencing based approaches 106 

Reverse transcription-nested PCR (RT-nPCR) assays followed by Sanger sequencing 107 

and/or NGS analysis have been published for SARS-CoV-2 characterization. In October 108 

2020, Martin and collaborators designed an RT-nPCR approach followed by Sanger 109 

sequencing and NGS analysis of the amplified products from five different regions of the 110 

viral genome, which demonstrated changes in the predominance of the virus variants 111 

(Martin et al., 2020). La Rosa and co-workers adopted a similar approach involving 112 

conventional Sanger sequencing of the amplicon, but focusing only on key mutations of 113 

the S gene, which allowed a rapid screening of the SARS-CoV-2 variants (Rosa et al., 114 
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2021). Recently, another group from the UK used two different RT-nPCR assays targeting 115 

the RdRP and ORF8b gene regions for diagnostics and two primer sets targeting the S 116 

gene regions to discriminate between the α, β and γ variants (Wilton et al., 2021). 117 

Sequencing amplicons using NGS, commonly known as amplicon deep sequencing 118 

(ADS), has not only been applied to selected parts of the SARS-CoV-2 genome, but also 119 

to the whole genome as an informative method for detecting and identifying SARS-CoV-120 

2 variants. Several custom enrichment strategies based on designing primer sets 121 

coupled with Illumina-compatible library preparation kits have been used to sequence 122 

amplified fragments spanning the whole or near-complete genome of SARS-CoV-2 from 123 

environmental samples (Agrawal et al., 2021; Izquierdo-Lara et al., 2021; Ko et al., 2021; 124 

Martin et al., 2020; Wilton et al., 2021). Other studies have used the open source ARTIC 125 

protocol (Bar-or et al., 2021; Jahn et al., 2021; Pérez-Cataluña et al., 2021). This protocol, 126 

released in March 2020 and designed to sequence the virus from clinical samples, uses 127 

98 multiplexing PCR primer pairs to amplify the whole genome of the virus (Quick, 2020). 128 

Similarly, the commercial AmpliSeq SARS-CoV-2 Research Panel (Thermo Fisher 129 

Scientific) consists of two pools with amplicons ranging from 125 bp to 275 bp that 130 

covers > 99% of the SARS-CoV-2 genome and are compatible with either Illumina or Ion 131 

Torrent sequencing platforms (Agrawal et al., 2021). Another strategy based on NGS is 132 

the use of a commercial oligo-capture approach, like the Illumina Respiratory Virus Oligo 133 

Panel (Illumina, Inc.) or the VirCapSeq Enrichment Kit (Roche), which are designed to 134 

enrich the sequences of human respiratory or vertebrate viruses, respectively, and both 135 

have been applied to complex environmental samples prior to massive sequencing 136 

(Crits-Christoph et al., 2021, Martínez-Puchol et al., 2021).  137 

Based on the findings of available studies, the most abundant single nucleotide 138 

variations (SNVs) that have been identified in wastewater to date correspond to the 139 

most abundant SNVs in clinical samples (Crits-Christoph et al., 2021). The identification 140 

of individual or several signature mutations (Figure 1) located in close proximity to one 141 

another within the sample amplicon can help identify new SNVs in the population being 142 

analyzed. When using these approaches in environmental samples containing a mixture 143 

of variant sequences, there is a possibility of generating artificial genome 144 

reconstructions or artefacts during sequence assembly, which could result in unreliable 145 

VOC or VOI assignations.  146 
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The ADS of selected regions provides a more robust characterization of genomic variants 147 

compared to broader genome reconstructions within individual samples. When applied 148 

to clinical samples, long-read sequencing platforms have been proven to be efficient in 149 

obtaining highly accurate consensus-level sequences despite the higher error rates (Bull 150 

et al., 2020). However, to our knowledge, this approach has not been applied in the 151 

study of SARS-CoV-2 variants in sewage.  152 

 153 

Specific regions for the characterization of SARS-CoV-2 genomic variants 154 

Approaches targeting selected regions of the SARS-CoV-2 genome in which signature 155 

mutations are located generate more interest compared to the sequencing of other 156 

regions that are more conserved and less informative about genomic variants. To 157 

discriminate between variants, European authorities have established that sequencing 158 

should cover at least the S gene, particularly that encoding the entire N-terminal region 159 

and the receptor-binding domain (RBD) corresponding to amino acids 1 to 541 (ECDC 160 

and WHO, 2021).  Preliminary data obtained from two different approaches that were 161 

developed by our research group are detailed below. These approaches involved specific 162 

RT-nPCR assays targeting the signature mutations of the main VOCs and VOIs followed 163 

by Sanger sequencing (assay A and B) and an ADS strategy targeting three different 164 

regions of the S gene (assays A1, A2 and A3). Both approaches were tested in parallel in 165 

samples collected from February to May 2021 from wastewater treatments plants 166 

(WWTP) of different sizes located in Catalonia, northeast Spain. More information about 167 

the methodology is provided in the Supplementary Material. The results obtained are 168 

summarized in Table 1 and datasets generated are available in Zenodo under the DOI 169 

number https://doi.org/10.5281/zenodo.5497909. 170 

As indicated in Table 1, Sanger sequencing allowed the identification of signature 171 

mutations in the samples, in which the following were predominant: Del69/70, Del144, 172 

K417N and E484K. The ADS approach gave information about the genomic diversity in 173 

each sample, showing different signature mutation combinations that are compatible 174 

with different variants as expected in mixtures coming from wastewater samples. 175 

Interestingly, ADS indicated the moment when the α variant probably became 176 

predominant in Catalonia. From all the sequences obtained from the NGS analysis of the 177 

samples collected on 2nd February 2021, the Del69/70 mutation was present in 0.1%, 178 
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64.1% and 0% of the sequences obtained from WWTP1, WWTP2 and WWTP3, 179 

respectively. One week later, these percentages increased to 99.5%-100%, which was 180 

also observed in other signature mutations of the α variant (N501Y, A570D and D614G). 181 

These ADS results associated to α variant predominance agree with the information 182 

obtained from the Sanger sequencing. The detection of the signature mutations 183 

compatible with the α variant with Sanger sequencing was only possible in samples that 184 

showed a high percentage of the signature mutations of the α variant by ADS, or in other 185 

words, when these mutations were predominant among the mixture of sequences. The 186 

other signature mutation identified by ADS was S477N, which is characteristic of the ι 187 

variant.  188 

 189 

Variant study approaches: the pros and cons 190 

Different analytical approaches for the study of SARS-CoV-2 variants in wastewater 191 

samples have been developed, each one providing different types of information. In 192 

Table 2, the pros and cons of the different methodologies that have been used to date 193 

are listed. Depending on their intrinsic properties, a suitable application has been 194 

suggested.   195 

RT-qPCR and RT-ddPCR are designed to detect a signature mutation of a particular 196 

variant and are the fastest at providing results. Both methodologies are often designed 197 

as duplex or multiplex, allowing the simultaneous detection of other variants and giving 198 

an estimation of their percentages among other simultaneously occurring variants. 199 

Thus, they are appropriate for monitoring a specific variant in a region where it has 200 

spread and become established, since a certain proportion of the target variant with 201 

respect to the others is needed to be detected. RT-ddPCR might be more sensitive and 202 

precise than RT-qPCR, but it is also more expensive (Heijnen et al., 2021; Ciesielski et al., 203 

2021; Abachin et al., 2017).  204 

However, wastewater is a complex sample and it is likely to contain a mixture of variants. 205 

In a region where the predominant variant circulating within the population is not clear 206 

or where the situation is constantly changing, non-variant-specific methodologies might 207 

be more suitable since they do not need continuous updating of the assay. In such cases, 208 

RT-nPCR assays followed by Sanger sequencing of specific regions containing signature 209 
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mutations would be highly informative and would identify the predominant variant 210 

circulating in the population, as this type of sequencing gives information about the 211 

most abundant sequence amplified. Furthermore, RT-nPCR can use specific primers for 212 

a defined mutation that can target specific variants and regions where other mutations 213 

may occur. By contrast, if the objective is to perform an accurate characterization of the 214 

diversity present in wastewater, or in other words, identify different variants present in 215 

a mixture, NGS analysis would be more appropriate. The extensive information provided 216 

by NGS techniques, considered to be expensive, requires an exhaustive bioinformatics 217 

analysis and expertise.   218 

 219 

Conclusions 220 

Monitoring SARS-CoV-2 variants in wastewater is important for epidemiological 221 

surveillance in a community. Different analytical approaches have been developed to 222 

identify and study the dissemination of SARS-CoV-2 variants in wastewater samples, 223 

including RT-qPCR, RT-nPCR and NGS approaches. Due to their intrinsic nature, each 224 

method has pros and cons and provides different types of information that is important 225 

to consider when selecting the appropriate method for a specific objective. In a post-226 

pandemic scenario, when PCR-based assays and sequencing of clinical samples will 227 

decrease, the sequencing of a subset of wastewater samples may be enough to monitor 228 

the circulation of different VOCs and VOIs in a community. A representative sample 229 

needs to be collected regularly from a certain region to accurately estimate and monitor 230 

the prevalence of SARS-CoV-2 variants. Non-variant-specific techniques may be the best 231 

option to explore the real picture of all the circulating variants at a particular time, 232 

providing broader information that can contribute to community surveillance. This study 233 

provides guidance on available approaches for detecting and identifying circulating 234 

SARS-CoV-2 variants considering different scenarios. Further work on the application of 235 

massive sequencing of SARS-CoV-2 from environmental samples is needed towards 236 

producing longer fragments in order to avoid overlapping and chimera constructions, 237 

and also shorter bioinformatic processing for an effective early warning. 238 

 239 
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Method Pros Cons Applicability 
Low cost Different target sensitivities when multiplexing
Fast obtention of results                                                                              
Aproximation of the specific signature mutation vs. WT proportion in a 
mixture

Designed to detect a signature mutation of a specific variant only, thus 
not giving information about other possible variants also present in the 
sample

Detects rare mutations and discriminates closely related sequences

Fast obtention of results                                                                              
Aproximation of the specific signature mutation vs. WT proportion in a 
mixture

Designed to detect a signature mutation of a specific variant only, thus 
not giving information about other possible variants also present in the 
sample

Detects rare mutations and discriminates closely related sequences More expensive than RT-qPCR

More sensitive than RT-qPCR

Low cost Detecting only the predominant variant in the mixture 
Fast obtention of results Not quantitative
Easy interpretation of the results Cannot be effectively performed in conditions of low virus titres
May use primers specific targeting defined signature mutations

Shows the diversity of variants circulating Expensive
More extensive information about mutations in a larger range of the 
genome

Extensive bioinformatics analysis                                                              
Not quantitative
Labour intensive
Time consuming
Might lead to artificial consensus genomes
Cannot be effectively performed in conditions of low virus titres

NGS

Table 2. List of pros and cons of the different methodologies used in the study of SARS-CoV-2 variants in sewage samples.

Monitoring of a specific variant in a 
region where it has spread 

More sensitive monitoring of a specific 
variant in a region where it has spread 

Fast elucidation of the predominant 
variant circulating in a region

Characterization of variant diversity 
circulating in a region

RT-qPCR

RT-ddPCR

RT-nPCR + 
Sanger 

sequencing
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RT-nPCR ADS 

K417N                              
E484K 

Del69/70 (0.1%)                                      

S477N (14,6%)                                          
D614G (73.3%)                                         

N501Y A570D  D614G (26,7%)      

WWTP 2         

(183,517 inh.)

WWTP 3             

(68,860 inh.)

ND

ND

ND Del69/70 (100%)

Del69/70                       

Del144                              
E484K

Del69/70 (100%)                                        

N501Y A570D  D614G (100%)

Del69/70                        
Del144                 

K417N                  
E484K

Del69/70 (100%)

Del69/70 (100%)                         
D614G (100%)           

Del69/70 (99.6%)

ND

Del69/70        
Del144            
E484K

ND

ND

WWTP 1 

(1,497,767 inh.)

Table 1. Summary of SARS-CoV-2 concentrations (GC/L) detected using RT-qPCR and signature mutations detected using RT-nPCR 

and Sanger sequencing or ADS in a MiSeq platform. ND: not detected.

ND D614G (100%)

Del69/70             

Del144                  
Del69/70 (100%)                                        

ND
Del69/70 (64.1%)                                    

D614G (44.6%)                                           

N501Y A570D  D614G (55.4%)

K417N                     

E484K    
Del69/70 (99.8%)

Del69/70 (99.5%)                                 

N501Y A570D  D614G (100%)

E484K Del69/70 (99.5%)

Del69/70 (99.5%)

ND

Del69/70                
Del144                  

E484K

1,E+03 1,E+04 1,E+05 1,E+06

2/2/2021

9/2/2021

13/4/2021

20/4/2021

4/5/2021

1,E+03 1,E+04 1,E+05 1,E+06

2/2/2021

9/2/2021

13/4/2021

20/4/2021

4/5/2021

1,E+03 1,E+04 1,E+05 1,E+06

2/2/2021

9/2/2021

13/4/2021

20/4/2021

4/5/2021
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Figure 1. Spike protein mutations that can affect both tropism (receptor binding) and immune evasion and are therefore the focus of
surveillance. All mutations indicated are related to reference sequence (NC_045512). Variants of concern correspond to: !, ", # and $.
To date (15 July 2021) the rest are variants of interest. Orange ticks indicate deletions and yellow ticks aminoacid mutations.
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Highlights 

 Different approaches are available to study SARS-CoV-2 variants in wastewater 

 RT-qPCR and RT-ddPCR are sensitive and cost-effective methods for specific 

variants 

 Sanger sequencing can elucidate the predominant variant circulating in a region 

 NGS approaches have been widely implemented in variant community 

surveillance 
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