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Abstract 

Due to the complex nature of single-case experimental design data, numerous effect measures 

are available to quantify and evaluate the effectiveness of an intervention. An inappropriate 

choice of the effect measure can result in a misrepresentation of the intervention effectiveness 

and this can have far-reaching implications for theory, practice and policymaking. As guidelines 

for reporting appropriate justification for selecting an effect measure are missing, the first aim is 

to identify the relevant dimensions for effect measure selection and justification prior to data 

gathering. The second aim is to use these dimensions to construct a user-friendly flowchart or 

decision tree guiding applied researchers in this process. The use of the flowchart is illustrated in 

the context of a preregistered protocol. This study is the first study that attempts to propose 

reporting guidelines to justify the effect measure choice, before collecting the data, to avoid 

selective reporting of the largest quantifications of an effect. A proper justification, less prone to 

confirmation bias, and transparent and explicit reporting can enhance the credibility of the 

single-case design study findings. 

 

Keywords: single-case experimental design; statistical analysis; quantitative methods; reporting 

standards; scientific rigor 
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A Priori Justification for Effect Measures in Single-Case Experimental Design  

Single-case experimental designs (SCEDs) offer the possibility to gather data repeatedly 

under different conditions, manipulated actively by the researchers (Horner et al., 2005). The aim 

is to obtain evidence regarding the effectiveness of the intervention for the single participant or 

the few participants studied. The usefulness of SCED studies for providing strong evidence is 

boosted by meeting the criteria of methodological rigor (Ganz & Ayres, 2018), whereas drawing 

more general conclusions requires replicating the results in several studies using the same 

intervention for the same problematic aspect (Kennedy, 2005; What Works Clearinghouse, 

2020).  

In terms of how to analyze SCED data, visual analysis is commonly considered as a first 

step, especially for performing a formative analysis during data collection, whereas quantitative 

techniques are useful for summative analysis post data collection (Ledford et al., 2019). 

Regarding quantitative analysis, there is a lack of consensus about which techniques are most 

appropriate (Busse et al., 2015; Smith, 2012). One option would be to seek guidance from 

methodological quality scales, but they rarely include items rating the quality of the quantitative 

data analysis technique. These scales do not go beyond visual analysis, and for the assessment of 

social validity (Ganz & Ayres, 2018; Lobo et al., 2017; Maggin et al., 2014; Wendt & Miller, 

2012). One of the scales, called “Risk of Bias in N-of-1 Trials” (Tate et al., 2015), however, puts 

the emphasis on the justification provided for choosing one of the available quantifications, but 

there are no (reporting) guidelines for appropriate justifications. A second option would be to 

consult the recommendations made in textbooks dedicated to applied SCED research. In texts 

explaining the use of SCED in different contexts, there have been different approaches to dealing 

with the choice of a data analytical approach. On the one hand, there have been 
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recommendations to prioritize visual analysis over statistical or quantitative analysis (Janosky et 

al., 2009; Kennedy, 2005; Riley-Tillman et al., 2020). On the other hand, there have been 

reviews of multiple quantitative options with an emphasis on the importance of their assumptions 

and the data features they quantify (Moeyaert et al., 2018; Tate & Perdices, 2019). As 

intermediate options, there has been an emphasis on "readily available" (p. 162) or "user-

friendly" (p. 165) techniques (Barker et al., 2011), or on descriptive statistics (Janosky et al., 

2009). Specific techniques such as nonoverlap indices and randomization tests have also been 

recommended due to the lack of parametric assumptions and the ease of understanding them and 

computing them with the available software tools (Morley, 2018). In summary, detailed 

guidelines for selecting effect measures are missing from textbooks presenting SCEDs to applied 

researchers from different fields (e.g., special education, clinical psychology, sport psychology, 

neurorehabilitation, biomedicine). In the current text, we will provide guidance, on the basis of 

methodological and statistical texts.  

A Note on Terminology 

When referring to the analysis of SCED data beyond visual inspection, a potentially more 

inclusive term could be “quantitative analysis techniques”, whereas a more restrictive term 

would be “effect size measures”. For instance, a randomization tests, which can be 

conceptualized as tools for statistical inference, would be a quantitative analysis technique that 

can be applied to different descriptive effect size measures (e.g., a nonoverlap index or a mean 

difference, Heyvaert & Onghena, 2014). As another example of a “quantitative analysis 

techniques” that includes an “effect size measure”, multilevel models can be mentioned. 

Multilevel models are modeling options that can be implemented via different estimation 

procedures (e.g., restricted maximum likelihood and Bayesian; Moeyaert et al., 2017) and can be 
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used for estimating different effect size measures (e.g., a mean difference or a difference in 

slope).When focusing on descriptive measures of effect, most can be understood as “effect size 

measures”, but for nonoverlap indices it has been put into doubt whether they actually quantify 

the magnitude of effect (Carter, 2013; Pustejovsky, 2018; Solomon et al., 2015; Wolery et al., 

2010). Thus, nonoverlap indices can be distinguished from “effect size measures” (e.g., a raw or 

a standardized mean difference) in which not only the ordinal superiority of conditions is 

quantified, but also the distance between conditions or the degree to which the conditions are 

different (Natesan Batley et al., 2020). Thus, in the current text we use the term “effect 

measures” with which we aim to include both nonoverlap indices and “effect size measures”. 

When necessary, we also refer to randomization tests (a technique for design-based inference) 

and to HLMs making possible model-based inference (Onghena, 2020) for descriptive effect 

measures or effect size measures.  

Aim and Organization of the Text 

Ambiguous or unreported choices in relation to selection of an effect measure and the data 

analytical plan in general (including selective reporting, i.e., only reporting the effect measures 

that are well-aligned with the researchers’ hypotheses) can be considered an example of 

questionable research practices that can lead to biased results (Hantula, 2019). This is relevant 

because the choice of effect measures may affect the conclusions regarding intervention 

effectiveness (Simmons et al., 2011). For instance, Beckers et al. (2020) performed a review of 

SCED research in children with cerebral palsy and reported that many studies conducted 

statistical analysis, but justification was missing. The complication resides in the fact that 

statistical analysis can involve multiple approaches and different effect measures; therefore, 

justifying the use of statistical analysis, in general, does not necessarily provide information 
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about the reason for selecting a specific effect measure. In addition, wrong interpretations of 

estimated effects might be provided if researchers do not have a good conceptual understanding 

of the effect measure to begin with.  

Multiple dimensions can be considered and evaluated simultaneously, when selecting an 

effect measure. An initial goal of the current text is to identify these dimensions, on the basis of 

SCED literature (i.e., recommendations from methodological and statistical articles and applied 

research articles). On the basis of these dimensions and their facets, a second aim is to provide a 

user-friendly flowchart in order to guide applied researchers providing an appropriate 

justification for their effect measure selection. The explicit justification of the effect measure 

selected is expected to improve reporting by enhancing the transparency of the decision process. 

It is necessary to highlight that we will only briefly mention, but not discuss in detail, 

visual analysis (Lane & Gast, 2014; Ledford et al., 2019; Maggin et al., 2018) or masked visual 

analysis (Byun et al., 2017; Ferron et al., 2017), which do not lead to a quantification of the 

magnitude of the intervention effect. The aim is also not to present in detail the benefits and 

pitfalls of different quantitative analysis techniques, as such information is already available 

elsewhere (Busse et al., 2015; Chen et al., 2015; Gage & Lewis, 2013; Lobo et al., 2017; 

Manolov & Moeyaert, 2017a, 2017b; Solomon et al., 2015).    

First, in the following sections, the importance for justifying a priori the selection of a 

quantitative analysis technique in general (incl. an effect measure) is presented. Second, a brief 

overview of quantitative techniques is provided together with their justified use (provided by the 

founders or developers of these techniques). Third, the main dimensions for justifying the 

selection of an effect measure are discussed and organized in a flowchart. SCED researchers are 

encouraged to use the flowchart in their future studies as a guidance to justify their choice prior 
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to the start of data collection. Finally, in order to illustrate how to use the flowchart as part of the 

a priori data analytic plan, an empirical example is provided.  

A Priori Aspects to Include in the Data Analytic Plan  

Several decisions are required regarding data analysis before the data collection ends (De 

Young & Bottera, 2018) or, even more appropriately, before data collection begins. These 

decisions can be made explicit either as part of a preregistered protocol or as part of the data 

analysis section of the article presenting the results of an empirical study. In order to enhance 

transparency and avoid experimenter biases, researchers are highly encouraged to make the data 

analytical plan publicly available to the broader research community. This can be done through 

submitting the research protocol to a journal or to the Open Science Framework (OSF; 

https://osf.io/). In that way the study protocol, containing the data analytic plan, is registered 

prior to starting data collection (Hales et al., 2019; Johnson & Cook, 2019). Preregistered 

protocols are a methodological safeguard against confirmation bias relevant for science in 

general (Nuzzo, 2015). Such protocols have been recently advocated for by study authors in the 

field of psychology (e.g., Gonzales & Cunningham, 2015; Nosek et al., 2018), psychopathology 

(Krypotos et al., 2019) and rehabilitation (Krasny-Pacini & Evans, 2018), as well as by journal 

editors (Jonas & Cesario, 2016; Lindsay, 2015) and institutions (e.g., Institute of Education 

Sciences, 2020). Preregistration has also been emphasized recently in the SCED context 

(Johnson & Cook, 2019). To enhance this practice, tools have been made freely available online 

(e.g., https://osf.io/zab38/, https://cos.io/prereg/). 

In the context of N-of-1 trials (which could be understood as a specific kind of SCED 

more common in medical research; Nikles & Mitchell, 2015, Tate & Perdices, 2019), it has been 

recommended that “all statistical methods planned—from visual representation to meta-

https://osf.io/
https://osf.io/zab38/
https://cos.io/prereg/
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analysis—should be described in the protocol” (Porcino et al., 2020, p. 10), including effect 

sizes, statistical significance, ways of performing sensitivity analyses, and how heterogeneity 

between participants will be assessed.  In the SCED context, the importance of explicitly 

describing the expected data pattern and the expected effect of the intervention has also been 

recently emphasized (Maggin et al., 2020). 

In the SCED context, the variety of effect measures available, and the lack of consensus 

regarding the optimal one (Busse et al., 2015), has led to the recommendation to report a variety 

of different effect measures (Vannest et al., 2018). This enables assessing the consistency in 

findings related to intervention effectiveness. If the same results are obtained regardless of the 

chosen effect measure, then researchers can be more confident in making statements about 

intervention effectiveness (Lobo et al., 2017). However, it may also lead to finding at least one 

effect measure providing evidence in support of an effective intervention. As Kratochwill et al. 

(2018) state “selective results may also appear in cases where multiple-outcome measures are 

included in a single investigation” (p. 71). Thus, an unwanted side effect of the recommendation 

of applying several effect measures is that researchers might only report the one that gives 

evidence in support of the intervention (i.e., selective reporting; Vannest et al., 2018). An 

informed selection of an effect measure may reduce the probability of reporting on such spurious 

findings. As Levin et al. (2017, p. 29) state, “if the researcher does not specify a particular 

anticipated effect type on an a priori basis (and, particularly, prior to examining the data), but 

rather conducts multiple analyses on the same data with different effect-type specifications, then 

we would again have ethical concerns and would question the validity of the researcher's 

statistical conclusions.”   

Overview of Single-Case Quantitative Analysis Techniques 
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In order to provide guidance on what to include as proper justification for selecting a 

quantitative analysis technique, a good conceptual understanding of the different alternatives is 

needed, together with a good understanding of their intended use as stated by their founders. For 

that purpose, a document was created (Appendix A, available at 

https://osf.io/t96fc/?view_only=19c595b82d9c4a96aec04eeaf6a4b196) including quotes from 

the founders of effect measures regarding their main features and uses.  

Before presenting a brief review of effect measures, a remark is needed on replication 

and randomization, which are two key features of SCEDs relevant for their internal and external 

validity (Horner et al., 2005; Kratochwill & Levin, 2010).  

Replication 

The basic effect (i.e., an A-B comparison between a baseline and an intervention phase) 

is the building block for quantitative data analysis, but this basic effect needs to be replicated in 

order to have greater confidence that the effect is due to the intervention. Most effect measures 

(e.g., nonoverlap indices and log-response ratio) have been initially proposed and discussed for 

the quantification of a basic effect, although others (e.g., hierarchical linear models and design-

comparable effect size) are especially developed for combining effects. Thus, replication is not 

only a necessity for internal and external validity, but it also informs the unit of analysis. For 

designs that entail a replication within the participant (e.g., withdrawal/reversal designs, 

alternating treatment designs [ATDs], and changing criterion designs [CCDs]), the unit of 

analysis is the participant and we refer to as “within-case” effect measures. For designs that 

include replication across participants (e.g., multiple-baseline designs), the unit of analysis can 

be the participants and/or the study. For the latter case, the term “across-case” effect measures.  
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Randomization and Randomization Tests  

Randomization (i.e., random assignment of measurement times to conditions or random 

choice of the moments of change in condition) is a design feature that makes it possible to use 

randomization tests as an analytical option. Randomization tests do not require parametric data 

assumptions and are applicable even when there are missing data (De et al., 2020). 

Randomization tests allow flexibility in defining the test statistic (Heyvaert & Onghena, 2014). 

Therefore, the decision to use a randomization test does not determine the effect measure to be 

used, as a randomization test can be applied to multiple data features such as level, trend, 

variability, overlap and immediacy (Tanious et al., 2019). Specifically, when focusing on an 

overall difference in level, a mean difference can be used as an effect size measure (e.g., Ferron 

& Ware, 1995). It also possible to define the test statistic according to whether the change in 

level is expected to be immediate, comparing the last three baseline phase measurements and the 

first three intervention phase measurements (Michiels & Onghena, 2019), or delayed, excluding 

the initial values of the intervention phase (Levin et al., 2017). Alternatively, focusing on trend, 

the difference between slopes can be used as an effect size measure, whereas focusing on 

variability, the difference between conditions can be quantified via a variance difference or a 

variance ratio (Levin et al., 2020). In terms of overlap, the Nonoverlap of All Pairs (Parker & 

Vannest, 2009) can be used as a test statistic and effect measure (Heyvaert & Onghena, 2014a). 

It is also possible to use consistency measures as test statistics (Tanious et al., 2020). 

Furthermore, specific proposals for test statistics have been made for ATDs (Manolov & 

Onghena, 2018, and Manolov, 2019, suggest comparing the data paths represented by the lines 

connecting the measurements from the same condition) and for CCDs (Onghena et al., 2019, 

suggest using the mean absolute deviation between the measurements and the criteria). Finally, 
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when using a randomization test, apart from choosing an effect measure, it is important to select 

a randomization scheme that is appropriate for the specific SCED (see Levin et al., 2018, for 

multiple-baseline designs; Onghena, 1992 for withdrawal/reversal designs; Levin et al., 2012, 

and Onghena & Edgington 1994, 2005 for ATDs; and Ferron et al., 2019, and Onghena et al., 

2019, and for CCDs). 

In summary, a randomization test can be used in conjunction with visual analysis, mean 

differences, nonoverlap indices, or even with multilevel models (Michiels et al., 2020). Thus, a 

randomization test can use a within-case or an across-case effect measure as a test statistic. It 

should be noted that the purpose of using a randomization test is for tentative causal inference 

(not for population inference) and not for quantifying the magnitude of effect. Randomization 

can also be used for controlling false positives in the context of response-guided experimentation 

when performing masked visual analysis (Byun et al., 2017; Ferron et al., 2017; Joo et al., 2018). 

In this context of use of randomization, the aim is not produce an effect measure. For these 

reasons, the current text does not discuss randomization tests further, although using a 

randomization test is recommended whenever there is randomization in the design.  

Within-Case Effect Measures 

Nonoverlap Indices 

Vannest and Ninci (2015) advocate for nonoverlap indices because these are easily 

calculated by hand and are easily interpreted, and do not require normally distributed data. 

Nonoverlap indices are especially justified when the data cannot be meaningfully represented by 

a mean or trend lines (Parker, Vannest, & Davis, 2011). The nonoverlap indices can be used if 

the sole interest is in quantifying the percentage of data separation between different phases. 
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Some nonoverlap indices require absence of baseline trend: this is the case, for instance, of the 

Nonoverlap of All Pairs (NAP; Parker & Vannest, 2009). Other nonoverlap indices control for 

trend: Tau-U with baseline trend control (Parker, Vannest, Davis, et al., 2011) and the Baseline 

corrected Tau (Tarlow, 2017). Thus, it has to be emphasized that not all nonoverlap indices have 

similar features or strengths and limitations (see Parker, Vannest, & Davis, 2011, for a review) 

and that variants of one index such as the Tau can be quite different. For instance, the Tau-U and 

Baseline corrected Tau are different in how they control for baseline trend (Manolov, 2018; 

Tarlow, 2017). Only a limited number of nonoverlap indices have an established sampling 

distribution (i.e., NAP and Tau-U without baseline control). However, the interpretation of the 

confidence intervals and p-values associated with these indices is subjected to the assumption of 

independent data (Pustejovsky & Swan, 2018). Moreover, nonoverlap indices do not quantify the 

magnitude of intervention effectiveness (Carter, 2013); specifically, they cannot quantify 

differences in amount of separation between data points once complete overlap is achieved.  

Regression-Based Quantifications 

Simple ordinary least squares (OLS) regression can be used to quantify the change in 

outcome level between baseline and intervention conditions (or between intervention conditions 

in the case a baseline phase is missing, as in the case of ATDs in which the relative effectiveness 

of several interventions is commonly compared). Piecewise regression is an extension of simple 

OLS, taking into account time trends during the baseline and intervention conditions (Center et 

al., 1985, Van den Noortgate and Onghena, 2003). Instead of providing a quantification of 

changes in level, it provides separate quantifications of changes in level and in slope due to the 

intervention. The quantification can be expressed both in raw and in standardized units (Van den 

Noortgate & Onghena, 2003, 2008). Another regression-based quantification is obtained in the 
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context of a generalized least squares (GLS) regression (Swaminathan, Rogers, Horner, et al., 

2014), for which a Bayesian approach for drawing inferences has also been presented 

(Swaminathan, Rogers, & Horner, 2014). The effect size proposed by Swaminathan and 

colleagues, on the basis of the regression model, is an overall effect, combining the change in 

level and the change in slope and can be expressed in raw or standardized units. GLS is different 

from OLS in that it can model several functional forms of autocorrelation and it also enables 

modeling count outcomes (Swaminathan, Rogers, & Horner, 2014). In terms of the appropriate 

situations for applying GLS, sufficient data are necessary for estimating autocorrelation precisely 

and the change in level and in trend need to be visually inspected in order to assess the 

meaningfulness of the quantification (Maggin et al., 2011).  

Log-Response Ratio 

The log response ratio has been advocated for on the basis of its insensitivity to 

procedural details such as series length and observation session length (Pustejovsky, 2019), as 

well as due to the possibility to express it in meaningful terms as a percentage change 

(Pustejovsky, 2018). Its use is justified when the intervention does not consistently lead to the 

extinction of the target behavior and when there are no time trends and autocorrelation 

(Pustejovsky, 2018).  

Comparison to a Pre-Defined Goal 

Visually, a goal line has been suggested to be superimposed on the graph with the time-

series data (Riley-Tillman et al., 2020). Quantitatively, the number of sessions required to reach 

a pre-established criterion can be counted (Kipfmiller et al., 2019). In terms of a quantification of 
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the effect, the percent of goal obtained (Ferron et al., 2020) expresses the level achieved in 

relation to the pre-established goal.  

Across-Case Quantitative Analysis Techniques 

Between-Case Standardized Mean Difference 

In an attempt the enhance the credibility of SCED research findings to the same level of 

group-comparison design studies, Hedges et al. (2012, 2013) introduced a statistical model for 

estimating a design comparable effect size estimate also known as the between-case standardized 

mean difference effect size for SCEDs (BC-SMD). The BC-SMD is an effect measure that can 

be interpreted on the same scale as the standardized mean differences from group-comparison 

designs (i.e., Cohen’s d). Researchers are in general familiar with this quantification and 

therefore interpretations are more straightforward as there is an established scale reflecting what 

can be considered “small”, “medium” and “large”. Another advantage of the BC-SMD is that 

results of SCEDs can be combined with results from group-comparison designs (e.g., Zelinsky & 

Shadish, 2018), providing more evidence related to the intervention effectiveness investigated 

through both types of designs, allowing to increase external validity. The use of the BC-SMD in 

its original version, using moment estimation (Hedges et al., 2012, 2013), is justified when its 

assumptions and requirements are met: at least three participants with similar data patterns (i.e., 

the effect is an immediate and sustained change in level in absence of trend), normal distribution 

of the within‐case errors and the between‐case variation, and constant within‐case variance and 

auto‐correlation parameter across cases. The within-case errors follow a first order auto-

regressive term. It should be noted that the BC-SMD can also be estimated using (restricted) 

maximum likelihood estimation (Pustejovsky et al., 2014; Valentine et al., 2016) with fewer 

assumptions. Although the original BC-SMD using moment estimation can be conceptualized as 
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a HLM (Hedges et al., 2013), it is the proposal by Pustejovsky et al. (2014) that uses the same 

estimation procedure as HLMs. 

Hierarchical Linear Models  

HLMs are general modeling techniques, which can be thought of as extensions of 

regression-based techniques (i.e., simple OLS and piecewise regression, Moeyaert, Ugille, et al., 

2014). HLM can be conceptualized as an approach resulting in across-case regression-based 

quantifications. Therefore, the justifications previously provided for the regression-based 

quantifications are also applicable here. Two-level HLMs can be used when there are several 

participants included in the same study, as in a multiple-baseline design (Ferron et al., 2009), but 

also for other SCEDs that involve multiple participants such as a replicated withdrawal/reversal 

design (Shadish et al., 2013). The unique benefit of using HLM is that it results in the estimate of 

an overall intervention effect (quantified as change in level and/or change in slope) across 

participants (expressed in raw or standardized units). This makes it possible to make more 

generalized inferences about the effect of an intervention. It is necessary to remark that HLM is a 

modeling technique that can be applied to estimate effect sizes measures. Depending on the 

HLM specification, different effect size measures of interest can be estimated. Two commonly 

used HLM parameterizations result in the across participants estimate of the change in outcome 

level and the change in slope between baseline and intervention conditions (Moeyaert, Ugille, et 

al., 2014). The underlying estimation procedure is commonly (restricted) restricted maximum 

likelihood or Bayesian estimation (Moeyaert et al., 2017). The decisions regarding how exactly 

to model the data in the context of a multilevel model can be made in relation to the 

measurement characteristics of the outcome (Declercq et al., 2019), according to the specific 
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SCED used (Moeyaert, Ugille, et al., 2014; Shadish et al., 2013) and according to the linear or 

nonlinear data pattern expected or observed (Shadish, Zuur, et al., 2014).  

In addition to estimating effects, variability in the effectiveness of the intervention 

between participants can be estimated. This is informative as an intervention might work, in 

general, but not to the same degree for all the study participants. Multilevel models can also 

handle data complexities such as autocorrelation, either assuming it similar in the baseline and 

intervention condition, or treating it as heterogeneous (Moeyaert, Ferron et al., 2014) and count 

data (Declercq et al., 2019). In terms of performance, this technique has been shown to estimate 

without bias the overall intervention effects (even with a number of participants as small as three, 

Ferron et al., 2009), but not the variances (Baek et al., 2020). If the research interest lies in the 

estimate of the intervention effect across cases, then the two-level HLM is appropriate and 

recommended, even with a small number of participants. If the research interest lies in capturing 

the between-participant variability in the intervention effect, then more study participants are 

needed and even then biases are anticipated. 

Regarding the connections between HLMs and other quantitative analysis techniques, it 

should be noted that the BC-SMD can be estimated using the HLM approach. An extension of 

the basic model underlying the BC-SMD was proposed by Pustejovsky et al. (2014) for 

computing a standardized mean difference when trends are modeled and allowed to vary 

between participants and restricted maximum likelihood estimation is used instead of moments 

estimation. Moreover, HLM could be used in connection with other quantitative analysis 

techniques, such as by applying a multi-level meta-analysis model (a particular form of HLM) to 

within-case effect size quantifications or by using generalized linear mixed models (such as 

random effects Poisson models), where the effect size metric is a form of log response ratio.  
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Using Within-Case Quantifications for Aggregation 

When several basic effects are evaluated in the same study, it is first necessary to verify 

what proportion of times the basic effect is replicated, for instance requiring a 3:1 ratio of effects 

to no effects (Cook et al., 2015). Second, a weighted or an unweighted mean can be used to 

combine the quantifications obtained for each basic effect (Parker, Vannest, Davis, et al., 2011; 

Schlosser et al., 2008; Swaminathan, Rogers, Horner, et al., 2014),  in order to obtain an 

aggregate quantification of the intervention effectiveness. Apart from aggregating the effect as 

an average, it is usually informative to assess the variability of effects within- and between-cases, 

which can be useful for identifying relevant moderator variables. Another option is to use an 

across-case quantification, such as the BC-SMD (under the assumption of a similar data pattern 

across participants) or HLM (with the possibility to quantify the variation across participants). 

The latter two options are recommended as the inverse of the variance is used as a weight to 

combine across cases.  

The Dimensions 

The dimensions presented in the current document are based on the single-case 

experimental design (SCED) literature, including methodological research (see the section 

entitled “Overview of Single-Case Quantitative Analysis Techniques” and Appendix A) and 

published applied research (see Fingerhut et al., 2020). Table 1 includes the dimensions and their 

facets that can be used for properly justifying the selection of an effect measure as part of the a 

priori data analytical plan.  

Dimension 1: Research Question and/or Type of Quantification Desired 
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The first dimension refers to the intended use of the data analytical approach. An initial 

facet to consider is the kind of analysis to perform. Formative analysis is performed as part of the 

data gathering process itself and is crucial for designs that implement some forms of response-

guided experimentation, e.g., deciding when to change the conditions (Connell & Thompson, 

1986; Swan et al., 2020). Formative analysis is commonly performed via visual inspection, 

whereas quantitative techniques are useful for summative analysis post data collection (Ledford 

et al., 2019). Similarly, it is considered that the assessment of whether a functional relation or 

experimental control is established is mainly done via visual analysis (Maggin et al., 2018; 

Wolfe et al., 2016), considering also the close interaction between the researcher and the 

participants (Perone, 1999). 

If the aim is to provide a quantitative summary of the degree of intervention 

effectiveness, a choice between within-case quantification and an across-case quantification is 

necessary (Odom et al., 2018; Swaminathan, Rogers, & Horner, 2014). Additionally, for several 

within-case quantifications (e.g., nonoverlap indices) and across-case quantifications (e.g., BC-

SMD and regression-based quantifications) it is possible to focus either on the descriptive 

information or the inferential information. The descriptive information is the effect measure (i.e., 

the value of the nonoverlap index, the estimate of the BC-SMD, or the estimates of interventions 

effects in a HLM), whereas the inferential information is represented by the confidence intervals 

of these effect measures.  Additionally, by using a randomization test, a p-value and confidence 

intervals (Michiels et al., 2017) can be obtained at the within-case level or at the across-case 

level using the HLM approach. The researcher can decide whether to focus on the descriptive or 

inferential information on the basis of the aims of the analysis and the tenability of the 
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assumptions required for the validity of the inferential information (e.g., if independent data is to 

be assumed or normally distributed residual).  

Another facet to take into consideration is the kind of desired summary statistics (e.g., 

whether to express it in standardized or raw units, Manolov et al., 2014). Intervention 

effectiveness can be reflected in standardized units (BC-SMD, Hedges et al., 2012, 2013, 

standardized regression coefficient, Van den Noortgate & Onghena, 2008), as a percentage (e.g., 

mean baseline reduction, Olive & Smith, 2005; a transformation of the log response ratio, 

Pustejovsky, 2018), in raw units reflecting the original scale (e.g., unstandardized regression 

coefficient, Van den Noortgate & Onghena, 2003, or the slope and level change, Solanas et al., 

2010). An example in applied literature of an effect measure being used because it is 

unstandardized or standardized can be found in Good (2019) and Lanovaz et al. (2019), 

respectively.  

Finally, given that it is possible to provide a quantification regarding several data features 

(i.e., level, trend, variability, immediacy, overlap; Kratochwill et al., 2010, 2013), it is necessary 

to decide, prior to gathering the data and looking at the most salient data feature, which is the 

focal data feature (or multiple focal features). An example in applied literature of a quantification 

being used because it is can measure change in trend can be found in Caron and Dozier (2019).  

Dimension 2: Design Features 

Several design features are expected to be reported (Tate et al., 2016) and they can be 

used for informing the selection of an effect measure. On the one hand, certain quantifications 

are only applicable (or more easily and meaningfully applicable) to certain SCED types. For 

instance, the BC-SMD has been developed to reflect intervention effectiveness for reversal and 
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multiple-baseline designs (Hedges et al., 2012, 2013; Pustejovsky et al., 2014), but cannot be 

applied to alternating treatments designs. The mean absolute distance is a meaningful test 

statistic only for changing criterion designs (Onghena et al., 2019). HLMs are most easily 

applicable to multiple-baseline designs (Ferron et al., 2009), although their application to other 

design structures including a replication across individuals is also possible (Moeyaert, Ugille, et 

al., 2014; Shadish et al., 2013).  

Two other especially relevant design features, replication and randomization, were 

commented earlier. The kind of replication (within-case or across-case) is related to the type of 

SCED and also to whether the quantification is performed at the within-case or across-case level. 

If the researcher expects a considerable variability across cases (due to any differences they 

might have in terms of the type, severity, or history of the issue treated), it may be less 

meaningful to summarize the results about different cases in a single effect measure. Regarding 

randomization, it can enable either a masked visual analysis in the context of response-guided 

experimentation (Byun et al., 2017; Ferron et al., 2017) or a statistical inference about causality 

when using a randomization test (Onghena, 2020). 

Dimension 3: Data Characteristics 

In terms of the expected features of the data, several quantities can be expected to be 

known a priori, although changes to the initial plan may take place during the course of the 

study. First, the number of participants is usually pre-established and it is relevant for across-case 

quantifications, such as the BC-SMD or the HLM approach. For BC-SMD and HLM, a 

minimum of three study participants is needed and unbiased intervention effects can be expected, 

but the standard errors are likely to be biased and, thus, p-values and confidence intervals are 

likely inappropriate for such a small number of participants are not appropriate. Thus, the 
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number of participants is relevant for the precision of estimates and also for statistical power. An 

example in applied literature of an effect measure being used because of the number of 

participants can be found in Raulston et al. (2019).   

A second relevant quantity is the number of measurements1 available. On the one hand, 

the number of measurements per phase can have an impact on the effect measures (Pustejovsky, 

2019). On the other hand, this quantity is also relevant for the precision of estimates and also for 

statistical power (although less important than the higher level units in HLM). In relation to 

statistical power, for randomization tests it is mainly related to the number of possible 

randomizations, which is related both to the number of participants and the number of 

measurements available, but also to the randomization scheme (e.g., see Levin et al., 2018, for 

multiple-baseline designs and Onghena & Edgington, 2005, for alternating treatments designs). 

An example in applied literature of an effect measure being used because of the number of 

measurements can be found in Raulston et al. (2019).   

Another facet refers to the measurement characteristics (i.e., the measurement scale) of 

the outcome. Only nonoverlap indices are applicable to ordinal data and in case the target 

behavior is measured via a (subjective) rating scale that is only ordinal, effect measures based on 

means or on trend lines cannot be meaningfully applied. Contrarily, there are certain effect 

measures such as the log-response ratio (Pustejovsky, 2018, 2019) and the Bayesian response 

ratio (Natesan Batley et al., 2020) that are applicable only when there is an absolute zero, as 

when the outcome variable is expressed as a frequency (i.e., a ratio scale). Furthermore, certain 

                                                           
1 We can distinguish between phase and alternation designs (Onghena & Edgington, 2005). In phase designs, such 

as multiple-baseline and a reversal, the number of measurements refers to the quantity of data points available in 

each phase. In contrast, in an alternation design such as an alternating treatments design, the number of 

measurements refers to the number of data points for a given condition, considering the whole alternation 
sequence.  
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effect measures used only for descriptive purposes (e.g., the standardized mean difference and 

the slope and level change procedure by Solanas et al., 2010) are applicable to both interval and 

ratio scale measures. However, for standardized mean differences accompanied by standard 

errors for constructing confidence intervals, it is common to assume that the outcome is 

measured continuously (Valentine et al., 2016). A distinction between an interval and ratio scale 

outcome is necessary for modeling techniques such as regression-based quantifications and 

HLMs, which assume normality and continuous outcome. When the outcome is a count, which is 

common when direct observation is used for gathering data (Pustejovsky, 2019), modifications in 

the modeling may be necessary (Declercq et al., 2019). It is also important to consider whether 

the use of direct observation is accompanied by the more recommendable momentary time 

sampling (Cook & Snyder, 2020) or by partial interval recording (Pustejovsky & Swan, 2015); 

partial interval recording leads to a quantification of frequency or to a quantity that is not directly 

interpretable in terms of either frequency or duration and that may lead to misrepresenting the 

magnitude of effect for certain effect measures (Ledford et al., 2015; Pustejovsky et al., 2019).  

Another facet refers to challenging aspects of the data that can be anticipated, so that a 

way of dealing with them can also be decided prior to gathering the data. In relation to 

autocorrelation, certain techniques take it into account (i.e., HLMs, BC-SMD, the GLS approach 

by Swaminathan, Horner, Rogers, et al., 2014, and the interrupted time series simulation 

approach by Tarlow & Brossart, 2018), whereas others (e.g., NAP, Tau-U) assume it is absent in 

order to consider their standard errors valid. Additionally, there are effect measures ignoring 

autocorrelation and not aiming for any statistical inference (e.g., standard errors, confidence 

intervals). Examples of such quantifications are mean baseline reduction (Olive & Smith, 2005), 
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percentage of data points exceeding the median (Ma, 2006), slope and level change (Solanas et 

al., 2010), and the ratio of distances (Carlin & Costello, 2018).  

Regarding the possibility of missing data, several methods are applicable (Hox, 2020: 

Kwasnicka & Naughton, 2020) and have been tested for SCED data, such as expectation-

maximization and multiple imputation (Chen et al., 2020; Peng & Chen, 2018; Smith et al., 

2012). A different approach is followed in randomization tests (see De et al., 2020, for a 

randomized marker approach). In the context of HLMs, to the best of our knowledge a review of 

how missing data has been handled is available only outside of the SCED context (Dedrick et al., 

2009). However, it has been stated that one of the advantages of HLMs is precisely handling 

missing data (Wiley & Rapp, 2019).  

Finally, trend estimation could be compromised by outliers (Vannest et al., 2012) and 

unequal time intervals between measurement occasions. Although outliers cannot be anticipated 

with confidence, it may be reasonable to opt for robust effect measures. Additionally, when trend 

projection takes place (e.g., piecewise regression, GLS, Baseline corrected Tau) an excessively 

long intervention phase may lead to obtaining impossible predictions (Manolov, 2018; Manolov 

et al., 2019; Parker, Vannest, Davis, et al., 2011). Finally, unequal time intervals between 

measurement occasions have been considered an issue in the graphical display of the data, in 

terms of misrepresenting temporal information if the session number suggests a false uniformity 

(Kubina et al., 2017). The meaning of time trend is different, according to whether time is 

represented as session number or, say, calendar days. Unequal time intervals can also have 

influence on the way in which autocorrelation is to be modelled; specifically, a first-order 

autoregressive model may not be adequate. Thus, greater caution in the interpretation of trends 

and autocorrelation is required when data are to be gathered at unequal time intervals.  
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Dimension 4: Expected Data Pattern 

In the context of randomization tests, the test statistic is to be chosen before gathering the 

data, according to the type of effect expected (Heyvaert & Onghena, 2014a, 2014b; Levin et al., 

2017). Here, this idea is extended to other analytical options for SCED data, in line with current 

recommendations (Maggin et al., 2020). Deciding the analytical plan prior to gathering the data 

on the basis of the expected data pattern is possible when there is sufficient previous evidence on 

the specific kind of dependent variable or outcome score and the intervention. Thus, expectations 

are related to specific outcomes or target behaviors and interventions. For instance, spontaneous 

improvement prior to introducing an intervention can be expected in rehabilitation (Krasny-

Pacini & Evans, 2018; Solomon, 2014, also reports the presence of trend in school interventions) 

and gradual and slower changes can be expected when measuring academic performance 

(Maggin et al., 2018). Spontaneous improvement can be represented by an improving baseline 

trend. It is important to use the information available regarding whether an improving baseline 

can be expected, as it can be difficult to decide on the basis of the data whether there is a clear 

trend or not (Chiu & Roberts, 2018). Moreover, in the literature, there are different ways for 

deciding whether trend should be controlled for (Tarlow & Brossart, 2018): (a) if the trend is 

stable according to the envelope constructed around it (Lane & Gast, 2014); (b) if the trend 

estimate is at least 0.20 (Vannest & Ninci, 2015); (c) if the trend is statistically significant 

(Tarlow, 2017); or (d) always, because trend control is part of the procedure (Solanas et al., 

2010). Deciding on the basis of previous knowledge is easier than following a variety of criteria, 

whose suggestions may not coincide. Similarly, it has to be decided how exactly to estimate 

trend and how to control for it, given that there are multiple options for both of these steps 

(Manolov, 2018) and it is not advisable to try out several and selecting the one that is most 
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favorable (Carlin & Costello, 2018). An example in applied literature of an effect measure being 

used because it can account for trend in the baseline phase can be seen in Gertler and Tate 

(2019).  

A slower change in the dependent variable or a gradual improvement during the 

intervention phase is conceptualized as a delayed or progressive effect. Such effects do not need 

to be discarded, as the latency of the change after the onset of the intervention depends on the 

type of intervention and domain of functioning (Kazdin, 2019), i.e., the contextual information is 

crucial (Lieberman et al., 2010). Relatedly, expecting a delayed effect or a transition state 

between conditions (Brogan et al., 2019) or extinction bursts (Barnard-Brak et al., 2020) can 

justify focusing on part of the observations obtained; Fisher & Lerman, 2014; Levin et al., 2017; 

Porcino et al., 2020). Similarly, it is possible to focus on the end of the baseline and the 

beginning of the intervention phase when an immediate effect is expected (Michiels & Onghena, 

2019). Another option is to use models that are specifically applicable to gradual change (Swan 

& Pustejovsky, 2018; Verboon & Peters, 2020).  

Dimension 5: Desirable Features of the Quantitative Analysis Techniques 

An effect measure, and a quantitative analysis technique in general, should be statistically 

sound. This requirement can be operatively defined in different ways, according to the 

descriptive or inferential use of the effect measure. For description, discriminability  between 

different magnitudes of intervention effectiveness is relevant (Parker et al., 2009; Parker, 

Vannest, Davis, et al., 2011). Specifically, a problem for discriminability are floor and, mainly, 

ceiling effects (e.g., the impossibility to distinguish between differently effective interventions 

once complete nonoverlap is achieved). For inference, the lack of bias and the relative efficiency 

(and, thus, mean square error) of the estimate are some of the desirable features that are usually 
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assessed (e.g., Hedges et al., 2012, 2013; Manolov & Solanas, 2013; Moeyaert et al., 2017; Swan 

& Pustejovsky, 2018), as well as confidence interval coverage (e.g., Baek et al., 2020; Ferron et 

al., 2009). A different set of inferential statistical properties refers to null hypothesis significance 

testing. Specifically, Type I error rates (i.e., false positives) and statistical power (i.e., true 

positives) are commonly assessed (e.g., Borckardt et al., 2008; Declercq et al., 2019; Levin et al., 

2018; Michiels & Onghena, 2019). An example in applied literature of an effect measure being 

used because it does not demonstrate a ceiling effect can be seen in Ginns and Begeny (2019). 

Except for randomization tests (Craig & Fisher, 2019), the inferential information 

requires that the quantification has a known approximate sampling distribution. Specifically, a 

known sampling distribution makes possible standardizing (Swaminathan, Horner, Rogers, et al., 

2014; Van den Noortgate & Onghena, 2008), constructing confidence intervals, and using 

inverse variance weighting for meta-analysis (Parker, Vannest, Davis, et al., 2011; Shadish et al., 

2014). Such knowledge about the sampling distribution comes at the price of certain assumptions 

about the data or the residuals (Hedges et al., 2012, 2013; Moeyaert, Ferron, et al., 2018; 

Pustejovsky & Swan, 2018). An example in applied literature of an effect measure being used 

because it has a known sampling distribution can be seen in Garwood et al. (2019).  

Beyond the aforementioned statistical properties, a desirable feature can be defined in 

terms of its performance relative to other effect measures (e.g., in terms of consistency with 

visual analysis, correlation with other quantifications, or lack of sensitivity to potentially 

irrelevant procedural details). Such comparison studies have been performed for nonoverlap 

indices (e.g., Chen et al., 2016; Wolery et al., 2010; Yucesoy‐Ozkan et al., 2020), regression-

based quantifications (Brossart et al., 2006) and for several quantifications of different kinds 

(e.g., Barton et al., 2019; Campbell, 2004; Pustejovsky, 2019). An example in applied literature 
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of an effect measure being used because it correlates with another quantifications can be seen in 

Lanovaz et al. (2019). 

In relation to the strong tradition of using visual analysis in SCED research (Maggin et 

al., 2018; Ledford et al., 2019), it is important for the quantifications and any potential 

transformation of the data to be easily represented visually. This is relevant for effect measures 

as diverse as nonoverlap indices (Tarlow, 2017) and regression-based quantifications (Declercq 

et al., 2020; Moeyaert, Ugille, et al., 2014; Parker et al., 2006). Note that the requirement is not 

necessarily for the quantifications to correlate well with the decisions made by visual analysts, as 

their performance may not be optimal (Ninci et al., 2015).  

Finally, it should be noted that this Dimension 5 may be difficult to apply, as there is not 

sufficient evidence regarding the performance of all effect measures proposed for SCED data 

analysis. For instance, to the best of our knowledge, no simulation study has been performed yet 

on the mean baseline reduction (see Campbell, 2004, for a field test), the ratio of distances 

(Carlin & Costello, 2018) or on the interrupted time series simulation (Tarlow & Brossart, 2018). 

Finally, it is not feasible for a single text such as the current one to summarize all the evidence 

available on all possible effect measures.  

The Flowchart 

Transforming the Dimensions and Facets into a User-Friendly Flowchart  

The selection of the effect measure and the justification of this selection is made easier by 

using the flowchart (Figure 1) rather than Table 1. However, the flowchart is a simplification of 

Table 1, as it is based on some, but not all, facets included in the table. The dimensions can be 

understood as an integration of methodological aspects to be kept in mind, whereas the flowchart 
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simplifies the set of dimensions and facets and is designed as a decision tree that can readily be 

used by applied researchers. For instance, a facet of Dimension 2 (Design features) omitted is the 

presence of randomization. However, we recommend complementing the descriptive information 

provided by an effect measure with the inferential information provided by a p-value arising 

from a randomization test, when randomization is used. Suggestions for effect measures to be 

used as test statistics were provided in the “Randomization and Randomization tests” section, 

previously in the text. Response-guided experimentation (another facet of Dimension 2) is also 

not discussed, but the interested reader is referred to Byun et al. (2017), Ferron et al. (2017), Joo 

et al. (2018) and Swan et al. (2020). Finally, certain data characteristics (Dimension 3) such as 

the level of measurement of the outcome variable, missing data, outliers, autocorrelation are not 

reiterated here, given that, in general for all effect measures, they entail the need for greater 

caution in the interpretations. However, for certain quantitative analysis techniques such as 

HLMs, it is possible to build the model in such a way as to account for count data and 

autocorrelation.  

In summary, when reporting the data analytical decisions made, an applied researcher can 

report the dimensions and facets that were used as a basis for justifying the quantification chosen 

(as per Table 1), as well as the pathway followed, according to the flowchart.  

INSERT FIGURE 1 ABOUT HERE 

The flowchart also illustrates the relations between facets, both within and across 

dimensions, and also the relation between effect measures. Considering that the focus is put on 

quantifications for summative analysis, the initial decisions are related to a facet of Dimension 1 

(i.e., the unit of analysis), which is necessarily related to two facets of Dimension 2 (the type of 

SCED and the kind of replication it entails). For ATDs and CCDs there are specific analytical 



SINGLE-CASE EFFECT SIZE JUSTIFICATION   30 

options and certain potential focal data features (a facet of Dimension 1) such as overlap and or 

immediacy may not be as meaningful or critical as for other SCEDs.  

The expected data pattern is the third crucial aspect in the flowchart, after considering the 

unit of analysis and the type of design and replication. The expected data pattern (Dimension 4) 

determines the focal data feature of the quantification (Dimension 1).  

Across-Case Quantifications: The Left Pathways in the Flowchart 

Given that the presence and type of replication defines the first decision point in the 

flowchart, a note is required. It is necessary to distinguish across-case replications (i.e., an MBD 

across participants, a replicated reversal design, or ATD) from within-case replications (i.e., an 

MBD across behaviors or settings, a reversal design, or an ATD for a single participant). HLMs 

(including the BC-SMD) are conceptually applicable only to replications across cases. For 

within-case replication, within-case quantifications can be used. 

Following the path for across-case quantifications (to the left of the flowchart), the type 

of design (a facet from Dimension 2), the anticipation about the similarity across cases (a facet 

from Dimension 3), and the expected data pattern (Dimension 4) are relevant for assessing 

whether the BC-SMD is a reasonable quantification. In case the heterogeneity across cases is to 

be quantified and the presence of baseline or intervention phase trend is considered likely, the 

BC-SMD could be substituted by a less restrictive HLM such as the one proposed by 

Pustejovsky et al. (2014). Moreover, HLMs incorporating separate trend lines for the different 

conditions and random effects are applicable beyond MBDs and replicated reversal designs (e.g., 

to ATDs and CCDs, Shadish et al., 2013), unlike the BC-SMD. In relation to Dimension 1, the 

focus on the descriptive information (estimates of treatment effect, as immediate effect and effect 
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on time trend) or on the inferential information (p-values and/or confidence intervals) is a 

decision to be made by the researcher, but focusing on the descriptive information requires less 

assumptions. Model building (e.g., the decisions regarding whether to include general trend and 

the effect of the intervention on the time trend, and which effects to model as random) could be 

guided by the visual analysis of the actually obtained data (Baek et al., 2016). Another option 

which we recommend, following Ferron et al. (2008), is to select the model a priori on the basis 

of the expectations and previous evidence. Nevertheless, it is still possible to plan a post hoc 

verification that the initially chosen model is meaningful for the data actually obtained and that it 

does not represent a gross misspecification. In that sense, any subsequent changes in the model 

need to be explicitly labeled as data-driven. Finally, in relation to Dimension 3 (Data 

characteristics) and Dimension 5 (Desirable features of the quantitative analysis techniques), it 

has to be considered whether the application of the BC-SMD or a HLM is reasonable 

considering the number of participants and the number of measurements finally available. 

Within-Case Quantifications: The Right Pathways in the Flowchart 

Alternating Treatments and Changing Criterion Designs 

When the unit of analysis is the participant, within-case quantifications can be used, 

following the path to the right of the flowchart. The decision about the quantification depends, 

first, on the design used. For a changing criterion design, the range-bound version and the 

percentage of conforming data (McDougall, 2005) can be appropriate as a quantification of the 

degree to which the data match the pre-established criteria (see also Manolov et al., 2020, as an 

alternative way for specifying the acceptable range). For ATDs, the mean difference can be used, 

or a quantification comparing the data paths directly: a comparison that entails actual and 

linearly interpolated values, abbreviated ALIV (Manolov & Onghena, 2018). 
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Multiple-Baseline and Reversal Designs: Variable Data 

For multiple-baseline and reversal designs, the expected data pattern (a facet from 

Dimension 4) defines the focal data feature (a facet from Dimension 1). In case the data are 

expected to be variable and not well represented by a mean/median or trend line, a nonoverlap 

index can be recommended (Parker, Vannest, & Davis, 2011). Another reason for using a 

nonoverlap index could be in relation to the measurement characteristics of the outcome. 

Specifically, nonoverlap indices are applicable to ordinal data (Parker, Vannest, Davis, & et al., 

2011, see also Parker and Hagan-Burke, 2007), whereas a mean difference or a comparison of 

regression slopes requires interval or ratio scale data. Additionally, regression-based 

quantifications require parametric assumptions such as a normally distributed residual. In 

relation to the kind of information to use (Dimension 1) and the knowledge on the sampling 

distribution of the indices (Dimension 5), we recommend focusing on the descriptive measure, as 

the inferential information (i.e., the standard errors for obtaining p-values or constructing 

confidence intervals) depends on the unlikely assumption of independent data. For choosing 

among nonoverlap indices, if there is no expectation for an improving baseline trend, the NAP 

(Parker & Vannest, 2009) can be used. In contrast, if there is such an expectation, we 

recommend using the Baseline corrected Tau (BCT), forcing trend correction regardless of the 

statistical significance of baseline trend, because the statistical power of this test is not sufficient 

for short baselines (Tarlow, 2017). We do not recommend using the BCT without baseline trend 

correction when no baseline trend is expected, because this would be equivalent to using Tau as 

proposed by Parker, Vannest, Davis, et al., (2011), but its interpretation is less straightforward 

than the interpretation of the NAP. BCT represents an improvement over Tau-U (Parker, 

Vannest, Davis, et al., 2011), as it provides stronger control for baseline trend and it does not 
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produce out-of-range values. Our recommendation for BCT over Tau-U is also related to the lack 

of clarity regarding the exact interpretation of Tau-U (Brossart et al., 2018). Nevertheless, BCT 

is not flawless, as it corrects for linear trend, estimated using the robust Theil-Sen method, and 

trend extrapolation may lead to impossible projections (Manolov et al., 2019). Unreliable trends 

and impossible projections are related to a Dimension 3 facet, namely the number of 

measurements available in each phase, with a short baseline combined with a long intervention 

phase constituting a major problem. For that reason, we recommend a planned post hoc 

verification with the actually obtained data. In case such impossible projections are obtained, the 

correction of baseline trend may be unreasonable and the value of BCT may not be validly 

interpretable.  

Multiple-Baseline and Reversal Designs: Summarizing Data via Mean or Trend Lines 

For multiple-baseline and reversal designs, in case stable data and an immediate effect 

are expected, a comparison of level is the logical option. A subsequent decision refers to the 

desired measurement units of the quantification (a facet from Dimension 1). The comparison in 

level can be expressed as a percentage change (Olive & Smith, 2005), which can be obtained 

from the log-response ratio (Pustejovsky, 2018), or as the percentage of goal obtained (Ferron et 

al., 2020). Another option is to quantify the difference in level in standard deviations: this is 

achieved via the within-case standardized mean difference (Busk & Serlin, 1992) or dividing the 

estimate of the immediate effect in piecewise regression (Center et al., 1985) by the root mean 

square error (Van den Noortgate & Onghena, 2003). Finally, the difference in level can be 

expressed in the same measurement units as the outcome, via the slope and level change 

procedure (Solanas et al., 2010).  
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For multiple-baseline and reversal designs, in case an improving baseline trend and/or a 

progressive effect is expected, there is an additional decision to make. One option is to use an 

overall quantification that takes into account the difference in level and trend jointly: this is 

achieved via the GLS approach yielding a regression-based quantification (Swaminathan, 

Rogers, Horner, et al., 2014), by quantifying the average distance between the projected baseline 

trend line to the fitted intervention phase trend line. This overall difference can be expressed in 

raw or standardized terms (referring to a facet of Dimension 1). Given that there is trend 

extrapolation, just like in the BCT (although the trend line is fitted following a different 

estimation method), we reiterate our caution in relation to impossible projections, especially for 

certain combinations of phase lengths (Dimension 3). Another option is to obtain separate 

quantifications of the change in level and change in slope. This can be achieved via piecewise 

regression (Center et al., 1985) or the slope and level change procedure (Solanas et al., 2010).  

Demonstration of the Usability of the Flowchart for A Priori Justification 

The use of the flowchart to provide an a priori justification for the SCED selection as part 

of the protocol will be demonstrated using the protocol by Clanchy et al. (2019), which is one of 

the protocols located in the literature review by Fingerhut et al. (2020). Given that no data have 

yet been gathered or made public, the analytical decision cannot be based on (or biased by) the 

data at hand. In terms of the design, Clanchy et al. (2019) plan to use an MBD across three 

participants (sample 1), replicated across three more participants (sample 2). The number of 

sessions for the baseline, given the staggered introduction of the intervention, will be 5, 8, and 

11. For the intervention phase, 12 sessions are planned. Participants will be assigned at random 

to each of the two studies and, afterwards, at random once again to each of the baseline lengths. 

Unequal spacing between sessions in the intervention phase is planned (more frequent sessions 
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in the beginning of the intervention and less frequent sessions in the end), but equal spacing of 

sessions is expected in the baseline phase. In terms of the data characteristics of interest, Clanchy 

et al. (2019) explicitly mention the need to take autocorrelation into account and the importance 

of estimating trends and controlling for baseline trend. In terms of the research question, the 

authors are interested in studying the consistency of effects across participants.  

Following the flowchart presented in Figure 1, it is noteworthy that there is replication 

across participants, which makes possible the use of across-case quantifications (i.e., the left 

pathways of the flowchart). The design is an MBD across participants for which both the BC-

SMD and more complex HLMs are applicable and both take autocorrelation into account. Given 

that trend is highlighted, as well as the desire to study the consistency across participants, a HLM 

including trend and quantifying the degree of heterogeneity across cases is required. That is, the 

model underlying the BC-SMD assuming stable levels and similarity across cases (Hedges et al., 

2012, 2013) is not sufficient, whereas the more recent version by Pustejovsky et al. (2014) would 

be appropriate. For modeling trend, the time variable can be coded in such a way as to represent 

real time, instead of just session number (Moeyaert, Ugille, et al., 2014), considering the unequal 

spacing in the intervention phase. Autocorrelation can be modeled as homogeneous or 

heterogeneous (Moeyaert, Ferron, et al., 2014). Moreover, using random effects can be included 

to represent and quantify the variability in the effects across participants. Finally, a moderator 

variable could be included, to code for each of the six participants whether they belong to sample 

1 or to sample 2, in order to check whether there are differences between these samples. Given 

the presence of randomization in the design, a recent proposal for the combined use of the HLM 

approach and a randomization test for obtaining p-values (Michiels et al., 2020) could be used 

for data analysis.  
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Discussion 

Building on the Existing Literature 

Identifying and improving questionable research practices is necessary (Hantula, 2019). 

Focusing on SCED data analysis, there have already been suggestions on how to achieve such an 

improvement, for instance via preregistration (Hales et al., 2019; Johnson & Cook, 2019), by 

choosing a test statistic on the basis of the effect expected (Heyvaert & Onghena, 2014a, 2014b; 

Levin et al., 2017), and by being explicit regarding whether any hypotheses were established 

before or after exploring the data visually (Kwasnicka & Naughton, 2020). The underlying 

reason for the current text is to help applied researcher to avoid capitalizing on chance, which is 

especially likely when analyzing the data according to the most salient data features or trying 

multiple analyses and reporting the one that suggests that an intervention effect is present. For 

that purpose, the current text proposes a set of dimensions and facets to be used when selecting a 

SCED quantification, as part of the a priori data analytical plan. These dimensions represent a 

systematic organization and integration of factors previously mentioned by the founders of the 

several effect measures, in order to take into account the multiple pieces of information that need 

to be considered when making analytical decisions.  

Recommendations for Applied Researchers 

General Recommendations 

The following recommendations refer to summative analysis and not to formative 

analysis for response-guided experimentation or to exploratory research in a domain with no 

previous empirical evidence. We suggest that applied researchers explicitly refer to each of the 

dimensions and the relevant facets. The information provided for these dimensions and facets 
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can be used to follow the flowchart from Figure 1, suggesting a pathway that helps to determine 

a priori the most appropriate quantification and to justify the selection. If the authors plan to use 

several quantifications and verify the convergence of conclusions (or to perform a sensitivity 

analysis), this has to be mentioned as well, in order to avoid selective (and biased) reporting of 

results, which could lead to overestimating intervention effectiveness.  

In certain situations, a change in the data analytical plan can take place. For instance, if 

there are unexpected modifications during data collection stage or if certain features of the data 

obtained are considered to invalidate the quantifications chosen a priori. In such cases, reporting 

both the planned and the post-hoc analyses is recommended. Thus, when reporting the result of 

the planned analysis, it is necessary to alert the reader that the assumptions of the effect measure 

are not met or that it is likely to misrepresent the data at hand (whichever is applicable). 

Complementarily, when reporting the result of the effect measure selected a posteriori, it is 

necessary to highlight that this measure is not the one initially planned and that its selection may 

entail a form of overfitting. We also recommend performing a sensitivity analysis, comparing the 

conclusions that would be reached by the planned and the post-hoc analyses, with the confidence 

in the conclusions being higher when these conclusions coincide and the need for caution when 

interpreting the effect measures being greater otherwise.  

A distinction between a priori expectations and post-hoc analyses might be relevant for 

preventing false positives. Moreover, reporting that the findings do not match the expected data 

patterns can be useful for prompting research into the potential reasons for the unexpected results 

and for improving the interventions or the fidelity with which they are implemented (Tincani & 

Travers, 2018). Finally, a comprehensive evaluation of the effect of the intervention needs 
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include social validity indicators (Horner et al., 2005), beyond the visual inspection and the 

quantifications.  

Recommendations in Relation to the Flowchart 

The flowchart presented in the current text is based on the convergence of dimensions 

and is designed to reflect the intended use of the SCED quantifications, as established by their 

founders. For a good conceptual understanding of the quantification and its main features, we 

strongly recommend that applied researchers consult and refer to the original sources. For that 

purpose, apart from the references provided in the current text, a list of selected publications is 

made available as Appendix A at 

https://osf.io/t96fc/?view_only=19c595b82d9c4a96aec04eeaf6a4b196. Additionally, we 

recommend that applied researchers provide details about the software or tool that will be used 

for obtaining the quantification of choice. As an aid, we provide a list of selected freely available 

tools, as Appendix B at https://osf.io/t96fc/?view_only=19c595b82d9c4a96aec04eeaf6a4b196. 

In summary, we consider that prior to conducting the study, the whole analysis program should 

be included. 

Limitations and Future Research 

Regarding specific types of SCEDs, the focus of the current text is put on the most 

common options, specifically the A-B comparisons which are the building block of MBDs and 

reversal designs, and also on ATDs and CCDs. For combined designs, quantitative proposals are 

very recent (Moeyaert et al., 2020). In relation to MBDs across participants, it should be noted 

that the BC-SMD is applicable for combining intervention effects, but the logic of MBDs usually 
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requires comparing within-series and between-series (Hayes, 1981). For this latter purpose, the 

interested reader can consult Ferron et al. (2014) and Joo and Ferron (2019). 

The current text refers mainly to summative quantifications in present of previous 

evidence, but is not intended to suggest that formative analysis or response-guided 

experimentation is not useful or to state that exploratory research is inappropriate and very 

specific expectations are always required. Following Simmons et al. (2011), it is suggested that 

researchers explicitly state when their study is exploratory and, if possible, gather more data, 

presenting a replication (confirmatory) study with additional participant(s), using the same 

analytical approach as in the original exploratory study. 

In relation to the flowchart, it includes multiple decision points and pathways, because 

SCEDs can be different and the focus can be put on different data features, which renders the 

decision making process complex. Nevertheless, the flowchart is still a simplification of the set 

of dimensions and facets and simplifying it further, in excess, would not represent reality. In 

terms of the degree of comprehensiveness of the flowchart, we believe that it is reflecting most 

common pathways, but that researchers using it can probably identify additional pathways. For 

instance, the current version of the flowchart has omitted the need to deal with nonlinear trends, 

as many effect measures assume linear trends (Solomon et al., 2015). However, it is not 

reasonable to expect that all trends are linear and continue unabated in time (Parker, Vannest, 

Daivs, et al., 2011). In consequence, several analytical options have been discussed for dealing 

with nonlinear trends: for instance, in the context of generalized least squares regression analysis 

proposal by Swaminathan, Rogers, Horner, et al. (2014), when using generalized additive models 

(Shadish, Zuur, et al., 2014), when using multilevel models (Hembry et al., 2014) and in the 

context of randomization tests (Solmi et al., 2014). A review of these modeling options is beyond 
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the scope of the current text, but it is necessary to state that any previous evidence on a possible 

nonlinear trend has be taken into account when deciding a priori how to analyze the data. In 

absence of evidence for nonlinearity, parsimony would call for initially opting for modeling 

trend as linear. In case the actually obtained data suggest nonlinear trends, it is important how 

such nonlinearity can be interpreted from a substantive perspective, before deciding how to 

analyze the data. For instance, a nonlinearity stemming from a delayed effect (see Levin et al., 

2017) needs to be distinguished from a nonlinearity stemming from an effect that reaches an 

asymptote (see Swan & Pustejovsky, 2018). If an alternative effect measure or modeling 

technique is decided after the data are obtained, a distinction between the planned analysis 

(involving linear trend) and a post-hoc analysis (including nonlinear models) would be 

necessary. This distinction should follow the same rules for reporting as stated in the previous 

section.  

In terms of future research, the current version of the flowchart can serve as an initial step 

for a dialectic research process in which it is continuously improved by researchers. Any 

subsequent modifications in the flowchart, on the basis of the experience and expertise of other 

researchers with different backgrounds (applied, methodological, statistical) is likely to increase 

its usefulness.   

In order to explore the effect of using an effect measures selected a priori versus choosing 

the quantification to the features of the actually obtained data, a field test would be useful. A 

comparison of a priori vs. post-hoc analyses can inform about the degree to which there is 

difference between the two approaches and in what direction. Specifically, it can be assessed 

whether the planned analyses lead to more conservative quantifications of effect.  
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Table 1 

Dimensions and Facets for Justifying the Selection of Effect Measures 

DIMENSIONS FACETS CHOICES WITHIN FACETS 

Research 

question or type 

of quantification 

desired 

Formative or 

summative analysis 

Formative analysis: Visual analysis 

Summative analysis: Quantification 

Presence of 

functional relation 

or quantification 

Functional relation: Visual analysis 

Quantification: Effect measure 

Unit of analysis to 

which the research 

question refers 

Individual analysis: Within-case quantification 

Aggregation: Across-case quantification 

Descriptive or 

inferential 

Focus on the effect size or on the p-value or 

confidence interval 

Measurement units 

of the effect measure 

Raw (same measurement units as the outcome 

variable) or comparable (standardized, percentage) 

Focal data feature Choose one (level, trend, variability, immediacy, 

overlap) or state explicitly that several features will 

be quantified, looking for converging  

Design features Type of design Multiple-baseline design, reversal, alternating 

treatments design, changing criterion design, 

combined 

Replication ● Within-case (e.g., reversal design) or across-

case (e.g., multiple-baseline design) 

● An across-case replication can be inherent to 

the design (multiple-baseline design across 

participants) potentially leading to an across-

case quantification or additional (reversal, 

alternating treatments design, changing 

criterion design, multiple-baseline design 

across behaviors and across participants) 

potentially entailing several within-case 

quantifications 
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● Anticipated variability in treatment 

effectiveness across cases 

Randomization Present or not; to use in the analysis via a 

randomization test or not to use 

Response-guided 

experimentation 

Is there a pre-established control for false positives? 

Data 

characteristics 

Number of units of 

analysis 

● Depends on whether a within-case quantification 

or an across-case quantification is to be used.  

● Consider whether the number of units is 

sufficient according to the evidence available for 

the analytical technique. 

Number of 

measurements per 

phase or condition 

● Are summaries of level and trend expected to be 

reliable? 

● Are standard errors expected to be estimated 

with precision? (effect on p-values and 

confidence intervals) 

● Will there be enough statistical power? 

Outcome variable(s) 

scale(s) 

Ordinal? Interval (continuous)? Ratio scale (counts)? 

Anticipated 

challenges (not 

found post hoc) 

● Autocorrelation: Effect measure assumes 

independence? Does it handle autocorrelation? 

Evidence on the performance when there is 

autocorrelation?  

● Missing data 

● Outliers  

● Potential impossible projections of baseline trend  

● Unequal time intervals between observations 

Expected data 

pattern 

Baseline data pattern ● Expectations about stability (variability) and the 

usefulness of a summary measure of level 

● Need to model time trend 

Intervention effect Immediate effect vs. progressive or delayed effect 
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Desirable 

features of the 

quantitative 

analysis 

techniques 

Statistical properties ● Adequate levels of Type I error rates and 

statistical power; confidence interval coverage; 

bias and Mean Square Error when estimating 

● Better performance than another quantification 

● Discriminability when applied to real data 

Known sampling 

distribution (under 

certain assumptions)  

● Standardizing 

● Constructing confidence intervals 

● Possibility for inverse variance weighting relevant 

for quantitative integrations 

Quantifications 

easily represented 

visually 

● Main quantifications and summaries are easily 

represented on the time series plot? 

● Data transformations or trend corrections are 

easily represented on the time series plot? 
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Figure 1 

Flowchart for Selecting an Effect Measure According to Several Dimensions 

 


