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An efficient storage system is crucial for the effective implementation of renewable energies in the energy
ecosystem, required to mitigate the climate change and to reach the European Green Deal. Nanofluids
features improved thermal properties, being able to store unexpected amount of energy by adding
around 1 wt% nanoparticles at the base fluid. Therefore, nanofluids become more attractive for their
implementation as Thermal Energy Storage (TES) medium or Heat Transfer Fluid (HTF). However, the
main drawbacks of nanofluids are the lack of consensus on a theoretical explanation of this behaviour,
and the controversial lack of uniformity of the thermophysical experimental results in the literature.
The goal of this work is to develop and perform a study of the thermophysical properties of several nano-
fluid samples and the subsequent statistical analysis. To achieve this objective, three batches of 24-
samples were analysed: NaNO3 based nanofluids with three types of nanoparticles (1% wt.): SiO2,
Al2O3 and clay. The statistical analysis indicates that nanoparticles have a low impact in the melting
enthalpy and melting temperature and a strong impact in the specific heat capacity (Cp). The most
remarkable result is the high dispersion of Cp values despite considering the sampling procedure. This
fact agrees with the high variability of results found in the literature. Finally, the methodology proposed
in this work may facilitate the comparison among measured results and literature results.

� 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Nanofluids (NFs) are a colloidal suspension of nanoparticles
(NPs) in a liquid medium that were originally introduced by Choi
S.U. et al. in 1995 [1]. Since then and up to 2021, almost eighteen
thousand articles related to this field have been published. One of
the most studied topic is the enhancement of thermophysical
properties of the fluid due to the presence of NPs at low concentra-
tions [2,3,4]. Since the specific heat capacity (Cp) is one of the vari-
ables that measures the amount of heat that can be stored by a
material, it is the property with highest interest for evaluating
thermal energy storage (TES) systems. The reviewed literature
shows exceptional Cp values with increments up to 30% when 1%
in weight (wt.) of NPs are added to the base fluid [5].

According to this, in the last years NFs have become an interest-
ing TES media to be implemented in concentrate solar power (CSP)
plants [6,7] because the presence of NFs may improve the thermal
properties of solar salt, used in these plants as TES media and HTF,
which consists in the eutectic mixture of KNO3 and NaNO3 [5].
Obviously, the improvement of the base fluid’s thermal properties
would drive to a more efficient energy storage and consequently,
to more efficient CSP plants [8] (e.g., higher thermal capacities
would imply the volume reduction of the storage tanks [9]).
Besides their use in solar energy applications [10,11], NFs are also
being considered as heat transfer fluids [12], lubricants [13], in
electronics [14], automotive [15,16], industrial cooling [17],
nuclear systems [18], quantum dots [19] or in heating buildings
[20,21].

Materials with these properties could significantly improve
thermal storage efficiency. Although great advances have been
made in this field, there is still a long way to do to fully understand
the phenomenon that provokes the Cp enhancement [22]. More-
over, other factors as the influence of the size, concentration and
density of nanoparticles, Cp of the base fluid or even the pH and
temperature of the sample can have a great influence on the final
properties [23]. Another drawback is the high dispersion observed
in the published Cp values, under similar or in some cases, the same
experimental conditions. Table 1 lists Cp variation, DCp, for differ-
ent solar salt-based NFs with 1 wt% of different NPs. DCp corre-
sponds to the difference in Cp of NFs and the NaNO3-KNO3 base
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Table 1
Specific heat capacity variation, DCp, of solar salt nanofluids with 1 wt% of nanoparticles with different sizes.

Base Nanoparticle Average Size (nm) Average Temperature (�C) DCp (%) References

NaNO3– KNO3 SiO2 5 113.3,266.6,233.3 8,19,10 [27,50,51]
(60:40) 7 183.3 0.8 [50,51]

10 113.3, 233.3, 500 12,13,13 [50,27,52]
12 223.3 25.03 [50,28]
16 200, 250 8.9, 8.9 [50,52]
102.5 40, 400 �0.34, 6.65 [52]
20 200, 200, 350 17.6, �2, 17.6 [50,52]
25 400 21.1, 20.3, 9.5, 10.6, 15.82 [53]
30 266.6, 113.3, 233.3 25, 19, 21 [50,51,27]
60 233.3, 113.3 28, 27 [50,27]

Al2O3 13 183.3, 125, 125, 230 5.9, 19.9, 5.9, 3 [50,51,47,54]
50 230 6 [54]

SiO2 - Al2O3 7 185, 272.5 28.9, 2.6 [52,29]
41 396 30 [55]
101 183.3, 125 22.5, 57.7 [50,51]
103.5 185, 272.5 14.9, 0.8 [52,47]

TiO2 20 183.3, 125 �6.3, �6 [50,51]
50 350, 182.5 �2.19, 1.6 [56]

Al-Cu 160 300, 350, 400 0.07, �1.34, �3.69 [57]
CuO 29 295 �1.27 [52,58]

50 182.5, 350 6.3, �1.97 [56]
Sn-Al2O3 180 80, 189, 280 0.62, 8.16, 3.99 [59]
Sn-SiO2 180 80 �1.26, 5.69, 5.88 [59]
Fe2O3 30 350, 182.5 2.19, 9.1 [56]
Sn 180 80, 180, 280 �5.09, 1.79, 2.02 [59]
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fluid. A high dispersion of the DCp is observed ranging from �5% to
22%. Moreover, different methodologies and techniques have been
used to measure the Cp value (i.e., standard ASTM E1219[24], ASTM
E2716[25] or the Areas Method[26]). In particular, the Cp values
have been obtained by dissimilar number of samples and measure-
ment repetitions. For example, B. Dudda et. al [27] or Z. Jiang et al.
[28] in their studies measured up to 5 samples and 3 measurement
repetitions. In opposite, M. Chieruzzi [29] obtained the Cp value by
means of 1 sample and 6 measurement repetitions. Therefore, it is
evident that there is a lack of a methodological procedure that
makes impossible the direct comparison among results. Likewise,
in the light of the DCp values in Table 1, there is not a clear ten-
dency about the effect of temperature in the nanofluids behaviour.
Similar tendencies and inconsistencies have been found in other
base fluids such as molten salts [30–33], water [34–37], ethylene
and propylene glycol [38–42] or oils [39,43–45]. This fact points
out that there is not a clear trend or specific values about NFs
properties [46–49]. Thereby, the difficulties to obtain a representa-
tive sample is one of the possible reasons of these discrepancies.
Obviously, this fact makes difficult to take a step forward in
the NFs implementation and development for industrial
applications.

This work aims at obtaining a statistically representative sam-
pling of NFs to ensure accurate thermophysical results after their
characterization. The study comprises the evaluation by means of
differential scanning calorimetry (DSC) of thermophysical proper-
ties of NFs such as specific heat capacity, melting point and melting
enthalpy, measuring a high number of samples. Sodium nitrate has
been used as fluid along with three different NPs, silica (SiO2), alu-
mina (Al2O3), and montmorillonite (MMT). All the results have
been compared with pure NaNO3 used as a reference at the same
experimental conditions. Furthermore, the chemical composition
of the samples has been studied via an Inductively Coupled Plasma
(ICP) analysis to determine the NP concentration, and to obtain a
clear correlation between the NP concentration and the specific
heat capacity variation. The statistical procedure used and the pro-
posed methodology can contribute to the field in different ways;
first, facilitating the comparison between results and, second, pro-
viding a clearer point of view about the thermophysical properties
trends of NFs.
2

2. Experimental procedure and methodology

2.1. Sample preparation

The NFs were synthetized in our laboratories starting from
sodium nitrate (Sigma Aldrich, 99.995%) as base fluid and then
doped with three types of NPs: 5–15 nm diameter silica (Sigma
Aldrich, 99.5%), 13 nm diameter alumina (Sigma Aldrich,
99.995%), and the clay montmorillonite (Nanomer� I.44P, Sigma-
Aldrich) with a basal distance between 24 and 26 Å. To prepare
the NF samples, a standard dissolution method [60] was followed
(see Fig. 1).

1. To prepare 50 g sample (salt + NPs)
2. To dissolve the salt in 30 mL distilled water
3. To sonicate for 10 min for a correct dispersion of the NPs inside

the salt
4. To dry the samples in an oven at 105 �C until the total water

evaporation and recrystallization of the material
5. To grind the sample in an Agatha mortar

NFs can be synthesized by several methods, and all of them
share the same objective of avoiding or reducing the agglomeration
of NPs for thus, synthetizing a stable and durable NF. The methods
reported in the literature use commercial NPs or synthetic ones
although in such a case, they also report the description of the syn-
thetic path.

Nanofluids can be prepared by means of two main paths, the
one or the two-step method. In the one step method, the produc-
tion of NPs and their dispersion are done simultaneously. On the
contrary, the two-step method uses commercial or previously syn-
thetized NPs. These paths include different methods such as dry
mixing, dry milling, dissolution method, or magnetic stirring
[61]. Furthermore, the literature suggests that the synthesis
method has a strong influence on the NPs dispersion, and conse-
quently, on the final thermophysical properties of the NFs
[53,62,3]. While the influence of the synthesis method on the final
properties is covered in the literature there is a lack of information
about the reproducibility between different synthetized lots fol-
lowing the same methodology.



Fig. 1. 1-step nanofluid synthesis scheme.
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2.2. Sampling procedure and measurement methodology
recommendation

A standard quartering method was applied during the sampling
[63]. Since the quantity of sample under study is small ( � 50 g, see
Section 2.1) , conventional quartering instruments are not useful.
For that reason, an own riffle splitter (Fig. 2) suitable for small sam-
ples was designed in Autocad and printed on a Prusa i3, Anycubic
3D printer. Thus, the amount of sample required to be processed
was around the amount analysed by the DSC equipment ( � 10–
15 mg) .

For each type of NF sample, three independent lots of 50 g were
synthetized (see section 2.1.), and each lot was quartered in eight
batches (sub-samples), obtaining 24 representative samples per
NF. In the case of pure NaNO3, the 3 lots were subdivided in four
batches (12 samples). Therefore, a total amount of 84 samples
were obtained. A schematic representation of the sampling proce-
dure followed is depicted in Fig. 3. The thermophysical character-
ization of each sample was carried out in three steps; (1) thermal
cycle from 25 �C to 450 �C for measuring the melting enthalpy
and the melting temperature, (2) two consecutive measurement
repetitions of Cp at 150 �C, 250 �C, 350 �C and 450 �C, and (3) rep-
etition of the thermal cycle from 25 �C to 450 �C. The full process
generated 384 measurements per type of NF and thermophysical
property (i.e., 48 measurements for each property). Finally, all
the values obtained were statistically analyzed.

2.3. Characterization

2.3.1. Thermophysical characterization
The melting temperature was characterized by three parame-

ters: the onset temperature (Ton) when the sample starts the melt-
ing process, the peak temperature (Tpeak) when the sample is half-
Fig. 2. Mini-riffle splitter system printing in 3D.
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melted and the endset temperature (Tend) when the sample fin-
ishes the melting process. Based on the literature, the reported
average melting temperature, Tm, of pure NaNO3 is 307 �C and
the melting enthalpy value, DHm, varies in the range 172–
187 J g�1 [64]. Nonetheless, the recommended values obtained
through differential scanning calorimetry (DSC) are Tm = 307 �C
and DHm = 178 J g�1 [65]. In this work, Tm, DHm and Cp, have been
analysed by Differential Scanning Calorimetry (DSC 822e from
Mettler Toledo). All the measurements were performed at inert
atmosphere, under a 50 mL/min N2 constant flow. Tm and DHm

measurements were performed by a dynamic method from 25 �C
to 450 �C, using a 0.5 K/min heating rate. The Cp values were mea-
sured at 150 �C, 250 �C, 350 �C and 450 �C, and determined through
the areas method described by Ferrer et al. [26] which is a method
more accurate than both dynamic and step methods. The amount
of sample analysed was around 10 mg within a 100 ml pined alu-
minium crucible.

Notice that, two consecutive measurements of Cp were run for
each sample and that, prior to the measurement each sample
was introduced into the oven at 100 �C to avoid humidity in the
samples due to the high hygroscopic nature of the species.

In addition, two measurements have been analysed namely first
and second runs. This double run method applies because during
the first measurement, the samples have undefined contact
between the bottom of the crucible and the sample surface.

2.3.2. Chemical characterization
Inductively Coupled Plasma Atomic Emission Spectroscopy (-

ICP-AES) analysis was performed with PerkinElmer ELAN 6000.
These measurements were performed in order to determine the
concentration of NPs in the samples previously analyzed by DSC.
The samples were digested in 100 mg aliquots with 1 mL of
HNO3 and 1 mL of HF, and they were kept during 24 h in an oven
at 90 �C. Finally, 25 mL deionized H2O were added. This technique
allows to analyze the Si and Al content of SiO2, Al2O3 and MMT NPs.

2.3.3. Statistics
The statistical analysis of the obtained results was carried out

via the independent-sample Student’s t-test. This test allows dis-
carding non-repeatable data among the entire population of
results. The p-value is the probability that the results from the
sample data occurred by chance and it ranges from 0 to 1. Thus,
a p-value of 0.01 means there is only a 1% probability that the
results from an experiment happened by chance. Low p-values
are good, and they indicate that the data did not occur accidentally.
In most cases, a p-value of 0.05 is accepted to mean the data is
valid. In this study three p-values have been used, p < 0.05 (little
significant differences), p < 0.001 (quite significant differences)
and p < 0.0001 (highly significant differences).



Fig. 3. Schematic representation of the quartering performed for all the samples of the three NFs and also for pure sodium nitrate: NaNO3-1 wt% SiO2 NPs (orange), NaNO3-
1 wt% Al2O3 NPs (grey), NaNO3-1 wt% MMT NPs (green) and pure NaNO3 (yellow).
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Additionally, it was taken into account the uncertainty sug-
gested by the DSC manufacturer, Mettler Toledo [66], described
in Table 2.

Finally, the total standard deviation was calculated following
the equation (1), taking into account the systematic error, equation
(2), that considers the four sources of error listed in Table 2, and
finally, the random error, equation (3), where r is the standard
deviation, pc is the confidence level, N is the population size, xi is

the observed value of the sample items, and x
�
is the mean value

of these observations.

rtotal ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrsistematicÞ2 þ ðrrandomÞ2

q
ð1Þ

rsistematic ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:2Þ2 þ ð0:5Þ2 þ ð1:5Þ2 þ ð3Þ2

q
¼ �3:4%ðpc

¼ 68%Þ ð2Þ

rrandom ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N� 1
Â �

X
i

ðxi � xÞ
� 2

s
ð3Þ
Table 2
Source and uncertainty of the DSC measurements.

Source Measurement uncertainty

Mass of the test
specimen

± 20 lg (e.g., reproducibility of the balance; if the
mass is about 10 mg, this corresponds to ± 0.2%)

Put the sample into the
crucible

negligible

Thermal contact with
the crucible

± 0.5% (estimate)

Heating rate negligible
negligible, if adjusted under the same conditions

Gas Flow
Adjustment ± 1.5% (uncertainty of the calibration material)
Integration limits ± 3% (statistics of repeated evaluations)
Baseline type
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3. Results and discussion

The results are presented using box-plot type distributions.
Each set of results associated to a property is represented by a
box. The box is formed by three horizontal lines; the bottom one
that corresponds to the 25% of the results variance (i.e., first quar-
tile, Q1), the upper one to the 75% of the results variance (i.e., third
quartile, Q3) and the middle one that corresponds to the median,
that is the 50% of the results variance (i.e., second quartile, Q2).
Thus, the box itself represents the set of values associated to a vari-
able but excluding the 25% of values furthest away from the med-
ian. Vertical lines represent the maximum and minimum values of
the variable considering that the maximum value corresponds to
1.5 times the interquartile Q3–Q1 range. The values beyond these
vertical lines correspond to atypical or outlier values also included
in this study. Finally, the dots and squares inside the boxes repre-
sent the mean values [67,68].
3.1. Melting temperature

The values for the melting temperature of NaNO3 are in good
agreement with the values reported in the literature. Fig. 4 shows
the box-plot distributions for the melting parameters of the three
NFs derived from the DSC: Ton (red) that correspond to the inter-
section point between the baseline before the phase change pro-
cess starts and the inflectional tangent , Tpeak (blue) that
corresponds to the temperature at the transformation peak, and
Tend (green) that corresponds to the temperature when the trans-
formation is completed. Moreover, the values for the melting tem-
perature of pure NaNO3 are also included in Fig. 4 (grey boxes)
showing a good agreement with the reported value of Tm = 306.7
± 0.2 �C [65].

As above-mentioned, for each sample two consecutive mea-
surements (runs) were performed and analysed individually. Dur-
ing the first measurement no significant differences appear
regarding the Ton of the pure NaNO3. However, Tpeak and Tend show
increments on their values, suggesting a slower melting process.



Fig. 4. Box-plot of the melting point values of the NFs over a population of N = 24. Onset, endset and peak temperature correspond to orange, green and blue boxes,
respectively. The results obtained during the first melting run (left) and at the second melting run (right) are also shown: a) NaNO3- 1% wt. SiO2 NFs, b) NaNO3- 1% wt. Al2O3

NFs and c) NaNO3-1% wt. MMT NFs. Grey boxes stand for pure NaNO3 with a statistical sampling of N = 12.
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These differences mainly are due to the effect of the particle size of the
NaNO3 samples. Therefore, to avoid this effect and guarantee the good
quality measurement of the thermophysical properties, the first run is
absolutely necessary to ensure that the crucible bottom base is com-
pletely filled[69]. Indeed, for all the samples (pure NaNO3 and NFs)
the values of the second run were less dispersed and more homoge-
neous (minor interquartile range, Q1–Q3) than during the first mea-
surement, particularly considering the Tpeak and the Tend.

NaNO3 based NFs with SiO2 and Al2O3, Fig. 4-a and Fig. 4-b,
respectively, shows a similar Ton behaviour than NaNO3 pure salt
with no significant differences (p > 0.05) (run 2). On the contrary,
the MMT nanofluid shows highly significant differences
(p < 0.0001) on the Ton, Fig. 4-c. Then, only MMT NPs change the
NaNO3 Ton (beginning of the melting process).

In general, these trends are not in agreement with already
reported data. For example, the results from M. Chieruzzi et al.,
indicate that Ton decreases up to 9.7 �C adding NPs of SiO2, Al2O3

and SiO2/Al2O3 into solar salt [29,70]. Likewise, other studies with
the addition of other kind of NPs in molten salts like CuO, TiO2 or
Fe2O3, show a similar Ton drop [71,56].

On the other hand, for both Al2O3 and MMT NFs (run 2), a slight
shift in the Tpeak was observed, with highly significant differences
5

(p < 0.0001) in front of the pure NaNO3 (i.e., Tpeak < 1 �C and
Tpeak > 2 �C, respectively). On the contrary, for SiO2 NFs (Fig. 4-a)
there are not significant differences for Tpeak (p > 0.05).

A similar tendency was found in the value of Tend; the addition
of NPs decreases the endset temperature (i.e., Tend < 1 �C and
Tend < 2 �C for Al2O3 and MMT NFs, respectively). On the contrary,
for SiO2 NFs no significant differences were found (p > 0.05).
Therefore, with Al2O3 and MMT NPs the phase change transfor-
mation is completed at lower temperatures. Furthermore, the
obtained results show a reduction of the three melting tempera-
tures when adding MMT NPs. This fact agrees with the results
obtained by Q. Xie et al. [48] for who the addition of graphene
nanoplatelets into solar salts exhibited a reduction of the three
temperatures.

It is important to highlight the outlier values in MMT NFs at the
second run for the three parameters, (Fig. 4-c) that represent an
anomalous data, suggesting a possible measurement error or
abnormal behaviour of the sample, as suggested in a previous
work[22].

Nonetheless, no important changes were found in the melting
performance of the NFs. Notice that the mean values and the stan-
dard deviations from Fig. 4 are listed in Table 3.
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3.2. Melting enthalpy

The same statistical treatment was performed for the melting
enthalpy (DHm) of the three NFs (Fig. 5). As in the case of the melt-
ing temperatures, there are differences between the two thermal
cycles (runs).

For the first run, the DHm was higher (up to 6%) than in the sec-
ond run, and this behaviour is observed for all NFs under study as
well as for the pure NaNO3. In all the cases, during the second run,
the mean DHm values decrease up to 7%, nonetheless without sta-
tistically significant differences (p > 0.05). As in the melting tem-
perature, this is mainly due to grain size effects of the sample
[69]. However, only for Al2O3 NFs (Fig. 5-b), the DHm decreases
with slight significant differences (p < 0.05).

Therefore, non-important modification in the latent heat of
fusion is obtained with the addition of 1 wt% of NPs into NaNO3

pure salt. Notice that the outliers for the MMT NFs (Fig. 5-c) corre-
spond to the same outlier samples obtained in the melting temper-
ature measurements (Fig. 4-c). Nevertheless, previous results show
different behaviours; thus, M. Lasfargues et al. [72], and Y. Luo et al.
[71] determined a decrease in DHm adding 1 wt%. CuO and TiO2

NPs in molten salts, whereas Y. Li et al. [73], and A. Awad et al.
[56] obtained an enhancement of DHm with the incorporation of
SiO2, Fe2O3, CuO and TiO2 NPs also in molten salts, in agreement
with our results. Otherwise, G. Qiao et al. [74], and P. Myers et al.
[75] stated non-significant modifications for the DHm values when
SiO2 or CuO NPs are added into the salt.

Indeed, it is remarkable that all the cited studies, generally, did
not use more than three different samples for the measurement of
the thermophysical properties. In addition, these previous works
sometimes carried out up to five repetition measurements of the
same sample and discarded the first run measurement. Based on
the previous results we are confident that the methodology
described herein reduces the error associated to the DHm

determination.
3.3. Specific heat capacity- synthesis method

The Cp analysis among different synthesized lots with identical
preparation was performed to analyse the statistical error due to
the synthesis procedure. Cp values as a function of temperature
are shown in Fig. 6. The Cp results show an increase with temper-
ature, from approximately 0.8 J g�1 K�1 up to 1.3 J g�1 K�1. Statis-
tical p-value analysis shows a slight significant difference between
the lots of the three formulated NFs.

Thereby, the Cp of the SiO2 NFs shown in Fig. 6-a, has significant
differences (p < 0.05) when it is measured at 100 �C between lots
1–3 and 2–3. The same is observed between lots 1–3 at 200 �C,
and lots 1–2 at 350 �C (p < 0.05). In the case of the Al2O3 NFs Cp

(Fig. 6-b), there is only a significant difference (p < 0.05) between
lots 2–3 at 350 �C. Finally, in the case of MMT NFs (Fig. 6-c), a slight
significant difference between lots 1–3 (p < 0.05) is observed.
Table 3
Mean values and standard deviations of the melting parameters; onset, peak, and endset tem
Al2O3 and MMT nanoparticles, during the first and second melting measurements.

System Cycle onset (�C) (±)

NaNO3 Run 1 306.0 0.2
Run 2 305.7 0.1

NaNO3-SiO2 Run 1 305.7 0.2
Run 2 306.0 0.1

NaNO3-Al2O3 Run 1 305.9 0.3
Run 2 305.7 0.3

NaNO3-MMT Run 1 305.7 0.4
Run 2 303.0 1.5
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Therefore, these results highlight that to determine a more pre-
cise Cp value, the systematic error associated to the NFs prepara-
tion needs to be considered. Accordingly, to determine more
precisely the Cp, it is mandatory to average samples from different
lots. On the other hand, it is important to highlight that there are
differences between lots when these samples are measured at dif-
ferent temperatures, and this fact does not correlate for all the
temperature ranked. This effect evidences the presence of uncon-
trolled physicochemical phenomena that take place at different
temperatures.
3.4. Specific heat capacity of NFs

Fig. 7 shows the Cp mean values obtained from all the analysed
NF samples. The Cp values as a function of temperature for the
three NFs and for the pure NaNO3 are plotted in Fig. 7-a. The
obtained Cp values for the pure NaNO3 at 100 �C, 200 �C, 350 �C
and 450 �C are 0.66 ± 0.07 J g�1 K�1, 0.85 ± 0.07 J g�1 K�1, 1.13 ± 0
.09 J g�1 K�1 and 1.17 ± 0.08 J g�1 K�1, respectively. These values
are lower than those reported by T. Bauer et al. [76] which corre-
spond to 1.25 J�g�1�K�1 at 100 �C, 1.55 J g�1 K�1 at 200 �C, and
around 1.65 J g�1 K�1 once the samples are at the liquid state.

This deviation of the Cp can be caused both by the presence of
impurities in the salt and by the low amount of mass analyzed in
the DSC, as demonstrated by B. Muñoz-Sánchez et al. [77]. In solid
state (T < 307 �C) the three NFs improved their Cp in comparison of
the pure NaNO3, with significant statistical differences (p < 0.0001).
Nevertheless, the differences were minor at the liquid state
(T > 307 �C).

For the case of SiO2 and MMT NFs no statistical differences were
found between the NF and the pure NaNO3 (p > 0.05) at 450 �C.
Only in the case of adding Al2O3 NPs to the salt derives in a Cp

enhancement in liquid state with slight significant differences
(p < 0.05). Additionally, Fig. 7-b depicts the Cp variation in front
of the pure NaNO3 with the temperature. It can be seen that the
mean values of the Cp variation of the three NFs decay with
increasing the temperature (i.e., up to 34% in the case of MMT
NFs, 30% for Al2O3 NFs and 27% for SiO2 NFs, from 100 to 450 �C)
and they tend to even lower values at 450 �C (i.e., �2% for SiO2

NFs, 3% for MMT NFs and 12% for Al2O3 NFs). It is noticeable the
high standard deviation for all the values of the three NFs.

Fig. 8 shows the Cp variation in a box-plot graph from 100 �C to
450 �C. Firstly, it can be observed that the Cp values for each NF
show a high variability at 100 �C evidenced by the difference
between Q1 and Q3 quartiles, more evident in the case of Al2O3

(Fig. 8-b) and MMT NFs (Fig. 8-c). Similar trends are observed at
higher temperatures with Cp values with positive and negative
variations (high dispersion) although the Cp variation decreases
with temperature while the NFs are solids (T < 307 �C). Once the
NFs melted the Cp variation corresponding to the liquid state
remains approximately constant (T > 307 �C). However, the high
dispersion observed in the Cp values agrees with the opposing
peratures, for pure NaNO3 and the three NaNO3 based nanofluids with 1% wt. of SiO2,

peak (�C) (±) endset (�C) (±)

306.2 0.8 312.2 0.8
306.7 0.2 311.7 0.3
308.1 0.9 314.4 1.2
306.1 0.2 311.5 0.3
307.1 0.6 313.0 0.8
306.0 0.4 311.2 0.2
308.8 0.6 314.2 0.5
304.5 0.9 309.3 1.0



Fig. 5. Box-plot of the melting enthalpy values of the NFs over a population of N = 24. The results obtained during the first melting run (orange) and at the second melting run
(blue) are also shown: a) NaNO3- 1% wt. SiO2 NFs, b) NaNO3- 1% wt. Al2O3 NFs and c) NaNO3-1% wt. MMT NFs. Grey dotted lines represent the statistical value of pure NaNO3

with a statistical sampling of N = 12.

Fig. 6. Specific heat capacity of the NFs at selected temperatures in the range 100 �C to 450 �C for the three independent synthetized lots with a statistical sampling of N = 8
each lot. a) NaNO3- 1% wt. SiO2 NFs, b) NaNO3- 1% wt. Al2O3 NFs and c) NaNO3-1% wt. MMT NFs. Lots 1, 2 and 3 are represented by squares, circles and triangles, respectively.
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Fig. 7. a) Specific heat capacity mean values and b) specific heat capacity variation of the NFs at selected temperatures in the range 100 �C to 450 �C for a statistical sampling
of N = 48 for NaNO3- 1% wt. SiO2 NFs (circle), NaNO3- 1% wt. Al2O3 NFs (triangle), NaNO3-1% wt. MMT NFs (rhombohedral) and pure NaNO3 (squares) with only N = 24
measurements. Lots 1, 2 and 3 are represented by squares, circles, and triangles, respectively.

Fig. 8. Box-plot of the specific heat variation of the NFs at selected temperatures in the range 100 �C to 450 �C, over a population of N = 12. a) NaNO3- 1% wt. SiO2 NFs, b)
NaNO3- 1% wt. Al2O3 NFs and c) NaNO3-1% wt. MMT NFs. Grey dots represent all the samples analysed per NF and temperature.
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results already published [50,52,78–80] that show enhancements
and decrements of Cp values for the same NF system.

One possible explanation to the high dispersion observed is the
difficulty to obtain a representative NF sample because when a NF
8

is sampled, the samples under study probably have different con-
centrations of NP in their compositions.

For that reason, it is mandatory to perform a sample composi-
tion characterization in order to monitor the real NP wt% content



Table 4
Nanoparticle concentration obtained by ICP measurements for two samples of three
independent synthetized lots of NaNO3- 1% wt. SiO2 NFs, NaNO3- 1% wt. Al2O3 NFs
and NaNO3- 1% wt. MMT NFs.

System Lot 1 Lot 2 Lot 3

% wt.
NaNO3- SiO2 0.71 0.75 0.66

0.68 0.64 0.66
NaNO3-Al2O3 0.86 0.87 0.83

0.77 1.04 0.89
NaNO3-MMT 0.45 0.45 0.48

0.48 0.55 0.48

A. Svobodova-Sedlackova, C. Barreneche, P. Gamallo et al. Journal of Molecular Liquids 347 (2022) 118316
of each sample to ensure the proper sampling procedure along
with the reproducibility.

Table 4 shows two repetitions of the ICP-AES measurements for
each NF lot. In general, the concentration obtained is lower than
the expected (1 wt%). Only one sample, Al2O3 NF lot 2, has 1 wt%
NPs concentration. This fact indicates a low NP dispersion within
the salt and/or NP agglomeration, or the loss of NPs during the
NF synthesis procedure.

Consequently, a complementary characterization using ICP-AES
is required to better describe the properties of NFs, and to be able
to compare results under the same conditions.

On the other hand, there are not specific correlations between
the slight differences of the NPs concentration and the Cp variation.
The obtained results for each sub-sample from the synthetized lots,
suggest that an additional phenomenon occurs in the thermal
properties (i.e., thermal interfaces or layering phenomenon
[5,22,81]). Therefore, based on these results, to determine the main
Cp variation, the conventional DSC methodology may not be the
most accurate method to understand the NFs performance. For this
reason, more experiments are necessary to understand the mecha-
nisms occurring in the NFs and their precise characterization.
4. Conclusions

A sampling study of ionic nanofluids with a wide sampling col-
lection (84 samples) was performed. The nanofluids were based on
NaNO3 salt as a base fluid with three kinds of nanoparticles: SiO2,
Al2O3 and montmorillonite (MMT) at 1% weight. The methodology
used has allowed to measure enthalpy, melting temperature and Cp

values and to obtain a reliable data collection.
The specific heat capacity decreases with temperature and is

the property most influenced by the presence of nanoparticles,
with variations between 80% and �20%. Furthermore, the nature
of the nanoparticles showed an impact on the melting temperature
behaviour with a slight decrease of the melting temperature in
Al2O3 and MMT NPs. Despite of this, in the case of melting
enthalpy, no significant differences were found by the addition of
nanoparticles.

This study demonstrates the relevance of sampling for the eval-
uation of nanofluids and summarize some recommendations to
present proper thermophysical values. The procedure proposed
can be resumed in the following steps; (1) to obtain at least 2 inde-
pendently synthesized samples, (2) from each independent sam-
ple, to obtain at least 3 sub-samples, (3) for each sub-sample
perform at least 2 measurement repetitions (with the sample pre-
viously melted) and finally, (4) to perform statistical data treat-
ment. This methodology is intended to facilitate the comparison
between results and to obtain a representative value of the ther-
mophysical properties of nanofluids.

According to this point, the significant differences regarding the
Cp values after the sampling process can be explained due to the
possible unsuitability of the DSC methodology to be used for mea-
9

suring thermophysical properties of NFs. This statistical treatment
opens the door to explain the high dispersion of the results regard-
ing the Cp in the literature. Nonetheless, further experiments are
needed to deeply understand the mechanisms behind nanofluids
for their correct characterization.
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