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Abstract

The main goal of this work is to study Teichmüller spaces of Riemann surfaces and hyperbolic
surfaces via Fenchel-Nielsen coordinates. To do this, we first determine the universal holomorphic
covering of every Riemann surface and briefly study Fuchsian groups. Then, we introduce moduli
and Teichmüller spaces for Riemann surfaces and use the previous characterization to imbue the
Teichmüller space with the so-called algebraic topology. We also compute said spaces for the torus
and give a short remark on the mapping class group. Afterwards, we introduce hyperbolic geometry
as the natural geometry compatible with the complex structure of the complex unit disc and use this
along our previous effort to geometrize Riemann surfaces. We go on to study hyperbolic surfaces
with and without boundary with a special emphasis on building the necessary machinery to prove
the existence and uniqueness of closed geodesics in a given homotopy class via the axis of hyperbolic
transformations. Finally, we undergo a thorough study of pairs of pants and X-pieces in order to
demonstrate the main theorem about the Fenchel-Nielsen coordinates. Also, this study provides the
necessary background from hyperbolic geometry for the short paper that has grown from this project.
We conclude with some applications of these efforts, like the collar lemma.

Abstract en català

L’objectiu principal d’aquest treball és estudiar els espais de Teichmüller de superfícies de Riemann
i superfícies hiperbòliques mitjançant les coordenades de Fenchel-Nielsen. En primer lloc, es deter-
mina el recobridor universal de cada superfície de Riemann i s’estudien grups Fuchsians breument.
Després, introduïm espais de moduli i de Teichmüller de superfícies de Riemann i fem servir el que
s’ha estudiat prèviament per dotar l’espai de Teichmüller de l’anomenada topologia algebraica. També
calculem els espais en qüestió pel cas del torus i esmentem algunes connexions amb el mapping class
group. Tot seguit, introduïm la geometria hiperbòlica com la geometria que és compatible de manera
natural amb l’estructura complexa del disc unitat. Això, juntament amb el treball ja fet, ens permet
geometritzar les superfícies de Riemann. A continuació, estudiem superfícies hiperbòliques amb i
sense vora amb la intenció de construir la maquinària necessària per demostrar l’existència i unicitat
de geodèsiques tancades en cada classe d’homotopia via eixos de transformacions hiperbòliques. Fi-
nalment, estudiem superfícies conegudes com a pantalons i peces X per tal de demostrar el teorema
principal sobre coordenades de Fenchel-Nielsen. A més a més, aquest estudi dóna el bagatge de ge-
ometria hiperbòlica necessari per entendre el breu article de recerca que ha nascut d’aquest projecte.
Concloem el treball amb aplicacions de les diverses tècniques que s’han introduït, com per exemple el
collar lemma.

Supported by the Beca de Colaboración en Departamentos of the Department of Education of the Spanish government.
2020 Mathematics Subject Classification. 30F60, 57K20, 51M10, 58D17.
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Introduction

Classification problems crowd the mathematical landscape as a tool for understanding: one has a
class of mathematical objects and a notion of sameness between said objects and thus wants a way
to distinguish them. For example, take the class of connected compact orientable surfaces, declared
the same if they are homeomorphic. Those objects are classified by the genus. That is, the number
of “holes” the surface has completely determines it up to homeomorphism. Another example is the
category of smooth compact surfaces with diffeomorphisms as the notion of sameness. It is known
(see, for example, [Hat13]) that the classification is the same as the topological one, i.e. given two
homeomorphic surfaces, they are also diffeomorphic. One may refer to this as “the topological type
determines the smooth structure”. Those are quite “simple” classifications since the set of equivalence
classes is “parametrized” by the natural numbers. If we consider surfaces with complex structures
and biholomorphisms3 the classification is not so simple.

Definition 1 We declare two Riemann surfaces equivalent if they are biholomorphic. Now, fix a
topological surface S, we refer to the set of equivalence classes of Riemann surfaces that topologically
are S as the Riemann moduli space and write M(S). This is the same as saying that M(S) is the set of
non-biholomorphic complex structures on S. If S is a connected compact orientable surface of genus
g, we write Mg instead of M(S) (which makes sense by the topological classification).

To illustrate the point before the definition, consider the complex plane C and the open unit disc of
the complex plane D. Clearly, they are both Riemann surfaces with the identity and inclusion charts
respectively. Even though they are homeomorphic they are not biholomorphic. Indeed, if they were,
there would be a non-constant holomorphic map f : C −→ D which by Liouville’s theorem cannot
be bounded, but it is. In fact, the uniformization theorem asserts that all simply connected Riemann
surfaces are biholomorphic to C, D or the Riemann sphere Ĉ. This proves that the moduli space of
R2, M(R2), has two elements and the moduli space of the sphere, M0, has only one. This theorem
yields an example of a classification of Riemann surfaces with a fixed topological condition (simple
connectivity).

What happens with surfaces with a more interesting topology? For example, the torus S = T can
be regarded as a Riemann surface (that is, it has at least one complex structure) and, at first, it is a
surprising fact that there are uncountably many non-equivalent complex structures on it. This is the
first example of an uncountable moduli space M1, which puts forward another quirk of classifications.
One does not aim to only tell objects of M1 apart, one wants that the classification has some kind of
geometric meaning. In other words, we do not want to study M1 as a “point-set” but as a space; we
are interested in a notion of closeness between non-biholomorphic complex structures and, ideally, we
would like the moduli space to encode geometric information about T. From the getgo, one would
like the moduli space to inherit a complex structure. The good news are that in Section 1.2.1 we will
see that M1 is a Riemann surface biholomorphic to the complex plane C.

The not so good news are that the way we describe M1, as a quotient of the upper half-plane

3Those are smooth surfaces regarding the plane as the complex plane so that chart transition maps of the smooth atlass
are biholomorphic. A holomorphic map is a map that is holomorphic in local coordinates and a biholomorphism is a bijective
holomorphic map with holomorphic inverse. These surfaces are also called Riemann surfaces.

1



2

by the modular group, introduces some “singularities” that obstruct good geometric properties. For
the case of the torus this problem can be somewhat remedied but when we consider higher genus
Riemann surfaces (g-holed torus Fg, g ≥ 1) the situation is worse. It turns out that the moduli space
Mg can be described by 6g− g real parameters but it is not a manifold! The singularities that occur in
M1 = C get much more complicated as the genus grows, so much so that it is not locally Euclidean.
We discuss this further in Section 1.2.2. The solution is to parametrize a finer structure on Riemann
surfaces. Namely:

Definition 2 We declare two Riemann surfaces equivalent if they are biholomorphic and that biholo-
morphism is isotopic to the identity. The set of equivalence classes is called the Teichmüller space
and denoted Tg. Though this definition is intuitive, it is not very usable. We usually define a marked
Riemann surface as a Riemann surface S equipped with a homeomorphism ϕ : Fg → S and declare
two Riemann surfaces (S, ϕ) and (R, ψ) equivalent if there is a biholomorphism h : S → R such that
h ◦ ϕ is isotopic to ψ. The set of equivalence classes is also Tg (see Section 1.2.5). Note that with this
definition the Teichmüller space is the “moduli space” of marked Riemann surfaces.

It turns out that the Teichmüller space does not have the aforementioned singularities and it pro-
vides the “best” geometric classification of structures. Algebraic geometers would refer to the Teich-
müller space as a fine moduli space and the Riemann moduli space as a coarse moduli space. We
discuss this shortly in Section 1.2.2. The study of this spaces is an active multidisciplinary field of
research. For example, an important property is that the Teichmüller space of Fg is a 3g− 3 dimemen-
sional complex manifold. Our main goal, however, is to parametrize Tg in a real analytic way that
is geometrically meaningful, the Fenchel-Nielsen coordinates. Before explaining the bare-bone of this
constructions we have to go backwards a little.

As said before, every simply connected Riemann surface is biholomorphic to C, D or Ĉ. This
implies that every Riemann surface is (holomorphically) universally covered by one the these surfaces.
As a matter of fact, in Section 1.1 we will show that, in the complex category, C universally covers
itself, the punctured plane and the torus; Ĉ can only cover itself; and D is the universal covering space
of all other Riemann surfaces. In particular, every compact Riemann surface of genus g ≥ 2 is the
quotient of D by a discrete subgroup of automorphisms of D. We will call this subgroup a group
model for the corresponding Riemann surface. This builds a bridge from Riemann surfaces to group
theory, in Section 1.2.4 we will use this connection to topologize Tg.

Figure 1: In the left the complex plane and the Riemann surfaces it covers: itself, the punctured plane and tori; In the center the
sphere and the Riemann surfaces it covers: only itself; In the right the disc and some Riemann surfaces it covers: all the rest.
Geodesic triangles are shown to give the idea of geometrization.

However, the fact above has another interpretation, one that has lead to the most important ad-
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vances in low-dimensional topology in the last century. The sphere, plane and disc have natural
geometries: spherical (elliptic), flat (parabolic) and hyperbolic.4 This remarkable result enables the
geometrization of surfaces, which endows them with a nice overall behaviour. In particular, most
Riemann surfaces (those covered by D) can be regarded as hyperbolic 2-manifolds.5

This constitutes yet another mathematical bridge for Riemann surfaces universally covered by D:
there is a one to one correspondence between biholomorphism classes of complex structures on F and
isometry classes of hyperbolic metrics on F. Therefore, we can also regard6 Mg as the set of classes of
isometric hyperbolic surfaces and Tg as the set of marked hyperbolic surfaces; here the equivalence is
defined in the same way as in Definition 2 switching biholomorphic by isometric. This geometrization
procedure and equivalence of structures is explained in Section 2.2.1.

Therefore, our geometric study of Tg will come considering hyperbolic surfaces. We will prove that
Tg is a real-analytic (6g− 6)-dimensional ball via Fenchel-Nielsen coordinates, which we now outline.
To fix ideas we consider the 3-holed torus. The main idea is to decompose it into 6 pairs of pants by
cutting along geodesics like in the figure below.

Figure 2: Decomposition into pairs of pants of a genus g = 3 compact Riemann surface along the geodesics colored blue.

We denote the length of the six decomposing geodesics by ℓ1, . . . , ℓ6. The wonderful thing is that
varying the length of those geodesics we get different hyperbolic surfaces. For example, letting ℓ1 vary
we get a path in Tg. Notice that this provides a good notion of closeness of hyperbolic structures. In
the figure below we can see two different points on T3.

Figure 3: Recall that a point on T3 is an equivalence class of marked Riemann surfaces of genus g. This Figure shows two
different points on Tg: the geodesics in the gray collar have different widths.

One may be wondering what does it mean to vary the length of a geodesic, if tweaking the length
changes the hyperbolic metric, shouldn’t the geodesics of this new hyperbolic surface be different?
This is a good question and its answer is what enables this construction to work: in Section 2.2.4 we

4For this work it is not necessary that the reader is previously acquainted with hyperbolic geometry. In fact, we will introduce
it as “the geometry” that is “compatible” with the complex structure of D.

5This is a Riemannian 2-manifold with constant sectional curvature −1. It is a standard result of differential geometry that
this is equivalent to being locally isometric to D with the Poincaré metric.

6Although we will not use this fact in this work, the moduli space also parametrizes the isomorphism classes of smooth
complex algebraic structures on F making it a very important object in Algebraic Geometry. Also, it parametrizes classes of
conformal metrics on smooth surfaces as well, which makes it a hugely multidisciplinary object.
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Figure 4: Pasting two different ways, no twist (left) and a twist of a quarter turn (right). The curves hint at how the hyperbolic
metric may change.

show that in the homotopy class of every closed curve there is a unique geodesic representative for
each hyperbolic metric. This allows us to draw the surface decomposition above for any hyperbolic
metric on a fixed topological model.

Having said this, it makes sense that increasing those lengths the marked hyperbolic structure
changes since we are increasing distances. In this heuristic spirit, one may wonder what happens if
we twist one of the sleeves before pasting them together? Intuitively this should change the lengths of
curves in the resulting surface, should it not? and if so, should it not change the hyperbolic marking?
See Figure 4.

Indeed, before re-assembling the pairs of pants as in Figure 2, for each of the six decomposing
geodesics we can twist before pasting, this introduces six twist parameters θ1, . . . , θ6. The Fenchel-
Nielsen coordinates are given by the length parameters and the twist parameters. Our main goal is
to build the necessary techniques to define all this rigorously and prove the following theorem, which
we do along Section 2.3 culminating in Subsection 2.3.5.

Theorem The Fenchel-Nielsen coordinates FN as defined above parametrize Tg bijectively and homeomorphi-
cally:

FN : Tg −→ R
3g−3
+ ×R3g−3

S &−→ (ℓ1(S), . . . , ℓ3g−3(S), θ1(S), . . . , θ3g−g(S))

Also, there are 9g − 9 homotopy classes of curves such that their lengths (or, more precisely, the lengths
of their unique geodesic representatives) uniquely determine the point of Tg. This determines an injection
ι : Tg −→ R

9g−9
+ given by said lengths which, in fact, is a topological embedding.

In Figure 5 we show 9 (homotopy classes of) curves that determine the Teichmüller space of the
genus two compact hyperbolic surfaces. Parametrizing Tg only by length of curves (avoiding twist
parameters) is in line with the good “moduli” philosophy, since we have obtained a geometric classi-
fication using objects that are intrinsically geometric, namely, lengths of geodesics. In fact, our proof
consists of obtaining the injection ι first and then determining twist parameters from lengths of curves
to obtain the map FN.

These coordinates are important for other reasons besides the geometric heuristics of the Teich-
müller space. For example, the mapping class group of a surface (the group of classes of homeo-
morphisms modulo isotopy) is a fundamental topological object of great interest, specially in low-
dimensional topology. It turns out that it acts naturally on the Teichmüller space and the quotient by
this action is the moduli space. Therefore, the study of Tg and the mapping class group help us study
the moduli space. In fact, it turns out that the action is properly discontinuous (this implies that we
can push-forward a structure on Tg to Mg) even though it is not free (it acts with fixed points, causing
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Figure 5: The 9 homotopy class of curves such that their lengths uniquely determine the Teichmüller space.

the aforementioned singularities). One way to prove this fact and actually give a sort of fundamental
domain for Mg is by using the Fenchel-Nielsen coordinates.

The Fenchel-Nielsen parametrization also works for non-compact hyperbolic surfaces (we are al-
lowed to remove discs and add punctures). This makes it ideal in a broad spectrum of topics which
we only mention in passing. For example, the Fenchel-Nielsen coordinates define a natural symplectic
form7 1

2 ∑i dℓi ∧ dθi on Tg that is invariant under the action of the mapping class group, thus defining
a symplectic form on Mg, allowing us to compute volumes on the moduli space. Another fruitful
application comes from the fact that one can compactify (not at all trivially) the space Tg so that it is
homeomorphic to a (6g− 6)-dimensional closed ball. This yields Thurston’s celebrated classification
of surface homeomorphism via the study of the fixed points of the action of the the mapping class
group on the boundary of the ball.

Teichmüller theory is a vast and exciting field of study with connection to many branches of
mathematics. In this survey we hope to introduce the reader to Riemann surfaces and the intuition
behind moduli spaces, study the basic properties of the geometry of hyperbolic surfaces and give a
full introduction to Fenchel-Nielsen coordinates seeking to hint at all of those rich connections.

Some outcomes of this project: Finally, we mention a couple of academic outcomes that have grown
out of this project (other than this main expository text, of course). In the first place and most impor-
tantly, in [Pen88], R.C. Penner found conformal coordinates to the Teichmüller space of pairs of pants
and used it to solved an analogue of the classical Schottky problem on this surface. This paper has
been thoroughly studied (and hence references like [AS60], [Ahl78] and [Ahl73] have been examined)
and two big natural questions have arisen: Can this new coordinates and approach to the Schottky
problem be generalized to X-pieces and even to more general surfaces (which is a matter raised by
the author himself)? Also, what is the relationship with the usual hyperbolic coordinates of the Te-
ichmüller space of pairs of pants (which is the one shown in Section 2.3.2) and Penner’s conformal
coordinates? These questions are being explored, the latter is already answered and the former is
still ongoing. As a proof of progress, a preliminary written account of this research has been handed
in alongside this document. Secondly, a longer expository text covering some more of the subjects
studied during this project has been written [Bar21]. Most of the proofs that have been omitted here
due to space considerations can be found in said extended version.

7Surprisingly, this does not depend on the pairs of pants decomposition, Wolpert showed that this form is the so-called
Weil-Peterson symplectic form, hence intrinsic, see [Wol10, Theorem 3.14]



Chapter 1

Riemann Surfaces

In this chapter we particularize the theory of topological covering spaces to holomorphic cover-
ings, characterize the universal coverings of all Riemann surfaces and briefly explore Fuchsian groups.
Then, we will be ready to present moduli and Teichmüller spaces and, amongst other things, compute
those spaces for the torus, make dimensional counts and introduce a topology on the Teichmüller
space.

References: For a brief introduction to Riemann surfaces we refer the reader to an extended version
of this work [Bar21], for a full introduction we recommend [Mir95] or [For81]. Section 1.1 mainly draws
from [IT92], [JS87], [Car92]; finally, Section 1.2 combines the approach of [IT92] with the approach
[FM12], with some specific things taken from [Bus10], [Mar16], [Ji15], [Ji18] and [Ben].

1.1 Universal Covering and Group Models of Riemann Surfaces

The crux of this section is that the characterization of universal coverings in Corollary 1.1.2.7 pro-
vides us with a group-theoretic view of Riemann surfaces helpful to study moduli and Teichmüller
spaces; and it unveils a way to find natural geometries on Riemann surfaces that will be needed in
chapter 2.

1.1.1 Holomorphic Theory of Covering Spaces

We assume that the reader is familiar with the classical theory of topological covering spaces that
can be found, for example, in [Lee11, Chapters 11 and 12] and [Mas91, Chapter 5]. This sections serves
to establish some conventions about covering spaces and, most importantly, to make the necessary
remarks to adapt this theory to the context of Riemann surfaces. Proofs in this section are omitted and
we refer the interested reader to the extended version of this work [Bar21].

Notation 1.1.1.1. Let X and X̃ be a topological spaces and p : X̃ → X a continuous map. The fiber
of a set S ⊂ X by p is the preimage of this set, denoted Fibp(S) := p−1(S), when no confusion may
arise we simply write Fib(S). An open set U ⊂ X is evenly covered by p if its fiber is a disjoint
union of connected open sets, each of which is mapped homeomorphically onto U by p. We say that
(X, p : X̃ → X) is a covering space of X and p is a covering map if p is surjective, every point of X
has an evenly covered neighbourhood by p and X̃ is connected and locally-path connected (which, in
turn, implies X is locally and globally path-connected).

Notation 1.1.1.2. If Y is another topological space and f : Y → X any continuous map, a lift of
f is a continuous map f̃ : Y → X̃ such that p ◦ f̃ = f . Let (X̃′, p′) be another covering space
of X, a continuous map f : X̃ → X̃′ is said to be fiber-preserving or a covering homomorphism
if p′ ◦ f = p. A covering isomorphism is a covering transformation with an inverse that is also a
covering transformation (which is the same as saying a fiber-preserving homeomorphism). In the
case the covering homomorphism f : X̃ → X̃ is a self map and a homeomorphism it is said to

6



1.1 Universal Covering and Group Models of Riemann Surfaces 7

be a covering transformation or a deck transformation. The group (under composition) of covering
transformations associated to the covering (X̃, p) of X is denoted Deck(X̃, p) and called deck group
or covering transformations group. We say that a covering space (X̃, p) is regular (also known as
normal or Galois) if its deck group acts transitively on each fiber, that is, for every q ∈ X and any
q̃, q̃′ ∈ Fib(q) = p−1(q) there is a covering transformation f such that f (q̃) = q̃′.

Notation 1.1.1.3. Finally, the action of a group G on X is said to be a covering space action if for every
q ∈ X there is a neighbourhood q ∈ U ⊂ X such that g · U ∩U = ∅ for every g ∈ G \ {Id}.1

Proposition 1.1.1.4. Let M be a n-manifold and (M̃, p : M̃ → M) a covering space of M. Then, M̃ is a
n-manifold.

Proposition 1.1.1.5. Let S̃, S and R be Riemann surfaces such that p : S̃ → S is a holomorphic covering map
and f : R → S is holomorphic. Then, any lift f̃ : R → S̃ of f is holomorphic. In particular, the deck group is a
subgroup of the group of biholomorphic automorphisms of S̃.

Theorem 1.1.1.6 (Pull-back Structure). Let S be a Riemann surface covered by a (topological) surface S̃ and
p : S̃→ S be the covering map. Then, there is a unique complex structure on S̃ such that p is holomorphic.2

Example 1.1.1.7. From topology it is known that the torus is homeomorphic to the orbit space R2/Z2.
A group of the form z1Z × z2Z with z1, z2 ∈ C not zero and linearly independent over R is called a
lattice. It is known that all quotients of R2 by lattices are tori. Figure 1.1 shows the identifications being
made for Z × wZ with w = eiπ/3. From this, one can readily define a complex atlas on C/Z2, the
figure highlights how one would do it. In contrast to the fact that all lattices give rise to homeomorphic
tori, not all yield biholomorphic tori. We will investigate this further in Section 1.2. Lastly, in Section
1.1.2 we will see that all complex structures on a torus come from this quotienting procedure.

Figure 1.1: Two possible charts are highlighted in green and orange. The green line and the orange region show how identifica-
tions would be made in the quadrilateral, just like it is done in point-set topology. The red and blue loops on the torus represent
the red and blue arrows in C.

The following lemma is a generalization of the procedure indicated in the example above.

Lemma 1.1.1.8 (Push-Forward Structure). If G acts on M by biholomorphisms and as a covering space action,
the quotient M/G inherits a complex structure such that the projection π : M → M/G is a holomorphic
covering map.3

Theorem 1.1.1.9. If (S̃, p : S̃ → S) is a regular covering surface of the Riemann surface S and G is its deck
group, then the map z &→ [z̃] with z̃ ∈ Fib(z) from S to S̃/G is a homeomorphism. Considering S̃ with the

1This condition is sometimes referred as proper discontinuity but the author prefers to follow Massey’s and Lee’s much less
ambiguous convention of calling it a covering space action.

2The classical theory of covering spaces, under weak conditions on the base topological space X, establishes an order-
reversing bijective correspondence between CS(X) (the set of covering spaces of X modulo covering isomorphism) and the
conjugacy classes of the fundamental group of X at a point. If X is a Riemann surface, the same statement is true in the complex
category (switching the word covering space by covering surface and asking maps to be holomorphic). This follows directly
from Propositions 1.1.1.4 and 1.1.1.5 and Theorem 1.1.1.6.

3It could happen that M/G was not Hausdorff, it would not be a manifold but it would have a complex structure. To avoid
this, a “properness” condition on the action is usually considered.
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pull-back structure of the previous theorem, G acts by biholomorphisms and S̃/G inherits a complex structure
from S̃ such that S̃/G is biholomorphic to S.

Remark 1.1.1.10. Note that we have seen two methods to transfer a complex structure: the pull-
back and push-forward structures. For example, Theorem 1.1.1.9 says that pulling back the complex
structure of S to S̃ and then pushing forward to the quotient space S̃/G produces a complex structure
equivalent to the original one on S. An important remark about the push-forward structure lemma is
that it is valid in the smooth category: if the structure at hand were smooth (as opposed to complex)
and the group acted by diffeomorphisms, the quotient would inherit a smooth atlas

Since universal coverings are regular, the universal covering of every Riemann surface S is a simply
connected Riemann surface, therefore, by the uniformization theorem (see [Hub06, Chapter 1]), it is
either C̃, C or H (or D, since H and D are biholomorphic). From this, every Riemann surface will be
biholomorphic to a quotient by a subgroup G of automorphisms of one of these spaces (where G is
the covering transformations group). Now we proceed to study those groups closely.

Definition 1.1.1.11. If a Riemann surface S is biholomorphic to H/G, C/G or Ĉ/G we will say that G
is a group model for S.

Remark 1.1.1.12. Let S be a connected surface and p : S̃ → S its universal covering. For the reader’s
convenience, we recall the identifications that make the fundamental group of S isomorphic to the
covering transformations group G. Let q ∈ S be a point on the base surface, on the one hand, given
two points in the Fib(q) = p−1(q) there is a unique element of G that takes one to the other. On the
other hand, given a loop γ at q and a point q̃ ∈ Fib(q) = p−1(q), γ lifts to a unique path γ̃ at q̃ (that
is, beginning at q̃) in S̃. The monodromy lemma asserts that the endpoint of this γ̃ does not depend
on the path-homotopy class of γ. Then, for any q ∈ S and q̃ ∈ p−1(q), the following correspondence
is a group isomorphism: to each element of π(S, q) corresponds the element g ∈ G that sends q̃ to the
endpoint of the lift of γ at q̃. For details see the chapters about covering spaces in [Mas91], [Jän84] or
[Lee11].

1.1.2 Characterization of Universal Coverings

Definition 1.1.2.1. A Riemann surface that is biholomorphic to Ĉ, C, C∗ = C \ {0} or a torus is said
to be of exceptional type.

The following theorem asserts that the only way the Riemann sphere holomorphically covers a
Riemann surface is if the surface itself is the Riemann sphere. After that, Theorem 1.1.2.4 characterizes
the types of surfaces holomorphically covered by the complex plane, which are the other surfaces of
exceptional type. Therefore, all other Riemann surfaces will have to be universally covered by H.
The general idea of the proofs in this section is the following: the automorphism groups of Ĉ, C and
H are known4 and the covering transformation group of a given covering is a subgroup of one of
these groups. However, it may not be any subgroup, it must be isomorphic to a fundamental group
of a Riemann surface (because of Remark 1.1.1.12). This algebraico-topological condition is enough to
discern between the three possible universal covering spaces a Riemann surface admits.

Theorem 1.1.2.2. A Riemann surface R has a universal covering surface R̃ biholomorphic to the Riemann
sphere Ĉ if and only if R is itself biholomorphic to Ĉ.

Proof. Given that R̃ is biholomorphic to Ĉ, we can assume that (Ĉ, p) is the universal covering surface of
R. Because the covering transformations group Deck(Ĉ, p) ⊂ Aut(Ĉ), every covering transformation
is a Möbius transformation, in particular, it should have fixed points. However, non-identity covering
transformations don’t have fixed points, this implies Deck(Ĉ, p) = {Id}. Finally, by Theorem 1.1.1.9 R
is biholomorphic to R̃/ Deck(Ĉ, p) = R̃/{Id} ∼= R̃. The converse implication is obvious; (Ĉ, Id) is a
universal covering surface for Ĉ.

4We strongly recommend that the reader reads the appendix about Möbius transformation up to Theorem 7. A working
knowledge on the content in the appendix will suffice for our purposes but, if the reader is interested, she can find the proofs
in the extended version of this project [Bar21].
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Lemma 1.1.2.3 (Characterization of Discrete Z-modules in C). A discrete Z-module M ⊂ C is either
trivial or the integral multiples of a non-zero complex number w1 or all linear combinations n1w1 + n2w2 with
integral coefficients n1, n2 ∈ Z of two non-zero R-linearly independent complex numbers w1, w2.

Proof. This is a standard fact in group theory about free abelian groups of rank r ≤ n in Rn. For an
elementary proof using only complex arithmetic see the extended version [Bar21].

Theorem 1.1.2.4 (Characterization of the Universal Covering of the Plane, the Punctured Plane and
Tori). A Riemann surface R has a universal covering surface R̃ biholomorphic to the complex plane C if and
only if R is biholomorphic to either one of the follwing: C, C∗ = C \ {0} or a torus.

Proof. We can assume R̃ = C and let Γ = Deck(R̃, p) be the deck group of the covering. Every element
f of Γ can be written as f (z) = az + b, a, b ∈ C, a ̸= 0 because Γ ⊂ Aut(C). Being a covering
transformations it has no fixed point on C, thus a = 1. Hence, we can identify Γ with Z-module of
C (by z + b ←→ b). Recall that Γ acts on C as a covering space action. In particular, it is direct that
points cannot accumulate in Γ. This allows us to think about Γ as a discrete module over the integers
and, therefore by the lemma above, one of the following possibilities occurs:

(i) Γ = {Id}.

(ii) Γ =< f0 > with f0(z) = z + b, for some b ∈ C∗.

(iii) Γ =< f0, f1 > with f0(z) = z + b0, f1(z) = z + b1, b0, b1 non-zero complex numbers that are
linearly independent over R.

For the first case, R̃/Γ ∼= C which is biholomorphic to R. For the second, the orbit space C/Γ is
actually C/bZ which is biholomorphic to C∗. For this, consider continuous homomorphism of topo-
logical groups e : C → C∗ defined by e(z) = e2πiz/b. As groups, we have that C∗ is isomorphic to
C/ker(e) = C/bZ, call such isomorphism E. We have that e = E ◦ p. Recall that p is holomorphic and
a local homeomorphism, we have that locally E = e ◦ p−1, which is locally holomorphic. E is locally
holomorphic, thus holomorphic, and bijective, thus biholomorphic. Finally, for the third possibility, Γ
is a lattice group and, hence, C/Γ is a torus.

Conversely, (C, Id) and (C, ez) clearly are the universal covering spaces of C and C∗. Let us now
take a torus S1 × S1 with a complex structure. The map p : C → S1 × S1 defined by p(a + ib) =
(e2πia, e2πib) is a covering map, we know there will be a unique complex structure on C such that p is
holomorphic. Therefore, this torus is either universally covered by C or by H. We want to show that
it cannot be H. If it was, the deck group of the covering would be a subgroup of Aut(H) isomorphic
to the fundamental group of the torus, which is Z×Z. The following lemma tells us that this is not
possible and hence we conclude that the torus is holomorphically covered by C, as we wanted.

Lemma 1.1.2.5. Let Γ be a subgroup of Aut(H) acting on H as a covering space action. If Γ is abelian, then it
is cyclic.

Proof. Assume that Γ is not the trivial group. Let f ∈ Γ \ {Id}, since by hypothesis it has no fixed
points on H, it should be parabolic or hyperbolic. If it is parabolic, via conjugation, we can assume
that f (z) = z+ b0, b0 ∈ R \ {0}. An element of Aut(H) commutes with f if and only if it is of the form
z+ b with b ∈ R. This comes from a simple computation imposing commutativity because Γ is abelian.
We have thus found that Γ is an additive subgroup of the real numbers (by identifying z + b ←→ b).
Moreover, the hypothesis also implies discreteness. It is well know that all such subgroups are infinite
cyclic.

On the other hand, if f is hyperbolic we can assume it takes the form λ0z (λ0 > 0). An element
of Aut(H) commutes with f if and only if it is of the form λz, λ ∈ R>0. Similarly as before, we have
found that Γ is a multiplicative discrete subgroup of R∗ by identifying λz←→ λ. All such subgroups
are infinite cyclic.5

5This follows from the fact that a discrete subgroup of (R,+) is infinite cyclic and that the map ex is a group monomorphism
of (R,+) into (R∗, ·), which implies that discrete subgroup of (R∗, ·) it is also so of (R,+).
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Corollary 1.1.2.6 (Tori as Quotients of Lattices). For every Riemann surface R of genus 1 there exists a
lattice group Γ such that R is biholomorphic to C/Γ.

Corollary 1.1.2.7 (Characterization Theorem of the Universal Coverings of Riemann Surfaces). A Rie-
mann surface has H as holomorphic universal covering if and only if it is not of exceptional type. The complex
plane C universally covers and can only cover the surfaces of exceptional type, except Ĉ which is covered and
only covers itself.

Remark 1.1.2.8. Since C, Ĉ and H are natural models for flat, elliptic and hyperbolic geometry, we
can push forward the Riemannian metric to the surfaces they cover. This provides extra structure that
helps to unveil purely topological facts about surfaces, the next chapter is completely devoted to the
study of the hyperbolic case.

1.1.2.1 Fuchsian Groups

In this section we will state some important facts about the theory of Fuchsian groups and Riemann
surfaces. As seen in the previous sections, most Riemann surfaces are a quotient of H by a subgroup of
PSL(2, R). This opens the door to the study these subgroups and the exploration of Riemann surfaces
via their group models (see 1.1.1.11).

Definition 1.1.2.9. Recall that PSL(2, R) is a Lie group with the topology induced by the identification
of the 2× 2 real matrices with R4. We say that a discrete subgroup of PSL(2, R) is a Fuchsian group.

The following theorem serves as a converse to the theorems in the last section and describes a
fruitfull connection between Riemann surfaces and group theory: biholomorphic Riemann surfaces
(not of exceptional type) have conjugate group models (see Definition 1.1.1.11) and, surprisingly, the
converse is also true:

Theorem 1.1.2.10. Let Γ be a Fuchsian group without elliptic elements. Then, H/Γ is a connected Riemann
surface and the projection H → H/Γ is a covering. Moreover, if Γ1 and Γ2 are Fuchsian groups without elliptic
elements, H/Γ1 is biholomorphic to H/Γ2 if and only if Γ1 and Γ2 are conjugate by an element of PSL(2, R).
This two facts together with the theorems in the last section give the following bijective correspondence:

{Riemann surfaces not
of exceptional type
modulo biholomorphism

}
←→

{Conjugacy classes of
elliptic-free discrete
subgroups of PSL(2, R)

}

Proof. In the first place, connectedness comes from H being connected and the being Hausdorff follows
from discreteness. The remark below, discreteness and Lemma 1.1.1.8 imply that the quotient has a
complex structure such that the projection map is a covering. This proves the first statement. For the
second, assume that Γ1 and Γ2 are conjugate by g ∈ PSL(2, R), that is, gΓ1g−1 = Γ2, the map [z]Γ1 &→
[g(z)]Γ2 is a biholomorphism from H/Γ1 to H/Γ2. Conversely, suppose that H : H/Γ1 → H/Γ2 is a
biholomorphism, then it lifts to a biholomorphism h : H → H such that H([z]Γ1) = [h(z)]Γ2 . If g ∈ Γ1,
then [z]Γ1 = [g(z)]Γ1 , applying H we have that [hg(z)]Γ2 = [h(z)]Γ2 . This, in turn, implies that there is
a g′ ∈ Γ2 such that hg(z) = g′h(z) for all z ∈ H and so, hgh−1 = g′ ∈ Γ2. That is, hΓ1h−1 ⊆ Γ2. The
same argument applies to H−1 to get h−1Γ2h ⊆ Γ1. We have proved that hΓ1h−1 = Γ2, like we wanted
to show.

When Fuchsian group Γ contains elliptic elements it cannot act on H as a covering space action
since covering transformations act without fix points. Then, it is not obvious how one can give a
complex structure to the topological quotient H/Γ since Lemma 1.1.1.8 no longer applies here. This
makes the following theorem all the more surprising.

Theorem 1.1.2.11. Let Γ be a Fuchsian group, then H/Γ is a connected Riemann surface and the projection
H → H/Γ is holomorphic (but not necessarily a covering).

Proof. That Γ is discrete is equivalent to the following properness property: for every z ∈ H there
exists a vicinity V of z such that for all g ∈ Γ if g(V) ∩V ̸= ∅ then g(z) = z. This is not at all obvious
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and it does not happen in other more general contexts. Using this equivalence one can construct an
atlas around the possible fixed point of elements of Γ. For an exploration of this topic see [JS87], in
particular Theorem 5.9.1.

We mention only in passing that the study of Fuchsian groups together with their fundamental
domains can be used to prove a very important theorem of Hurwitz: |Aut(S)| ≤ 84(g − 1) for a
compact Riemann surface S of genus g ≥ 2. See [JS87] for this approach.

1.2 Moduli and Teichmüller Spaces

This section introduces moduli and Teichmüller spaces for compact Riemann surfaces. To fix
ideas and intuition we compute the moduli space of the torus and ponder on weather this provides
a good geometrical classification of complex structures. We use this to motivate the introduction of
Teichmüller spaces. Then, our goal will be to introduce the so-called algebraic topology on Teichmüller
spaces. In order to do this, we introduce fundamental group markings to develop intuition and to
compute the Teichmüller space of the torus. The algebraic topology will topologize the Teichmüller
space in a way that is coherent with our work with group models as well as allowing us to have a
preliminary count of its dimension. After that, we will introduce different (and equivalent) way of
marking Riemann surfaces, which is the one we will use in the rest of this text. Finally, we will define
the mapping class group and explain how it acts on the Teichmüller space to produce the moduli
space.

The Riemann moduli space of a topological surface is the set of non-equivalent complex structures
that the surface admits. Since only homeomorphic surfaces can have biholomorphic complex struc-
tures and topological surfaces are classified by the genus, we will talk about the moduli space of a
compact topological surface of fixed genus.

Definition 1.2.0.1. Throughout this text we will write Fg for a fixed an orientable closed surface of
genus g. For surfaces S and R homeomorphic to Fg, let (S,A1) and (R,A2) be two complex structures
(or maximal atlases), we say they are equivalent if there exists a biholomorphism h : (S,A1)→ (R,A2).
The set of complex structures modulo this equivalence is the moduli space of Fg, denoted Mg.

An immediate consequence of our previous efforts in the last section yields the following charac-
terization.

Proposition 1.2.0.2 (Group Model Description of the Moduli Space). For g ≥ 2, there is the following
bijective correspondence:

{Conjugacy classes of elliptic-free discrete sub-
-groups of Aut(H) that admit the presentation
Γ = ⟨a1, b1, . . . , ag, bg|∏g

i=1 aibia−1
i b−1

i = 1⟩

}
←→Mg

Proof. This is a restatement of Theorem 1.1.2.10 for details see the extendedv version [Bar21].

In the following section we study the g = 1 case. We find result similar result to the proposition
above that allows us to describe M1 explicitly.

1.2.1 Moduli Space of the Torus M1

We will now see that for each element of the genus one moduli space we can take a representative
determined by a τ ∈ H.

Lemma 1.2.1.1. Every torus is biholomorphic to a torus of the form C/Γτ , with Γτ a lattice group with basis 1
and τ so that Im(τ) > 0

Proof. Recall that every (complex) torus can be written as a quotient Riemann surface C/Γ where Γ is
a lattice group of C. Moreover, if w1 and w2 generate Γ, the map hi defined as z &→ z/wi transforms C

biholomorphically onto itself and transforms Γ in a lattice group with basis 1 and τ. For either h1 or
h2 we have that Im(τ) > 0. The map h induces a bijective holomorphic map when descending to the
quotients.
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We will write Tτ for C/Γτ and pτ for the projection or covering map pτ : C −→ Tτ . The following
lemma characterizes holomorphic maps between tori.

Lemma 1.2.1.2. Let f : Tτ′ −→ Tτ be holomorphic. Then, there exists a holomorphic map f̃ : C −→ C such
that f̃ (0) = 0 and f ([z]) = [ f̃ (z)].6 If f is a biholomorphism, then f̃ (z) = αz for α ∈ C∗.

Proof. Consider the map f ◦ pτ′ : C −→ Tτ and note that pτ(0) = [0]. By the lifting criterion of covering
maps, there exists a unique lifting f̃ of f ◦ pτ′ that sends 0 to 0. Moreover, liftings of holomorphic maps
are holomorphic. Finally, if f is a biholomorphism then so is f̃ , i.e. f̃ ∈ Aut(C). This implies that
f̃ (z) = αz + β, since 0 has to be a fixed point, we get that f̃ (z) = αz (with α ∈ C∗).

Theorem 1.2.1.3. For any two τ and τ′ in H, two tori Tτ′ , Tτ are biholomorphically equivalent if and only if
τ and τ′ are related by a unimodular transformation, that is, there exists an h ∈ PSL(2, Z) such that h(τ) = τ′

Proof. Let us assume that f : Tτ′ −→ Tτ is a biholomorphism and that f̃ is the lifting given by the
lemma above, we have f ([z]) = [αz]. Moreover, note that the images of 1, τ′ by f̃ are congruent to 0
in Γτ . This is indeed true: [ f̃ (1)] = f ([1]) = f ([0]) = [ f̃ (0)] = [0] and [ f̃ (τ′)] = f ([τ′]) = f ([0]) =
[ f̃ (0)] = [0] given that [1] = [τ′] = [0] (they are the vertices of the fundamental parallelogram of the
torus and hence they identified as a single point). This produces the following system:

f̃ (τ′) = ατ′ = aτ + b
f̃ (1) = α = cτ + d

for a, b, c, d integers. Therefore, τ′ = aτ+b
cτ+d . Applying the same argument to f−1 yields τ = a′τ′+b′

c′τ′+d′ for
a′, b′, c′, d′ integers. By computing f−1 ◦ f (1) = 1 and f−1 ◦ f (τ′) = τ′ we have that ad − bc = ±1.
Finally, since Im(τ′) = ad−bc

|cτ+d|2 Im(τ) > 0, we can conclude that ad− bc = 1.

Conversely, if we have that τ′ = aτ+b
cτ+d for integers a, b, c, d and ad− bc = 1, then the biholomorphism

Tτ → Tτ′ is given by f ([z]) = [(cτ + d)z].

Corollary 1.2.1.4. The moduli space of the torus is the Riemann surface H/ PSL(2, Z), which is biholomorphic
to C.

Proof. By the theorem above, the moduli space is the set of equivalence classes H/ PSL(2, Z). The
relationship with H/ PSL(2, Z) and C is more difficult, it requires the presentation of fundamental
domains: for a brief introduction see the extended version [Bar21] and for a full presentation see
[JS87].

1.2.2 Geometric Classification Problem

We will now inquire in the nature of moduli spaces. As was discussed in the introduction, the
moduli space of a fixed topological surface aims to be the geometric classification of the Riemann
surfaces with the same topology. The “geometric” part means that we would like the moduli space
to reflect geometric properties of the surfaces. Therefore, it is a good sign that the moduli space of
complex tori is a Riemann surface. However, it is not a “perfect” moduli space. To explain this we
need the following remark.

Remark 1.2.2.1. It can be seen that PSL(2, Z) is the free product of S(z) = −1/z (of order 2) and
ST (of order 3), with T(z) = z + 1 (for a proof of this using only abstract algebra see [Alp93] or
[Con]). Therefore, since S fixes i and ST fixes e2πi/3, they are both elliptic Möbius transformations. In
Subsection 1.1.2.1 we proved in a natural way that the quotient of H by an elliptic-free Fuchsian group
is a Riemann surface. We also mentioned that the quotients by Fuchsian groups with elliptic elements
are also Riemann surfaces but that fixed points behave like singularities making it difficult to build an
atlas. In fact, that the quotient of a space M by any discrete group of Aut(M) is a manifold is quite a
special property of M = H. Therefore, it makes sense to say that H/ PSL(2, Z) has “singularities” at
the class of the points i and e2πi/3.7

6Here there is a usual abuse of notation, the brackets represent different equivalence relations.
7For deeper and more geometric reasoning about why these points are singularities in the space H/ PSL(2, Z) we refer the

reader to the extended version of this work [Bar21]
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A consequence of Theorem 1.2.1.3 is that the only tori Tτ that admit non-trivial automorphisms are
the ones for which τ is fixed by an element of the modular group, that is, there is an f ∈ PSL(2, Z) such
that f (τ) = τ. This, together with the remark above, tells us that the “singularities” i and e2πi/3 (that
make it difficult for H/ PSL(2, Z) to be locally euclidean) represent tori that have non-trivial automor-
phisms. For higher genus Riemann surfaces the situation is more dire, the moduli can also be obtained
from a quotient of a complex manifold (see Section 1.2.6) but the singularities caused by points rep-
resenting surfaces with non-trivial automorphisms make the moduli not be locally-euclidean. This
phenomena are the tip of the iceberg of a general theory which we now very briefly, and rather infor-
mally, introduce.

What do we mean when we say that a moduli space should reflect the geometric properties of the
structures it classifies (in our case, complex structures)? Let B be be a complex manifold, a holomor-
phic family of compact Riemann surfaces is a holomorphic surjective map π : X → B where X is a
complex manifold, π is a submersion and each fiber π−1(b) is a compact Riemann surface. The idea
is that {π−1(b)|b ∈ B} describes a family of compact Riemann surfaces that varies holomorphically
amongst a complex structure. These are the objects that we want to control with a moduli space. The
first property a good moduli space M should have is a complex structure such that for every holomor-
phic family π : X → B there is a holomorphic map i : B → M so that π−1(b) is a representative of
the class i(b). This roughly says that we can represent holomorphically in M all holomorphic families.
This behaviour is what defines M to be a coarse moduli space. This notion is not “good” enough since,
for example, it does not imply that the complex structure on M is unique or it does not pinpoint all
holomorphic families well enough. The property that would make it a very good moduli space is the
existence of a holomorphic family U → M, called the universal family, such that any complex family
X → B is the pull-back from U by a unique holomorphic map B → M. A moduli space M with this
property is called a fine moduli space and, amongst other things, the complex structure on M has
to be unique modulo isomorphism. In particular, finding a complex structure would be finding the
“right” complex structure. Note that this definitions apply mutatis mutandi to other contexts, such as
topological, smooth or real-analytic structures and families.

One important notion that was understood before the distinction between fine and coarse moduli
space was around was that non-trivial automorphisms disable the possibility of a moduli space being
fine. The reason is that non-trivial automorphisms allow the construction of families with isomorphic
fibers which makes them unable to be uniquely recovered from the universal family. However, one
can add more structure to the objects we want to classify in order to vanquish the automorphisms and
enable the existence of a fine moduli space.

In what follows we apply this idea to our problems. We introduce a finer structure than the com-
plex structure to kill automorphisms and get a fine moduli space, which will be the Teichmüller space.
In this chapter we give this space a topology and count its dimension to be 6g− 6. In the next chapter,
we prove it is homeomorphic to an open (6g− 6)-dimensional ball and has a well defined real-analytic
structure. However, we will not get into why it is actually a (3g− 3)-dimensional complex manifold.
At the end of this section we show how to get the moduli space from the Teichmüller space and how
it can be seen that a complex/real-analytic structure on the Teichmüller space gives a complex/real-
analytic structure on the moduli space (which will still not be a manifold).

A note on history and references: From Riemann’s introduction of the moduli space (which was
not in the form explained above) up until Teichmüller, moduli space theory was not very developed
and generally known informally. One of the great contributions of Teichmüller8 in [ACa+] was the

8The reader may be aware that Oswald Teichmüller was a Nazi. It is not clear weather he was forced to be so or we chose to
(and even so, in those times the word choice was quite void of meaning), when he was relieved from the Nazi military forces
to work in academia he eventually decided to go back to war (after of the call to arms of the German forces after their defeat in
the Battle of Stalingrad in 1942-1943). He died shortly after on September 11, 1943. However, on the brighter side, as L. Ahlfors
and F. Gehring said in the preface to Teichmüllers Collected Works [TAG15]: “Oswald Teichmüller deserves our respect and
admiration for his mathematics. His life is another matter. The charitable explanation is that he was a politically naive victim of



14 Riemann Surfaces

formalization of the ideas that had been cooking in the mathematical community and the understand-
ing of the moduli philosophy explained above. For a survey on this history and more, see [Ji15]. To go
deeper into why being a good geometric classification is translated into properties of the representa-
tion of holomorphic families see the article [Ben]. For a rigorous introduction of complex families, fine
and coarse moduli spaces, why the Teichmüller space with its complex structure is the fine moduli
space we refer the reader to [Ji18].

1.2.3 Fundamental Group Marking

1.2.3.1 Teichmüller Space of the Torus

We are aiming toward an algebraic characterization of Teichmüller spaces that will be easy to deal
with topologically. Our study, however, begins with a very natural way to mark Riemann surfaces (to
obtain a finer structure) that will add a geometrical flavour to the algebraic characterization. To fix
ideas, we study this for the torus first.

Example 1.2.3.1. The torus C/Γτ is equipped with a canonical choice of fundamental group generators:
as shown in Figure 1.2, the lines segments given by 1 and τ in C become the “meridian and equator”
loops in C/Γτ . With this choice, we can regard 1 as (1, 0) and τ as (0, 1) in Z×Z ∼= Γτ

∼= π(C/Γτ , [0]).
Now, take τ′ = τ + 1, we know that C/Γτ and C/Γτ′ are biholomorphic. However, it is clear that τ′

represents (1, 1) in Z×Z hence τ′ and 1 form a different pair of generators of the fundamental group.
In the Teichmüller space, C/Γτ and C/Γτ′ will be different torus. That is, we mark Riemann surfaces
by choosing certain generators of the fundamental group. All this motivates the following definition.

Figure 1.2: Here τ is red, 1 is blue and τ′ is green. In the torus the green curve is a curve homotopic to the projection of the τ′

segment (it is drawn that way to emphasize the twist.)

Definition 1.2.3.2. Let R be a Riemann surface. A marking Σp is a set of generators of the fundamental
group of R based at p ∈ R. Two markings Σp and Σ′q are said to be equivalent if there is a continuous
path in R between p and q that induces an isomorphism π(R, p)→ π(R, q) by conjugation that sends
Σp to Σ′q. Finally, (R, Σp) and (S, Σ′q) are equivalent if there is a biholomorphism h such that h∗(Σp) is
equivalent to Σ′q. The class of (R, Σp) is denoted by [R, Σp] and it’s called a marked Riemann surface.
The Teichmüller space of Fg is defined as Tg = {[R, Σp]} with R homeomorphic to Fg. In particular,
the Teichmüller space T1 of the torus is the set of all marked tori.

Also, for every τ ∈ H, let Σ(τ) = {A(τ), B(τ)} be the marking on Tτ at [0] determined by the
generators induced by 1 and τ. For instance, in the discussion above Σ(τ) would be the blue and red
loops and Σ(τ′) would be the blue and green loops. The markings Σ(τ) and Σ(τ′) in the example are
not equivalent.

Theorem 1.2.3.3. We have that [Tτ , Σ(τ)] = [Tτ′ , Σ(τ′)] in T1 if and only if τ = τ′. Therefore, there is a
bijection between T1 and H.

the disease that was rampant in his country. A redeeming feature is that he did not stoop to racial slurs in his scientific papers,
which shows that his regard for mathematics was stronger than his prejudices.”
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Proof. If τ = τ′ the claim is trivial. If [Tτ , Σ(τ)] = [Tτ′ , Σ(τ′)] we have a biholomorphism h : Tτ′ → Tτ

such that h∗(Σ(τ′)) is equivalent to Σ(τ). Note that both h∗(Σ(τ′)) and Σ(τ) are markings at [0] given
that h([0]) = [h̃(0)]. Then, the hypothesis tells us that h∗(A(τ′)) = A(τ) and h∗(B(τ′)) = B(τ).
Therefore, h̃ sends the basis 1, τ′ to 1, τ. Recall from Theorem 1.2.1.3 that h̃(z) = αz hence h̃(τ′) =
ατ′ = τ and h̃(1) = α = 1. We conclude that τ = τ′. The claim about the bijection between T1 and
H is deduced from what we have just proved and from the fact that every torus is of the form Tτ for
some τ ∈ H (the normalization biholomorphism of Lemma 1.2.1.1 preserves markings).

We have that the following relationship between the moduli and the Teichmüller space of the torus:

M1 = T1/ PSL(2, Z).

1.2.4 The Algebraic Topology

Marking a surface of genus g ≥ 2 by use of the fundamental group can be regarded as choosing
discrete faithful representations of its fundamental group into PSL(2, R). This point of view has the
advantage that Tg inherits a natural topology called the algebraic topology that is relatively easy to
deal with.

Definition 1.2.4.1. A representation of the fundamental group in PSL(2, R) is a group homomorphism
ρ : π(Fg, p) −→ PSL(2, R) ∈ Hom(π(Fg, p), PSL(2, R)). It is said to be discrete if ρ(π(Fg, p)) is discrete
with the natural topology of PSL(2, R) and it is said to be faithful if it is injective. The discrete faithful
representations are denoted by DF(π(Fg, p), PSL(2, R)).

There is a natural action of PSL(2, R) on DF(π(Fg, p), PSL(2, R)) given by conjugation. That is

PSL(2, R)× DF(π(Fg, p), PSL(2, R)) −→ DF(π(Fg, p), PSL(2, R))

(h, ρ) &−→ h · ρ(γ) = h ◦ ρ(γ) ◦ h−1

Theorem 1.2.4.2. For g ≥ 2, there is a bijective correspondence between the orbit space of the action above
DF(π(Fg, p), PSL(2, R))/ PSL(2, R) with Tg.9

Proof. We fix a set of generators C in π(Fg, p). Let Σρ be the canonical generators of the fundamental
group of H/ρ(π(Fg, p)) (which is a Riemann surface because ρ is discrete) induced by ρ(C) via the
projection map πρ : H −→ H/ρ(π(Fg, p)) (as in Example 1.2.3.1). In other words, Σρ = πρ(ρ(C)).
The naturally defined map

Ψ : DF(π(Fg, p), PSL(2, R))/ PSL(2, R) −→ Tg

[ρ] &−→ [H/ρ(π(Fg, p)), Σρ]

is a well defined bijection. Indeed, if ρ′ = h · ρ then Ψ([ρ]) = Ψ([ρ′]). This is a consequence of
Theorem 1.1.2.10, the discrete subgroups ρ(π(Fg, p)) and ρ′(π(Fg, p)) are conjugate by h and hence
H([z]) = [h(z)] is a biholomorphism. Moreover, the markings are equivalent by this map because
H ◦ πρ = πρ′ ◦ h, hence H(Σρ) = πρ′ ◦ h(ρ′(C)) which is equivalent to Σρ′ = πρ′(ρ

′(C)). Analogous
considerations show injectivity. For surjectivity we indicate how the inverse ought to be defined.
Given (R, Σ), R is biholomorphic to a quotient of H by a Fuchsian group Γ (which is unique modulo
conjugacy) and there is an isomorphism of Γ and π(Fg, p). The image of Σ by this correspondence
gives the desired discrete faithful representation of π(Fg, p), which is well defined up to conjugacy.

Definition 1.2.4.3 (The Algebraic Topology of Tg). Choose a set of generators for π(Fg, p), there is a
natural inclusion of Hom(π(Fg, p), PSL(2, R)) into the product of 2g copies of PSL(2, R) since each
homomorphism from π(Fg, p) to PSL(2, R) is determined by the image in PSL(2, R) of each of the

9We would like to note that the author has not seen the relationship between fundamental group marking and this repre-
sentation space in the literature. He has decided to present the fundamental group marking (well developed in [IT92]) as an
intuitive notion and then prove its equivalence with the practical representation space characterization of Tg (well developed in
[FM12]).
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2g generators of the fundamental group. By endowing PSL(2, R)2g with the natural Lie group topol-
ogy both DF(π(Fg, p), PSL(2, R)) ⊂ Hom(π(Fg, p), PSL(2, R)) have well defined natural topologies. It
is readily checked that different choices of generators of the fundamental group give rise to equiv-
alent topologies. The algebraic topology of Tg is the quotient topology of the topological quotient
DF(π(Fg, p), PSL(2, R))/ PSL(2, R).

Example 1.2.4.4 (A dimension count of Tg). Now we give a heuristic computation of the number
of parameters needed to describe Tg. In the first place, similarly to the definition above, fixing 2g
generators a1, b1, . . . , ag, bg of the fundamental group and taking into account that ∏g

i=1 aibia−1
i b−1

i = 1,
to specify a representation of the fundamental group we only need 2g− 1 parameters in PSL(2, R),
i.e. we can think DF(π(Fg, p), PSL(2, R)) in PSL(2, R)2g−1. The action of PSL(2, R) on this space will
subtract one free parameter, we summarize this in a informal diagram:

Tg ←→ DF(π(Fg, p), PSL(2, R))/ PSL(2, R)↪→ PSL(2, R)2g−1/ PSL(2, R)←→ PSL(2, R)2g−2

Now, since PSL(2, R) is a 3-dimensional Lie group (alternatively, it is readily computed that 3 pa-
rameters suffice to describe it), we have found that we need 3× (2g− 2) = 6g− 6 real parameters to
describe Tg.

Example 1.2.4.5. If γ ∈ π(Fg, p) then we define the following map

trγ : Hom(π(Fg, p), PSL(2, R)) −→ R

ρ &−→ tr(ρ(γ))

We want to show the continuity of trγ with respect to the topology introduced in Hom(π(Fg, p), PSL(2, R)).
In particular, they will define continuous functions in the algebraic topology of Tg because traces are
a conjugacy invariant in PSL(2, R). It will turn our that elements of group models induce closed
geodesics on surfaces in a way their length is related to these trace functions, this example will then
yield continuity of length functions. Now, continuity of trγ (with γ = ∏x∈{aibi}i∈I

x) follows from the
continuity of tr(∏k∈I pi(X)) (which is clearly continuous), where pi : PSL(2, R)2g → PSL(2, R) is the
i-th coordinate projection, X ∈ PSL(2, R)2g and I is any ordered finite index set.

Example 1.2.4.6. In the literature one often finds claims along the lines “continuous variation of the
deck transformations yield a continuous variation in Tg”. This makes sense since two group mod-
els that are “close together” (with respect to the matrix topology of PSL(2, R)) should give Riemann
surface close together in Tg (with respect to the algebraic topology). We know frame this reason-
ing in our construction as follows. As in the definition of the algebraic topology, we think about
DF(π(Fg, p), PSL(2, R)) in PSL(2, R)2g. Take a discrete faithful representation ρ ∈ PSL(2, R)2g and
consider c : [0, 1] → PSL(2, R)2g a continuous path such that c(0) = ρ. We restrict ourselves to paths
c such that c(t) is a discrete faithful representation for each t ∈ [0, 1] (such a path exists, we can vary
continuously one generator and adjust the rest by the relation of the fundamental group, which would
give a path). In particularly, we “have traveled continuously” from ρ to ρ′ = c(1). This induces a
continuous path from [ρ] to [ρ′] in Tg. In particular, a continuous variation on the group models ρ and
ρ′ yields a continuous variation on the marked surfaces they represent in the Teichmüller space.

1.2.5 Homeomorphism Marking

If we are to approach Teichmüller spaces as we have done so far, the marking we have introduced
is useful but relies heavily on our control over the fundamental group and group models. However,
in what is to come we will need to control decomposing curves and we will have to track geodesics
under isometries. We now introduce a marking of surfaces via maps instead of via the fundamental
group that will be useful for these purposes.

Definition 1.2.5.1. Let Fg be an orientable connected compact genus g surface (a priori, there is no need
that Fg has a complex structure). A marking on a Riemann surface S of genus g is a homeomorphism
f : Fg → S and we denote the marking by (S, f ). We say that two markings (S, f ) and (R, g) are
equivalent if and only if g ◦ f−1 is isotopic to a biholomorphism S → R. An equivalence class is
denoted as [S, f ] and the set of all equivalence classes momentarily denoted by T g (as opposed to Tg).
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Remark 1.2.5.2. In the literature one finds many variations of this definition: homeomorphism instead
of diffeomorphism and/or isotopy instead of homotopy. Since in every isotopy class of homeomor-
phisms there is an orientation preserving diffeomorphism (see the paper [Hat13]) we could have
marked surfaces with orientation-preserving diffeomorphisms. On the other hand, homotopic maps
will be isotopic in the cases we care about, see Corollary 2.3.4.5.

Remark 1.2.5.3. In fact, there is a way to define markings that makes it very clear that equivalence
of points in the Teichmüller space is a finer distinction than the equivalence of points in the moduli
space. Fix a topological model Fg, we write A for a complex structure on this surface. On the set of
non-biholomorphic complex structures on Fg (i.e. the moduli) we declare that (Fg,A) and (Fg,A′) are
Teichmüller equivalent if and only if they are biholomorphic and the biholomorphism is isotopic to the
identity. One can see that both definitions of markings are equivalent by checking that the following
assignment is bijective: [S, f ] gets mapped to the equivalence class (Fg, f ∗(A)), where A denotes the
complex structure of S and f ∗(A) the pull-back of this structure via f .

Theorem 1.2.5.4. Marking by homeomorphism is equivalent to marking by fundamental group, that is, Tg ←→
T g for g ≥ 1.

Proof. There are several ways we could approach this, for g ≥ 2 one could prove that

DF(π(Fg, p), PSL(2, R))/ PSL(2, R)

is in bijection with T g, which would give a bijection of Tg and T g, for this approach see [FM12,
Proposition 10.2]. The other way to approach this is generally more difficult for g ≥ 2 but tractable for
g = 1. Moreover, it gives an explicit relation between the markings. Let Σ be a fixed fundamental group
marking on Fg, the marking on S given by the homeomorphism f : Fg → S induced a fundamental
group marking (S, f∗(Σ)). The map

T g −→ Tg

[S, f ] &−→ [S, f∗(Σ)]

is well defined (it is direct from the definition of each marking). What is more difficult to prove is that
it is one-to-one and onto, for g > 1 we direct the reader to [IT92, Theorem 1.4]. The case g = 1 is
explained in detail in the extended version [Bar21].

In the rest of the text we will regard the Teichmüller space as the set of homeomorphism marked
Riemann surfaces with the algebraic topology and we will always refer to it as Tg.

1.2.6 The Mapping Class Group

Definition 1.2.6.1. Let S be a genus g surface (possibly with b open discs removed). The group of
orientation preserving homeomorphisms of S that restrict to the identity on ∂S will be denoted by
Homeo+(S, ∂S). The mapping class group of S, written Mod(S), is the group of isotopy classes of
elements of Homeo+(S, ∂S).

It is a theorem, that we will not prove and use only here, that the mapping class group of the
torus is the special linear group of integer 2× 2 matrices, that is, Mod(F1) = SL(2, Z). Notice that
the natural action of this group on H has kernel {±Id}, and hence the quotient H/SL(2, Z) is the
same as H/ PSL(2, Z). Therefore, putting this together with previous sections, we have found that
the mapping class group of the torus acts naturally on T1 = H to obtain M1 = C. What is actually
happening is the following.

The mapping class group of Fg acts naturally on Tg by translating the marking:

Mod(Fg)× Tg −→ Tg

([h], [S, f ]) &−→ [S, f ◦ h−1]

This action is well defined since isotopic homeomorphisms determine equivalent markings. We use
h−1 instead of h so it is an actual group action. The most interesting thing about this is that the orbit
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space “forgets” the marking. Indeed, the orbit of a point [S, ϕ] in Tg is the set of points [S, ψ] where
the marking ψ ranges over all isotopy classes of homeomorphisms Fg → S. In particular, the marking
becomes irrelevant since in every orbit there will be all Riemann surfaces biholomorphic to S and there
will not be two non-biholomorphic ones, hence we can make the identification

Mg = Tg
/

Mod(Fg).

This is also true for Riemann surfaces of arbitrary signature (which we will define in the next chapter).
In particular, we can study the moduli space from the Teichmüller space and we can study the mapping
class group from its action over the Teichmüller space.

For example, it is an important result that the mapping class group acts on the Teichmüller space
properly discontinuously.10 If one manages to prove that the Teichmüller space has a (3g − 3)-
dimensional complex structure and that the mapping class group acts by biholomorphisms, as in
our push-forward structure lemma, one gets a complex structure on the moduli space. Using the
techniques of the next chapter it can be proven that the action is properly discontinuously and by real
analytic diffeomorphisms, obtaining a real-analytic structure on the moduli space. It is important to
note that, similar to the case of the torus, non-trivial automorphisms make the action not be free and
hence the moduli space is not an actual manifold but what is known as an orbifold.

The main application in mapping class group theory of this action is the classification of surface
homeomorphism, a great accomplishment of Thurston, see [FM12]. As mentioned in the introduction
we will prove that Tg is homeomorphic to an open (6g − 6)-dimensional real ball, Tg can also be
compactified in a meaningful way into a closed ball so that the action of the mapping class group
extends to the boundary of the ball. The fixed points of the surface homeomorphisms on the boundary
of Tg serve as a geometrically relevant classification of elements in Mod(S, ∂S). A similar idea, in a
much simpler situation, has been employed in the appendix to classify elements of PSL(2, R) by the
number of fixed points on R ∪ {∞}. Considering the compactification of H given by H̄ = H ∪ ∂H̄

with ∂H̄ = R ∪ {∞}, we have classified the elements of PSL(2, R) by their fixed points on ∂H̄.

10A group G acts properly discontinuously on a topological space X if for any compact set K ⊂ B the number of g ∈ G such
that g · B ∩ B = ∅ is finite.



Chapter 2

Hyperbolic surfaces

This chapter has three parts: hyperbolic geometry, hyperbolic surfaces and Teichmüller spaces.
The first of these serves as a brief introduction to the basic features of “plane” hyperbolic geometry
that we require. The second section deals with basic facts about hyperbolic surfaces: surfaces locally
modelled after the hyperbolic plane. We study the deep connection between hyperbolic surfaces and
Riemann surfaces, hyperbolic surfaces with boundary, how to glue such surfaces together and then
further inquire into group models of hyperbolic and Riemann surfaces. Then we prove some very
important features of closed geodesics in hyperbolic surfaces via (somewhat) algebraic means. We
conclude with some basic facts about geodesic arcs and perpendiculars. The last section proves the
main theorem of this text, namely, Tg is homeomorphic to a (6g− 6)-dimensional ball and each point
in this space is determined by the length of 9g − 9 (homotopy classes) of curves. To prove this we
thoroughly study Y-pieces (or pairs of pants) and X-pieces.

References: Along this chapter, though not strictly required, some familiarity with Riemannian ge-
ometry is assumed, see [Car92], [Kli78] or [Lee97]. The first section mainly draws from [Ser], [Hub06],
[Bea95], [Bus10] and [Ahl73] and we recommend the first three for a comprehensive introduction to
hyperbolic geometry. The most basic facts in the second one are taken from [Bus10] and the necessary
tools to study closed geodesics algebraically come from [FM12] and [Mar16]. Finally, the last section
is mostly based on [Bus10]’s proof of the main theorem.

2.1 Hyperbolic Geometry

We would like to “geometrize” D and H in order to introduce more tools to understand Riemann
surfaces or, in other words, find a compatible geometric structure. For now, we will turn our attention
to D and find a Riemannian metric tensor on it in a way the group of isometries is the group of
holomorphic automorphisms. This last condition is capital in order to geometrize all surfaces covered
by H, moreover, intuitively, two “mirror” structures should have the same corresponding symmetry
group.

In order to find the metric tensor on the disc we find a length element that is invariant under
conformal maps. Consider δ(z, w) = | z−w

1−z̄w | and let f (z) = az−b
b̄z−ā be a holomorphic automorphism of

D (see Theorem 7 in the Appendix). Using the fact that |a|2 − |b|2 = 1, we compute the following:

f (z)− f (w) =
z− w

(b̄z− ā)(b̄w− ā)
, 1− ¯f (z) f (w) =

1− z̄w
(bz̄− a)(b̄w− ā)

.

Dividing both expressions and taking modulus we obtain that δ is invariant under automorphisms of
the disc, that is, δ(z, w) = δ( f (z), f (w)). Letting w approach z we obtain the following length element
equality

|dz|
1− |z|2 =

d f (z)
1− | f (z)|2 .

19
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This suggests that the length element ds = 2|dz|
1−|z|2 is invariant under biholomorphisms of the disc,

where |dz|2 = dx2 + dy2. We define the Poincaré disc to be the Riemannian manifold

(D, ds2 =
4|dz|2

(1− |z|2)2 ).

The 22 = 4 factor is introduced so that the curvature is −1. Now we shall determine the full isometry
group Is(D) of the Poincaré disc.

Theorem 2.1.0.1. Let Is+(D) be the group of orientation-preserving (also known as direct) isometries of the
Poincaré disc. We have that the elements of Is+(D) are precisely the biholomorphisms of the disc, that is,

Is+(D) = Aut(D) = { f (z) =
az + b
b̄z + ā

| a, b ∈ C, |a|2 − |b|2 = 1}.

The full group of isometries Is(D) consists of Is+(D) and the elements of Is+(D) composed with the orientation
reversing isometry c defined by x + yi &→ x− yi (complex conjugation).

Proof. The heuristic discussion above justifies that the elements of Aut(D) are (orientation-preserving)
isometries (since they leave the metric invariant). Rigorous justification of that and the fact that Aut(D)
composed with c preserve the Riemannian tensor is a standard exercise in geometry. For the converse
take an isometry f , since it preserves angles in the hyperbolic metric it also preserves angles in the
euclidean metric (they are multiple of each other by 1/(1− |z|2)2, hence “conformal” metrics). Now,
by composing with the map c above we can assume that f is an orientation preserving diffeomorphism
that preserves angles, that is, a conformal diffeomorphism, hence a biholomorphism. We have proved
that either f or c ◦ f is in Aut(D), which is what we wanted.

Now we would like to do the same for the upper half plane. Recall that f (z) = i−z
i+z maps H to

D biholomorphically, to geometrize H we just declare this homeomorphism an isometry. In other
words, we pull back the tensor ds2 on D to H via the map f (promoting it to an isometry). It is a
standard exercise in differential geometry that this yields the tensor 1

Im(z)2 |dz|2. Henceforth, we define
the Poincaré upper half plane to be the Riemannian surface

(H, ds2 =
1

Im(z)2 |dz|2).

Theorem 2.1.0.2. The orientation-preserving isometries of H are precisely the real Möbius transformations with
positive determinant, that is, Is+(H) = Aut(H) = PSL(2, R). The full group of isometries Is(H) consists of
Is+(H) and the elements of Is+(H) composed with c′ defined by c′(z) = −c(z), i.e. x + iy &→ x− iy.

Proof. This is a direct consequence of Theorem 2.1.0.1, Theorem 7 in the Appendix and the fact that
the map f given by i−z

i+z : H → D is both an isometry and a biholomorphism. Note that f−1(z) = i 1−z
1+z

and so it is computed that c = f ◦ c′ ◦ f−1.

It is an easy exercise to check that the curvature of this isometric spaces is −1 at every point.
The geometric interpretation of this fact is that each point is a saddle point. Recall from Riemannian
geometry that the length of a piece-wise differentiable curve γ : [a, b]→ H is given by

ℓ(γ) =
∫

γ
ds =

∫ b

a
||γ′(t)||dt =

∫ b

a

|γ′(t)|
Im(γ(t))

dt

where || · || denotes the norm induced by the Poincaré metric and | · | the complex modulus. Also,
recall that the function d(z, w), defined as the infimum of the length of piece-wise differentiable curves
joining z and w, is a distance function that induces a topology equivalent to the topology of the mani-
fold, in our case, the distance function induces the usual euclidean topology. In particular, the Poincaré
spaces introduced are complete as metric spaces. The following theorem lists different expressions for
the distance function in H and the one that follows enumerates the most important properties of
geodesics in H and D, which play an important role in this text.
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Theorem 2.1.0.3. Let d be the distance function associated to the Poincaré metric on H. We have that

(1) d(z, w) = log( |z−w̄|+|z−w|
|z−w̄|−|z−w| );

(2) cosh d(z, w) = 1 + |z−w|2
2Im(z)Im(w) .

Proof. See [Bea95, Theorem 7.2.1.].

Theorem 2.1.0.4 (Geodesics in the Poincaré Models). Let H and D be the Poincaré plane and disc.

(1) The geodesics on H are the vertical lines and the semicircles of arbitrary radius with center on the line y = 0
(which is the same as saying semicircles that meet Im(z) = 0 orthogonally.1)

(2) The geodesics on D are the diameters of D and all circles in D meeting ∂D = S1 orthogonally.

(3) There is a unique geodesic through any two distinct points.

(4) Given a point and a geodesic, there is a unique geodesic through that point and perpendicular to the original
geodesic.

(5) Given two geodesics at a positive distance, there is a unique geodesic perpendicular to both.

Proof. The proof of the first two statements is a calculus exercise using the metric tensor, see for
example [Ser, Proposition 2.3] for a elementary computation. The rest follows easily from either
one.

Figure 2.1: Left: geodesics in H. The red one is the unique geodesic through the red points, the green one the unique geodesic
through the green points, the black one joining the red and the blue ones is the unique geodesic joining both geodesics. The
blue and green lines do not intersect but are distance 0. The same is true for the green and purple lines. Right: geodesics in D.

2.1.1 Fermi Coordinates

So far we have described the hyperbolic plane using the usual “euclidian” coordinates, now we in-
troduce a more intrinsic pair of coordinates that will be important to parametrize vicinities of geodesics
on hyperbolic surfaces. Choose a geodesic η in H and a point p ∈ H. If p /∈ η there is a unique
geodesic γ perpendicular to η through p. Let us say that γ meets η at η(tp), that is, “at time tp”.
Moreover, η divides H into two half spaces, a “right” (positive) hand side and a “left” (negative) hand
side. It thus makes sense to speak of signed distance (also known as directed distance). The signed
distance from η(tp) to p, call it ρp, is given by the length of the corresponding segment of γ (which is
the unique geodesic joining both points) and its sign is given by which side of η the point p is in: right
hand side is positive and left hand side is negative. If p ∈ η, we have ρp = 0 and p = η(tp). The pair (ρp, tp)
uniquely determines any point p ∈ H. We call this coordinates the Fermi coordinates associated to η.

We fix η to be the euclidean y-axis (which is a geodesic in H) and parametrize it at unit speed,
η(s) = ies. Figure 2.2 shows how this parametrizes H. In fact, these coordinates are a particular case
of geodesic coordinates, for constant curvature spaces and geodesic coordinates the metric tensor is
easy to compute, see [Kli78, Chapter 4, Section 3]. In our case we have that the metric tensor of the
Fermi coordinates on H associated to η is

ds2 = dρ2 + cosh2(ρ)dt2.
1Note that since the Poincaré metrics are multiples of the euclidean metrics the angles they determine are the same.
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p

q

Figure 2.2: The blue and red point have the same time coordinate, et = p and the green point has time coordinate et = q. The ρ
component will be the length of the colored arcs. The green and red points will have ρ < 0 and the blue point ρ > 0.

2.1.2 Hyperbolic Trigonometry

-1

0

1

Figure 2.3: Isometry between the
Poincaré disc and this upper leaf of
a hyperboloid that makes it into a
model of hyperbolic geometry.

Now we will give some trigonometric formulas for the hyperbolic
plane that we will need later. While the proofs are not difficult we
will not do them here due to space considerations: we would have
to introduce the hyperboloid model (see Figure 2.3) for hyperbolic
geometry, in which trigonometry is quite tractable2. We refer the
reader to see [Bus10, Chapter. 2].

Definition 2.1.2.1. A polygon is a piece-wise geodesic oriented closed
curve (we allow self-intersections).

Theorem 2.1.2.2. For any convex right-angled geodesic hexagon with con-
secutive sides a, γ, b, α, c, β the following holds (the same letters denote the
corresponding side lengths):

• cosh c = sinh a sinh b cosh γ− cosh a cosh b,

• sinh a
sinh α = sinh b

sinh β = sinh c
sinh γ .

For any right-angled geodesic hexagons with consecutive sides a, γ, b, α, c, β
such that c and γ intersect we have

• cosh c = sinh a sinh b cosh γ + cosh a cosh b.

�

�
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�
�

�

Figure 2.4: Left: Hexagon. Right: Crossed Hexagon.

The last and most important fact about hyperbolic geometry we will need is the existence and
uniqueness of convex hexagons given only 3 non-consecutive side lengths (again, notice the similarities
with triangles).

Theorem 2.1.2.3. There exists a unique right-angled geodesic hexagon (modulo isometry) in the hyperbolic
plane with non-adjacent sides of length a, b, c ∈ R+.

2In the hyperbolic plane triangles and right-angled hexagons (some quadrilaterals and pentagons too) behave quite similarly,
so much so that there are several configurations unifying those objects as the same type of objects. Buser introduces a new
unifying configuration that uses the hyperboloid model to define a “generalized triangle” and obtains a general relation on the
sides of a generalized triangle, see [Bus10, Theorem 2.2.6.]. This relation can be applied case by case to obtain many different
formulas, like the ones we need.
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Proof. For the existence we outline a construction in D. For any t > 0, let at and bt be a pair of geodesics
in D at a distance t apart and let γ′t be the unique perpendicular geodesic segment realizing this
distance. Let α′t and β′t be geodesics on the same side of γ′t such that α′t has a perpendicular intersection
with bt at a distance b away from the intersection of γ′t and β′t has perpendicular intersection with at
at a distance a away from γ′t. Finally, if γ′t is oriented from at to bt, we require that α′t and β′t lie on the
left of γ′t.

There is a value of t0 such that α′t0
and β′t0

are at zero distance but don’t intersect.3 For t > t0
let ct be the unique geodesic segment intersecting α′t and β′t perpendicularly (it exists because they
are at a positive distance). As t varies from t0 to infinity, the length of ct varies continuously and
monotonically from zero to infinity. Therefore, there is unique t such that the length of ct is exactly c.
This concludes the construction of the desired hexagon. For uniqueness we simply observe that the
first formula in Theorem 2.1.2.2 determines the length of the other sides.

2.2 Hyperbolic Surfaces

�

� �

�

��

t

t
t

t

tt

Figure 2.5

This section serves as preparation for the main section of this
text about Teichmüller theory and the Fenchel-Nielsen coordinates.
We will define hyperbolic surfaces, study their relationship with Rie-
mann surfaces, explain how hyperbolic surfaces can be pasted/glued
along boundaries and study the interplay of group models for hyper-
bolic surfaces and their geometry with the subsection about closed
geodesics as our main goal.

2.2.1 Definition and Relationship to Riemann Surfaces

A hyperbolic surface will be a surface that locally looks like the
hyperbolic plane. Clearly, in order to be able to look like the hy-
perbolic plane the surface has to have a metric structure beforehand.
Therefore:

Definition 2.2.1.1. A hyperbolic surface is a two dimensional ori-
entable4 Riemannian manifold that is locally isometric to the hyperbolic plane. We will also call
this metric a hyperbolic structure.

Remark 2.2.1.2. Observe that the local isometry condition implies that the curvature of a hyperbolic
surface is identically −1. In fact, we could have defined a hyperbolic surface as a Riemannian surface
with sectional curvature constantly −1. Indeed, it is a known fact that a surface of constant curvature
−1 is universally (locally isometrically) covered by H and hence locally isometric to the hyperbolic
plane (see [Car92, Proposition 4.3]).

A hyperbolic structure can be thought of in terms of an atlas (see Subsection 2.2.1.1). The local
isometries in definition 2.2.1.1 constitute charts that are isometrically compatible and can be taken to
be orientation preserving. In particular, every hyperbolic atlas will have isometric transition maps, as
such they will be conformal diffeomorphisms, hence biholomorphisms of open sets of the plane. This
implies that every hyperbolic surface can be given the structure of a Riemann surface. Moreover, every Riemann
surface R except the plane, punctured plane, tori and Riemann sphere is a hyperbolic surface. As was remarked
in the beginning of this chapter, that biholomorphisms of the upper-half plane became isometries of
the Poincaré metric was capital to introduce a geometric structures compatible with the complex ones.
Now, this will be made apparent when we push-forward the Poincaré metric of the plane to surfaces
and when the word isometry becomes “synonym” to biholomorphism. Let us prove the claim in italics:
in the first place, by Theorem 1.1.2.7 said Riemann surfaces are holomorphically universally covered
by p : H → R. In the second place, the covering transformation groups will be subgroups of the real

3Another way to say this is that they share an endpoint in ∂D.
4This condition is not necessary but we have no need for non-orientable surfaces.
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Möbius transformations with positive determinant, in particular, isometries (since Aut(H) = Is+(H)).
We conclude that the Poincaré metric ds2 is invariant under the covering transformation action and
hence it descends to a well-defined metric gR on R (see the lemma below). Moreover, the covering
map p is a local isometry, i.e. the pull-back of gR is the Poincaré metric ds2 = p∗(gR). We can conclude
that biholomorphisms of complex structures correspond to isometries of hyperbolic structures (which
is straightforward by lifting the maps to H).

Lemma 2.2.1.3 (Push-Forward Riemannian Structure). Let (M, g) be a Riemannian manifold and G a
subgroup of the group of isometries of M that acts like a covering space action on M and let π : M→ M/G the
projection map. Then, M/G has a smooth structure and a Riemannian metric ḡ such that π is a local isometry
and5 g = π∗(ḡ).

Proof. The smooth structure comes from the push-forward structure Lemma 1.1.1.8. For the Rieman-
nian metric consider q ∈ M/G and q̃ ∈ π−1(q), for every pair u, v ∈ Tq(M/G), we set

ḡq(u, v) = gq̃(dπ−1(u), dπ−1(v))

which is well defined because G acts by isometries. Indeed, since the action is a covering space
action, from the topological theory of covering spaces, we know that π is regular covering, i.e. G
acts transitively on the fiber of q. Therefore, for any q̃′ ∈ π−1(q) \ {q̃} there is an isometry f in G
such that f (q̃) = q̃′, hence the definition does not depend on the choice of the point on the fiber. The
definition of ḡ above is directly rephrased as g = π∗(ḡ), this implies that π is an isometry where it is
a diffeomorphism. Since it is a local diffeomorphism it is a local isometry.

Now, we synthesize into a theorem what we proved in the discussion above together with our work
on Riemann surfaces.

Theorem 2.2.1.4 (Geometrization Theorem for Riemann Surfaces). Every hyperbolic manifold can be given
a Riemann surface structure. Every Riemann surface different from the complex plane, punctured plane, tori and
Riemann sphere can be given a hyperbolic structure.6 Moreover, biholomorphisms correspond to isometries by
this assignment. Also, every hyperbolic surface is universally covered by H, the covering transformation group
acts by isometries and the covering map is a local isometry. Furthermore, each hyperbolic surface is isometric to
a quotient of H by a discrete subgroup of Aut(H) without elliptic elements.

Remark 2.2.1.5 (and Corollary). The moduli and Teichmüller spaces for hyperbolic surfaces are de-
fined analogously to moduli and Teichmüller spaces for Riemann surfaces (see Definitions 1.2.0.1 and
1.2.5.1) by changing the word “biholomorphism” by the word “isometry”. The theorem above implies
that both the moduli and Teichmüller space for Riemann surfaces and hyperbolic surfaces are iden-
tified bijectively, hence they parametrize two types of structures on surfaces: complex structures and
hyperbolic structures. We will denote a connected compact orientable surface of genus g with n open
discs removed by Fg,n. Below we will define hyperbolic surfaces with boundary so it makes sense to
talk about the Teichmüller space and moduli space of Fg,n. The moduli and Teichmüller space will be
written as M(Fg,n) = Mg,n and T (Fg,n) = Tg,n, if n = 0, Mg,0 = Mg and Tg,0 = Tg as usual.

While one can define a Riemann surface with boundary, the (apparent) lack of a distinguished
metric makes dealing with boundaries difficult. However, hyperbolic surfaces with boundary will
have geodesic boundary, which make them a nicer object. To define said object, we need the following
preliminary definitions.

• A side point of H is a point on a geodesic and a side sector in H is an open neighbourhood of a
side point in a half-space of the geodesic.

• A vertex point is the intersection point of two geodesics and a vertex sector of angle θ in H is an
open neighbourhood of a vertex point in the intersection of two half-spaces of the two geodesics
that cut each other with angle θ. We only admit 0 < θ ≤ π with the understanding that θ = π is
a side point.
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Figure 2.6: Left: side points in blue. Right: vertex points in blue.

Definition 2.2.1.6. A hyperbolic surface S with boundary is a two dimensional Riemannian manifold
with piece-wise smooth boundary such that:

• If p is in the interior of S there is an open neighbourhood of p locally isometric to an open set in
H;

• if p is a boundary point where the boundary is smooth there is a local isometry to a side point
and sector;

• if p is a boundary point where the boundary is not smooth there is a local isometry to a vertex
point and sector of angle θ ∈ (0, π).

Here we have allowed “corners” with vertex sectors so polygons fit into the definition of being a
hyperbolic surface. Note that the condition about local isometries implies that boundaries are at least
piece-wise geodesic. The case that is most important to us is when the boundary is a closed geodesic,
that is, a geodesic closed curve such that the tangent vectors at its terminal point are the same. We
will study closed geodesics later in Section 2.2.4 but we need a working definition for the following
sections.

Definition 2.2.1.7. A closed geodesic γ is a geodesic that is a smooth embedding of S1. In particular,
the parameter t of γ(t) varies in S1 = R/[t &→ t + 1].

Definition 2.2.1.8. A compact hyperbolic surface S of genus g that has (possibly empty) boundary
made of n (possibly n = 0) closed geodesics is said to be a hyperbolic surface of signature (g, n).

2.2.1.1 The Hyperbolic Atlas

As mentioned before, we are interested in gluing surfaces along their boundaries. In the case
Riemannian structures can be described in terms of an atlas, this procedure is relatively simple. In
the previous section, we showed how a hyperbolic structure yields a hyperbolic atlas. The converse is
true, but we should define hyperbolic atlas properly first.

Definition 2.2.1.9. Let S be a surface with (possibly empty) boundary. A hyperbolic atlas of S is
collection of pairs {(Ui, ϕi)}i called charts such that {Ui}i is an open cover of S and for every i the
map ϕi : Ui → Vi ⊂ C is homeomorphism where:

• (interior point chart) If p is in the interior of S there is a chart ϕi : Ui → Vi ⊂ C so that p ∈ Ui
and Vi is an open set of H;

• (side point chart) if p is a boundary point, we either have a chart ϕi : Ui → Vi ⊂ C so that p ∈ Ui
is side point and Vi is a side sector of H or

5Here π∗ indicates pull-back the of the tensor by π. We are pushing forward the structure of M to M/G so that the metric
tensor pulls back correctly.

6In fact, our reasoning transfers perfectly to geometrize the plane, punctured plane and tori with plane/parabolic geometry
and the sphere with spherical geometry, providing a geometrization of all Riemann surfaces.
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• (vertex point chart) a chart ϕi : Ui → Vi ⊂ C so that p ∈ Ui is vertex point and Vi is a vertex
sector of H.

Also, we ask that the transition maps are restrictions of isometries Is+(H), more concretely: if Ui ∩
Uj ̸= ∅ then the restriction of the transition map ϕi ◦ ϕ−1

j : ϕj(Ui ∩Uj)→ ϕi(Ui ∩Uj) to each connected
component of ϕj(Ui ∩Uj) is an orientation-preserving isometry of H. As usual, a hyperbolic structure
given by an atlas is an equivalence class of isometrically compatible atlases (isometrically compatible
means that transition maps of charts from two different atlases are restriction of isometries of Is+(H)).

Since each chart is a homeomorphism we can pull back the metric tensor on H through the chart.
Since they are all isometrically compatible, this defines a Riemannian metric on S. With this metric
tensor each chart is an isometry with the hyperbolic plane, hence this definition yields a hyperbolic
surface as defined in the previous section. We will not differentiate both definitions in what follows.

In the definition above we have asked the transition maps to be the restriction of an isometry of
H. We could have simply asked them to be an isometry of open sets of H. This is because of the
following fact.

Proposition 2.2.1.10 (Extension Lemma). Every orientation preserving isometry m : U → V between non-
trivial connected open sets of H is the restriction a direct isometry of H, Is+(H) = PSL(2, R).

Proof. Though the author has seen this fact stated, he did not find a proof of this. In the extended
version [Bar21] he gives a proof using the Riemannian exponential map and Proposition 10 in the
Appendix.

2.2.2 Pasting, the Hyperbolic Cylinder and Collars

Let S and R be hyperbolic surfaces, the usual procedure to attach manifolds along boundary con-
sists of taking an homeomorphism f : ∂S→ ∂R and identifying points by the rule p ∼ q if and only if
q = f (p). Then, the space S ∪ f R = S 5 R/ ∼ turns out to be a manifold as well, see [Lee11, Theorem
3.79]. In our case, hyperbolic surfaces have simple boundaries so we can adapt the definition in virtue
of simplicity. Moreover, the upcoming simplification will allow us to give a detailed proof of the past-
ing theorem, which is looked over in the literature. Let us begin with a preliminary example that will
be important for the proof of the pasting theorem.

Example 2.2.2.1. Let P and P′ be two polygons in H (piece-wise geodesic closed curves) oriented
clockwise. Let γ and γ′ be sides of P and P′ of the same length and parametrized at the same constant
speed on the interval [0, 1]. By the 2-transitivity of Is+(H) on equidistant points (see Proposition 10 in
the Appendix) we can take P′ to P via m ∈ Is+(H) so that γ and γ′ coincide. The points will overlap
so γ(t) = m(γ′(1 − t)) and, this way, the new polygon will have a boundary oriented clock-wise.
Abstractly, we are identifying γ(t) ∼ γ′(1− t) in P 5 P′ to obtain a new polygon. This is the simplest
case of pasting hyperbolic surfaces along boundaries.
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Figure 2.7

In this example we have made a choice in the orientations of P and P′: we have oriented P′ so
that when we take it to P via Is+(H) the resulting surface is oriented and have made the pertinent
identifications in γ and γ′, namely, γ(t) ∼ γ′(1− t). For general surfaces, we will implicitly make this
choices of orientation in a way things work as with the case of P and P′. In the example above, it would
be understood that the identification to make would be γ(t) ∼ γ′(t) orienting curves as necessary.
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Definition 2.2.2.2. Let S and R be hyperbolic surfaces as before. Let γ : [0, 1]→ S and β : [0, 1]→ R be
geodesics in ∂S and ∂R respectively that are parametrized at constant speed and have the same length.
A pasting condition (or pasting scheme if we perform several identifications) is an identification of the
form γ(t) ∼ β(t) for t ∈ [0, 1], it will be denoted by γ(t) = β(t).7 The resulting space S 5 R/ ∼ will
be written as S + R or, if the situation demands it for clarity, as S + R modulo γ(t) = β(t).

Theorem 2.2.2.3 (Pasting Theorem). The space S + R modulo γ(t) = β(t) defined above is a hyperbolic
surface such that, if π : S 5 R → S + R = S 5 R/ ∼ denotes the projection map, π is a local isometry and S
and R are isometric to π(S) and π(R) respectively.

Proof. The proof consists of constructing hyperbolic charts around the pasting geodesic η = π(γ) =
π(β). A detailed account of how this would be done can be found in the extended version [Bar21].

Definition 2.2.2.4. The inverse process is called “cutting”, with the notation of the theorem, S and R
are obtained by cutting S + R along η.

The following example is good for fixing ideas and because, around closed geodesics, hyperbolic
surfaces all look like a piece of a hyperbolic cylinder.

Example 2.2.2.5 (The Hyperbolic Cylinder). Consider the geodesic η(u) = ieu in H and let γ and γ′

be two geodesics intersecting η perpendicularly at a ∈ C and b ∈ C (|a| < |b|). We can regard the
closed strip S = {z ∈ H | |a| ≤ |z| ≤ |b|} as a hyperbolic surface. Simple computation shows that the
segment of η in S has length ℓ = log |b/a|.
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Figure 2.8: Hyperbolic cylinder; the red and blue lines show how Fermi coordinates are transferred from H to C.

We parametrize γ and γ′ with unit speed and with clock-wise orientation (which is the same as
saying with opposite boundary orientation, S will be at the right of γ′ and the left of γ) such that
γ(0) = a and γ′(0) = b. The isometry m(z) = b

a z is a hyperbolic transformation of axis η satisfying
m(γ(t)) = γ′(t) for t ∈ R. In particular, m induces the pasting condition γ(t) = γ′(t), which gives
rise to a hyperbolic surface C. Moreover, we can identify it with the hyperbolic surface H/Γ where
Γ = {mk|k ∈ Z}. Note that S is a fundamental domain (see Section ??) of Γ. The surface C is called a
hyperbolic cylinder.

Now we parametrize C and compute the metric in these coordinates. In the first place, note that
the projection map π : H → H/Γ induces an isometry between the interior of S and C except a line
(the projection of γ and γ′). Therefore, to find coordinates in C we find them in S. Consider the
Fermi coordinates on H given by (ρ, t) (see Subsection 2.1.1), this induces the metric dρ2 + cosh2 ρdt2

on S. Since S is dense in C, we have the metric dρ2 + cosh2 ρdt2 in C. Then, let C be a hyperbolic
cylinder as above and η̄ the projection of η, every point p in C is uniquely determined by (ρp, tp)
where ρp = σ(p)dC(p, η̄) = σ(p)dC(p, η̄(tp)) (here σ(p) signs the distance). These are called the Fermi
coordinates of C based at η̄. Moreover note that C = R × (R/[t &→ t + ℓ]) and the metric tensor in

7In fact, this identification defines an isometry of those geodesics. This is why this is a particularization of the usual
procedure to attach manifolds along boundaries S ∪ f R.
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the coordinates (ρ, t) is dρ2 + cosh2 ρdt2. If we parametrize η̄ with speed ℓ we get dρ2 + ℓ2 cosh2 ρdt2.
From this tensor the geodesic γ is the only closed geodesic in C.

Definition 2.2.2.6. A collar of width (sometimes called length) ϵ > 0 of a closed geodesic γ in a
hyperbolic surface S is a neighbourhood of γ isometric to {(ρ, t) ∈ C| − ϵ ≤ ρ ≤ ϵ}, where C is a
hyperbolic cylinder and the corresponding closed geodesic η of C has the same length as γ. We define
a half collar of γ analogously with the neighbourhood {(ρ, t) ∈ C| 0 ≤ ρ ≤ ϵ}. Finally, since this
isometry gives a local parametrization around γ in S, the Fermi coordinates (ρ, t) in S will be called
the Fermi coordinates in S or the collar coordinates.

Proposition 2.2.2.7. Let S be a hyperbolic surface with non-empty boundary that consists of closed geodesics.
Each boundary geodesic has a half collar of width ϵ for some ϵ > 0. Moreover, every closed geodesic has a collar
of width ϵ′ for some ϵ′ > 0. As a consequence, all boundary closed geodesics of the same length have isometric
neighbourhoods and all closed geodesics of the same length have isometric vicinities.

Proof. In the extended version [Bar21] a proof, that the author has not been able to find in the literature,
is given based on the so-called developing map.

Figure 2.9: Pasting of closed geodesics S +a S′, collars and half-collars.

Example 2.2.2.8. (The pasting/docking of closed geodesics) Let S and S′ be two hyperbolic surfaces
(not necessarily distinct) and let γ and γ′ be boundary closed geodesic of S and S′ respectively (distinct
if S = S′) . If they have the same length ℓ we can paste them together. Choose a parametrization of
both curves in S1 with speed ℓ. If the geodesics have the same orientation (in Figure 2.2.2.8 the surfaces
are to the left of the corresponding boundary geodesics), the pasting condition γ(t) = γ′(−t) gives
rise to a hyperbolic surface S + S′ where γ and γ′ project to a closed geodesic γ̄ of length ℓ in S + S′.
One can visualize this pasting two half-collars obtaining a collar. We remark that the geodesic γ̄ will
have a neighbourhood {p ∈ S + S′|d(p, γ̄) ≤ ϵ} isometric to a collar which allows us to parametrize
this set with “collar/Fermi” coordinates. Finally, note the following interesting phenomenon. Since
γ′(t) is parametrized in S1, γ′(t− a) is another parametrization of the same closed geodesic and hence
we could paste S and S′ imposing γ(t) = γ′(a − t), let us call it S +a S′. This does not change the
local hyperbolic structure (it does not change the length of the geodesic, hence there will be isometric
collars) but the hyperbolic structure of S + S′ and S +a S′ need not be the same.8 We will explore this
further in Section 2.3.3.

Remark 2.2.2.9. We have found the existence of collars qualitatively. In Theorem 2.3.6.1 we give a
quantitative bound on the width of collars. A consequence of that theorem to keep in mind is that the
shorter the closed geodesic, the wider the collar and the other way around too.

2.2.3 Group Models of Hyperbolic Surfaces

In Theorem 2.2.1.4 we have showed that the group model theory for Riemann surfaces translates
identically to hyperbolic surfaces changing the word biholomorphism by isometry. However, we have
introduced a class of hyperbolic surfaces (those with boundary) where this group model theory is not
known yet. Fortunately everything is quite the same considering hyperbolic-convex regions in H as
universal coverings instead of the whole plane H. We will mainly focus on hyperbolic surfaces with
boundary consisting of closed geodesics, the following theorem is key.

8Note that γ′(t) = γ′(t + 1) because t ∈ S1 = R/[t &→ t + 1]. Therefore, we have that S + S′ = S +1 S′ for example.
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Theorem 2.2.3.1. Let S be a complete hyperbolic surfaces with boundary consisting of closed geodesics. There
exists a complete hyperbolic surface S∗ without boundary such that S is both isometrically embedded and a
deformation retract of S∗.

Proof. The idea is to sow sleeves to the closed boundary geodesics. Let γ be a length ℓ boundary closed
geodesic in ∂S. We consider the truncated hyperbolic cylinder [0, ∞)× S1 and η the closed geodesic of
image {0}× S1. For graphical intuition recall that γ has a width ϵ collar isometric to [−ϵ, 0]× S1, we
will paste it with the cylinder to get [−ϵ, ∞)× S1. The pasting condition γ(t) = η(−t) for t ∈ S1 sows
the cylinder to S. Doing this to every geodesic boundary we get S∗. The other statements are readily
seen.

Figure 2.10: Attaching hyperbolic cylinders or “sleeves”.

Theorem 2.2.3.2. Let S be a complete hyperbolic surface with boundary of closed geodesics. The universal cover
S̃ of S is isometric to a convex9 subset of H whose boundary consists of geodesics and S isometric to a quotient
of S̃ by a discrete subgroup of Is+(H).

Proof. We know that the hyperbolic surface S∗ given by the theorem above is universally covered by
H. Let π : H → S∗ be the covering map, define S̃ to be a connected component in the fiber of S, that
is, a connected component of π−1(S). The boundary of S̃ consists of the lifts of ∂S and hence of a
countable collection of disjoint complete geodesics in H. As such, its a countable intersection of half
spaces (which are convex) and hence convex. The group model of S will be the group model of S∗.

Remark 2.2.3.3. Notice that this reasoning proves that if S is a compact simply connected hyperbolic
surface with piece-wise geodesic boundary (that is, an abstract hyperbolic geodesic polygon) then it
is isometric to a polygon in H. Indeed, as in Theorem 2.2.3.1 we paste pieces of non-compact 3 sided
polygons to each side of S to obtain a non-compact simply connected hyperbolic surface S∗ without
boundary. Since it is universally covered by H and S∗ is simply connected, H and S∗ are isometric. In
particular, this proves our claim about S being a polygon in H.

Now that we have understood group models for surfaces with boundary, we will prove that the
group model of a compact hyperbolic surface (possibly with closed geodesics as boundary) consists
only of hyperbolic elements of Is+(H) = Aut(H). In particular, all compact Riemann surfaces only
have hyperbolic transformations in their deck group. This is a well known fact that will be important
in the next section. Here we provide a very telling geometrical proof, found in [Mar16], relating
minimum displacement of transformations and the injectivity radius.

For now, let S be any hyperbolic manifold without boundary, as a reminder, we define injp S as
the supremum of all r > 0 such that B(p, r) = {q ∈ S : dS(p, q) < r} is isometric to a ball of radius r
in H. The injectivity radius10 of S is inj S = infp∈S injp S. Now, since injp S is positive for hyperbolic
surfaces and injp S varies continuously with p, if S is compact, injp S has a minimum and a maximum.
In particular, inj S > 0 for a compact hyperbolic surface. If X ⊂ H is a discrete set we define d(X) to
be the infimum of d(z, w) amongst all different points z, w in X. The following relationship between
the injectivity radius and the fiber of each point in the universal covering is the key to our proof.

9A convex subset of H is a subset of H such that the length minimizing geodesic connecting any two points on this subset
has its support inside this subset.

10This is a well know magnitude of Riemannian manifolds defined using the exponential map but for hyperbolic surfaces this
description is simpler.
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Proposition 2.2.3.4. Let S = H/Γ be a hyperbolic surface and π : H → S the projection map. For every
p ∈ S we have that

injp S =
1
2

d(π−1(p)).

Proof. Firstly, injp S is the supremum over r of the B(p, r) that are isometric to open balls of radius r in
H. Secondly, B(p, r) is actually isometric to an open ball of radius r in H if and only if its counterimage
via π consists of disjoint balls of radius r. This can only be if any two distinct points on π−1(x) stay at
distance at least 2r.

The reader is encouraged to finish reading the appendix (in particular the last page titled “PSL(2, R)
and Hyperbolic Geometry”) because its content will be needed in this section and the following.

Corollary 2.2.3.5. Let S = H/Γ be a hyperbolic surface and let d also be the minimum displacement of an
element of Aut(H). We have that

inj S =
1
2

inf{d( f )| f ∈ Γ \ {Id}}.

If S is compact, every non-trivial element of Γ is hyperbolic.

Proof. Note that d(π−1(p)) = inf{d(q, f (q))| f ∈ Γ, q ∈ π−1(p)} because the elements of the deck
group Γ run through the entire fiber. The injectivity radius will be the half the infimum of this
infimum, which gives the desired equality. For the last statement, recall that Γ may only contain
parabolic and hyperbolic elements and that parabolic elements have zero minimal displacement and
hyperbolic elements have positive minimal displacement. Since the injectivity radius of a compact
surface is positive, the equality implies that the elements of Γ are hyperbolic.

In the following theorem we remark our main accomplishment in this section and we adapt it for
surfaces of signature (g, n), which it is not often done in the literature.

Theorem 2.2.3.6. Let S be a compact hyperbolic surface (possibly with boundary of closed geodesics), the non-
identity transformations of its deck group are hyperbolic. In particular, group models of Riemann surfaces only
have hyperbolic elements (other than the identity).

Proof. The case with empty boundary is done in the corollary above. If S has boundary of closed
geodesics we sow hyperbolic cylinders and obtain S∗. The injectivity radius of S∗ is well defined and
positive on S ⊂ S∗ since S is compact. We show it is also positive in S∗. First, it is straightforward that
hyperbolic cylinders have positive injectivity radius. Second, pasting a hyperbolic cylinder to S is as
pasting a half-width [−ϵ, 0]× S1 to [0, ∞)× S1, this means that the injectivity radius in the sleeves of
S∗ (i.e. [0, ∞)× S1 of S∗) is positive. In conclusion, the injectivity radius of S∗ is positive. The formula
in Corollary 2.2.3.5 implies that the group model of S∗ is made up of transformations with positive
minimum displacement, hence of hyperbolic transformations. The group model of S∗ is the same as
the group model of S by Theorem 2.2.3.2.

2.2.4 Closed Geodesics

In this section we study closed geodesics closer than before. We define them again for clarity.

Definition 2.2.4.1. Let S be a hyperbolic surface, a simple closed curve is a continuous embedding
γ : S1 → S and a closed curve is a continuous immersion γ : S1 → S. A closed geodesic in a
hyperbolic surface is a smooth map γ : S1 → S such that γ ◦π : R → S (with π(t) = e2πit : R → S1 the
universal covering of S1) is a non-constant geodesic (in particular, γ is an embedding). We implicitly
regard two closed curves γ, β to be equal when β ◦ π(t) = γ ◦ π(t + a), a ∈ R, (note that a whole
turn is t = 1 and not t = 2π). Sometimes, we say that two closed curves are freely homotopic instead
homotopic to accentuate that the homotopy is not a path-homotopy, there are no base-points involved
here. We will denote the set of free homotopy classes of continuous maps from S1 to S as [S1, S].
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Theorem 2.2.4.2 (Unique Geodesic Representative). Let S be a compact hyperbolic surface possibly with
boundary of closed geodesics, that is is a surface of signature (g, n). Then, there is a unique geodesic representa-
tive in each non-trivial free homotopy class of closed curves. In other words,

{
Closed geodesics in S

}
←→ [S1, S].

Moreover, if a closed geodesic γ is freely homotopic to a simple curve, then γ is also simple.

This is a most remarkable fact with quite an elegant proof (which we carry out here) that puts
together algebraic and geometric aspects of hyperbolic surfaces. As a matter of fact, this is the “tech-
nical” result that enables the Fenchel-Nielsen coordinates to work. For every homotopy class of curves
in [S1, S], a topological invariant of S, we find different geodesic representatives for each hyperbolic
metric, a hyperbolic invariant. Therefore, each metric associates a number to each homotopy class, the
length of the unique geodesic representative. This enables the definition of length functions.

Definition 2.2.4.3. Let S be a hyperbolic surface, the function that assigns to each element γ of [S1, S]
the length of its unique geodesic representative is denoted by ℓγ(S). The spectrum of a set X of
homotopy classes is the set {ℓγ(S)|γ ∈ X} ⊂ R+.

Hence every hyperbolic surface has a natural set of real numbers associated to it, the spectrum of
[S1, S]. Could this set of invariants determine the hyperbolic structure? Surprisingly, it does. Even
more surprisingly, only finitely many classes of curves are needed, this is the basis for the Fenchel-
Nielsen coordinates.
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Figure 2.11: Left: The green and red curves are not path-homotopic but they are homotopic. If we allow the base point to vary
during the homotopy it is clear that they are homotopic. Alternatively, they are homotopic because they are conjugate by the
blue curve, hence in the same conjugacy class in the fundamental group, which corresponds to a unique homotopy class. Right:
the red curve in the first figure is dγd−1γ′, the process shows how it is freely homotopic to δ.

From topology we know that the natural map π1(S, p) → [S1, S] induces a bijection between the
conjugacy classes of π1(S, p) and the set [S1, S], see Figure 2.11. Moreover, if we have a hyperbolic
surface S = C/Γ (with C = H or, if S has non-empty boundary, C is a convex subset of H) , we know
that the fundamental group if isomorphic to Γ (see Remark 1.1.1.12). Therefore, the conjugacy classes
of Γ are in bijection with [S1, S]. In particular, since being parabolic or hyperbolic and the minimum
displacement are conjugacy class invariants, this allows us to speak about hyperbolic and parabolic
elements of [S1, S] and their minimum displacement.

Proposition 2.2.4.4. Let S be a hyperbolic surface (possibly with boundary of closed geodesics). Every hyperbolic
element of [S1, S] is represented by a unique closed geodesic of length equal to its minimum displacement. Trivial
and parabolic elements are not represented by closed geodesics.

Proof. We prove it first in the case S has empty boundary. Let S = H/Γ and f a hyperbolic transfor-
mation of Γ. The axis of f descends to a closed geodesic on S. Indeed, note that f identifies points of
A f at distance d( f ) (minimum displacement of f ), making it a closed curve in the quotient. Moreover,
since A f is a geodesic and the projection map is a local isometry, A f descends to a geodesic of length
d. Moreover, conjugate transformations determine the same closed geodesic since Ag◦ f ◦g−1 = g(A f )
and they both have the same minimum displacement. On the other hand, a closed geodesic lifts to an
arc connecting z ∈ H to f (z) for an f ∈ Γ that preserves the line through z and f (z). This concludes
the proof since only hyperbolic transformations fix lines.
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For the case S has boundary of closed geodesics, as usual, we consider S∗ given by Theorem 2.2.3.1.
Here our previous discussion applies and it implies the thesis of the proposition for S. Indeed, the
main thing to note is that S is a deformation retract of S∗, which implies that [S1, S] = [S1, S∗]. More-
over, hyperbolic cylinders only have one closed geodesic, which is the one sown to S. We conclude
that each closed geodesic in S∗ is actually in S.

Corollary 2.2.4.5. Let S = C/Γ be a compact hyperbolic surface possibly with boundary of closed geodesics.
We have the following bijections:
{

Closed geodesics in S

}
←→

{
Conjugacy classes of
hyperbolic elements of Γ

}
=

{
Conjugacy classes of Γ

}
←→ [S1, S]

Proof. The proposition above proves the first bijection. The equality comes from Theorem 2.2.3.6 and
the last bijection has already been discussed.

Corollary 2.2.4.6. The length functions on Tg are continuous for each γ ∈ [S1, Fg]:

ℓγ : Tg −→ R+

S &−→ ℓγ(S)

In particular, fixing a free homotopy class of curves the length of the geodesics in this class varies continuously
as we vary the marked hyperbolic metric.

Proof. The trace function is a continuous function on Tg = DF(π(Fg, p), PSL(2, R))/ PSL(2, R) and by
Proposition 9 in the Appendix the trace functions and minimum displacement are related analytically.
That, together with the fact that closed geodesics have length equal the minimum displacement of
the hyperbolic transformation that give place to them, we conclude that the length functions are
continuous on Tg.

Figure 2.12: Left: R-neighbourhoods of the geodesics in red. Center: how lifts of c (in black) stay withing R-neighbourhoods of
lifts of γ (in red). Right: how if lifts of γ intersect, lifts of c do too.

Proof of Theorem 2.2.4.2. The existence and uniqueness have already been proven. Let S = H/Γ be a
compact hyperbolic surface. We assume it has empty boundary, in case it does not, the proof is the
same. Let c be a simple closed curve homotopic to the closed geodesic γ. Let c̃ and γ̃ be lifts of c and
γ, all other lifts are the orbits of those by Γ, that is the orbit is the fiber of the curve. Since geodesics
have to lift to geodesics, and geodesics in H are simple geodesic arcs (with no self-intersections), to
prove that γ is simple it suffices to see that all lifts are disjoint and that γ is primitive.11 Let us prove
that the fiber of γ is made up of disjoint arcs. Suppose it is not, we show that then two arcs on the
fiber of c have to intersect. If this happened, then c would have self-intersections, against the simplicity
hypothesis.

Let H be the homotopy from c to γ, it lifts to homotopies from arcs on the fiber of c to arcs on the
fiber of γ. Since the image/support of H in S is compact, no point is dragged more than a certain
number R > 0. In particular, the lifts of γ have R-neighbourhoods12 and the corresponding homotopic

11A curve γ is said to be primitive if there is no curve ν such that γ = νn for n ∈ Z>1, here νn indicates the concatenation of
the curve ν with itself n times.

12An R-neighbourhood of a curve β is {p ∈ H|dH(β, p) ≤ R}.
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lifts of c have to be inside this neighbourhood, see the figure. Therefore, if two arcs in the fiber of γ
intersect the corresponding arcs in the fiber of c also intersect. This concludes the disjointness proof.

That γ is primitive is a general fact that admits simpler proofs for hyperbolic manifolds. Ones
reduces the primitivity of curves to the primitivity of the transformations in Γ that birth them. For
details see [FM12, Proposition 1.4]. Another approach can be found in the first chapter of [Bus10].

2.2.5 Geodesic Arcs and Perpendiculars

In Theorem 2.1.0.4 we characterized geodesic and perpendiculars in H and D, we would like to
generalize this to hyperbolic surfaces. For example, given two different points in H, there is always a
geodesic joining them. Since the hyperbolic plane is simply connected, for general surfaces we should
somewhat expect existence of geodesics in each homotopy class of curves instead of a unique geodesic
given any two points, see Figure 2.13. Moreover, the notion of homotopy “with fixed endpoints” is
too restrictive for our purposes, we will allow endpoints to glide. For example, observe that given a
simple primitive curve connecting two geodesics at a positive distance in H we will only be able to
find a perpendicular to both geodesics homotopic to the given simple curve if we allow endpoints to
glide in the geodesics.

Definition 2.2.5.1. Let A and B be closed connected subsets of a hyperbolic surface S. Assume that
c, c′ : [a.b] → S are two curves with initial points c(a), c′(a) ∈ A and endpoints c(b), c′(b) ∈ B. We
say that c is homotopic to c′ with endpoints gliding on A and B if there exists a homotopy H :
[0, 1] × [a, b] → S between c and c′ such that the terminal points along the deformations are only
allowed to vary in A and B, i.e. H(t, a) ∈ A and H(t, b) ∈ B for t ∈ [0, 1]

Theorem 2.2.5.2. Let S be a compact hyperbolic surface with (possibly empty) boundary and let c : [a, b] → S
be a curve with c(a) ∈ A and c(b) ∈ B.

(1) If A and B are points, then there exists a unique geodesic arc homotopic (with fixed endpoints) to c. If c is
simple, the geodesic need not be simple (see Figure 2.13).

(2) Assume A and B are disjoint closed boundary geodesics of S. There exists a unique geodesic γ homotopic to
c with endpoints gliding on A and B that meets A and B perpendicularly at its endpoints. All other points
of γ lie in the interior of S. Moreover, if c is simple, then γ is simple.

Proof. We prove the existence claim in (1) because the existence for (2) is analogous and we prove the
uniqueness claim in (2) because the uniqueness for (1) is a similar argument. We will also prove all
other claims in (2) other than the simplicity assertion, this is done similarly as in Theorem 2.2.4.2. For
details see [Bus10, Theorem 1.5.3].

To begin with, we cover S with finitely many charts that are isometries with regions of H. In each
of these we have a unique geodesic joining any two points. Now let M be the Lebesgue number of this
cover: if two points are closer than M then they are joint by a unique geodesic. We go on to consider
the path-homotopy class of c, that we denote H, and also let L be the infimum of lengths of piece-wise
smooth curves in H. Choose a sequence of such curves (cn)n in H such that ℓ(cn) → L. Note that
d(cn(x), cn(y)) ≤

∫ b
a ||c′n||dt ≤ K|x− y| because ||c′n|| is uniformly bounded since ℓ(cn)→ L. In virtue

of this, we apply the Arzelà-Ascoli theorem13 to obtain that the cn converge to a curve γ : [a, b] → S
(taking partial subsequences if necessary). We prove that this is the curve we were seeking.

We partition [a, b] into a = t0 < · · · < tN = b finely enough so each arc cn([ti, ti+1]) is of length M
at most. Moreover, the endpoints cn(ti) converge to γ(ti) and for n0 large enough there is a cn0 such
that for each i, cn0([ti, ti+1]) is in the same open set of the cover than γ([ti, ti+1]). In particular, we can
find a geodesic arc from γ(ti) to γ(ti+1), that we call βi, homotopic to cn0 . Putting all of the βi together
we obtain a piece-wise geodesic curve β in H. The key part is that this curve β minimizes distance in
H and hence it can be reparametrized into a geodesic. Now, since γ also minimizes distance we have
that γ = β and therefore γ ∈ H.

13A well known direct generalization of the classical Arzelà-Ascoli theorem is the following: if X is a compact metric space
and we have K-Lipschitz maps cn : [a, b] → X, then there exists a subsequence converging uniformly on compact sets to a
K-Lipschitz map γ : [a, b]→ X. The proof is almost the same as the classic result.
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For (2), we prove the perpendicularity claim. We lift γ and A to H at a point in the fiber of
γ(a) ∈ S. If we prove the lifts meet perpendicularly, since the projection is a local isometry, we will
have proved that γ meets A perpendicularly. So, if the lifts did not meet at a right angle we could
homotope the lift of γ into a curve that minimizes distance (because of Theorem 2.1.0.4) against the
geodesic status of the lift of γ. In fact, the same argument proves that γ(a, b) ⊂ Int S. Now we are
ready to prove the uniqueness statement and conclude the proof.

Take Ã, B̃ and γ̃ lifts in H of A, B and γ such that γ̃ is the perpendicular from Ã to B̃. Every
homotopy with endpoints gliding on A and B in S lifts to a homotopy with endpoints gliding on Ã
and B̃. From the uniqueness of common perpendiculars in H follows our uniqueness claim in S.

Figure 2.13: In the left we see an example for A = B = {p}, it is important to note that this proves nothing about closed
geodesics, since here the homotopy is relative to p. In the center we see how γ need not be simple if c is simple if A and B are
points. In the right we can see two instances of different homotopy classes yielding different perpendiculars.

Remark 2.2.5.3. Even though the theorem above does not say anything about closed geodesics, the
same “local” arguments yield the same conclusion as Theorem 2.2.4.2, see [Bus10, theorem 1.6.6]
for this proof. Moreover, note that this could be used, inversely to Theorem 2.2.4.2, to prove the
hyperbolicity of elements in group models for compact hyperbolic surfaces.

2.3 The Teichmüller Space Tg and the Fenchel-Nielsen Coordinates

2.3.1 Pants Decompositions

This section is mostly topological in nature, we briefly explore the decomposition of surfaces (no
extra structure) into pairs of pants. A pair of pants is a surface homeomorphic to a sphere with three
open discs removed. Let S be a compact surface (possibly with boundary) with Euler characteristic
χ(S) < 0. A pair of pants decomposition of S is a collection of disjoint simple closed curves in S such
that cutting S along those curves a disjoint union of pairs of pants is obtained. One can always find
such a decomposition. The following, amongst other things, gives a reason why.

Remark 2.3.1.1. The pairs of pants decomposition is basically the only maximal decomposition of “its
sort”: indeed, one could also define a pants decomposition of S as a maximal collection of disjoint,
essential14 simple closed curves in S that are pair-wise non-isotopic. Let us prove that both definitions
are equivalent. On the one hand, suppose we have a collection of simple closed curves that cut S into
pairs of pants. Clearly, this means they are all essential. Furthermore, since any simple closed curve
on a pair of pants is either homotopic to a point or to a boundary component the collection has to be
maximal. On the other hand, assume we have a maximal collection of disjoint non-isotopic essential
simple closed curves in S. Suppose that these curves do not cut S into a collection of pairs of pants.
It follows from the classification of surfaces and the additivity of Euler characteristic that there is at
least one component of the cut surface that either has positive genus or is a sphere with more than 3
boundary components. In both cases, there are essential simple closed curves that are not homotopic
to a boundary component, contradicting the maximality condition.

14The closed curve c is essential if no component of S \ c is a disc with possibly one puncture.
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Now we count how many pairs of pants and curves a pants decomposition has. If we cut a surface
along a collection of disjoint simple closed curves, the cut surface has the same Euler characteristic
as the original surface. Since pairs of pants have Euler Characteristic −1, a pants decomposition
must cut S into −χ(S) pairs of pants. This means that for a compact genus g surface S the pants
decomposition has 2g − 2 pants and, since every trouser has 3 boundary components and they are
pasted in pairs, there are 3χ(S)/2 = 3g− 3 decomposing curves. By the same token, if S also had n
boundary components the pants decomposition would have 3g + n− 3 curves and 2g− n− 2 pants.

Remark 2.3.1.2. The discussion so far has been centered around decomposition. Now we briefly
mention the combinatorial scheme to glue pairs of pants together into a compact surface of genus g.
Each 3-regular connected graph yields a way to put together pairs of pants, see Figure 2.14. A vertex
represents a pair of pants and the edges represent glued curves. Note that a 3-regular graph (i.e. a
graph such that each vertex has exactly 3 edges, counting loops twice) with 2g− 2 vertices always has
3g− 3 edges. One interesting application of this characterization is that we can use graph theory to
give bounds on the number of essentially different ways to put pairs of pants together. If m(g) denotes
the number of pairwise non-isomorphic connected 3-regular graphs with 2g− 2 vertices, then

2g−3 ≤ m(g) ≤ g3g

see [Bus10, Theorem 3.5.3] for a proof of this. Finally, note that for any g > 1 there is always a
combinatorial scheme that does not glue together two curves on the same pair of pants. For this it’s
enough to give a graph with no loops, see Figure 2.14 again.

�=2

�>2

Figure 2.14: Left: A pants decomposition of a genus g surface and the corresponding graph. Right: An example for all g > 1 of
a pants decomposition that does not paste geodesics on the same pant.

Now we fix some notation that we will use along this section when talking about this construc-
tion. From now on, we suppose that all Y-pieces are given a hyperbolic structure (in particular, the
3 boundary components are closed geodesics). Let us fix a genus g and consider {Yi}i=1,...,2g−2 hy-
perbolic pairs of pants, each Yi has boundary geodesics {γij}j=1,2,3. Now we decide on a way to
assemble these pants, that is, we fix a 3-regular connected graph. Let us say that Yi and Yr are pasted
together in this combinatorial model along the geodesics γij and γrs. Since we would like the resulting
surface to be hyperbolic we do the pastings according to Example 2.2.2.8. In particular, we ask that
ℓk = ℓ(γij) = ℓ(γrs) and the pasting condition is γij(t) = γrs(ak − t) for t ∈ S1 for some ak ∈ R. Thus,
γij and γrs yield a geodesic γk(t) of length ℓk. Therefore, in the pasted surface we have {γk}k=1,...,3g−g
pasting geodesics and to assemble the surface we have to specify the length of each γk and the pa-
rameter ak (and the combinatorial assembly model too but we already fixed it). That is, we specify the
parameters

(L, A) = (ℓ1, . . . , ℓ3g−3, a1, . . . , a3g−3) ∈ R
3g−3
+ ×R3g−3

We will write FLA for the surface built according to this parameters and πLA : Y1 5 · · · 5Y3g−3 → FLA

the corresponding pasting projection. The pasting geodesics {γk}k=1,...,3g−g in FLA will be written as
{γLA

k }k=1,...,3g−g unless (L, A) = (1, . . . , 1, 0, . . . , 0), when we will omit the superindex LA and simply
write {γk}k=1,...,3g−g.
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The L and A parameters are respectively called the length and twist/angle parameters of FLA.
In the next section we study hyperbolic pairs of pants to understand what can be done with the L
parameters and in Section 2.3.3 we study X-pieces to understand the A parameters.

2.3.2 Hyperbolic Pairs of Pants

Definition 2.3.2.1. From now on, a topological 3-holed sphere will be called a topological pair of
pants as opposed to a pair of pants (or Y-piece or trouser), which will be a compact Riemann surface
of signature (0, 3) by default.
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Figure 2.15

Example 2.3.2.2 (Construction of a Y-Piece via Hexagons). Let G be a right-angled geodesic hexagon
in the hyperbolic plane with consecutive sides b1, c3, b2, c1, b3, c2 and G′ a copy with consecutive sides
b′1, c′3, b′2, c′1, b′3, c′2. We parametrize all sides on the interval [0, 1] with constant speed in a way that all
sides form a closed boundary curve. The following pasting scheme:

(℘) : ai(t) := bi(t) = b′i(t), t ∈ [0, 1], i = 1, 2, 3

defines a hyperbolic surface Y that inherits the hyperbolic structure of G and G′:

Y = G + G′ mod ℘

To see that it is a pair of pants we have to prove that the boundary curves are closed geodesics. For
i = 1, 2, 3 we define γi(t) as ci(2t) in 0 ≤ t ≤ 1/2 and c′i(2− 2t) in 1/2 ≤ t ≤ 1. These γi are the
piece-wise geodesic boundary components, since all angles are right-angles these curves are closed
geodesics. As such, in the rest of the text these boundary geodesics γi will be parametrized in S1.

Now we prove that all Y-pieces are obtained in this way:

Proposition 2.3.2.3. Let S be an arbitrary Y-piece. For every pair of boundary geodesics of S there exists a
unique simple common perpendicular. The three perpendiculars cut S into two isometric right-angles geodesic
hexagons.

Proof. First of all, we find a triplet a1, a2, a3 of simple geodesics perpendiculars between boundary
geodesics. Let us find a1 the perpendicular connecting γ2 and γ3. We just have to note that there
exists a simple arc in Y connecting γ2 and γ3 and a1 will be the simple unique perpendicular in its
homotopy class (with endpoints gliding on γ2 and γ3) given by Theorem 2.2.5.2. In fact, any such arc
will be homotopic15 (with gliding endpoints) to a1.

We want to see that the perpendiculars are pairwise disjoint: by cutting along a3, for example,
we obtain a hyperbolic surface A. Using Theorem 2.2.5.2 again, there exists a simple perpendicular
geodesic a′1 in A between γ2 and γ3; a′1 will also be a geodesic in Y. Since a1 and a′1 are geodesics in

15There is only one gliding homotopy class of simple arcs from γ2 to γ3, we sketch a proof. From fundamental group theory
the path-homotopy classes of simple paths from γ2 to γ3 (with fixed endpoints) is characterized by the winding number around
each one of the two holes in the Y-piece. Since we can glide endpoints around γ2 and γ3 we can make any path with endpoints
in those curves not wind around any of the two holes. In conclusion, there is a unique homotopy class of paths joining γ2 and
γ3 allowing the endpoints to glide.
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the same gliding homotopy class, by uniqueness of geodesics, we have that a′1 = a1. Therefore, a1 does
not intersect a3 since it has not been cut. The same holds for the others.

Cutting along a1, a2, a3 we obtain two simply connected right-angled geodesic hexagons G and G′,
in Remark 2.2.3.3 we proved that they have to be polygons in H. Uniqueness follows from Theorem
2.1.2.3.

Theorem 2.3.2.4. For any triple of positive real numbers l1, l2, l3 there exists a unique16 pair of pants Y with
boundary geodesics γ1, γ2, γ3 of lengths (ℓ(γ1), ℓ(γ2), ℓ(γ3)) = (l1, l2, l3).

Proof. Using Theorem 2.1.2.3 there exist a geodesic hexagon in H with prescribed length of three non-
adjacent sides. By the construction in example 2.3.2.2, existence of the desired Y-piece is proved. Let Y
and Ỹ be two pairs of pants with boundary γi,γ̃i, i = 1, 2, 3, as in the statement of the theorem. Using
the proposition above we cut both pairs of pants into hexagons G, G′ and G̃, G̃′. We can find isometries
that take G to G̃ and G′ to G̃′ that send ai to ã′i (following the notation of the proposition above). That
defines an isometry from Y to Ỹ sending γi to γ̃i.

Remark 2.3.2.5. An interesting direct consequence of the theorem above is that R3
+ overdetermines

the moduli space M0,3. In fact, it can be seen that the marking by homeomorphism, in the case
of pairs of pants, is equivalent to labeling the boundary geodesics; boundary components cannot
be permuted. Then, the theorem above shows that T0,3 = R3

+. What’s more, the action on T0,3 of
permuting boundary components would give rise to the moduli space, that is M0,3 = R3

+/S3 (here S3
is the symmetric group on three elements).

We want to define a map that stretches Y-pieces into other Y-pieces homeomorphically (and quasi-
isometrically, which is a concept we will introduce in the last section of this work). To do so, first
we explain how to stretch hexagons into other hexagons. Let G and G′ be a right-angled geodesic
hexagons in the hyperbolic plane with consecutive sides b1, c3, b2, c1, b3, c2 and b′1, c′3, b′2, c′1, b′3, c′2 re-
spectively. We know define a map σ(G, G′) that stretches G into G′.
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Figure 2.16: Left: Stretch maps for hexagons. Right: how those transfer (approximately) to trousers.

The idea is to take the geodesic sides as reference and send every point to points of “the same
proportion” with respect to the reference. Let p0 and p′0 common vertices of b2 and c1 and b′2 and c′1
respectively. For a point p ̸= p0 in G there exists a unique side bi or ci and a unique tp ∈ [0, 1] such
that p lies on the geodesic ray from p0 to p∗ = bi(tp) or p∗ = ci(tp). The point σ(G, G′)(p) will be the
point p′ on the geodesic ray from p0 to p′∗ = b′i(tp) or p′∗ = c′i(tp) satisfying

d(p′0, p′)
d(p′0, p′∗)

=
d(p0, p)
d(p0, p∗)

.

Finally, we set σ(G, G′)(p0) = p′0. This is clearly continuous and the inverse is defined in the same
way, so it is continuous too, hence those stretch maps are homeomorphisms.

Definition 2.3.2.6 (Stretching Trousers). Let Y and T be two arbitrary Y-pieces and let G, G′ and H, H′

be decomposing hexagons as in example 2.3.2.2 or Proposition 2.3.2.3. We define σ(Y, T) : Y → T the
stretching map of Y onto T by setting

σ(Y, T) =

{
σ(G, H) on G
σ(G′, H′) on G′

16Here uniqueness is understood modulo boundary preserving isometry. In other words, the boundary components of Y are
ordered/labeled.
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Since σ(G, H) and σ(G′, H′) preserve boundary parametrization they agree on G ∩ G′. This implies
that σ(Y, T) is a well defined homeomorphism that preserves boundary parametrizations.

2.3.3 Twist Homeomorphisms and X-Pieces

From Theorem 2.3.2.4 it is beginning to be clear that decomposing a surface into pairs of pants
and studying the length of the decomposing geodesics may be a nice way to study the variation
of hyperbolic structures. However, note that when we paste two closed geodesics there is a twist
parameter which needs to be taken into account. In this section we study hyperbolic surfaces made
up of two trousers and twist parameters.

Definition 2.3.3.1. A hyperbolic surface of signature (0, 4) is called an X-piece.

Example 2.3.3.2 (Construction of an X-Piece and Notation). Let Y and Y′ be two Y-pieces with bound-
ary geodesics γi, γ′i with i = 1, 2, 3 such that ℓ := ℓ(γ1) = ℓ(γ′1) and let Xa be the surface that arises
from pasting Y and Y′ along γ1 and γ′1 with a a as the twist parameter. That is, Xa = Y + Y′ ac-
cording to the pasting condition γ1(t) = γ′1(a − t) for t ∈ S1. In this section πa will denote the
projection map of this pasting and γa the closed geodesic in Xa that comes from γ1 and γ′1, that is,
γa = πa(γ1(t)) = πa(γ′1(a− t)). Since Y and Y′ are compact hyperbolic surfaces, Xa is also a compact
hyperbolic surface and has 4 boundary geodesics, which means Xa is an X-piece.When a = 0 we will
write X, π and γ instead of X0, π0 and γ0. It turns out that, analogously to Theorem 2.3.2.4, every
X-piece is uniquely obtained by this construction.

Theorem 2.3.3.3. Let X be an X-piece and fix (ℓ1, . . . , ℓ5, a) ∈ R5
+ × [0, 1). Then, there are pairs of pants Y

and Y′ with boundary geodesics γi and γ′i (i = 1, 2, 3) respectively such that ℓ1 = ℓ(γ1) = ℓ(γ′1), ℓ2 = ℓ(γ2),
ℓ3 = ℓ(γ3), ℓ4 = ℓ(γ′2) and ℓ5 = ℓ(γ′3) so that X = Y + Y′ modulo γ1(t) = γ′1(a− t), t ∈ S1. Moreover, X
is the only X-piece obtained this way.17

Proof. Label the boundary geodesics of X by γ3, γ2, γ′2, γ′3 as in Figure 2.18 (center-left) starting from
the top left corner/hole clock-wise. We take a geodesic that separates two sets of boundary geodesics
and cut along this curve, we obtain (topologically) two 3-holed spheres with a hyperbolic metric with
boundary of closed geodesics, i.e. two compact Riemann surfaces of signature (0, 3), two Y-pieces.
This curve exists (there is more than one). For example, take a simple perpendicular g from γ3 to γ2
and define γ to be the unique closed geodesic in the free homotopy class of the curve gγ3g−1γ2. This
way, we get two Y-pieces with boundary geodesics γ2, γ3, γ and γ′2, γ′3, γ respectively. In particular,
this proves the existence claim.

To prove uniqueness we first fix a ∈ [0, 1). Let X and X̃ be two X-pieces built according to
X = Y + Y′and X̃ = Ỹ + Ỹ′ where Y, Y′, Ỹ and Ỹ′ are pairs of pants with the prescribed lengths
ℓ1, . . . , ℓ5 as in the statement of the theorem (here both pastings are done with twist a). By Theorem
2.3.2.4, there are isometries Y → Ỹ and Y′ → Ỹ′. By construction, since a is the same in both pastings,
they define an isometry X → X′. Finally, we have to see what happens when we let a vary. Let Y and
Y′ be two pairs of pants as in the statement of the theorem, if Xa = Y + Y′ with twist parameter a,
then it suffices to prove that {Xa}a∈[0,1) are pair-wise non-isometric.

In the first place, let k ∈ Z, then observe that Xa = Xa+k. This is direct from the fact that
γ(t) = γ(t + k). Clearly, Xa ̸= Xb for a ̸= b ∈ [0, 1), but that they are not isometric is still unclear. So,
let m : X0 → Xa be an isometry that preserves the boundary (as always, uniqueness is conditional to
this), then the pairs of pants Y and Y′ in X0 are sent to pairs of pants m(Y) and m(Y′) that decompose
Xa. Here we are using the fact that m is a homeomorphism sending “topological” three-holed spheres
to three-holed spheres and that m is an isometry to see that the three-holed spheres are pairs of pants.
Therefore, since m fixes the boundary components and Xa = Y + Y′ with twist a, m(Y) = Y and
m(Y′) = Y′. In particular, we have that m ◦ π0 has to be of the form πb for some b ∈ [0, 1), which
would imply that m = πb ◦ (π0)−1. This is a contradiction because the map πb ◦ (π0)−1 cannot be an
isometry (it does not preserve distance between points, below we study this map more carefully, see
Figure 2.17 for example).

17As with Theorem 2.3.2.4, uniqueness is understood up to the order of the boundary components.
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Remark 2.3.3.4. As with Remark 2.3.2.5, the theorem above proves that R5
+× [0, 1) overdetermines the

moduli space M0,4. In other words, the moduli is determined by the length of 5 curves and 1 twist
parameter.

Now we are interested in understanding the twist parameter. Without loss of generality, we
consider X-pieces of the form {Xa}a∈R and use the notations introduced in example 2.3.3.2. Re-
call that around the pasting geodesic γa there is a collar C[γa] isometric to [−ϵ, ϵ]× S1 and because
of that we can talk about the Fermi coordinates (ρ, t) in C[γa]. We re-estate how this coordinates
are taken: if p ∈ C[γa], there exists a unique length minimizing perpendicular from p to γa that
meets γa at γa(tp) and has length |ρp|, if p is above γa the distance is signed negative and below is
singed positive (corresponding to left (−) and right (+) with respect to the orientation of γa), hence
p = (ρp, tp) ∈ [−ϵ, ϵ]× S1. Moreover, since γa has speed ℓ(γa) we have the following metric tensor in
C[γa]: ds2 = dρ2 + ℓ(γa)2 cosh2(ρ)dt2, see Section 2.2.2 for details.
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Figure 2.17: Four figures, first from the left: X0 big and Y and Y′ small. Second from the left: Xa big Y and Y′ before pasting
with twist a small. These two represent the map πa ◦ (π0)−1. Third from the left: the map Ta. Fourth from the left: the map τa.

Now we introduce two ways to twist X-pieces. The first one is taking X = X0, then separating
the two Y-pieces, twisting a parts of a turn (i.e. 2πa radians) the bottom one and the putting them
together again, this is represented by πa ◦ (π)−1 : X → Xa, see Figure 2.17. The other way to twist
is similar but without separating the two Y-pieces, therefore points in the middle of the X-piece get
dragged and twisted, those will be the twist homeomorphisms. Let us introduce them properly.

Take collars in X = X0 and in Xa around γ and γa of width 2ϵ. We define a homeomorphism of
collars Ta : C[γ]→ C[γa] as follows:

Ta(ρ, t) = (ρ, t + a
ϵ + ρ

2ϵ
).

Observe that for ρ = −ϵ we have Ta(ρ, t) = (−ϵ, t), for ρ = 0 we have Ta(ρ, t) = (0, t + 1
2 a) and for

ρ = ϵ we have Ta(ρ, t) = (ϵ, t + a). That is, we have linearly twisted the collar from 0 to a. Moreover,
since at {−ϵ}× S1 the map Ta agrees with π and at {ϵ}× S1 the map Ta agrees with πa, the following
map is a well defined homeomorphism:

τa =

{
Ta on C[γ]
πa ◦ (π)−1 on X \ C[γ]

These maps τa are called twist homeomorphisms. It is easy to realize that they are not isometries. Note
that, because X0 = X1 the map τ1 : X0 → X1 can be regarded as a self-homeomorphism τ1 : X0 → X0.
In this case we denote τ1 by D and it is called an elementary Dehn twist of X0. For m ∈ Z, any map
isotopic to Dm that fixes the boundary ∂X point-wise is a Dehn twist of order m. We define a Dehn twists
of order m for Xa by Dm

a = τa ◦Dm ◦ (τa)−1. Intuitively, a Dehn twist of order m is just twisting the
bottom part of an X-piece m full turns.

Question 2.3.3.5. Given a family of X-pieces {Xa|a ∈ R}, is there a way to know what the value of a
is for any given X-piece? More importantly, can we find closed geodesics on X-pieces such that their
lengths determine a? This is interesting for geometrical reasons and also because we know length
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functions are continuous with respect to the algebraic topology of Teichmüller spaces, hence if a is
expressed continuously as length functions, it will also be a continuous function on the Teichmüller
space.

The answer is yes and it is of capital importance for our construction of the Fenchel-Nielsen co-
ordinates. Take X = X0 = π(Y 5 Y′), let b2 and b′2 in Y and Y′ be the simple joining perpendiculars
as in Figure 2.15 and also in Proposition 2.3.2.3 (where they are denoted with a2 instead of b2) and
d := b′2b−1

2 a perpendicular between γ3 and γ′3. Let δ be the unique closed geodesic in the free ho-
motopy class of dγ3d−1γ′3 (the homotopy can be visualized in Figure 2.18). As in the existence part of
Theorem 2.3.3.3, δ is a separating curve of γ2 and γ′2 from γ3 and γ′3. Now define η to be the unique
closed geodesic in the homotopy class of D(δ) (here D is the Dehn twist). An equivalent way to define
η is as the unique closed geodesic in the homotopy class of d̄γ3d̄−1γ′3 where d̄ = b′2γb−1

2 .
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Figure 2.18: Left: short representation of the homotopy of dγ3d−1γ′3 to δ, a longer representation can be found in Figure 2.11.
Center: some labels, δ and δa in red and the map τa. Right: similar rough representation for η.

Definition 2.3.3.6. On Xa, we define δa and ηa to be the unique simple closed geodesics in the homo-
topy classes of τa(δ) and τa(η), where τa is the twist homeomorphism defined above.

Remark 2.3.3.7. Considering Remark 2.3.3.4, the question of how many curves are needed to determine
the twist parameter a ∈ [0, 1) is closely connected to the question of how many curves are needed to
determine M0,4. The following theorem will prove that it is in fact controlled by the length of six
curves: the four boundary geodesics and the “γ” and “δ” curves, see Figure 2.18. The reason is that
the theorem yields the formula cosh(aℓ(γ)) = 1

v (cosh( 1
2 ℓ(δ

a))− u) and, since the hyperbolic cosine is
one to one in [0, 1), we can invert it to obtain a from the left hand side. However, while these six curves
are enough to overdetermine the moduli space, they are not enough for the Teichmüller space. Note
that since cosh is two-to-one in R, if we want to determine the value of a varying in R (as opposed to
only in [0, 1)) we would need two formulas like the one above to pin-point its value. We will see that
T0,4 = R5

+ ×R and therefore we need two algebraic relations with cosh to determine a. This is the
reason why we have introduced the “η” curve. In the corollary below, we make explicit the fact that
the length of the δ and η curve determine the parameter a ∈ R real-analitically.

The following lemma is very intuitive and explains an important way to measure a with curves
that will be needed a couple of times in this text.

Lemma 2.3.3.8. As shown in Figure 2.19, the curve τa(d) is homotopic in Xa with endpoints gliding on γ3
and γ′3 to the curve b′2bb−1

2 , where b is a parametrized arc of γa and the signed18 length of b is given by

ℓ(b) = aℓ(γa)

Proof. In the same way as we did above, take a collar C[γa] around γa. Observe that a curve (written
in Fermi coordinates) of the form b(s) = (0, tp + sa) for 0 ≤ s ≤ 1 has length aℓ(γa). This is computed
using the metric tensor dρ2 + ℓ(γa)2dt2 which we know is the metric in collars for ρ = 0. Now, let
p = (0, tp) be the intersection point γ ∩ d on X.

18Here the signed distance is assigned as follows: positive if b leads to the left hand side of b2 and negative otherwise.
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By definition of τa, τa(d) will be homotopic to a curve b′2cb−1
2 with c an arc of γ. We want to prove

that c = b (where b is defined in the paragraph above). To see this, we show that b2 ∩ γa = (0, tp) and
b′2 ∩ γa = (0, tp + a). This is true by definition of Xa. Indeed, the curves b2 and b′2 are defined as the
geodesic perpendicular in each trouser joining γ3 to γ and γ′3 to γ. Roughly said, the “upper” pant in
X0 and Xa is the “same” while the “lower” pant is rotated a parts of a turn, see Figure 2.17. Formally,
by definition of Xa: the curve b2 in X0 will be the same as in Xa but the curve b′2 will intersect γa at
precisely the point (0, tp + a).

Theorem 2.3.3.9. For the above family {Xa|a ∈ R} we have that

cosh(aℓ(γ)) =
1
v
(cosh(

1
2
ℓ(δa))− u)

cosh((a + 1)ℓ(γ)) =
1
v
(cosh(

1
2
ℓ(ηa))− u)

where u and v > 0 are real analytic functions of the lengths of γ, γ2, γ3, γ′2 and γ′3 that do not depend on the
twist parameter a.

Proof. As a matter of fact, we will prove something stronger. First, we simplify notation by writing
the length of a curve by the name of the curve, that is ℓ(γ) = γ. We prove that F(a) = cosh 1

2 δa and
F(a + 1) = cosh 1

2 ηa where

F(a) = sinh
1
2

γ3 sinh
1
2

γ′3

(
sinh b2 sinh b′2 cosh aγ + cosh b2 cosh b′2

)
− cosh

1
2

γ3 cosh
1
2

γ′3. (2.1)

A simple computation then shows that this implies the formulas written above. It is important to note
that the lengths b2 and b′2 are determined by the lengths of γ, γ2, γ3, γ′2 and γ′3 because, decomposing
Xa into pants and the pants into hexagons, b2 and b′2 are sides of a geodesic hexagon, hence completely
determined. Moreover, if we show that F(a) = cosh 1

2 δa then, since the length of ηa in Xa is the same
as the length of δa+1 on Xa+1 (by definition and uniqueness of closed geodesics in homotopy classes),
we will have that F(a + 1) = cosh 1

2 δa+1 = cosh 1
2 ηa. We now proceed to prove formula 2.1.
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Figure 2.19: How the hexagon in Xa lifts to a crossed hexagon.

Take the curve b′2bb−1
2 from the lemma above with ℓ(b) = aℓ(γa) = aℓ(γ) = aγ (according to our

notational agreement). By Theorem 2.2.5.2 there is a unique perpendicular da with endpoints gliding
on γ3 and γ′3. In particular, we have a piece-wise geodesic right-angled closed curve, by lifting it to
the universal cover of Xa, we get a closed piece-wise geodesic curve; a polygon, see Figure 2.19. In
this case, it is a crossed right-angled geodesic hexagon. We abuse notation and denote the lifts with
the same letters. By Theorem 2.1.2.2 we have that

cosh da = sinh b2 sinh b′2 cosh aγ + cosh b2 cosh b′2.

This relates a to the length of da, hence we need to focus on how the length of da relates to δa. In the
first place, we note that δa is freely homotopic to the curve daγ3(da)−1γ′3. In the second place, δa does
not intersect da. Indeed, if we cut Xa open along da, in the interior of this new hyperbolic surface the
closed curve daγ3(da)−1γ′3 will be homotopic to a unique closed geodesic. By uniqueness in Xa this
geodesic is precisely δa and, hence, δa does not cut da.
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Now we cut Xa along δa and obtain two Y-pieces, we call Y the one with boundary geodesics
γ′3, γ3 and δa. As shown above, da is the simple perpendicular from γ′3 to γ3 in the pair of pants Y . In
particular, decomposing Y into two right-angled hexagons and applying the first formula in Theorem
2.1.2.2 we have that

cosh
1
2

δa = sinh
1
2

γ3 sinh
1
2

γ′3 cosh da − cosh
1
2

γ3 cosh
1
2

γ′3

which is exactly cosh 1
2 δa = F(a). This concludes the proof.

Corollary 2.3.3.10. The twist parameter is a real analytic function of the lengths of the seven curves in the
theorem above.

Proof. The trick is to write cosh(aℓ(γ)) as cosh(
√
(aℓ(γ))2) and invert it using that cosh

√
z is holo-

morphic in C and has positive first derivative on (−π2, ∞). With this and the theorem above we obtain
a2 = h(ℓ(δa, u, v)) and (a + 1)2 = h(ℓ(ηa, u, v)) where h is a real analytic function. Subtracting the first
equation to the second we obtain

a =
1
2
(
h(ℓ(δa, u, v))− h(ℓ(ηa, u, v))− 1

)

which is what we wanted.

2.3.4 X-Piece Decomposition and the Canonical System of Curves

Observe that not all closed curves on a surface made of pairs of pants come from closed curves
of the pairs of pants; in pasting, new homotopy classes of closed curves are created. To characterize
Tg with closed geodesics we need a decomposition that “accounts for all possible closed curves”. In
this section we define such a decomposition and introduce a very important collection of curves Ω
that will be fundamental in our proof of the Fenchel-Nielsen coordinates theorem. From now on, the
genus g will be fixed and we use the notation introduced in the end of Section 2.3.1.

Each point in Tg is represented by (S, ϕ) where ϕ : Fg → S is the marking homeomorphism. So far
we have not assumed Fg to have more than a topological structure. However, a “canonic” hyperbolic
structure on F = Fg would be convenient. For this, we set F = Fg := FL0 A0 for L0 = (1, . . . , 1)
and A0 = (0, . . . , 0) (this surface exists by Theorem 2.3.2.4). Choose a pasting geodesic γk for a
k = 1, . . . , 3g− 3 and suppose that γk comes from the pasting of Yi and Yr along γij and γrs. We define
Xk = Yi +Yr according to the pasting scheme γij(t) = γrs(−t). Note that there is a canonical isometric
inclusion ιk : Xk → F that follows from the canonical isometric inclusion of Yi and Yj inside F. If i = r,
Xk will be a signature (1, 1) surface and if i ̸= r we get an X-piece. In order to avoid case by case
studies we take a combinatorial model to assemble the surfaces FLA that does not paste curves of the
same trousers (this can be done as explained in Remark 2.3.1.2).

Definition 2.3.4.1. For k = 1, . . . , 3g− 3 we let δk and ηk be the curves introduced in Xk in definition
2.3.3.6 in Xk. We denote δk and ηk their (isometric) images in F, that is, δk = ιk(δ

k) and ηk = ιk(η
k).

The set

Ω = {γ1, . . . , γ3g−3, δ1, . . . , δ3g−3, η1, . . . , η3g−3}

is called the canonical curve system. If φ : F → S is a homeomorphism, we write Ω(S) for the
collection of curves that are the unique geodesic representatives of the curves in ϕ(Ω). Lastly, ℓΩ(S)
is the ordered tuple of lengths of the curves in Ω(S).

Remark 2.3.4.2. This curve system depends heavily in the assembly model of Y-pieces. As said before,
we have taken this model so that we do not paste geodesics on the same trouser. However, Ω could
still be defined in this case (even though not all curves would come from X-pieces). In Figure 5 one
can see an example of Ω for such a combinatorial model.
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Figure 2.20: Three examples of how the decomposition of F into Xk happens. Contrary to a pants decomposition, while X1

and X5 are disjoint, X1 and X2 are not (which is necessary if we are to recover all homotopy classes of curves of F through a
decomposition).

Remark 2.3.4.3. In the proof of the main theorem we will need the following fact. Let c1, . . . , cm be
pair-wise disjoint simple closed curves on a topological surface S. If γ1, . . . , γm are curves with the
same properties, there exist a homeomorphism ψ : S → S that is isotopic to the identity such that
ψ ◦ ck = γk for k = 1, . . . , m. The main application to this fact is that given a marking homeomorphism
ϕ : F → S, we can control the image of a set of disjoint simple closed curves via ϕ by post-composing
with ψ and, since ψ is isotopic to the identity, this does not change the class of the marking. This is a
non-trivial topological fact, for a proof we refer the reader to [Bus10, Theorem A.3], which the author
names Baer-Zieschang’s theorem.

The first 6g − 6 curves in the canonical system of curves Ω can be used to characterize isotopy
classes of homeomorphisms.

Theorem 2.3.4.4. Let ϕ, ϕ′ : Fg → S be marking homeomorphisms such that, for k = 1, . . . , 3g− 3, we have
that

ϕ ◦ γk is homotopic to ϕ′ ◦ γk and ϕ ◦ δk is homotopic to ϕ′ ◦ δk.

Then ϕ and ϕ′ are isotopic.

Proof. The proof of this important theorem requires certain knowledge about the mapping class group
of a 3-holed sphere that we have had no space to develop. We refer the reader to the extended version
[Bar21] for a sketch of this proof and to [Bus10, Theorem 6.1.7 and appendix] for a full study.

Corollary 2.3.4.5. Two homeomorphisms ϕ, ϕ′ : Fg → S are homotopic if and only if they are isotopic.

Proof. If they are homotopic the conditions on the theorem above are obviously satisfied.

2.3.5 The Fenchel-Nielsen Coordinates

Theorem 2.3.5.1. The Fenchel-Nielsen coordinates FN (as defined below) parametrize Tg bijectively and home-
omorphically:

FN : Tg −→ R
3g−3
+ ×R3g−3

S &−→ (ℓ1(S), . . . , ℓ3g−3(S), a1(S), . . . , a3g−g(S))

Moreover, there are 9g− 9 homotopy classes of curves such that their lengths uniquely determine the point of
Tg. In other words, there is an injection ιT : Tg −→ R

9g−9
+ and this injection is a topological embedding.
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Proof. Throughout this section we carry out the construction and proof of this theorem. In the first
place, we should define the map. To do so we will find canonical homeomorphisms ϕLA from
F = FL0 A0 to FLA and then show that every point in Tg is represented by a unique (FLA, ϕLA). This
will prove that the map is well defined and bijective.

STEP 1: Construction of ϕLA. First we define a map σL that stretches F = FF0 A0 into FLA0 and then
a map τLA that twists FLA0 into FLA, ϕLA will be the composition of both.

For every i = 1, . . . , 2g − 2 we let σLA0
i : Yi → YLA0

i be the stretch map introduced in definition
2.3.2.6. Since each σLA0

i preserves the boundary parametrization of the boundary geodesics and all
twists parameters are zero the following map is a well defined homeomorphism:

σL :=
{

πLA0 ◦ σLA0
i ◦ π−1 for every i = 1, . . . , 2g− 2

Moreover, the homeomorphism σL : F → FLA0 sends γk(t) to γLA0
k (t) for each t ∈ S1 and each

k = 1, . . . , 3g− 3. Now, for a surface FLA, consider collars CLA
k around each γLA

k of width ϵk so that
they are disjoint. To define the map τLA we first define maps from the collars CLA0

k in FLA0 to CLA
k in

FLA (note that since the length of γLA0
k is the same as the length of γLA

k , the collars CLA0
k and CLA

k can
be taken to be isometric). So, in each of this collars we define twists like in Section 2.3.3. That is, for
every k we define TLA

k : CLA0
k → CLA

k as follows

TLA
k (ρ, t) = (ρ, t + ak

ϵk + ρ

2ϵk
).

Finally, if we let ILA be the natural identification ILA : YLA0
1 5 · · · 5 YLA0

2g−2 → YLA
1 5 · · · 5 YLA

2g−2, then
the following map is a well defined homeomorphism from FLA0 to FLA:

τLA =

{
TLA

k on CLA
k , k = 1, . . . , 3g− 3

πLA ◦ ILA ◦ (πLA0)−1 elsewhere

We have proven that the map ϕLA = τLA ◦ σL : F −→ FLA is a homeomorphism. We note that
ϕLA ◦ γk(t) = γLA

k (t + ak/2) for t ∈ S1 and k = 1, . . . , 3g− 3.

STEP 2: Surjectivity: given a marked hyperbolic surface (S, ϕ : F → S) there exists a marking equivalent
surface (FLA, ϕLA) for some (L, A) ∈ R

3g−3
+ ×R3g−3.

Step 2, part 1: Finding a suitable candidate for (L, A). For every k = 1, . . . , 3g− 3, we will denote the
unique geodesic in the homotopy class of ϕ(γk) by γk(S). By Remark 2.3.4.3 we can, in fact, assume
that ϕ(γk) is exactly γk(S). Clearly, the candidate for L is L(S) = (ℓ(γ1(S)), . . . , ℓ(γ3g−3(S))). Now we
wish to determine what the twist parameters of S might be. Recall from Section 2.3.4 that for every k
we have X-pieces Xk isometrically embedded in F by ιk. Intuitively, this “X-piece hyperbolic decom-
position” on F induces a hyperbolic decomposition on S via ϕ. Rigorously, we pull back the structure
of the hyperbolic surface ϕ(ιk(Xk)) onto Xk, then we obtain an X-piece denoted Xk(S) isometrically
embedded in S by ι′k : Xk(S) → S and a homeomorphism ϕk : Xk → Xk(S) such that the following
diagram commutes.

Xk Xk(S)

F S

The whole idea (as illustrated in Figure 2.21) is that the maps ϕk twist the X-pieces so we would like
to find an analogue of the b curve in Lemma 2.3.3.8 to measure the twist, let us do so now. Observe that
the map ϕk takes Y-pieces to Y-pieces. Next, let γk(S), δk(S) and ηk(S) be the unique closed geodesics
in S homotopic to ϕ(γk), ϕ(δk) and ϕ(ηk) respectively. Likewise, let γk(S), δk(S) and ηk(S) be the
unique closed geodesics in Xk(S) homotopic to ϕk(γk), ϕk(δk) and ϕk(ηk) respectively. In particular,
since ι′k is an isometry, by uniqueness of geodesics, we have that ι′k(γ

k(S)) = γk(S), ι′k(δ
k(S)) = δk(S)

and ι′k(η
k(S)) = ηk(S).
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Figure 2.21

Let Yi and Yr the Y-pieces that decompose Xk in the pants decomposition of F = FL0 Ao , let γ
and γ′ be boundary geodesics of Yi and Yr in Xk respectively that are not separated by δk (as in
Figure 2.21). As in Section 2.3.3, let d = b′2b−1

2 and recall that δk is freely homotopic to dγd−1γ′.
The arc ϕk(δ) in Xk(S) is homotopic with endpoints gliding on the boundary to a unique curve
a′2ba−1

2 with the following properties (shown in Figure 2.21): ϕk induces an trousers decomposition
of Xk(S) = ϕk(Yi) + ϕk(Yr) along the geodesic γk(S), we let a2 be the shortest simple perpendicular
connecting the boundary ϕk(γ) with γk(S), a′2 likewise connecting ϕk(γ′) with γk(S), and b be a
geodesic arc on γk(S) (which is not simple in general). This measures how much ϕk has twisted Xk.
Therefore, with Lemma 2.3.3.8 in mind, we define ak(S) = ℓ(b)/ℓ(γk(S)), where, for emphasis, we
denote ℓ̄ the signed length of b; positive if b leads to the left hand side of a′2 and negative otherwise.
Therefore, we have found the following candidate for (L, A).

(L(S), A(S)) = (ℓ(γ1(S)), . . . , ℓ(γ3g−3(S)), a1(S), . . . , a3g−3(S)).

Step 2, part 2: Checking that (FL(S)A(S), ϕL(S)A(S)) is marking equivalent to (S, ϕ). We will write Ŝ =
FL(S)A(S) and ϕ̂ = ϕL(S)A(S) to simplify notation. If we repeat the process in Step 2, part 1 for the
surface Ŝ we obtain X-pieces along isometric embedding ι̂k : Xk(Ŝ) → FLA such that the following
diagram commutes:

The analogue of a′2ba′2 will be â′2b̂â′2. Now, by Lemma 2.3.3.8 and the construction above both
Xk(S) and Xk(Ŝ) have the same twist parameters. Moreover, since their boundary geodesics and
“γ” curve have the same lengths by definition, Theorem 2.3.3.3 tells us that they are isometric, let
mk : Xk(S) → Xk(Ŝ) denote the isometry. How do we make sure this isometries define an isometry
m : S → Ŝ? Recall that the X-pieces Xk overlap a lot (see Figure 2.20), so one should be careful here.
The trick is to use the uniqueness in Theorem 2.3.3.3 to assert that mk is the unique isometry that
induces the same permutation of boundary geodesics as ϕ̂k ◦ (ϕk)−1 does. In other words, the action
of mk on the pants decomposition is the same as ϕ̂k ◦ (ϕk)−1. Therefore, the isometries

ι̂k ◦mk ◦ (ι′k)−1 : ι′k(intXk(S))→ ι̂k(intXk(Ŝ))

for every k together define a single isometry m : S→ Ŝ. Moreover, m ◦ γk(S) = γk(Ŝ) and m ◦ δk(S) =
δk(Ŝ). The former equality we already know, for the latter note that δk is homotopic to dγd−1γ′, it
follows that mk(δk(S)) is homotopic to δk(Ŝ) and, by uniqueness, we have that mk ◦ δk(S) = δk(Ŝ). All
in all, by Theorem 2.3.4.4, S and Ŝ = FLA are marking equivalent, which concludes the proof of this
step.

STEP 3: Injectivity: if FLA and FL′A′ are marking equivalent, then (L, A) = (L′, A′). From the definition
of marking equivalence it follows that there is an isometry m : FLA → FL′A′ such that m ◦ ϕLA is
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isotopic to ϕL′A′ . Following the notation of definition 2.3.4.1, m takes Ω(FLA) to Ω(FL′A′) curve by
curve. In particular, for every k = 1, . . . , 3g− 3:

ℓ(γk(FLA)) = ℓ(γk(FL′A′)), ℓ(δk(FLA)) = ℓ(δk(FL′A′)), ℓ(ηk(FLA)) = ℓ(ηk(FL′A′)).

This implies directly that L = L′ and Theorem 2.3.3.9 implies that A = A′ since the lengths of the δ
and η curves determine the twist parameters.

Observe that this proves that FN is a well defined bijection. Moreover, it also proves the “9g− 9
curves” part of the theorem since we have found that two surfaces S and S′ are marking equivalent if
and only if the lengths of Ω(S) and Ω(S′) agree curve to curve, that is ℓ(Ω(S)) = ℓ(Ω(S′)).

STEP 4: FN is a homeomorphism and ιT and embedding. Theorem 2.3.3.9 tells us that twist parameters
are determined continuously by length functions and the length functions of the δ and η are contin-
uously determined by the twist parameter. As a consequence, since length functions are continuous
by Corollary 2.2.4.6, FN is continuous and ιT : Tg → R9g−9 is also continuous. If we see that ι is a
homeomorphism of Tg with its image it will imply that FN is also a homeomorphism. Indeed, since
ι is injective, FN ◦ ι−1

T : ιT (Tg) → R
3g−3
+ × R3g−3 is a homeomorphism (it is in fact a real-analytic

diffeomorphism) because of what was said in the beginning of this paragraph. Therefore, if ιT is a
hoemomorphism with its image, FN will also be a homeomorphism.

We have to show that ι−1
T : ιT (Tg) → Tg is continuous. This comes from the fact that continuous

variation of the length of one of the curves in the Fundamental System of Curves Ω yields a continuous
variation on the axi of the respective hyperbolic transformations (see Section 1.2.4 and 2.2.4). In
particular, deck transformations vary continuously in the matrix topology of PSL(2, R). This gives us
continuity with respect to the algebraic topology (see Example 1.2.4.6).

This concludes the proof of the theorem.

Remark 2.3.5.2 (Well Defined Analytic Structure on Tg). The identifications made by the Fenchel-
Nielsen coordinates FN allow us to make Tg into a real-analytic manifold. However, note that for each
combinatorial model in the assembly of Y-pieces we get a different set of Fenchel-Nielsen coordinates
FN′, one has to check (it is non-trivial) that FN′ ◦ FN−1 : R

3g−3
+ × R3g−3 → R

3g−3
+ × R3g−3 is real

analytic. The idea is the following: Theorem 2.3.3.9 implies that FN(S) ∈ R
3g−3
+ × R3g−3 is a real

analytic function of ℓ(Ω(S)) since the length parameters clearly are real analytic and, by Theorem
2.3.3.9, the twist parameters are too. It can also be seen that all length functions (of other curves not
necessarily in Ω) are real analytic in FN(Tg) = R

3g−3
+ ×R3g−3, which ends up proving that the real-

analytic structure on Tg is well defined since the transition maps will be real-analytic. For a detailed
proof of this see [Bus10, Section 6.3].

2.3.6 A Brief Mention of Some Applications

In this section we sketch some interesting applications of our work. The first two are quite imme-
diate.

Theorem 2.3.6.1 (Collar Theorem). Let S be a compact Riemann surface of genus g ≥ 2 and let γ1, . . . , γm
be a maximal collection of disjoint essential simple closed geodesics. Then m = 3g− 3 and the collars

C(γi) = {p ∈ S|d(p, γi) ≤ wi}, where the widths are wi =
1

sinh 1
2 ℓ(γi)

are pairwise disjoint for i = 1, . . . , 3g− 3. In particular, the shorter the geodesic the wider the collar and the
longer the geodesic the thinner the collar, see Figure 3.

Proof. From Section 2.3.1 we know that such a decomposition is a pants decomposition. So we only
have to compute half-collars in each trouser. This is reduced to computing “half-collars” on the
hexagon decomposition which is an exercise in hyperbolic geometry. Figure 2.22 is representative
of this exercise.
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Figure 2.22: Half-collars on two isometric hexagons and how they make half-collars in the pasted Y-piece.

Let us now ponder on a distance function on Tg. We say that (S, ϕ) and (S′, ϕ′) are equivalent if
there is an isometry m such that ϕ′ ◦ ϕ−1 is isotopic to m. This means that they are the same point
in Tg, they are at “distance” 0. What if there exists no such isometry and only a map that distorts
distances a little, intuitively, both marking should be points close together in Tg. This is indeed true
and formalized as follows. For q ≥ 1, a homeomorphism between metric spaces φ : A → B is said to
be a q-quasi isometry if for all x, y ∈ A we have that

1
q

dA(x, y) ≤ dB(φx, φy) ≤ qdA(x, y).

For a quasi-isometry φ we denote by q[φ] the infimum of these q ∈ R for which φ is a q-quasi isometry.
This q[φ] represents the maximal length distortion. Therefore, according to common sense, if instead
of isometries m we have quasi-isometries, the number q[φ] should help us measure distance. Moreover,
note that stretch maps and twist homeomorphisms are quasi-isometries.

Theorem 2.3.6.2. For S = (S, ϕ) and S′ = (S′, ϕ′) points of Tg, the function δ defined as

δ(S, S′) := inf log q[φ]

where φ runs through quasi-isometries φ : S → S′ in the isotopy class of ϕ′ ◦ ϕ−1, is a distance function
compatible with the topology of Tg.

Proof. If we look a little close, this is a direct consequence of our construction. For pants we have
that the stretch maps σ(Y, Y′) are clearly quasi-isometries and it’s easy to prove that if a sequence of
pants {Yn}n converges to Y (in the sense that the lengths of the boundary geodesics converge) then
q[σ(Yn, Y)] n−→ 1. Similarly, each twist homeomorphism is also a quasi-isometry and we have that if
an

n−→ a then q[τan ◦ (τa)−1]
n−→ 1. Now, using the notion of convergence given by the map FN it is easy

to see that {(Sn, ϕn)}n converges to (S, ϕ) implies that q[ϕn ◦ ϕ−1]→ 1, hence the distance δ converges
to 0. For the converse, one proves that δ(Sn, S) → 0 implies that ℓΩ(Sn) → ℓΩ(S) by bounding the
length of curves under quasi-isometries. Convergence in the curve embedding implies convergence in
Tg.

We note that this approach is reminiscent (and equivalent) to quasi-conformal mappings, a way to
measure maximal distortion amongst complex structures of Riemann surfaces. Finally, the last thing
we have gotten for free from our construction is a generalization to surfaces of signature (g, n). In
Section 2.3.1 the pants decomposition for such surfaces was discussed, careful review of our proofs
yields:

Theorem 2.3.6.3. The Fenchel-Nielsen coordinates for hyperbolic surfaces Fg,n are

(ℓ1, . . . , ℓ3g−3+n, ℓ∂
1, . . . , ℓ∂

n, a1, . . . , a3g−3+n)

where ℓ and a are as before and ℓ∂ are the lengths of the n boundary geodesics. Hence Tg,n is homeomorphic to a
ball of dimension 3(g + n)− 3.

Finally, we mention in passing one astonishing aspect of Wolpert’s formula. The form given by

w =
3g−3

∑
i=1

dℓi ∧ dai

is a symplectic form well defined for any pants decomposition and independent of the specific Fenchel-
Nielsen coordinates taken. For a proof of this remarkable fact see Theorem 3.14 in [Wol10].



Appendix A

Möbius transformations and PSL(2, R)

This appendix is meant to summarize some features of Möbius transformations and the group
PSL(2, R), specially those outside the usual undergraduate curricula. If the reader is interested in the
proofs of this facts and some more, they can be found in the extended version of this work [Bar21]. A
comprehensive and deep study of this can be found in [Bea95] or [Ser].

Basic properties

A map f : C −→ C of the form f (z) = az+b
cz+d with a, b, c, d ∈ C and ad− bc ̸= 0 it is called a Möbius

transformation. We can extend the map to the Riemann sphere Ĉ by defining f (∞) = a/c (with the
usual convention of a/0 = ∞) and f (−d/c) = ∞. Therefore, we regard f as a holomorphic function
from Ĉ to Ĉ.1 It can be easily computed that dz−b

−cz+a is the inverse Möbius transformation of f . We can
conclude that f is a biholomorphism of the Riemann sphere onto itself. We have reasoned the well
definedness of the following definition.

Definition 1. A Möbius transformation f is a biholomorphic automorphism of the Riemann sphere
given by f (z) = az+b

cz+d such that ad − bc ̸= 0 for complex numbers a, b, c, d, which are usually called
coefficients of the Möbius transformation f (the letters a, b, c and d canonically denote the coefficients).
In fact, we can assume that ad− bc = 1 because multiplication of the coefficients of f by a non-zero
constant λ ∈ C does not alter f . A real Möbius transformation will be a Möbius transformation with
real coefficients, i.e. a, b, c, d ∈ R.

It is important to note that one cannot always take the ad− bc = 1 for real Möbius transformations.
For example, f (z) = 1/z satisfies ad − bc = −1, if we wanted ad − bc = 1, then we would have
to multiply the coefficients by i: f (z) = i/iz. However, this would no longer be a real Möbius
transformation. Hence, real Möbius transformations can be normalized (so that they still have real
coefficients) to either have ad− bc = 1 or ad− bc = −1.

Proposition 2. Möbius transformations satisfy the following properties:

(i) Each non-identity Möbius transformation is the composition of a translation, followed by an
inversion, a homothety, a rotation and a translation.

(ii) Circles and lines of the Riemann sphere2 are sent to circles and lines of the Riemann sphere.

(iii) As a self-mapping of the complex plane it is conformal wherever it is defined.

(iv) They have one or two fixed points (save for the identity).

(v) There is a unique Möbius transformation taking any three distinct points of Ĉ to any three distinct
points of Ĉ, that is, the action of Möbius transformations on Ĉ is sharply 3-transitive.

It is worth noting that the so-called Caley transformation i−z
z+i maps the upper half plane biholo-

morphically onto the open unit disc (with inverse i 1−z
1+z ).

1If ad− bc = 0 and a, b, c and d are not all 0, then f is constant, which is a case of no interest.
2Lines of Ĉ are lines of C with the point at infinity.
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Matrix representation

Let M be the group of Möbius transformations with the composition as the operation. Recall that
we can take M to be the Möbius transformations such that ad − bc = 1. Therefore, we have a map
from the special linear group into M:

π : SL(2, C) −→M
(

a b
c d

)
&−→ az + b

cz + d

It can be readily checked that it is a group homomorphism. Moreover, it is clear that its kernel
is {±Id}. By the isomorphism theorem, M ∼= SL(2, C)/{±Id} =: PSL(2, C). We will denote this

isomorphism by M, that is, if f (z) = az+b
cz+d then M( f ) = {±

(
a b
c d

)
}. Usually we take M( f ) to be a

representative instead of the class. We have proved:

Proposition 3. The Möbius transformations M are group-isomorphic to the projective linear group
PSL(2, C) (recall that PSL(2, C) and PGL(2, C) are isomorphic).

Similar regards can be used to see that the group of real Möbius transformations with positive
determinant M+

R is isomorphic to PSL(2, R). Lastly, note that PSL(2, R) is not isomorphic to PGL(2, R)

Canonical form

Two transformations f , g ∈ M are said to be conjugate in M or M-conjugate if there is an h ∈ M
such that f = h ◦ g ◦ h−1. Every Möbius transformation can be put into a simple form called the
canonical form:

Proposition 4. Let f (z) = az+b
cz+d ∈M, f ̸= Id. Then,

(i) if f has a single fixed point it is conjugate to: z + α, α ̸= 0. Its matrix representation is
(

1 α
0 1

)
,

(ii) if f has a two fixed points it is conjugate to: λz, λ ̸= 0, 1. Its matrix representation is

(√
λ 0

0 1√
λ

)
.

To conclude this section, we note that if a real Möbius transformation has fixed points in R ∪ {∞}
then it is conjugate in the group of real Möbius transformation to one of the above canonical forms
with α, λ ∈ R.

Classification of Möbius Transformations

We know classify Möbius transformations.

(1) A Möbius transformation is called parabolic if it has one fixed point or, equivalently if it is conjugate
to a transformation of the form z + α, α ̸= 0.

(2) A Möbius transformation is called elliptic if it is conjugate to eiθz for θ ∈ R \ 2πZ. This can be
regarded as rotations of the Riemann sphere, in its canonical form is a rotation of angle θ with
respect to the vertical axis.

(3) A Möbius transformation is called hyperbolic if it is conjugate to λz with λ > 0 and λ ̸= 1. This is
a dilation. Note that the “case” λ = −1 is in fact elliptic.

(4) Not all elements in M fall into one of the previous categories. Transformation that have two distinct
fixed points (non-parabolic) and are not rotations (not elliptic) are called loxodromic. Those include
hyperbolic transformations.
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Recall that the trace of a matrix is invariant under conjugation. This implies that every Möbius trans-
formation has “two” traces associated to it. However, given that they only differ by sign we can define
tr2( f ) = (tr(M( f )))2. Using the canonical form to compute the trace we have proved:

Proposition 5. Let f ̸= Id be a a Möbius transformation.

(i) f is parabolic if and only if tr2( f ) = 4.

(ii) f is elliptic if and only if tr2( f ) ∈ [0, 4).

(iii) f is hyperbolic if and only if tr2( f ) > 4.

(iv) f is loxodromic if and only if tr2( f ) ∈ C \ [0, 4].

It is easy to see that real Möbius transformations that are not the identity are one of the first three types.
Studying the “fixed point” equation f (z0) = z0 the following is easily proved.

Proposition 6. If f ̸= Id is a real Möbius transformation:

(i) f is parabolic if and only if f has one fixed point in R ∪ {∞}

(ii) f is elliptic if and only if f has two different conjugate fixed points.

(iii) f is hyperbolic if and only if f has two fixed point in R ∪ {∞}

Biholomorphic Automorphism Groups of Canonical Domains

The following theorem characterizes Möbius transformations as groups of conformal automor-
phism of the simply connected Riemann surfaces.

Theorem 7 (Autobiholomorphism Groups of Ĉ, C, D and H). Let Aut(S) denote the group of autobi-
holomorphism of a Riemann surface S, M the group of Möbius transformations and M+

R the group of
real Möbius transformations with positive determinant.

(1) Aut(Ĉ) = M ∼= PSL(2, C),

(2) Aut(C) = { f (z) = az + b| a, b ∈ C, a ̸= 0},

(3) Aut(D) = { f ∈ M| f (D) = D} = { f (z) = eiθ z−a
1−āz | θ ∈ R, a ∈ D} = { f (z) = az+b

b̄z+ā | a, b ∈
C, |a|2 − |b|2 = 1},

(4) Aut(H) = { f ∈M| f (H) = H} = M+
R
∼= PSL(2, R).

In Section 2.1 we show that Is+(H) = Aut(H) and now we have seen that Aut(H) = PSL(2, R).
Then, it makes sense to study this group from the point of view of hyperbolic geometry. Conversely,
as seen in the main text, the study of this group is very fruitful for the study of hyperbolic surfaces.

PSL(2, R) and Hyperbolic Geometry

Now we introduce a new invariant for real Möbius transformations, the minimum displacement,
which will play an important role in this text. Let f ∈ PSL(2, R), we define the minimum displacement
d( f ) to be the infimum over z ∈ H of how much f has displaced z, that is,

d( f ) := inf
z∈H

d(z, f (z)).

Like the trace of a Möbius transformation, this number is invariant under conjugation by elements of
PSL(2, R) = Is+(H). Indeed, if g ∈ Is+(H) we have that d(z, f (z)) = d(g(z), g ◦ f (z)), thus:

d( f ) = inf
z∈H

d(z, f (z)) = inf
g−1(z),z∈H

d(g−1(z), f ◦ g−1(z)) = inf
z∈H

d(g ◦ g−1(z), g ◦ f ◦ g−1(z)) = d(g ◦ f ◦ g−1).

Previously, we classified Möbius transformations according to their trace, now we do the same with
the minimum displacement.
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Proposition 8. The minimum displacement of elliptic transformations is 0 and it is attained, the mini-
mum displacement of parabolic transformations is 0 but it is not attained and the minimum displace-
ment of hyperbolic transformations is > 0.

Amongst real Möbius transformations, the hyperbolic ones along with their axis play the most
important role in the theory to come. Let f ∈ PSL(2, R) be hyperbolic and p1 ̸= p2 its fixed points
in R. There is a geodesic “joining” them, that is either a semicircle reaching R perpendicularly that
would have p1 and p2 as endpoints on R or a straight vertical line joining p1 ∈ R and p2 = ∞. Since
f sends geodesics to geodesics and fixes p1 and p2, it also fixes the geodesic “joining” them. This
geodesic is called the axis of f and it is denoted by A f . In other words f (A f ) = A f .

Figure A.1: The blue lines are axis of the hyperbolic transformations that have as fixed points the “intersections” of the axis
with R ∪ {∞}. The black dots are the orbit of a point, each is d( f ) apart.

Note that the axis itself is not quite a conjugacy invariant, we have that Ag◦ f ◦g−1 = g(A f ). However,
as a corollary to the previous proposition in [Bar21] we show that d( f ) is attained at every point of
A f for any hyperbolic transformation f . Lastly, we merge geometry and algebra by relating d( f ) and
tr( f )2.

Lemma 9. Let f ∈ PSL(2, R) be a hyperbolic transformation. We have that

tr( f )2 = 4 cosh2
(d( f )

2

)
.

Finally, that Aut(Ĉ) = PSL(2, C) acts 3-transitively on Ĉ does not imply that Is+(H) = PSL(2, R)
acts 3-transitively on H. In fact, Is+(H) could not even act 2-transitively on H since isometries can
only take equidistant points to equidistant points. Taking this into account, PSL(2, R) actually acts
2-transitively on equidistant pairs of points.

Proposition 10. Let P, P′, Q, Q′ ∈ H such that d = dH(P, P′) = dH(Q, Q′). Then there is a map
f ∈ Is+(H) = PSL(2, R) such that f (P) = Q and f (P′) = Q′.
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