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Michaelis constants (Km) are essential to predict the catalytic rate of
enzymes, but are not widely available. A new study in PLOS Biology

uses artificial intelligence (AI) to accurately predict Km on a prote-
ome-wide scale, paving the way for dynamic, genome-wide modeling
of metabolism.

The Michaelis–Menten equation was derived by Leonor Michaelis and Maud Menten to quan-

tify the velocity of an enzymatic reaction using measurable concentrations of enzyme and sub-

strate even before the exact nature of enzymes was elucidated (Fig 1) [1]. Despite the

limitations, its broad applicability, simplicity, and elegance have made it a cornerstone of bio-

chemistry over the last century [1].

The Michaelis constant (Km) in the equation is a pseudo-equilibrium constant that corre-

sponds to the substrate concentration at which an enzyme operates at half of its maximum cat-

alytic rate (Fig 1) [2]. Moreover, under certain assumptions, Km is also an inverse measure of

the affinity between the enzyme and its substrate [2]. Km values can vary widely, often between

10−1 and 10−7 M [2]. Therefore, the determination of Km is essential to predict catalytic rate of

product formation and ideal substrate concentrations. This is important not only for funda-

mental research in enzymology but also for modern industrial biocatalysis, among other appli-

cations. Unfortunately, the experimental characterization of Km values is laborious and time-

consuming as it requires expressing and purifying enzymes and measuring their initial reac-

tion rate at several substrate concentrations. Accordingly, Km values in public repositories

exist for only a small fraction of enzymatic reactions (Fig 1) [3]. For example, Km values have

been experimentally determined for less than 30% of Escherichia coli’s natural substrates

(Fig 1)[3]. In turn, this lack of experimental data heavily limits its broad applicability in sys-

tems biology and metabolic modeling.

Artificial intelligence (AI), empowered by the increasing availability of Big Data, is trans-

forming many aspects of our lives and multiple research fields [4]. Rooted in the 1950s, AI

could be broadly defined as an algorithm that can “learn” patterns from training datasets and

apply this learning to make new predictions [4]. We often subdivide the field between different
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types of “learning.” Machine learning (ML) uses hundreds of parameters that remain fully

transparent to the researcher, but the ways in which they are combined are not always obvious.

Deep learning (DL), in contrast, uses layered abstraction to identify key patterns in much

more complex, sparse, and multidimensional data [4]. As recently illustrated by the impressive

advances of Google’s DeepMind Alphafold2 in protein structure prediction, AI holds great

potential to transform areas of research by releasing large-scale predictions that empower

researchers worldwide [5]. Now, a new study published in PLOS Biology by Kroll and col-

leagues uses AI to predict Km purely from protein and substrate information [6]. Their gener-

alizable, organism-independent algorithm and predictions could have a transformative impact

in several research fields.

The authors used Km values from public databases to train AI models with an increasing

amount of additional substrate and protein information [6]. First, they compared 4 different

molecular fingerprints—vectors commonly used to numerically represent small molecules.

Interestingly, a task-specific molecular fingerprint of the substrate generated using a graph

neural network outperformed 3 traditional predefined molecular fingerprints. This result illus-

trates how DL can also be used to identify the best molecular representation [6]. The authors

then compared a method of linear regression, a ML method and a DL method to train the

models. Perhaps surprisingly, the ML method—gradient boosting—outperformed the other

approaches, illustrating that more complex models are not necessarily better. Finally, the

authors then used a cutting-edge deep numerical representation of the enzyme’s amino acid

sequence, termed UniRep vector, to provide information on the enzyme. Interestingly, while

the best model is the one using both enzyme and substrate information, the model only using

Fig 1. Impact of Km availability on metabolic modeling. AI accurate and comprehensive prediction of Km values, the

key parameters related with enzyme substrate saturation, for 47 model organisms can be used to simulate dynamic

metabolic flux changes at genome scale, facilitating the full exploitation of metabolomics data and opening new

avenues in drug target discovery and metabolic engineering. AAU : AnabbreviationlisthasbeencompiledforthoseusedthroughoutFig1:Pleaseverifythatallentriesarecorrect:I, artificial intelligence; Km, Michaelis constant; RNA-

seq, RNA sequencing.

https://doi.org/10.1371/journal.pbio.3001415.g001

PLOS BIOLOGY

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001415 October 20, 2021 2 / 4

Competing interests: We have read the journal’s

policy and the authors of this manuscript have the

following competing interests:A.A.A. is an

employee of The Institute of Cancer Research

(ICR), which has a commercial interest in a range

of drug targets. The ICR operates a Rewards to

Inventors scheme whereby employees of the ICR

may receive financial benefit following commercial

licensing of a project. A.A.A. is a consultant of

DarwinHealth and has been instrumental in the

creation/development of canSAR and Probe Miner.

M.C. declares no competing financial interests.

Abbreviations: AU : Anabbreviationlisthasbeencompiledforthoseusedthroughoutthetext:Pleaseverifythatallentriesarecorrect:AI, artificial intelligence; DL, deep

learning; GSMM, genome-scale metabolic model;

Km, Michaelis constants; ML, machine learning.

https://doi.org/10.1371/journal.pbio.3001415.g001
https://doi.org/10.1371/journal.pbio.3001415


substrate information outperforms the model only using enzyme information. The fact that

the information on the exact residues comprising the catalytic site could not be provided prob-

ably contributes to explain this discrepancy, but it is interesting to speculate that this informa-

tion is partially encoded in the substrate because the catalytic site has been optimized

throughout evolution to fit the transition state of the substrate. The final model was appropri-

ately validated using an independent dataset and predicted Km values only deviated from

experimental values by 4-fold on average. However, model performance was still increasing

with the size of the training dataset, and, therefore, it will be important to continue improving

the model as more experimental data become available, particularly regarding extreme values

poorly represented in public datasets. Overall, Kroll and colleagues provide a very significant

step forward that outperforms previous attempts at predicting Km.

Importantly, the authors not only provide the code in a public repository, but they also

make available genome-scale Km predictions for 47 model organisms. We foresee that these

invaluable predictions will open new avenues of research in multiple fields. In particular, we

think they could be an important step toward dynamic, genome-scale metabolic models

(GSMMs). GSMMs emerged in the last decade as powerful constraint-based modeling plat-

forms to achieve quantitative predictions of metabolic fluxes through multiomics data integra-

tion [7,8]. GSMMs have been successfully used for metabolic engineering and to identify

cancer drug targets [9,10], but they are limited by the use of reconstructed metabolic reaction

maps based on stoichiometric linear equations and pseudo steady state assumptions. One of

the main bottlenecks is that kinetic parameters related to enzyme substrate saturation are not

comprehensively available to be included in the equations describing enzyme reactions. This

significantly limits model accuracy and provides a static model. A second, related, bottleneck

is that metabolomics data can only be integrated qualitatively as metabolite concentrations

cannot be calculated with current stoichiometric models. The deposition of Km predictions

proteome-wide by Kroll and colleagues could fuel a new generation of GSMMs that accurately

predict dynamic metabolic flux maps to uncover new drug targets and boost our ability to

quantitatively and accurately model metabolism.
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8. de Atauri P, Tarrado-Castellarnau M, Tarragó-Celada J, Foguet C, Karakitsou E, Centelles JJ, et al.

Integrating systemic and molecular levels to infer key drivers sustaining metabolic adaptations. PLoS

Comput Biol. 2021 Jul 23; 17(7):e1009234. https://doi.org/10.1371/journal.pcbi.1009234 PMID:

34297714

PLOS BIOLOGY

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001415 October 20, 2021 3 / 4

https://doi.org/10.1111/febs.16124
http://www.ncbi.nlm.nih.gov/pubmed/34270860
https://doi.org/10.1093/nar/gky1048
http://www.ncbi.nlm.nih.gov/pubmed/30395242
https://doi.org/10.1080/17460441.2019.1637414
http://www.ncbi.nlm.nih.gov/pubmed/31284790
https://doi.org/10.1038/s41586-021-03819-2
http://www.ncbi.nlm.nih.gov/pubmed/34265844
https://doi.org/10.1371/journal.pbio.3001402
https://doi.org/10.1371/journal.pbio.3001402
https://doi.org/10.1038/s41596-018-0098-2
http://www.ncbi.nlm.nih.gov/pubmed/30787451
https://doi.org/10.1371/journal.pcbi.1009234
http://www.ncbi.nlm.nih.gov/pubmed/34297714
https://doi.org/10.1371/journal.pbio.3001415


9. Lee JS, Das A, Jerby-Arnon L, Arafeh R, Auslander N, Davidson M, et al. Harnessing synthetic lethality

to predict the response to cancer treatment. Nat Commun. 2018 Jun 29; 9(1):2546. https://doi.org/10.

1038/s41467-018-04647-1 PMID: 29959327

10. Karakitsou E, Foguet C, Contreras Mostazo MG, Kurrle N, Schnütgen F, Michaelis M, et al. Genome-

scale integration of transcriptome and metabolome unveils squalene synthase and dihydrofolate reduc-

tase as targets against AML cells resistant to chemotherapy. Comput Struct Biotechnol J. 2021 Jul 8;

19:4059–66. https://doi.org/10.1016/j.csbj.2021.06.049 PMID: 34377370

PLOS BIOLOGY

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001415 October 20, 2021 4 / 4

https://doi.org/10.1038/s41467-018-04647-1
https://doi.org/10.1038/s41467-018-04647-1
http://www.ncbi.nlm.nih.gov/pubmed/29959327
https://doi.org/10.1016/j.csbj.2021.06.049
http://www.ncbi.nlm.nih.gov/pubmed/34377370
https://doi.org/10.1371/journal.pbio.3001415

