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A B S T R A C T   

Economic decisions are characterized by their uncertainty and the lack of explicit feedback that indicates the 
correctness of decisions at the time they are made. Nevertheless, very little is known about the neural mecha
nisms involved in this process. Our study sought to identify the neurophysiological correlates of purchase 
decision-making in situations where the optimal purchase time is not known. EEG was recorded in 24 healthy 
subjects while they were performing a new experimental paradigm that simulates real economic decisions. At the 
time of price presentation, we found an increase in the P3 Event-Related Potential and induced theta and alpha 
oscillatory activity when participants chose to buy compared to when they decided to wait for a better price. 
These results reflect the engagement of attention and executive function in purchase decision-making and might 
help in the understanding of brain mechanisms underlying economic decisions in uncertain scenarios.   

1. Introduction 

Most real-life decisions are made under uncertain conditions in 
which individuals have to rely on the history of previous decisions and 
learn from the consequences of their actions. Therefore, the processing 
of both signals providing cues about future decisions and the feedback of 
the performed actions are crucial, in order to adapt the behavior to the 
actual scenario and to be able to respond to its changes. Previous studies 
have delineated the brain network involved in the decision-making 
processing, which comprises orbitofrontal cortex, prefrontal cortex, 
anterior cingulate cortex, amygdala, and ventral striatum/nucleus 
accumbens areas, among many others (Delgado, Nystrom, Fissell, Noll, 
& Fiez, 2000; Delgado, 2007; Farrar, Mian, Budson, Moss, & Killiany, 
2018; Si et al., 2019). In addition, EEG studies have described two main 
Event-Related Potentials (ERP) related to decision-making, the N2 and 
the P3 ERPs. The N2 is a frontocentral negative deflection that peaks 
between 200 and 300 ms after stimulus presentation (Dickter & Kief
faber, 2014; Luck, 2014). This component has been found to present an 
increased amplitude after neutral or negative cues (e.g. stimuli indi
cating a potential monetary loss) compared to positive ones (Novak & 
Foti, 2015). It has been associated with increased cognitive control and 
with a discrepancy between expected and real situations (template 
mismatch; Glazer, Kelley, Pornpattananangkul, Mittal, & Nusslock, 
2018). On the other hand, the P3 component is a centroparietal ERP that 

appears 300–600 ms after stimuli presentation. It has been related to 
attentional processes (Polich & Kok, 1995; Polich, 2007), the probability 
and expectation of appearance of stimuli (Levi-Aharoni, Shriki, & 
Tishby, 2020; Luck, 2014; Polich & Margala, 1997; Sur & Sinha, 2009), 
the complexity of the experimental task (Polich, 2007) and relevance of 
contextual information (Levi-Aharoni et al., 2020). Evidence suggests 
that increases in P3 amplitude arise from the evaluation of new stimuli 
compared to the previous one stored in the working memory (Morgan, 
Klein, Boehm, Shapiro, & Linden, 2008), the revision and adaptation of 
mental models of response (Wang, Zheng, Huang, & Sun, 2015), dura
tion of stimulus evaluation (Twomey, Murphy, Kelly, & O’Connell, 
2015) and the working memory load (Wang et al., 2015). 

In addition, three main oscillatory components have been associated 
with some key aspects of this processing. In particular, different studies 
have proposed a key role of the frontocentral theta oscillatory activity in 
the computation of the prediction error or surprise of the outcome of a 
decision (HajiHosseini, Rodríguez-Fornells, & Marco-Pallarés, 2012; 
Wang et al., 2016). In addition, theta plays an important role in cogni
tive control (Clayton, Yeung, & Cohen Kadosh, 2015; Cox & Witten, 
2019) and is modulated by the uncertainty of the context (Cavanagh, 
Figueroa, Cohen, & Frank, 2012; Mas-Herrero & Marco-Pallarés, 2014). 
All these previous results have led to the proposal that theta oscillatory 
activity might act as a common adaptive control mechanism in situa
tions with uncertainty about the outcome of responses and decisions 
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(Cavanagh & Frank, 2014; Cavanagh, Figueroa et al., 2012). 
A second component that has been studied in decision-making ex

periments is alpha oscillatory activity. Previous research has related 
increase in alpha power to selective inhibition (Noonan, Crittenden, 
Jensen, & Stokes, 2018) and alpha suppression to facilitation of atten
tional systems as task preparation (Glazer et al., 2018). In reward-guided 
tasks, higher alpha suppression has been described in feedback antici
pation (Bastiaansen, Böcker, Cluitmans, & Brunia, 1999; Pornpattana
nangkul & Nusslock, 2016) and been related to higher motivation of 
participants to learn from feedbacks (Glazer et al., 2018; Pornpattana
nangkul & Nusslock, 2016). Finally, beta oscillations have consistently 
been reported in response to unexpected or highly relevant positive 
outcomes (Cohen, Elger, & Ranganath, 2007; Cunillera et al., 2012; 
Marco-Pallarés, Münte, & Rodríguez-Fornells, 2015; Mas-Herrero, 
Ripollés, HajiHosseini, Rodríguez-Fornells, & Marco-Pallarés, 2015). 
Different interpretations of this component have been proposed, 
including, among others, it having a possible role in maintaining the 
“status quo” (Engel & Fries, 2010), it being a signal driving motivational 
value to the reward network (Marco-Pallarés et al., 2015) or it acting as 
a mechanisms for the endogenous reactivation of latent cortical repre
sentation (Spitzer & Haegens, 2017). 

One of the most common decisions we have to face in our daily life is 
to decide what to buy and when to do it. The economic decision process 
entails assigning values to the available options before deciding (Huet
tel, Stowe, Gordon, Warner, & Platt, 2006; Platt & Padoa-Schioppa, 
2009; Rangel, Camerer, & Montague, 2008) and choosing the price 
and the moment to buy the product. This value is highly subjective and 
in many cases has an emotional nature, fulfilling real or perceived 
utilities, beliefs or satisfaction of needs which might be driven by 
different factors such as, e.g., the symbolic value of the product or the 
state of the buyer (Burnett & Lunsford, 1994). Most of the psychology 
literature on this topic has been devoted to explore the attitudinal (see, 
e.g. Denegri et al., 2012; Quintanilla & Luna-Arocas, 1999; Luna-Arocas 
and Fierres, 1998) and personality traits (Boyce, Czajkowski, & Hanley, 
2019; Gambetti & Giusberti, 2019; Huettel et al., 2006) influencing such 
decisions. In addition, several studies have described the impact of 
multiple factors on purchasing decisions, including previous experience 
with the product or brand (Esch et al., 2012; Jiménez & Mendoza, 2013; 
Ling, Chai, & Piew, 2010), advertising image, logo and typography 
(Dong & Gleim, 2018; Doyle & Bottomley, 2004), and the place of 
purchase (virtual or traditional store; Eroglu, Machleit, & Davis, 2001). 
However, much less research has been devoted to studying one of the 
most critical factors in purchase decision-making: when to buy. Hence, 
in the process of deciding whether to buy a product, the actual price and 
its prospects of being higher or lower in the future are crucial. Never
theless, the study of such decisions is not trivial because, although they 
have some similarities with the traditional paradigms used in the study 
of decision-making, they also present some important particularities. 
Therefore, in contrast to the former, in which a clear structure is pre
sented (e.g., target-response-feedback about the consequence of the 
action), in purchase decision-making the feedback about the correctness 
of the decision is fuzzy. For example, when we decide to buy a flight 
ticket on an internet web page after days of checking the variation of the 
prices for the same flight, the feedback of the decision is ambiguous as it 
might be considered good or bad only on the basis of previous prices and 
the prospects of the future. In this situation, for example, the presenta
tion of the price would be both a cue and, in the case of a buy, a feedback 
of the consequence of the action. In addition, previous non-bought pri
ces act as the feedback for a non-performed action (Kahneman, 2009; 
Karimi, Papamichail, & Holland, 2015). These situations are, therefore, 
challenging to be translated to experimental paradigms and have been 
scarcely explored in the literature. In the present paper we propose a 
new experimental paradigm, the Purchase Decision-Making under 
temporal uncertainty task (PDMt) in which we simulated purchase de
cisions in which there was uncertainty about the correct moment to buy 
a product. PDMt emerges as an experimental tool for the study of 

consumer decisions, in order to explore the purchase decision-making 
process from individual variations attributable to neurophysiological 
markers. For this, we designed an experiment in which participants had 
to buy different products, where the main uncertainty was the correct 
time to buy, omitting other additional information to control for the 
effect of previous experience and information available to the partici
pants in order to simulate what happens in purchases in virtual stores 
(Eroglu et al., 2001). Additionally, to achieve an appropriate simulation 
of said purchasing context, we generated ambiguous and uncertain price 
distributions, where the participants did not know the probabilities of 
success or failure in each decision or where the probabilities were not 
defined (Huettel et al., 2006), with options that might dynamically 
change over time (Cavanagh, Figueroa et al., 2012). These paralleled 
real-life situations in which the price of a product might change over 
time, i.e., becoming more expensive or cheaper in the future. 

Previous research has revealed some interesting insights into pur
chase decision-making. Preference for a product over another is 
expressed by a reduction in the N200 event-related potential component 
and weaker theta band power in frontal areas (Telpaz, Webb, & Levy, 
2015). Additionally, evidence suggests the existence of a left frontal 
asymmetry that predicts purchase decisions when the price shown is 
below the normal one, even when the normal one is an implicit and 
subjective reference (Ravaja, Somervuori, & Salminen, 2013), and it is 
explained by power increases in alpha band oscillations (Arieli & Berns, 
2010). Braeutigam, Rose, Swithenby, and Ambler (2004), also, found 
that subjects’ choices of consumer goods were associated with power 
increases in alpha and gamma bands. Importantly, most of the 
above-mentioned studies have focused on post-decision elements related 
mainly to marketing, with the main objective being improvement of 
sales strategies and consumers’ preferences of a product over another 
(Arieli & Berns, 2010). However, as stated above, none of these studies 
have looked at one of the most common sources of uncertainty: when to 
buy. In the present paper, we aimed to study the neurophysiological 
correlates of purchase decision-making in scenarios with temporal un
certainty using the new PDMt experimental paradigm. In light of prior 
research, we hypothesized that the decision to buy a product or decide to 
wait for a new offer would lead to differences in the ERPs components 
elicited during price presentation. We also expected an increase in 
induced oscillatory activity in theta, alpha and beta frequency bands 
when participants decided to buy a product compared with when the 
decision was to wait for another offer. 

2. Materials and methods 

2.1. Participants 

Twenty-four healthy young adults participated in the experiment (8 
men, mean age 22.13 ± 4.23 (S.D)) for monetary compensation. Sub
jects received €25 for their participation plus a bonus depending on their 
performance in the task (€1 for every 50 coins saved; see above). Written 
consent was obtained prior to the experiment. The local ethical com
mittee approved the experiment. 

2.2. Design 

We used a new experimental paradigm, the Purchase Decision- 
Making task (PDMt), where participants had to buy three unknown 
products, in 20 series, with a maximum of 10 offers (10 days in the cover 
of the experiment) to decide. Participants were told that they had to 
assume the position of a maintenance manager of a boat company in 
Alaska where they had to buy the three necessary products (spare parts, 
oil, and tools) to keep the company running. In each series, participants 
had a maximum budget of 1,000 coins to buy the three products 
required, with the instruction: “try to save as much as possible in each 
sequence”, as a way to standardize the levels of motivation and final goal 
of the task. 
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Each trial consisted of the purchase of the three products, shown 
sequentially in the same order. First, the participant saw the picture of 
the first product and the number of the trial (1–20). Then, the infor
mation about the day (e.g., Day 1) and the price appeared on the screen. 
Participants could decide to buy at that price or to not buy and wait for 
the next price by pressing a corresponding button. If they decided to 
wait, the next day (e.g., Day 2) another price appeared on the screen and 
the participant had to decide again. In case of purchase, the image of the 
next product and the number of trials appeared on the screen and the 
procedure continued with Day 1 and the price for the product. If the 
participant waited until the last day (10), the product was bought at the 
price indicated on this day and the new product appeared. When all 
three products were bought, the total final price was shown, and the next 
trial started with the first product (see Fig. 1A). 

Unknown to the participants, each product had a particular price 
distribution which was defined a priori (Huettel et al., 2006). The first 
product had a mean fixed value every day; the second product presented 
two minima on days 3 and 9 and a maximum on day 6. Finally, the third 
product had a minimum on day 5. In addition, each day had an SD that 
increased linearly, from 10 coins on the first day, to 55 on the last day 
(see Fig. 1B). The different distributions allowed the creation of different 
uncertainty scenarios for the different products. Given the difficulty of 
the task, and in order to facilitate the learning of the hidden distribution 
of the prices, the products were presented in the same order throughout 
the experiment. 

2.3. Electrophysiological recording 

EEG was recorded from the scalp (0.01 Hz high-pass filter with a 
notch filter at 50 Hz; 250 Hz sampling rate) using a BrainAmp amplifier 
with tin electrodes mounted on an Easycap (Brain Products©), at 32 
standard positions (Fp1/2, AFz (Gnd), Fz, F3/4, F7/8, FCz, FC1/2, FC5/ 
6, Cz, C3/4, T7/8, CP1/2, CP5/6, Pz, P3/4, P7/8, L/R Mastoids, O1/2). 
The mean of the activity of the two mastoid (L/R) processes was used as 
re-reference of biosignals (off-line). Additionally, vertical eye move
ments were monitored with an electrode at the infraorbital ridge of the 
right eye. All electrode impedances were kept below 5kΩ. 

2.4. Data analysis 

Behavioral results were analyzed using repeated measures ANOVA 
analyses. First, to identify possible differences in participants’ choices 
throughout the task, a repeated-measures ANOVA was computed for two 
within factors: product (distribution 1, 2, 3), and purchase block (block 
1: from purchase 1–10; block 2: from purchase 11–20). The offer of the 
purchase decision was considered a dependent variable. The second 
analysis was focused on measuring the possible differences in the 
response time of each decision during the experiment. For that, a 
repeated-measures ANOVA was computed for three within factors: 
product (distribution 1, 2, 3), purchase block (from purchase 1–10; from 
purchase 11–20), and type of decision (wait or buy). The JASP software 

Fig. 1. A. Task structure of the Purchase Decision-Making Task. Participants had to buy three different products in each trial. Each product could be bought on 10 
“days”. Each day a price was presented, and participants had to decide whether to buy the product at this price or to wait for the next day and price. If the participant 
waited, a new day and price appeared, for a maximum of 10 days, upon which the product was acquired at the price on the last day. When the product was bought, 
the new product appeared, and the procedure started again until the three products were acquired. B. Distribution of prices for the three products with the different 
“days” (offer). Note the increase in the SD of the price with the offer. 
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was used for the statistical analysis (JASP Team, 2020). 

2.4.1. Event-related brain potentials 
EEG was low-pass filtered at 40 Hz offline using EEGLab 2019 under 

MATLAB (MathWorks, 2019). Epochs were extracted from -2000 ms 
before the stimuli to 2000 ms after it. Two conditions were studied: the 
stimuli showing the price at which the participant bought the product 
(buy condition), and the previous offer in which participant did not buy 
(wait condition). In addition, in order to have the same number of 
stimuli for the two conditions, we did not analyze those offers in which 
participants bought in the first day. Therefore, the number of trials used 
for the two conditions was the same for each participant (51.5 ± 7.2 
trials). 

Independent Component Analysis (ICA) was applied to the data and 
those components reflecting artifacts were removed from the data (Bell 
& Sejnowski, 1995; Delorme, Palmer, Onton, Oostenveld, & Makeig, 
2012; Lee, Girolami, & Sejnowski, 1999). Epochs exceeding ±100 μV 
were also rejected from further analysis. 

Event-Related Potentials were extracted from -200 ms (baseline) to 
1000 ms after the presentation of the price for each epoch. A 20 Hz low- 
pass filter was applied and then a cluster-based spatiotemporal permu
tation test on full sensor data was performed between the conditions 
(Gramfort et al., 2013; Maris & Oostenveld, 2007) using the MNE 
package (Gramfort et al., 2014) under Python (Dayley, 2006) in the 
Spyder environment (Raybaut, 2017), in order to control the possible 

effect of the multiple comparisons (Gramfort et al., 2014, 2013; Maris & 
Oostenveld, 2007) and obtain the time range in which the two condi
tions were significantly different. The threshold used for the cluster 
formation was automatically computed based on the F-distribution of 
the dataset (Maris & Oostenveld, 2007); the number of permutations 
was 1000. In addition, repeated-measures ANOVA was computed for 
three within factors: condition (wait or buy), laterality (left, middle, 
right) and anterior-posterior (frontal, central, and parietal) in the N2 
and P3 ERPs time ranges. 

2.4.2. Time-frequency analysis 
In order to find the induced time-frequency activity, we first sub

tracted the ERP for each condition from each single trial for each con
dition from − 2000 ms to 2000 ms and then we convoluted them using a 
complex Morlet wavelet (Herrmann, Senkowski, & Röttger, 2004; Tal
lon-Baudry, Bertrand, Delpuech, & Pernier, 1997) from 1 Hz to 30 Hz at 
1 Hz steps. The mean change of power respect baseline was obtained for 
different electrodes (Fz, F3/4, Cz, C3/4, Pz, P3/4) and a 
repeated-measures ANOVA was computed for three within factors: 
condition (wait or buy), laterality (left, middle, right) and 
anterior-posterior (frontal, central, and parietal). 

Fig. 2. A. Average of offer of purchase for each product and purchase block. Error bars indicate the standard error of the mean B. Average of response time in each 
product and purchase block during the task. 
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3. Results 

3.1. Behavioral results 

The general results revealed that 3.14 % of purchase decisions were 
made when the price variation was 0, 12.06 % were made when prices 
increased (49 % of them corresponded to forced purchases in trial 10), 
and 84.80 % of purchases were made when prices decreased. Fig. 2A 
shows the mean of the offer when participants decided to purchase the 
products in each distribution, in the first (purchase 1–10) and second 
(purchase 11–20) half of the experimental paradigm. Repeated mea
sures ANOVA revealed the existence of significant differences among 
products (F(2,44) = 15.784, p < 0.001, η2

p = 0.418) and interaction 
between product and block of purchases (F(2,44) = 8.983, p < 0.001, η2

p 

= 0.290), but no significant effect of purchase block (F(1,22) = 0.828, p 
= 0.373, η2

p = 0.036). Therefore, the decisions of participants were 
dependent on the different price distributions and consistent throughout 
the experiment. Post-hoc analysis using Bonferroni correction showed 
that purchases of product 2 were made 1.793 ± 0.320 (SE) offers before 
product 1 (t(20) = 5.604, pbonf< 0.001) and 1.011 ± 0.320 offers before 
product 3 (t(20) = 3.158, pbonf= 0.009). In addition, purchases in the 
first block of product 1 were bought 0.952 ± 0.260 offers later than in 
the last block (t(17) = 3.660, pbonf = 0.008). 

Fig. 2B shows the mean of the reaction time in each decision, 
product, and purchase block of the experimental paradigm. The rmA
NOVA of response time revealed the existence of significant differences 
in the type of decision (wait or buy, F(1,17) = 16.384; p < 0.001; η2

p =

0.491). Post-hoc tests showed that the decision to wait was made 0.232 
± 0.057 s faster than the decision to buy (t(21) = 4.048; pbonf< 0.001). In 
addition, purchase block factor was also significant (F(1,17) = 19.320; p 

< 0.001; η2
p = 0.562), with the first block being 0.248 ± 0.056 faster 

than the last one (t(21) = 4.395; pbonf< 0.001). In addition, results 
showed a significant interaction between purchase block and type of 
decision (F(1,17) = 6.489; p = 0.021; η2

p = 0.276), with significant post- 
hoc effect for the first block in the wait condition, which was 0.349 ±
0.074 s faster than the decision to buy the product (t(19) = 4.752; pbonf<

0.001), and significant faster decision in buy condition in the second 
block (0.365 ± 0.073) compared to the first one (t(19) = 5.016; pbonf<

0.001). 
A significant interaction between product and purchase block was 

also found (F(2,34) = 3.306; p = 0.049; η2
p = 0.163) with the first block 

being 0.418 ± 0.087 slower than the second block in product 2 (t(17) =
4.799; pbonf< 0.001). Finally, the significant interaction of product by 
purchase block and type of decision (F(2,34) = 3.695; p = 0.035; η2

p =

0.179) was driven by product 2, with the buy decision in first block 
being 0.630 ± 0.119 slower than the decision to wait (t(11) = 5.278; 
pbonf< 0.001). 

3.2. Event-related brain potentials 

Results of the ERP analyses showed significant differences in the 
amplitude of the ERP components for both conditions from 256 to 1000 
ms after stimuli presentation, according to the cluster permutation 
analysis (Fig. 3A). 

In addition, we also analyzed the two main ERPs showing significant 
differences between the buy and wait conditions. Therefore, Fig. 3B 
shows that the difference between conditions at the N2 component 
(200− 300 ms) was higher in frontocentral electrodes, while in the P3 
component (300− 600 ms) difference between conditions was maximal 
at centro-parietal electrodes (Fig. 3B). 

Fig. 3. A. ERP for Fz and Pz electrodes for the 2 conditions: buy (buy the product at price showed; line in red) and wait (wait for another offer; line in blue), including 
temporal range where differences are statically significant at cluster level; B. Topographical representation by condition and difference in N2 (200 to 300 ms) and P3 
(300 to 600 ms) components. 
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Repeated measures ANOVA in the N2 component (200− 300 ms), 
revealed significant effect of condition (F(1,23) = 20.057; p < 0.001; η2

p 

= 0.466) and laterality. In addition, rm-ANOVA also revealed significant 
interaction between condition and anterior-posterior factor (F(2,46) =
5.308; p = 0.008; η2

p = 0.187), and interaction between condition and 
laterality factor (F(2,46) = 6.460; p = 0.003; η2

p = 0.219). Post-hoc test 
showed that N2 amplitude increased 1.322 ± 0.295 in buy condition 
compared to the wait decision (t(22) = 4.479; pbonf< 0.001), in partic
ular, in frontal (1.560 ± 0.328) and central (1.549 ± 0.328) areas (t(18) 
> 4.72; pbonf< 0.001). 

In the P3 component (300− 600 ms), rm-ANOVA revealed significant 
effects of condition (F(1,23) = 70.317; p < 0.001; η2

p = 0.754), anterior- 
posterior (F(2,46) = 50.711; p < 0.001; η2

p = 0.688) and laterality (F 
(2,46) = 7.607; p = 0.001; η2

p = 0.754) factors. In addition, significant 
interaction between condition and anterior-posterior factor (F(2,46) =
5.641; p = 0.006; η2

p = 0.197), and condition and laterality factor (F 
(2,46) = 1.112; p < 0.001; η2

p = 0.363) were found. Post-hoc analyses 
revealed that the amplitude of the buy condition increased 3.619 ±
0.432 compared to wait condition (t(22) = 8.386; pbonf< 0.001). Activity 
increase in the buy condition was significantly higher in central (4.236 
± 0.556; t(18) = 7.480; pbonf< 0.001) and parietal (5.095 ± 0.552; t(18) 
= 7.996; pbonf< 0.001) areas compared to the frontal ones. 

3.3. Time-frequency analysis 

Fig. 4 shows the induced power analyses for frequencies 1 Hz to 30 
Hz for the two conditions and their differences. Results showed that the 
wait condition presented an increase in the theta band around 200 ms 

and a decrease of induced beta power in a time range between 200 and 
500 ms. The buy condition showed a power increase in the theta and 
alpha bands around 200 ms, and a decrease in power induced in the beta 
band after 400 ms. Difference between these two conditions revealed 
three main differences located at the theta (4 Hz–8 Hz), low alpha (8 
Hz–10 Hz), and beta bands (16 Hz–26 Hz). 

rmANOVA in the theta band (4− 8 Hz, 300− 500 ms), revealed a 
significant condition effect (0.119 ± 0.056 (SEM); F(1,23) = 4.472; p =
0.046; η2

p = 0.163), and no significant interaction between condition and 
position factors (F < 1.3; p > 0.05; η2

p < 0.050). Post-hoc tests showed 
that the oscillatory activity in theta band increased 0.119 ± 0.056 in buy 
condition than in decision to wait (t(21) = 2.115; pbonf = 0.046). 

In the alpha band (8− 10 Hz, 200− 400 ms), a significant condition 
effect (F(1,23) = 6.202; p = 0.020; η2

p = 0.212) and an interaction be
tween condition and anterior-posterior factor (F(2,46) = 5.423; p =
0.008; η2

p = 0.191). Post hoc test revealed a higher induced power in the 
buy compared to wait condition (0.094 ± 0.038; t(21) = 2.490; pbonf =

0.020), in particular, in frontal areas (0.171 ± 0.045; t(17) = 3.828; pbonf 

= 0.006). 
Finally, beta band analysis showed no significant condition effect (F 

(1,23) = 0.959; p > 0.05; η2
p = 0.040), nor significant interaction be

tween condition and the position factors (F < 1.2; p > 0.05; η2
p < 0.049). 

4. Discussion 

The goal of the present study was to identify the neurophysiological 
markers of purchase decision-making in humans. To this end, we 
analyzed the differences in ERPs components and response-induced 

Fig. 4. Time-frequency induced power analyses 
for both conditions. In the upper-left, graphical 
representation of induced power for wait con
dition (wait for another offer), upper-right 
figure for buy condition (buy the product at 
price showed). The bottom figures represent 
differences between buy and wait conditions in 
induced oscillatory activity (buy – wait condi
tions) and the topographical representation for 
the difference between conditions in the time- 
frequency ranges indicated by the rectangular 
figures.   
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oscillation activity between two possible conditions when people were 
making purchasing decisions (buy or wait for next offer) using a new 
experimental paradigm designed for this study, the Purchase Decision- 
Making task (PDMt). 

Our results showed significant differences between the buy and wait 
conditions both in the N2 and P3 ERPs. In the case of N2, buy conditions 
showed a reduction in the N2 component, with the difference between 
the two conditions presenting a clear frontocentral topography. This 
component has been consistently described in cues indicating a future 
potential reward of punishment, being larger in negative and neutral 
conditions compared to positive ones (Glazer et al., 2018). Traditionally, 
the frontocentral N2 has been associated with increased cognitive con
trol, being larger, for example, in incongruent trials in flanker tasks 
(Bartholow et al., 2005) or in no-go conditions compared to go trials in 
go/no-go (Bruin & Wijers, 2002) and stop signals (Band, Ridderinkhof, 
& van der Molen, 2003) tasks. Given that in the present experiment the 
goal of the participants was to buy at the best price, the increase in the 
N2 ERP would indicate higher conflict in the wait trials compared to the 
buy ones, even when the number of trials of the former was higher than 
the latter. 

We found that both decisions substantially increased the amplitude 
of the P3 component in the pre-decision time but also that different 
conditions led to different amplitudes of this component and in the 
posterior time of the event-related potential. In this sense, our findings 
reaffirm the idea that the P3 component plays a key role in the decision- 
making process (Rohrbaugh, Donchin, & Eriksen, 1974), where differ
ences in amplitude of P3 for both conditions can be understood as 
consequence of the different cognitive process involved after those de
cisions. Previous studies suggest that increases in P3 amplitudes arise 
from the evaluation of new stimuli compared to the previous one stored 
in the working memory (Morgan et al., 2008), and the revision and 
adaptation of mental models of response (Wang et al., 2015). According 
to some authors, the amplitude of this component would also reflect the 
duration of stimulus evaluation processes (Twomey et al., 2015). 
Indeed, buy decisions took a longer time than wait decisions, and this 
could be reflected in higher amplitude in the P3 ERP. Importantly, one of 
the main consistent results of the P3 component is its sensitivity to 
probability. Previous studies have consistently reported increased P3 
amplitude when the probability of the target stimuli is smaller in oddball 
paradigms (Duncan-Johnson & Donchin, 1977; Picton, 1992). In the 
present experiment, wait decisions were more frequent than buy ones. 
Therefore, the increased P3 amplitude in buy condition compared to 
wait ones could also be related to the relative low probability of buy 
conditions compared to wait ones. Additionally, it has also been pro
posed that P3 shows higher amplitude for those trials presenting higher 
motivational significance (Nieuwenhuis, Aston-Jones, & Cohen, 2005). 
Consequently, the increased P3 for buy trials could also be associated to 
the higher significance and utility of these trials as the goal of the task 
was to buy at the best possible price and, therefore, those prices at which 
people bought would have greater utility and emotional impact than the 
most frequent wait trials (Nieuwenhuis et al., 2005). 

Another important result of the current experiment is the increase in 
the theta and alpha oscillatory activities in the buy condition compared 
to the wait one. Evidence suggests that theta band is modulated by levels 
of uncertainty in decision-making contexts (Jocham, Neumann, Klein, 
Danielmeier, & Ullsperger, 2009; Mas-Herrero & Marco-Pallarés, 2014; 
Mas-Herrero, Sescousse, Cools, & Marco-Pallarés, 2019), as well as in 
conflict detection and resolution (Akam & Kullmann, 2012; Clayton 
et al., 2015; Cohen & Donner, 2013; Cunillera et al., 2012; Donner & 
Siegel, 2011). In our experiment, buy trials presented a greater conflict 
than wait trials as they supposed the end of the decision process with no 
option to prospect for future and better prices. This result was also re
flected by the larger RT in the buy condition compared to the wait one. 
In addition, it is important to note that, as stated above, in our experi
mental design participants chose the wait option more often than the 
buy one. Therefore, waiting could be considered as the habitual 

response and buying a novel response requiring a switch. Previous 
studies have indeed described increased theta activation to switching 
(Cooper et al., 2019) and novel events (Marco-Pallarés et al., 2010; 
Cavanagh, Zambrano-Vazquez, & Allen, 2012). 

In addition, we also found that the decision to buy significantly 
increased the oscillatory activity in the alpha band, which is consistent 
with results reported by Ravaja et al. (2013) and Braeutigam et al. 
(2004), who proposed that prices and product preferences was 
expressed by increases in alpha activity. Previous studies have shown 
that highly complex trials during economic decision-making experi
ments (which would correspond to the buy condition in the current 
experiment) present increases in the alpha band (Rappel et al., 2020), 
suggesting a relation between alpha oscillations and impulse control and 
valence processing (Rossi, Gunduz, & Okun, 2015). However, contrary 
to our hypothesis, we did not find differences in the beta band in the buy 
compared to the wait condition. This oscillatory activity has been pre
viously shown to be associated with unexpected or highly relevant 
positive information (Cunillera et al., 2012; HajiHosseini et al., 2012; 
Marco-Pallarés et al., 2015) and related to the activity of the ventral 
striatum and hippocampus (Andreou et al., 2017; Mas-Herrero et al., 
2015). 

One of the strengths of the current study is the proposal of a new 
experimental approach to study the purchase decision process. Previous 
studies have described such decisions as a multifactorial cognitive pro
cess that involve several cortical and subcortical networks, which stand 
out as the most important structures related to the value-related process 
of goods and the preferences of the prefrontal cortex and some of its 
substructures (Arieli & Berns, 2010; Kable & Glimcher, 2009; Pearson, 
Watson, & Platt, 2014; Telpaz et al., 2015). Additionally, studies have 
shown that the purchase decision-making process has important features 
that differentiate it from traditional decision-making paradigms (Kah
neman, 2009; Karimi et al., 2015). It can be characterized as a decision 
process in which the feedback on the accuracy of a decision is neither 
clear nor explicit, but it is the consequences and information derived 
from previous decisions that can act as feedback. Based on this, our 
experimental paradigm included different products and price distribu
tions associated with offers, in order to detect possible differences in the 
decisions in different scenarios; in other words, the differences in the 
subjective values given by the participants (Hayden, 2018; Kahneman & 
Tversky, 1984; Kahneman, 2009). However, it is well known that there 
exists high variability in the purchase decision-making process that is 
explained by individual differences in personality traits (Boyce et al., 
2019; Gambetti & Giusberti, 2019; Huettel et al., 2006) and attitudes 
towards consumption (Denegri et al., 2012; Luna -Arocas, 2002; Quin
tanilla & Luna-Arocas, 1999), among many others. In addition, there 
might exist interactions between individual differences and different 
price distributions. Therefore, new designs including other price distri
butions and/or groups of participants with different consumer profiles 
might help in better understanding the neural correlates of purchase 
decision-making. In addition, future studies could also explore the 
possibility of predicting buying or non-buying decisions using single 
trial analysis of the studied neurophysiological components using mixed 
models or hierarchical lineal models. 

Importantly, a limitation of the present study is that some critical 
aspects when making an economic decision are not controlled in the 
present experiment. Indeed, the current experimental paradigm allows 
the description of the basic decision of buying or waiting, but does not 
control for other important elements such as risk, uncertainty or ex
pected value among others, which has shown to play a role in purchase 
decision-making (Huettel et al., 2006; Volz, Schubotz, & Von Cramon, 
2005). Future studies controlling these parameters are needed to 
determine how these different factors modulate the described neuro
physiological responses associated with purchase decision-making. 

Í. Alí Diez and J. Marco-Pallarés                                                                                                                                                                                                            



Biological Psychology 161 (2021) 108060

8

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

The present project has been funded by the European Regional 
Development Fund (ERDF) and the Spanish Ministry of Science, Inno
vation and Universities (PGC2018-098032-B-I00), and ICREA Academia 
2018 program to JMP. IA is supported by Chilean government through 
Becas-Chile fellowship program by the National Agency for Research 
and Development (ANID), reference number 2015-72160105. 

References 

Akam, T. E., & Kullmann, D. M. (2012). Efficient “Communication through coherence” 
requires oscillations structured to minimize interference between signals. PLoS 
Computational Biology, 8(11), 1–15. https://doi.org/10.1371/journal.pcbi.1002760 

Andreou, C., Frielinghaus, H., Rauh, J., Mußmann, M., Vauth, S., Braun, P., … Mulert, C. 
(2017). Theta and high-beta networks for feedback processing: A simultaneous EEG- 
fMRI study in healthy male subjects. Translational Psychiatry, 7(1), e1016–1018. 
https://doi.org/10.1038/tp.2016.287 

Arieli, D., & Berns, G. S. (2010). Neuromarketing: The hope and hype of neuroimaging in 
business. Nature Reviews Neuroscience, 11(4), 284–292. https://doi.org/10.1038/ 
nrn2795 

Band, G. P. H., Ridderinkhof, K. R., & van der Molen, M. W. (2003). Speed-accuracy 
modulation in case of conflict: The roles of activation and inhibition. Psychological 
Research, 67(4), 266–279. https://doi.org/10.1007/s00426-002-0127-0 

Bartholow, B. D., Pearson, M. A., Dickter, C. L., Sher, K. J., Fabiani, M., & Gratton, G. 
(2005). Strategic control and medial frontal negativity: Beyond errors and response 
conflict. Psychophysiology, 42(1), 33–42. https://doi.org/10.1111/j.1469- 
8986.2005.00258.x 
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