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Cardiovascular magnetic resonance (CMR) radiomics is a novel technique for advanced

cardiac image phenotyping by analyzing multiple quantifiers of shape and tissue texture.

In this paper, we assess, in the largest sample published to date, the performance of

CMR radiomics models for identifying changes in cardiac structure and tissue texture due

to cardiovascular risk factors. We evaluated five risk factor groups from the first 5,065

UK Biobank participants: hypertension (n = 1,394), diabetes (n = 243), high cholesterol

(n = 779), current smoker (n = 320), and previous smoker (n = 1,394). Each group

was randomly matched with an equal number of healthy comparators (without known

cardiovascular disease or risk factors). Radiomics analysis was applied to short axis

images of the left and right ventricles at end-diastole and end-systole, yielding a total of

684 features per study. Sequential forward feature selection in combination with machine

learning (ML) algorithms (support vector machine, random forest, and logistic regression)

were used to build radiomics signatures for each specific risk group. We evaluated the

degree of separation achieved by the identified radiomics signatures using area under

curve (AUC), receiver operating characteristic (ROC), and statistical testing. Logistic

regression with L1-regularization was the optimal ML model. Compared to conventional

imaging indices, radiomics signatures improved the discrimination of risk factor vs.

healthy subgroups as assessed by AUC [diabetes: 0.80 vs. 0.70, hypertension: 0.72

vs. 0.69, high cholesterol: 0.71 vs. 0.65, current smoker: 0.68 vs. 0.65, previous

smoker: 0.63 vs. 0.60]. Furthermore, we considered clinical interpretation of risk-specific

radiomics signatures. For hypertensive individuals and previous smokers, the surface

area to volume ratio was smaller in the risk factor vs. healthy subjects; perhaps reflecting

a pattern of global concentric hypertrophy in these conditions. In the diabetes subgroup,

the most discriminatory radiomics feature was the median intensity of the myocardium

at end-systole, which suggests a global alteration at the myocardial tissue level.
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This study confirms the feasibility and potential of CMR radiomics for deeper image

phenotyping of cardiovascular health and disease. We demonstrate such analysis may

have utility beyond conventional CMR metrics for improved detection and understanding

of the early effects of cardiovascular risk factors on cardiac structure and tissue.

Keywords: cardiovascular magnetic resonance, radiomics, machine learning, cardiovascular risk factors, UK

biobank

INTRODUCTION

Cardiovascular magnetic resonance (CMR) is the reference
standard for assessment of cardiac structure and function and
is used widely in both research and clinical settings. Routine
assessment is reliant on visual inspection of CMR images for
identifying global and local abnormalities; this is both labor-
intensive and reader dependent (1–4). Existing quantifiers, such
as ejection fraction and chamber volumes, are overly simplistic
and often do not capture subtle and complex changes that affect
the myocardium at early disease stages (5). Current approaches
are thus suboptimal for early disease detection and outcome
prediction. Therefore, there is need for novel, more advanced
quantitative approaches to CMR image analysis to improve
clinical diagnosis and risk prediction.

CMR radiomics is a novel image quantification technique
whereby pixel-level data is analyzed to derive multiple
quantifiers of tissue shape and texture (6). Technological
advancements and the availability of high computational power
has allowed deployment of machine learning (ML) methods
with radiomics features to discriminate disease or predict
outcomes (7). A distinct advantage of radiomics modeling
over unsupervised algorithms is the potential for explainability
through identification of the most defining radiomic features
in the model. It is thought that radiomics features correspond
to alterations at both the morphological and tissue levels and
thus, the most defining features of a particular condition
(or its radiomics signature) may provide insights into its
pathophysiology (8). Within oncology, where radiomics is most
well-developed, the incremental value of radiomics models for
diagnosis and prognosis have been widely reported (8–14).
In cardiology, early studies have shown promising results

Abbreviations: ACC, Accuracy; AUC, Area under the curve; bSSFP, Balanced

steady state free procession; Conv, Conventional cardiovascular magnetic

resonance indices; CMR, Cardiovascular magnetic resonance; CV, Cardiovascular;

ECG, Electrocardiogram; ED, End-diastole; ES, End-systole; F, First-order;

radiomics feature; LV, Left ventricle; LVEDV, Left ventricle end-diastolic volume;

LVEDVi, Indexed left ventricle end-diastolic volume; LVEF, Left ventricle ejection

fraction; LVESV, Left ventricle end-systolic volume; LVESVi, Indexed left ventricle

end-systolic volume; LVM, Left ventricle mass; LVMi, Indexed left ventricle mass;

LR, Logistic regression; LVSV, Left ventricle stroke volume; LVSVi, Indexed left

ventricle stroke volume; ML, Machine learning; MYO, Left ventricle myocardium;

RF, Random forest; Rad, Radiomics features; ROI, Region of interest; RV, Right

ventricle; RVEDV, Right ventricle end-diastolic volume; RVEDVi, Indexed right

ventricle end-diastolic volume; RVEF, Right ventricle ejection fraction; RVESV,

Right ventricle end-systolic volume; RVESVi, Indexed right ventricle end-systolic

volume; RVSV, Right ventricle stroke volume; RVSVi, Indexed right ventricle

stroke volume; S, Shape-based radiomics features; SFFS, Sequential forward feature

selection; SVM, Support vector machines; T, Texture-based radiomics features; TE,

Echo time; TR, Repetition time; UKB, UK Biobank.

from CMR radiomics models for discrimination of important
conditions such as myocarditis, hypertrophic cardiomyopathy,
and ischemic heart disease (15–18).

While existing works have mostly focused on image
phenotyping of established cardiovascular diseases, CMR
radiomics may also provide incremental information to
conventional approaches for improved quantification of
cardiac alterations related to cardiovascular risk factors at
the subclinical stage. We thus present the largest and most
comprehensive assessment of the performance of CMR
radiomics for image phenotyping of important cardiovascular
risk factors including diabetes, hypertension, high cholesterol,
and smoking status, by using a large annotated CMR dataset
from the UK Biobank (UKB).

METHODS

Population and Setting
UKB is a large-scale population health resource aimed at
enhancing biomedical research and ultimately improving
prevention, diagnosis, and treatment of a wide range of serious
and life-threatening illnesses (19). Over 500,000 participants
aged 40–69 years old were recruited from around the UK
between 2006 and 2010. The UK Biobank holds an exceptional
amount of data including detailed lifestyle information, medical
history, serum biomarkers, physical measures, and multi-modal
imaging including magnetic resonance imaging of the abdomen,
brain, and heart (20). Thus, UKB provides the ideal platform
for assessment of the performance characteristics of novel
quantitative biomarkers, such as radiomics, in discriminating
common cardiovascular risk factors.

CMR Imaging Protocol
CMR cine images were acquired using a standardized UKB
protocol, which is detailed in a dedicated publication (21).
In brief, all scans were performed with a 1.5 Tesla scanner
(MAGNETOM Area, Syngo Platform VD13A, Siemens
Healthcare, Erlangen, Germany), with typical cine parameters
as follows: TR/TE (repetition time/echo time) = 2.6/1.1ms, flip
angle 80◦, Grappa factor 2, voxel size 1.8 × 1.8 × 8mm, and
a slice gap of 2.0mm. The actual temporal resolution of 32ms
was interpolated to 50 phases per cardiac cycle (∼20ms). The
protocol includes a complete cine short-axis ventricular stack
with base to apex coverage acquired using balanced steady state
free procession (bSSFP) with one breath-hold per image slice.
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CMR Image Segmentation
CMR scans of the first 5,065 UKB participants that completed
the imaging study were manually analyzed across two core
laboratories (London, Oxford) using a pre-defined standard
operating procedure, which is detailed elsewhere (22). In brief,
left and right ventricular (LV, RV) endocardial contours and LV
epicardial contours were drawn in end-systole and end-diastole
on the short axis stack images using the CVI42 post-processing
software (Version 5.1.1, Circle Cardiovascular Imaging Inc.,
Calgary, Canada). These contours were used to define three
regions of interest (ROIs) for radiomics analysis: RV blood pool,
LV blood pool, and LV myocardium. All acquisitions were ECG
gated and thus end-diastole was defined as the first phase in the
sequence. End-systole was defined as the frame with smallest
LV cavity area by visual assessment detected at the mid-cavity
level. Papillary muscles were considered part of the blood pool.
Slices with more than 50% circumferential LV myocardium were
included in LV contours. RV volume was defined as areas below
the pulmonary valve plane identified by visual assessment.

Selection of Study Sample
We considered the first 5,065 UKB participants to complete
CMR imaging. We excluded 174 individuals due to incomplete
segmentations (having either one or more cardiac structures
missing in the segmentations). From the remaining 4,891
individuals, a healthy cohort (n = 1,394) was defined by
considering participants without known cardiovascular disease
or risk factors. Diabetes (n = 224), hypertension (n = 1,394),
and high cholesterol (n = 779) were taken from self-reported
conditions. Smoking status was taken as self-report of current (n
= 320) or previous (n = 1,394) tobacco smoking. Participants
positive for each risk factor were compared with an equal number
of randomly selected reference healthy subjects to eliminate
bias in the machine learning models due to class imbalance
(Figure 1).

Conventional CMR Indices
For comparison and quantification of the added value of
CMR radiomics, conventional CMR indices were also assessed,
specifically: LV end-diastolic volume (LVEDV), LV end-systolic
volume (LVESV), RV end-diastolic volume (RVEDV), RV end-
systolic volume (RVESV), LV stroke volume (LVSV), RV stroke
volume (RVSV), LV ejection fraction (LVEF), RV ejection
fraction (RVEF), LV mass (LVM).

Radiomics Analysis
The overall radiomics workflow is depicted in Figure 2.
Radiomics shape and signal intensity-based features were
extracted from the three segmented ROIs (LV blood pool: LV,
LVmyocardium: MYO, RV blood pool: RV) in end-diastole (ED)
and end-systole (ES). The analysis of the radiomics features in
the myocardiummay enable identification of tissue-level changes
due to the cardiovascular risk factors. The inclusion of the LV
and RV cavities is aimed at identifying changes in the shapes
of each ventricle, or in the patterns of the trabeculation and
papillary muscles. Automated extraction of radiomics features
was performed using the open source python-based radiomics

library Pyradiomics (version 1.3.0, October 2017)1 (23). The
customization of image preprocessing and feature extraction was
performed with Pyradiomics default settings, including a gray
value discretization with a bin width of 25 to extract the intensity-
based and texture radiomics features. In total, 684 radiomics
features were extracted per study (consisting of 114 radiomics
features per cardiac structure: LV, RV and MYO at two time-
points of the cardiac cycle: ED and ES).

Shape-Based Radiomics Features
16 radiomics shape features were extracted per ROI at ED and ES
(see Supplementary Table). Radiomics shape features describe
geometrical properties of the defined ROI, such as volume,
maximal diameter, minor/major axis, surface area volume ratio,
elongation, flatness, and sphericity. Radiomics shape features
may provide incremental value to existing CMR indices as they
include conventional shape indices (e.g., cavity volumes) as
well as more advanced geometric quantifiers (e.g., sphericity,
flatness). They also have the potential to define disease-specific
patterns of cardiac alterations beyond those possible with existing
CMR indices.

Signal Intensity-Based Radiomics Features
Signal intensity-based radiomics features may have the potential
to decode variations in cardiac tissue due to abnormalities
induced by disease processes. They are commonly grouped into
two categories, namely first-order and texture features. First-
order features are histogram-based statistics describing the global
distribution of signal intensities within the defined ROI without
consideration to their spatial relationships. These include simple
measures such as the mean intensity or standard deviation, as
well as more advanced measures such as skewness, uniformity or
entropy (see full list in Supplementary Table).

Texture-Based Radiomics Features
In contrast, texture radiomic features allow the quantification
of spatial inter-pixel relationships using more advanced matrix
analysis methods (24, 25). Through this, signal intensities
patterns within the ROI may be numerically quantified using
pre-agreed mathematical definitions. Many texture patterns may
be considered to quantify characteristics such as the complexity,
heterogeneity, coarseness, or repeatability of the building blocks
of the tissue. The idea is that these texture features may reflect
myocardial tissue characteristics which in turn reflect underlying
disease processes. In this study, 19 first-order features and 79
texture features were extracted from each ROI per cardiac phase.

Identification of Optimal Radiomic
Signatures
The goal of the study is to leverage feature selection and machine
learning techniques to identify radiomics signatures that best
describe the structural and tissue differences between risk factor
(at-risk) and healthy (no-risk) groups in CMR imaging. To
this end, we use the risk factors as “proxy” output variables
and build multiple machine learning models by varying the

1https://www.radiomics.io/pyradiomics.html
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FIGURE 1 | The data selection process.

combinations of input radiomic features through systematic
feature selection. We obtain multiple models (and thus multiple
candidate radiomic signatures) and through statistical testing one
can select the best model and therefore the radiomic signature
that best separate the at-risk and no-risk groups. Because these
selected radiomics signatures differentiate at-risk from healthy
individuals, they can be considered and analyzed as potential
descriptors of the cardiac alterations due to the risk factors
in question. Importantly, we use machine learning as a more
advanced means to combine multiple radiomic features into
risk-specific signatures, while taking into account non-linear
complementarities between the parameters.

For feature selection, we used the sequential forward
feature selection (SFFS) method as it has demonstrated good
performance in previous CMR radiomics studies (15, 26).
The termination criterion was set to 2% in all experiments
following literature standards, i.e., the process was stopped if

an added feature did not increase model performance beyond
the termination criterion. To obtain more robust estimates
and improve generalizability, ten-fold cross-validation was
used in the feature selection process, rotating training and
validation folds (80 and 20% of the dataset, respectively).
We combined SFFS with classical ML algorithms [support
vector machines (SVM), random forests (RF), logistic regression
(LR)] to identify the combination of radiomics features that
best define each studied cardiovascular risks/subgroups. For
each ML method, hyperparameter optimization was performed
to enhance the discrimination between no-risk and at-risk
subgroups (Supplementary Material). Implementation of the
SFFS and the ML techniques was based on the mlxtend (version
0.17.0) (27) and scikit-learn (version 0.20.3) (28) python-based
libraries, respectively.

The selected radiomics features resulting from the SFFS
algorithm and ML techniques were combined to create the
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FIGURE 2 | The proposed radiomics workflow.

radiomics signature that best encode the changes in CMR
induced by the different cardiovascular risk factors. To quantify
the added value of the proposed radiomics approach, we built
similar ML models/risk signatures using conventional CMR
indices as input variables. Note that all radiomics features and
cardiac indices were normalized (to a mean of zero and standard
deviation of one) to ensure they are equally weighted in all
analyses. Note that individuals with multiple risk factors were not
excluded. In the machine learning models, we set the outcome to
each risk factor individually, which enabled the identification of
the radiomics signatures specific to that risk factor.

In this work, we assess model performance (i.e., the ability
of the radiomics signatures to discriminate at-risk vs. no-risk
subjects) using receiver operating characteristic (ROC) curve
and area under the curve (AUC) scores. We also report model
accuracy, defined as number of correctly discriminated no-risk
vs. at-risk cases based on the radiomics signatures, divided by
the total number of cases. Additionally, statistical tests were
performed to assess the statistical significance of the differences
between the various ML models, by using the McNemar’s test for

pairwise comparisons, as well as the Cochran’s Q test, which is an
extension of the McNemar’s test for the comparison of more than
two models (29, 30).

RESULTS

Summary of Subgroups and Conventional
CMR Indices
The subjects included in the analysis are summarized in Table 1.
Across all risk factor groups there was higher proportion of
male participants (between 52.3 and 60.1% depending on the
risk factor), whereas in the healthy cohort, there were fewer
men (42.5%). Average age across the risk groups was between
59 (±8) and 65 (±6) years, while it was equal to 60 (±7) years
for the healthy cohort. As expected, there were differences in
conventional CMR between the at-risk subgroups and healthy
subjects. In particular, all risk groups had on average greater
indexed left ventricle mass (LVMi) in comparison to the healthy
cohort with the greatest difference in the hypertensive group
(50.3 g/m2 vs. 46.3 g/m2). All risk factor groups had lower
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TABLE 1 | Summary of conventional CMR indices for the risk and healthy groups included in the analysis.

Diabetes Hypertension High cholesterol Current smoker Previous smoker Healthy

n = 243 n = 1,394 n = 779 n = 320 n = 1,394 n = 1,394

Male n(%) 146 (60.1%) 786 (56.4%) 460 (59.1%) 172 (53.8%) 729 (52.3%) 592 (42.5%)

Age mean(sd)years 64 (±7) 64 (±7) 65 (±6) 59 (±8) 63 (±7) 60 (±7)

LVEDVi (ml/m2 ) 73.4 (±13.8) 76.7 (±14.2) 75.0 (±13.9) 77.2 (±15.1) 76.9 (±14.8) 77.9 (±14.7)

LVESVi (ml/m2 ) 30.8 (±9.2) 31.6 (±9.3) 30.8 (±8.8) 32.5 (±9,4) 31.9 (±10.5) 31.6 (±8.8)

LVMi (g/m2) 49.1 (±9.6) 50.3 (±10.2) 48.6 (±9.7) 49.3 (±9.9) 48.3 (±10.1) 46.3 (±9.7)

LVEF (%) 58.5 (±7.3)* 59.2 (±6.9) 59.3 (±6.7) 58.3 (±6.9) 59.0 (±6.7) 59.7 (±5.9)

LVSVi (ml/m2 ) 42.7 (±8.3) 45.2 (±8.4)* 44.2 (±8.3) 44.7 (±8.9)* 45.1 (±8.2) 46.3 (±8.8)

RVEDVi (ml/m2 ) 77.2 (±14.5) 80.1 (±14.9) 79.1 (±14.9) 81.2 (±16.1) 80.8 (±14.8) 83.1 (±16.2)

RVESVi (ml/m2 ) 34.3 (±9.6) 34.8 (±9.7) 34.7 (±9.7) 36.3 (±10.4) 35.6 (±9.5) 36.8 (±10.5)

RVEF (%) 56.0 (±6.9) 56.9 (±6.7) 56.5 (±6.8) 55.7 (±6.9) 56.3 (±6.4) 56.2 (±6.3)

RVSVi (ml/m2 ) 42.9 (±8.2) 45.3 (±8.4) 44.4 (±8.5) 44.9 (±8.9) 45.2 (±8.3) 46.3 (±8.5)

LV, left ventricle; RV, right ventricle; EDV, end-diastolic volume; ESV, end-systolic volume; SV, stroke volume; EF, ejection fraction; LVM, left ventricle mass; i, indexed; absolute values

divided by body surface area (calculated according to Du Bois formula). Values are given as mean ± standard deviation for continuous variables; and count (%) for categorical variables.

*Indicates statistical differences with respect to the healthy subgroup according to Welch’s t-test.

indexed left ventricle stroke volume (LVSVi) and indexed
right ventricle stroke volume (RVSVi) in comparison to the
healthy cohort. There were also variations in chamber volumes,
with different directions of difference depending on the risk
category. Finally, it is worth noting that no statistically significant
differences (Welch’s t-test) in the conventional indices were
found between the healthy and each at-risk subgroups, except for
LVEF in diabetes and LVSVi values in hypertension and current
smokers (see Table 1).

Radiomics Signatures Have Superior
Discriminatory Performance Over
Conventional CMR Indices
In comparison to conventional indices, radiomics signatures
provided better discrimination between healthy and at-risk
subjects for diabetes (0.80 AUC for radiomics vs. 0.70
for conventional indices), hypertension (0.72 vs. 0.69), high
cholesterol (0.71 vs. 0.65), and previous smokers (0.63 vs. 0.60)
(Figure 3). The obtained models with radiomics vs. conventional
indices were also compared using the McNemar’s test; the
differences were found to be statistically significant for diabetes,
hypertension, high cholesterol, and previous smokers but not for
current smokers.

Comparison of the Degree of
Discrimination Achieved for Each
Subgroup
The degree of discrimination (no-risk vs. at-risk hearts)
achieved using radiomics models varied between the different
cardiovascular risks, as these have different effects on the heart.
The highest degree of discrimination with radiomics models was
seen in diabetes (0.78), suggesting that radiomics features are
particularly important in distinguishing diabetes-related cardiac
changes. The smallest degree of separation was seen in previous
smokers (0.61). High cholesterol, hypertension and current

smokers achieved similar degrees of separation by the radiomics
models (i.e., 0.68, 0.68, and 0.67, respectively).

The Identified Radiomics Signatures for
Each Cardiovascular Risk Factor
The identified radiomics signatures for each risk factor are
described in Table 2. Overall, there was a more prominent role
for shape and texture features than first-order features. For
instance, in diabetics, five of the eleven features included in the
model were shape-based and in the hypertension group, no first-
order feature was selected. As expected, radiomics features from
the LV blood pool and LV myocardium were the most relevant
regions, with the RV blood pool having a minor role for the risk
factors studied in this paper.

In Table 3, we consider the most discriminative radiomics
feature for each risk factor, i.e., the feature assigned the most
importance in the model, and compare it with the most
discriminative conventional CMR measure, which was LVM for
all risk groups.

For all the subgroups, the mean value of the most
important radiomics features and conventional CMR indices was
significantly different in the risk factor vs. healthy cohorts (p
< 0.001, Table 3). In addition, the single best radiomics feature
outperformed the conventional CMR indices in its relevance
for all risk factors. However, it was the combination of several
radiomics features into a radiomic signature (Table 4) that
provided the best overall discriminative power.

DISCUSSION

Summary of Findings
This paper described a methodology based on radiomics,
machine learning and feature selection to discover new
discriminatory signatures in CMR. Based on over 5,000 datasets,
we presented the largest and most comprehensive study to
demonstrate the feasibility and performance of CMR radiomics
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FIGURE 3 | Receiver operating characteristic curves for radiomics and conventional CMR indices models for the cardiovascular risk factor subgroups. AUC: area

under the curve.
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TABLE 2 | Radiomics features selected for each risk factor. Features are presented in order of importance (accuracy using only one feature) in the model for each risk

factor.

CV risk factor Radiomics signature Feature type ROI Phase Alone

High cholesterol Spherical disproportion Shape MYO ED 0.61

Compactness Shape MYO ED 0.60

Skewness First-order LV ED 0.59

Informal measure of correlation Texture LV ES 0.57

Gray level non-uniformity Texture RV ED 0.55

Contrast Texture RV ES 0.52

Diabetes Median First-order MYO ES 0.65

Surface area to volume ratio Shape MYO ED 0.61

Energy First-order LV ED 0.61

Surface area Shape MYO ES 0.58

Dependence variance Texture LV ED 0.57

Large area high gray level emphasis Texture MYO ED 0.57

Energy First-order LV ES 0.57

Flatness Shape RV ED 0.56

Surface area Shape LV ES 0.55

Max 2D diameter column Shape RV ED 0.50

Difference average Texture LV ES 0.44

Hypertension Surface area to volume ratio Shape MYO ED 0.61

Percentile 10 First-order RV ES 0.58

Informal measure of correlation Texture LV ES 0.55

Dependence non-uniformity normalized Texture LV ED 0.54

Size zone non-uniformity normalized Texture RV ED 0.54

Current smokers Gray level non-uniformity Texture MYO ES 0.60

Dependence entropy Texture LV ED 0.57

Standard deviation First-order MYO ED 0.53

Max 2D diameter column Shape RV ED 0.50

Large dependence low gray level emphasis Texture RV ED 0.45

Previous smokers Surface area to volume ratio Shape MYO ED 0.57

Busyness Texture LV ES 0.54

Run entropy Texture MYO ES 0.50

Skewness First-order RV ES 0.50

Run length non-uniformity Texture RV ED 0.49

Zone variance Texture LV ED 0.49

ROI, region of interest, Alone: model performance using each radiomic feature individually; LV, left-ventricle; RV, right-ventricle; MYO, left ventricle myocardium; ED, end-diastolic.

for identifying new imaging signatures associated with important
cardiovascular risk factors such as diabetes, hypertension,
cholesterol, and smoking. Over conventional indices, we showed
that radiomics enable improved quantification of alterations in
both cardiac structure and tissue due to the effects of these risk
factors. From the statistical tests performed in Table 1, it can
be seen that the conventional indices do not capture statistically
significant differences between the healthy vs. at-risk subgroups,
with very few exceptions (LVEF values in diabetes, LVSVi
values in hypertension and current smokers). In contrast, the
McNemar’s statistical tests comparing the radiomics models and
the conventional indices show statistically significant differences
between the two approaches for all cardiovascular risk factors,
except for current smokers. This indicates that for diabetes,
hypertension, high cholesterol and previous smokers, radiomics

models provide incremental value in identifying structural and
textural differences between healthy and at-risk subgroups.

Clinical Interpretation of the Radiomics
Signatures
A distinct advantage of radiomics modeling over black-box
techniques such as deep learning is the potential interpretability
of the obtained results. Therefore, we can attempt to reason
the prominence of certain radiomics features in disease
discrimination models. Shape features were highly featured in
all models and indicate subtle patterns of ventricular remodeling
that are specific to conditions under study. For instance, spherical
disproportion (i.e., the inverse of sphericity) of the myocardium
at end-diastole was lower in participants with high cholesterol
compared with healthy individuals, indicating that the overall
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TABLE 3 | Values of the best radiomics features (Rad) and the conventional CMR indices (Conv).

CV risk factor Single most defining feature CV risk cohort Healthy cohort ACC

Mean SD Mean SD

High cholesterol Rad: Spherical disproportion MYO ED (S) 3.631 0.290 3.779 0.311 0.611

Conv: LVM (g) 93.493 24.199 85.667 24.104 0.576

Diabetes Rad: Median MYO ES (F) 67.887 9.058 74.652 10.514 0.658

Conv: LVM (g) 97.856 24.250 85.931 25.024 0.605

Hypertension Rad: Surface area to volume ratio MYO ED (S) 0.390 0.054 0.425 0.06 0.618

Conv: LVM (g) 97.131 25.849 85.623 24.101 0.593

Current smokers Rad: Gray level non uniformity MYO ES (T) 573.448 134.355 515.789 140.307 0.609

Conv: LVM (g) 93.614 24.804 84.549 25.426 0.564

Previous smokers Rad: Surface area to volume ratio MYO ED (S) 0.405 0.058 0.425 0.062 0.574

Conv: LVM (g) 91.902 24.896 85.623 24.101 0.552

Feature values from risk groups and healthy individuals were statistically significantly different for all selected features (Bonferroni adjusted p-value < 0.05/684). S, shape; F, first-order;

T, texture; SD, standard deviation; ACC, accuracy; CV, cardiovascular; MYO, LV myocardium; ED/ES, end-diastole/systole; LVM, left ventricular mass (in grams; g).

TABLE 4 | Selected number of radiomic features used for each risk factor and their discriminative accuracy, and results obtained based on conventional imaging indices

and size information.

Risk factor Radiomics features Clinical indices

# S/F/T LV/RV/MYO ED/ES ACC/AUC # LV/RV ACC/AUC

High cholesterol 6 2/1/3 2/2/2 4/2 0.682/0.712 2 1/1 0.626/0.645

Diabetes 11 5/3/3 5/2/4 6/5 0.782/0.803 4 3/1 0.681/0.704

Hypertension 5 2/0/3 2/2/1 3/2 0.682/0.721 2 1/1 0.646/0.690

Current smokers 5 1/1/3 1/2/2 5/0 0.675/0.675 3 2/1 0.628/0.648

Previous smokers 6 1/1/4 2/2/2 3/3 0.612/0.626 2 1/1 0.579/0.599

#, total selected number of features; S, shape features; F, first-order radiomics; T, texture features; LV, left ventricle; RV, right ventricle; MYO, Myocardium; ED, end-diastole; ES,

end-systole; ACC, accuracy (prediction performance); AUC, area under the curve.

shape of the LV is less elliptical and more spherical in this
risk factor group. For hypertensive individuals and previous
smokers, the surface area to volume ratio was smaller in the
risk subgroups vs. healthy subjects; this may reflect a pattern
of concentric LV hypertrophy in these conditions. For certain
risk factors, intensity/texture features seemed more important,
such as median intensity for diabetes. As this was a retrospective
study, we can only speculate as to the cause of this association.
One hypothesis is that diabetes leads to a global alteration of the
myocardial tissue and thus of the overall myocardial appearance
in CMR images, resulting in higher median intensities compared
to non-diabetic subgroups. However, testing this hypothesis is
beyond the scope of this study.

As another example of a prominent textural feature, the most
important feature identified for current smokers in this study was
gray level non uniformity. In a previous study (31), the same
radiomic feature was identified as the most important radiomic
feature in hypertrophic cardiomyopathy (HCM). However, as the
authors pointed out in their paper, the intensity heterogeneity
of myocardial tissue is not unique to HCM and it might be of
importance for other conditions. As smoking is a well-known
cause for such cardiovascular diseases (32), there may be some
commonality in the patterns of myocardial hypertrophy and

tissue fibrosis in these conditions that is being reflected in the
observed texture features. Indeed, the increased heterogeneity
in gray level intensities for current smokers as found in our
study supports the potential effects on the myocardium for
these subjects.

Thus, radiomics allows more granular distinctions between
health and disease in comparison to conventional CMR indices
where, rather crudely, the single most discriminatory feature
for all risk factors was higher LVM. These findings indicate the
potential clinical utility of radiomics in improving understanding
of the effects and pathophysiology of important cardiovascular
risk factors.

Comparison With the Existing Literature
Literature in support of the superior diagnostic performance
of CMR radiomics models over conventional image analysis
is slowly gaining momentum. Several studies have shown
the feasibility and clinical utility of CMR radiomics for
distinguishing important disease entities. A small study by
Baeßler et al. (31) demonstrates the superior performance of
CMR radiomics in discriminating hypertrophic cardiomyopathy
(n = 32) from healthy comparators (n = 30). The most
discriminative feature was gray level non-uniformity, a radiomics
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texture feature representing heterogeneity. It seems intuitive
that this feature would be defining of the irregular myofibrillar
architecture of hypertrophic cardiomyopathy. Similar to our
observations, in particular with diabetes, it appears that the
observed radiomics signatures may reflect clinically meaningful
information about significant tissue level changes. Furthermore,
studies have demonstrated the ability of CMR radiomics to
distinguish important conditions that appear morphologically
similar with conventional image analysis. For instance, Neisius
et al. (15) demonstrated high performance of CMR radiomics
models applied to native T1 images to distinguish hypertensive
heart disease (n = 53), hypertrophic cardiomyopathy (n
= 108), and healthy volunteers (n = 71). There is also
emerging work on using CMR radiomics to identify areas
of myocardial infarction from non-contrast cine image (16,
33, 34) and to identify acute from chronic myocardial
infarction (33).

Our paper constitutes the most comprehensive study to assess
the relationship between CMR radiomics and cardiovascular
risk factors. However, the concept of utilizing information from
CMR to obtain more complex geometric information has been
addressed previously using atlas-based shape measures. Cardiac
atlases produce statistical shape models, giving highly detailed
morphometric information (35–37). Directly comparable to our
findings, Gilbert et al. (38) demonstrate unique morphometric
variations associated with individual risk factors (high blood
pressure, smoking, high cholesterol, diabetes, angina), which
could be quantified and visualized on constructed atlases.
The derivation of radiomics shape features is methodologically
different from cardiac atlases, however there are conceptual
similarities about the type of information they provide. Both
seem to suggest that geometric features not captured by current
image analysis approaches may be extracted from existing CMR
images and that this information seems to provide additional
insight into patterns of cardiac remodeling. CMR radiomics
has several advantages over cardiac atlas models. The signal
intensity based radiomics features (first-order, texture) have
great potential for not only better disease discrimination and
outcome prediction, but also gaining deeper insights into disease
processes at the tissue level; such information is not provided
by cardiac atlas morphometrics. CMR radiomics analysis does
not require any dedicated acquisitions or post-processing
and the extraction of radiomics features and model building
are computationally simpler than atlas models. Therefore,
there is real potential for radiomics to enter the clinical
workflow as a very high yield and complementary image
analysis tool.

Note that in this study we chose to select a different healthy
subsample than in Petersen et al. (22). This is due to the
differences in the objectives of the papers. While Petersen et al.
(22) focused on the estimation of normal ranges of cardiac indices
of structure and function and thus used very strict inclusion
criteria, we are concerned with the study of cardiovascular
risk factors and therefore we excluded subjects with known
cardiovascular risk factor or disease.

LIMITATIONS AND FUTURE WORK

To the best of our knowledge, this is the largest study to assess
the performance of CMR radiomics model in discriminating
several important cardiovascular risk factors. Our findings
demonstrate the feasibility of CMR radiomics models to identify
cardiac changes related to important cardiovascular risk factors
(diabetes, hypertension, high cholesterol, and smoking) with
greater accuracy than conventional indices. The UKB provides
an excellent platform for this study with a large sample of well
characterized participants with linked CMR imaging. However,
the data collection was conducted through a combination of a
touchscreen questionnaire and a face-to-face nurse interview,
and thus there remains some concerns about the accuracy
and objectivity of the self-reported conditions. Studies with
consideration of more sophisticated statistical methods to better
account for confounding factors, as well as with inclusion of
external validation cohorts, are needed to produce and validate
more disease-specific and generalizable models. In particular,
there is a need for prospective studies to determine the clinical
utility of these models in providing incremental cardiovascular
risk information.

As for the pipeline implemented in this paper, alternative
approaches may merit exploration, such as testing different
methods for feature selection [e.g., LASSO (39), combination of
filter and wrapper-based methods (40)], or applying extensive
hyper-parameter optimization for each risk group. Also, while
cross-validation was performed in the feature selection process
to reduce the instability of radiomics features, other strategies
have been proposed such as prior clustering of redundant
features (41), or using a concordance correlation coefficient
(42). Additionally, there is need for proper evaluation of
the reproducibility of radiomics features across segmentation
protocols and also across imaging acquisitions, which is
important due to non-standard pixel values and large variation
in signal intensities (43). Wider use of radiomics quality scores
(44) would also enable better quality andmore uniform reporting
of radiomics studies and foster research reproducibility. Finally,
as a common problem of artificial intelligence-based radiomics
approaches, we have not assessed the practical value of the
present results since there is no comparative gold standard that
can be used for comparison.

CONCLUSIONS

CMR radiomics is an emerging technique for deeper and more
accurate cardiac phenotyping in comparison to conventional
image analysis. Our preliminary results based on a large sample
from the UKB indicates the feasibility of CMR radiomics analysis
and potential clinical utility in superior image phenotyping
of major cardiovascular risk factors, including diabetes,
hypertension, high cholesterol, and smoking. The clinical value
of these radiomics signatures for prediction of downstream
events warrants further investigation in prospective cohorts.
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