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We present detailed studies of the high-field magnetoresistance of the layered organic metal κ-
(BETS)2Mn[N(CN)2]3 under a pressure slightly above the insulator-metal transition. The experi-
mental data are analysed in terms of the Fermi surface properties and compared with the results
of first-principles band structure calculations. The calculated size and shape of the inplane Fermi
surface are in very good agreement with those derived from Shubnikov-de Haas oscillations as well
as the classical angle-dependent magnetoresistance oscillations. A comparison of the experimentally
obtained effective cyclotron masses with the calculated band masses reveals electron correlations
significantly dependent on the electron momentum. The momentum- or band-dependent mobility
is also reflected in the behavior of the classical magnetoresistance anisotropy in a magnetic field
parallel to layers. Other characteristics of the conducting system related to interlayer charge trans-
fer and scattering mechanisms are discussed based on the experimental data. Besides the known
high-field effects associated with the Fermi surface geometry, new pronounced features have been
found in the angle-dependent magnetoresistance, which might be caused by coupling of the metallic
charge transport to a magnetic instability in proximity to the metal-insulator phase boundary.

I. INTRODUCTION

The organic charge transfer salt κ-(BETS)2Mn-
[N(CN)2]3, where BETS stands for bis(ethylenedithio)-
tetraselenafulvalene, belongs to the family of hybrid
molecular conductors which can be seen as natural mul-
tilayer structures of conducting and magnetic layers al-
ternating on a subnanometer scale [1–3]. While itinerant
π electrons in the BETS donor layers are responsible for
metallic conduction, the magnetic moment is mainly de-
termined by localized d-electron spins of Mn2+ ions in the
insulating anion layers [4]. On the other hand, the quasi-
two-dimensional (quasi-2D) conducting system under-
goes a metal-insulator transition at TMI ' 23 K presum-
ably associated with the Mott instability [4, 5]. The insu-
lating ground state is suppressed by a quasi-hydrostatic
pressure of about 1 kbar, giving way to a metallic and
even superconducting state with Tc ≈ 5.5 K. However,
the shape of the “pressure–temperature” phase diagram
of this compound [5] significantly differs from that of
archetypical organic Mott insulators κ-(BEDT-TTF)2X
with anions X− = {Cu[N(CN)2]Cl}− and {Cu2(CN)3}−
[6–8]. A reason for that may lie in the interaction between
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the conduction π-electrons and localized d-electron spins.
The π-d exchange coupling is known to be at the core of
the metal-insulator transition of another hybrid organic
salt λ-(BETS)2FeCl4 [9, 10]. Moreover, in some BETS
salts with Fe-cointaining tetrahedral anions the π-d cou-
pling is clearly manifest already in the metallic state,
playing, for example, a crucial role in stabilizing super-
conductivity in a magnetic field [1, 11–15]. In the present
material this coupling seems to be considerably weaker.
It has been found to cause changes of magnetic proper-
ties of the Mn2+ subsystem upon entering the insulating
state [16–18]. However, no evidence of its influence on
the conducting system has been reported so far.

For a better understanding of the mechanisms of the
insulating and superconducting instabilities a thorough
knowledge of the Fermi surface properties is indispens-
able. To that end, we have carried out a detailed study
of the high-field magnetoresistance of pressurized κ-
(BETS)2Mn[N(CN)2]3 supplemented by first-principles
band structure calculations. For most of the measure-
ments the pressure value of p ≈ 1.4 kbar was chosen so as
to drive the compound into the fully normal state, but
not far away from the metal-insulator phase boundary
[5]. In fields above 12 T quantum (Shubnikov-de Haas,
SdH) oscillations have been found, providing a direct
access to the topology and size of the 2D Fermi sur-
face. Further quantitative information on the size and
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shape of the Fermi surface has been obtained from the
classical angle-dependent magnetoresistance oscillations
(AMRO). Besides the detailed Fermi surface geometry,
the SdH data and classical magnetoresistance yield other
important characteristics of the conducting system such
as effective cyclotron masses of the charge carriers, scat-
tering parameters, and interlayer transfer energy. In par-
ticular, by confronting the effective mass values obtained
from the experiment with the calculated band masses we
find a quite strong, momentum-dependent renormaliza-
tion effect caused by electron correlations in the prox-
imity to the metal-insulator transition. Finally, in ad-
dition to the “conventional” phenomena determined by
the geometry of the quasi-2D Fermi surface, the classical
magnetoresistance has shown new features, which may
be related to an interaction of the charge carriers with
the magnetic subsystem.

The paper is organized as follows. In the next Sec-
tion the experimental details are described. Section III
presents the results of the first-principles band struc-
ture calculations. The predicted conducting bands and
Fermi surface look similar to those obtained by the semi-
empirical extended Hückel method. However, the density
of states and relevant band cyclotron masses are 40%
higher. This rather large difference, often found in the
organics, see, e.g., [19], is important to take into account
when estimating the strength of many-body renormal-
ization effects on the experimentally determined mass.
Section IV presents experimental data on the SdH oscil-
lations and their analysis. In Sect. V the behavior of the
classical component of the interlayer magnetoresistance
as a function of the strength and orientation of magnetic
field is considered. A summary and concluding remarks
are given in Sect. VI.

II. EXPERIMENTAL

The samples used in the experiments were electrochem-
ically grown single crystals [4] with typical dimensions
∼ 0.5 × 0.3 × 0.02 mm3, the largest dimensions being
in the plane of conducting layers, that is, the crystal-
lographic bc-plane. Electrical leads for four-probe resis-
tance measurements were made by attaching annealed
20µm thick Pt wires to the sample surface using a con-
ducting graphite paste. All the measurements were done
in the interlayer resistance geometry, which is the most
convenient and informative for layered organic conduc-
tors, see, e.g., [20] for a review. The resistance was
measured by the standard low-frequency a.c. technique.
Field-dependent magnetoresistance with the focus on the
SdH oscillations was measured in the temperature in-
terval 0.36 to 1.0 K at a current of 1µA assuring no
overheating for sample resistance values < 3 kΩ. Angle-
dependent measurements were done in liquid 4He at
1.3− 1.4 K with a current of 10µA.

Quasihydrostatic pressure was applied using a BeCu
clamp cell with silicon oil as a pressure medium. A cali-

brated manganin coil with a resistance of≈ 6 Ω and sensi-
tivity 0.243%/kbar was used as a resistive pressure gauge.
All the measurements, except one run presented at the
end of Sect. IV B, were done at pressure p ≈ 1.4 kbar.

All the field sweeps and most of the angle-dependent
magnetoresistance data presented in the paper were car-
ried out in a 30 T resistive magnet at the LNCMI-
Grenoble. 15 T angular sweeps shown in Sect. V B and
some test measurements were done using a superconduct-
ing solenoid.

For the angle-dependent studies the samples were
mounted on a two-axes rotating stage. Continuous ro-
tations in different planes perpendicular to the plane of
conducting layers were done at a fixed field strength. The
sample orientation was defined by polar angle θ between
the field direction and the normal to the layers and by az-
imuthal angle ϕ between the field projection on the layer
plane and the crystallographic (inplane) c-axis. The an-
gular resolution was < 0.1◦ and ≈ 0.5◦ for θ and ϕ, re-
spectively. The initial orientation of the sample was set
with an error bar of ' ±3◦ for both θ and ϕ. However,
by using the center of the dip in the R(θ) dependence
as a reference point for the exact inplane field direction
(|θ| = 90◦), the θ error bar was reduced to < 0.5◦.

Three high-quality samples were used in the experi-
ments, all showing consistent data both on quantum os-
cillations and on the classical magnetoresistance. In what
follows, we will present detailed data obtained on two
different samples, respectively, from field sweeps in the
orientation perpendicular to the layers and from the an-
gular sweeps at a fixed field strength.

III. FIRST-PRINCIPLES CALCULATION OF
THE CONDUCTION BANDS

Calculations of the low-temperature band structure
were carried out using a spin-polarized numerical atomic
orbitals density functional theory (DFT) approach [21]
in the generalized gradient approximation (GGA) [22].
Only the valence electrons were considered in the calcu-
lations with the core being replaced by norm-conserving
scalar relativistic pseudopotentials [23] factorized in the
Kleinman-Bylander form [24]. We have used a split-
valence double-ζ basis set including polarization orbitals
with an energy shift of 10 meV for all atoms [25]. The
energy cutoff of the real space integration mesh was
350 Ry. The Brillouin zone was sampled using a grid
of (5 × 20 × 20) k-points [26] in the irreducible part of
the Brillouin zone. The experimental crystal structure
at 15 K [5] was used in the calculations. The calculated
bands near the Fermi level are shown in Fig. 1. They con-
tain only contributions from the highest occupied molec-
ular orbitals of BETS and have shapes typical of strongly
dimerized κ-salts of BEDT-TTF and BETS. The width
of the bands crossing the Fermi level is 0.46 eV. This
value is lower than that obtained by the extended Hückel
method, 0.65 meV [5], as it is often found for organic
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FIG. 1. (Color online) Calculated band structure of κ-
(BETS)2Mn[N(CN)2]3 based on the 15 K crystal structure
[5]. The result of the full calculation is shown with solid
lines, whereas the result of the calculation where the anions
were replaced by a uniform background of charge is shown
with dashed lines. The energy is counted from the Fermi
level. Γ = (0, 0, 0), X = (1/2, 0, 0), Z = (0, 0, 1/2) and
M = (1/2, 0, 1/2) in units of the monoclinic reciprocal lat-
tice vectors.

charge transfer salts. As discussed below, the weaker
dispersion leads to higher values of the density of states
and cyclotron masses. On the other hand, comparing to
the values 0.40± 0.02 eV obtained by first-principles cal-
culations [27–30] for κ-(BEDT-TTF)2X salts, exhibiting
the Mott-insulating instability, the present value is very
similar, just slightly higher. Along the interlayer direc-
tion (Γ – X) the dispersion is below the resolution of our
calculations.

The calculated 2D Fermi surface is shown in Fig. 2. It
is a cylinder crossing the Brillouin zone boundary along
Z – M. As expected, it shares all features of the Fermi
surface obtained by the extended Hückel method [5], in
particular, the presence of a rhombus-like portion around
point Z with quite flat (however, slightly more rounded
near Γ) sides. The area of this rhombus-like part is 25.2%
of the Brillouin zone cross section.

Due to the crystal symmetry, the calculated two upper
bands in Fig. 1 are degenerate along Z – M, which causes
crossing of the adjacent Fermi surfaces on the Brillouin
zone boundary. It should be noted, however, that our
DFT calculations do not take into account a statistical
disorder of the dicyanamide groups of the anion along
the crystallographic b-axis [4]. This disorder barely af-
fects the electronic structure of the donor layer, however
the associated random potential lifts the double degen-
eracy of the crystal orbitals along the Z – M boundary of
the Brillouin zone. As a result, small gaps arise between
the rhombus-like Fermi pocket and the open sheets ex-
tended along the Y – M direction. As will be shown in
the next Section, the presence of the gaps is confirmed
by magnetic quantum oscillations. The oscillations re-
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M

FIG. 2. (Color online) 2D Fermi surface of κ-
(BETS)2Mn[N(CN)2]3. Thin lines indicate the principal di-
rections of the reciprocal lattice and the first Brillouin zone
boundary. The arrows show the directions of the cyclotron
motion on the classical (blue) and magnetic-breakdown (red)
orbits in a magnetic field.

veal a classical cyclotron orbit on the rhombus-like pocket
(conventionally labeled as α-orbit) and a large magnetic-
breakdown orbit (β-orbit) caused by tunneling through
the gaps and encircling the entire Fermi surface, as illus-
trated in Fig. 2.

Shown in Fig. 3 is the density of states (DOS) calcu-
lated for two temperatures. The blue curve is the con-
tribution of the lower-lying partially filled band, which
forms the rhombus-like portion of the FS, and the pur-
ple curve corresponds to the upper band associated with
the open sheets extended along the Y–M direction. The
total DOS is given in red. Interestingly, by contrast to
other κ-type salts, the upper part of the DOS exhibits
two pronounced peaks and the Fermi level occurs very
near the top of one of them. Qualitatively the same re-
sult was obtained by the extended Hückel method [5]
and attributed to a significant inplane anisotropy of the
present salt: the coupling between chains of dimers, run-
ning along the crystallographic b axis, is weaker than the
intrachain interactions. This anisotropy causes a flat-
tening of the lower partially filled band around point Γ,
near the Fermi level. The resulting peak in the DOS
shifts even more close to the Fermi energy at decreasing
temperature, as one can see from Fig. 3.

Knowing the DOS, one can evaluate the cyclotron mass
mc on the Fermi surface. For a quasi-2D metal there is
a simple relation between the two quantities [19]:

mc = 2πh̄2D0/(bc), (1)

where D0 is the 2D DOS (per spin per unit cell) at
the Fermi level, and b = 8.35 Å and c = 11.83 Å are
the unit cell parameters in the plane of conducting lay-
ers [5]. Substituting in Eq. (1) the calculated values
D0,β = 5.94 eV−1 and D0,α = 3.98 eV−1 for the to-
tal DOS and for the contribution from the rhombus-
like Fermi pocket, respectively, we obtain the cyclotron



4

- 0 . 8 - 0 . 6 - 0 . 4 - 0 . 2 0 . 0 0 . 2 0 . 40

2

4

6

8 1 5  K( b )

E n e r g y  ( e V )

0

2

4

6

8
DO

S [
sta

tes
/(e

V⋅u
n.c

ell⋅
sp

in)
]

( a ) 2 0 0  K

FIG. 3. (Color online) Calculated DOS per spin per unit
cell for κ-(BETS)2Mn[N(CN)2]3 at (a) T = 200 K and (b)
T = 15 K. The energy is counted from the Fermi level. The
contribution from the lower lying band, associated with the
rhombus-like Fermi pocket around point Z in Fig. 2, is shown
in blue. The contribution from the higher lying band is shown
in purple. The total DOS is represented by the red line.

masses mc,β = 2.89me and mc,α = 1.93me, where me is
the free electron mass. These values are 1.4 times larger
than the masses (2.03me and 1.39me, respectively) fol-
lowing from the extended Hückel calculations [5]. How-
ever, the ratio mc,α/mc,β = 0.67 is almost the same.
Note that this ratio is 30% higher than what one usually
obtains, both theoretically and experimentally, for κ-salts
[19, 31]. The reason for this obviously lies in the fact that
the enhancement of the DOS at the Fermi level originates
solely from the band responsible for the α pocket.

IV. MAGNETIC QUANTUM OSCILLATIONS

Figure 4 shows the general behavior of the interlayer re-
sistance of pressurized κ-(BETS)2Mn[N(CN)2]3 at a tem-
perature T = 0.36 K, in a magnetic field perpendicular to
layers. Besides superconductivity at very low fields, the
magnetoresistance exhibits a few features which will be
addressed in the following. We start with a detailed con-
sideration of the Shubnikov-de Haas (SdH) oscillations
observed at fields B >∼ 12 T.
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FIG. 4. Interlayer resistance of κ-(BETS)2Mn[N(CN)2]3 un-
der a pressure of 1.4 kbar, at T = 0.36 K, as a function of
magnetic field normal to layers.
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FIG. 5. (Color online) Oscillatory component of the field-
dependent resistance in Fig. 4 normalized to the nonoscil-
lating background. Red lines are envelopes of the rapid β-
oscillations originating from magnetic breakdown, to empha-
size weak slow oscillations associated with the classical cy-
clotron orbit α, see Fig. 2. Inset: the corresponding FFT
spectrum.

A. SdH spectrum and the Fermi surface topology

An example of the oscillatory part of magnetoresis-
tance is presented in Fig. 5. It is dominated by rapid
SdH oscillations; the fast Fourier transform (FFT) spec-
trum, shown in the inset, has a peak at a frequency Fβ =
4225 T. The relevant cyclotron orbit β in k-space covers
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the area Sβ = 40.31 nm−2. This coincides, within an ac-
curacy of 1%, with the first Brillouin zone area calculated
from the 15 K crystallographic data [5]. In addition, weak
slower oscillations can be resolved in the envelopes of the
main oscillations (red lines in Fig. 5). The corresponding
peak in the FFT spectrum is at Fα = 1135 T, reveal-
ing a cyclotron orbit area of 10.83 nm−2 or 27.1% of the
Brillouin zone area. This agrees fairly well with the size
of the rhombus-like part of the calculated 2D Fermi sur-
face centered at point Z on the Brillouin zone boundary,
see Fig. 2. The presence of this oscillatory component
indicates that there is no band degeneracy at the zone
boundary: the Fermi surface consists of a pair of open
sheets and a cylinder separated from each other by a
small gap. The slow oscillations originate from the clas-
sical orbit α on the Fermi cylinder indicated by the blue
arrows in Fig. 2, whereas the fast oscillations are a re-
sult of magnetic breakdown (MB) through the gaps (red
arrows in Fig. 2).

While not predicted by band structure calculations, a
small MB gap between the open sheets and cylindrical
Fermi surface has also been found in SdH experiments
on several other κ-type salts of BETS and BEDT-TTF
with a center-symmetric layer structure [32–39]. One can
consider a weak, <∼ 1 meV, spin-orbit interaction as a
possible source of the gap [40]. However, as pointed out
in Sec. III, in the present case a gap should already arise
due to the disorder in the anion layer along the b-axis.

In the earlier study [5] performed at similar pressures
no SdH oscillations with the frequencies Fα and Fβ were
observed, but instead a very low frequency Fγ = 88 T
has been found and attributed to a very small Fermi
pocket. The latter could be formed due to folding the
original Fermi surface caused by the superstructure tran-
sition at about 100 K [5]. In that scenario the orbits α
and β can also be realized, but now both would addi-
tionally require magnetic breakdown through the super-
structure gap. The absence of the relevant frequencies
could be attributed to the lower field range, B ≤ 15 T,
and higher temperatures, T ≥ 1.4 K, used in the experi-
ment [5]. On the other hand, the reason for the absence
of Fγ in our present data is not quite clear. It is possible
that the discrepancy is caused by different pressurizing
procedures applied in the two experiments. In the work
[5] the sample was cooled at ambient pressure down to
low temperatures and pressures of ∼ 1 kbar were applied
below 20 K using the helium gas pressure technique. In
the present experiment the sample was first pressurized
at room temperature in the clamp cell and then cooled
down under pressure. One can speculate that the 100 K
transition responsible for the Fermi surface reconstruc-
tion is suppressed under these conditions, which would
explain the absence of the slow oscillations in our data.
To verify this scenario, it would be interesting to perform
low-temperature X-ray studies at different pressures.
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FIG. 6. Temperature dependence of the FFT amplitudes of
the α (filled symbols) and β (open symbols) oscillations. The
lines are fits to the Lifshitz-Kosevich temperature dependence
given by Eq. (2) with the normalized cyclotron mass µα(β) =
mc,α(β)/me as a fitting parameter.

B. Effective cyclotron masses

The effective cyclotron masses corresponding to the α
and β orbits can be evaluated in the standard way from
the temperature dependence of the oscillation amplitude.
The latter is described by the Lifshitz-Kosevich temper-
ature damping factor RT,α(β) [41, 42]:

RT,α(β) =
Kµα(β)T/B

sinh(Kµα(β)T/B)
, (2)

where

K = 2π2kBme/h̄e ≈ 14.69 T/K, (3)

kB is the Boltzmann constant, e the elementary charge,
and µα(β) = mc,α(β)/me, the cyclotron mass on the
α(β) orbit expressed in free electron mass units. Fig-
ure 6 shows the FFT amplitudes of the α and β oscil-
lations obtained in the field window from 14 to 17 T at
different temperatures. Fitting the experimental data
by the Lifshitz-Kosevich temperature dependence yields
the effective cyclotron masses µα = 5.6 ± 0.1 and µβ =
7.0± 0.05.

The experimentally determined cyclotron masses sig-
nificantly exceed the theoretical values given in Sect. III.
This apparent discrepancy is often observed for the κ-
type salts and attributed to many-body effects [19, 31]:
electron-electron and electron-phonon interactions lead
to a renormalization of the effective mass µ entering
Eq. (2) by a factor r > 1 as compared to the “band” mass
µb obtained from the band structure calculations (here
we defined µb as the mass obtained from Eq. (1) and nor-
malized to the free electron mass) [42]. However, usually
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the renormalization is uniform over the Fermi surface, i.e.
the factor r is the same for the α and β orbits [19, 31].
By contrast, in our case the renormalization factor for
the α orbit, rα ≡ µα/µ

b
α = 2.9, is notably higher than

for the β orbit, rβ ≡ µβ/µb
β = 2.4. Keeping in mind that

the β orbit contains all the states on the Fermi surface,
including those on the α-pocket (see Fig. 2), the differ-
ence between the many-body renormalization on the α
orbit and on the rest of the Fermi surface must be even
stronger.

The reason for the enhanced many-body effects on
the α pocket may be qualitatively understood by tak-
ing into account the proximity of the electronic system
to the metal-insulator transition. As shown in Sect. III,
the band associated with the α pocket is partially flat-
tened around the Fermi level (which already causes an
increase of the one-particle band mass µb

α). It is reason-
able to expect that the effective reduction of the band-
width places this part of the conduction system more
close to the Mott-insulating state, resulting in a relative
enhancement of electron correlation effects. Addition-
ally, the rhombus-like shape of the α pocket is suggestive
of the so-called “nesting” instability, that is, a strongly
enhanced scattering at the wave vector connecting the
opposite flat segments of the pocket [43–45]. This may
further contribute to the many-body renormalization fac-
tor for the effective mass.

To check the role of the proximity to the Mott-
insulating state, we have repeated the SdH experiment
at an elevated pressure, p = 4.1 kbar, moving the ma-
terial far away from the metal-insulator phase bound-
ary. Expectedly, the cyclotron masses become consider-
ably smaller at this pressure: µα(4.1 kbar) = 3.4 ± 0.1
and µβ(4.1 kbar) = 5.2 ± 0.1, indicating weakening of
the many-body effects. But an important result is that,
within the experimental accuracy [46], the mass enhance-
ment factor is now the same for both orbits, rα = rβ =
1.78 ± 0.05. This provides a strong support for the sug-
gested above momentum- or band-dependent enhance-
ment of electronic correlations near the metal-insulator
transition in κ-(BETS)2Mn[N(CN)2]3. It is worth noting
that even at this pressure the mass values are relatively
high compared to the other κ-salts [35, 47–49]. This can
be at least partially attributed to the peak in the one-
particle DOS near the Fermi level predicted by the band
structure calculations, see Sect. III.

C. Field dependence of the SdH amplitudes

As one can see in Fig. 5, the oscillation amplitude in-
creases in a monotonic manner with no traces of beating.
The absence of beats suggests that the Landau level sep-
aration near the Fermi energy, h̄ωc (where ωc = eB/mc

is the cyclotron frequency), is larger than the interlayer
bandwidth, 4t⊥, in the whole field range where the oscil-
lations are observed. Therefore we apply the 2D Lifshitz-

Kosevich-Shoenberg formula [42, 50–52],

Ai(B) = A0,iRT,iRD,iRMB,i, i = α, β, (4)

which is valid for weak oscillations in a 2D system for
analysing the magnetic field dependence of the oscillation
amplitudes. Besides the temperature factor introduced
above, this formula contains the Dingle damping factor
RD, determined by scattering, and the MB factor. The
prefactor A0,i is proportional to the contribution from
the carriers on the i-th orbit to the zero-field conductiv-
ity, A0,i ∝ σ0,i. It does not depend on B, but we have
included it in Eq. (4) since it has to be taken into account
when comparing the amplitudes of the α and β oscilla-
tions. The Dingle factor is conventionally considered in
the form [42, 53, 54]:

RD = exp

(
− π

ωcτ

)
= exp (−KµTD/B) , (5)

where K is defined by Eq. (3), and the Dingle temper-
ature TD = h̄/2πkBτ is associated with the scattering
rate 1/τ . The MB factors for orbits α and β are readily
expressed in the form (see, e.g., [55]):

RMB,α = [1− exp (−BMB/B)] , (6a)

RMB,β = exp (−2BMB/B) (6b)

with the characteristic field related to the energy
gap ∆MB at the MB junction [42]: BMB ∼
(∆2

MB/εF)(mc/h̄e).
Figure 7 shows the Dingle plot of the oscillation ampli-

tudes: the experimentally obtained amplitudes, divided
by the temperature damping factors (which are known
from the above analysis of the T -dependence), are plot-
ted in logarithmic scale against inverse magnetic field.
The amplitudes were taken from FFT spectra made in
3 T-wide field windows. The horizontal positions of the
points correspond to the midpoints of the respective win-
dows in the 1/B scale.

Before starting with the fitting procedure, it should
be noted that a precise evaluation of the MB field from
our experiment can hardly be done. On the one hand,
the functional B-dependence of the MB factor for the β
oscillations is the same as the B-dependence of the Din-
gle factor, cf. Eqs. (5) and (6b). Therefore, one cannot
extract separately the values BMB and TD from the β os-
cillations only. On the other hand, the influence of MB
on the shape of the Aα(B) dependence is very weak. In-
deed, despite the higher cyclotron mass, the β oscillations
strongly dominate in the whole field range in Fig. 5, im-
plying that the MB field is well below this range. Hence,
the expression in Eq. (6a) for the MB factor for the α
oscillations can be approximated as RMB,α ≈ BMB/B.
This dependence is much weaker than the exponential
dependence of the Dingle damping factor. Therefore, the
influence of MB on the α oscillations is basically reduced
to that on the absolute amplitude. Further, the prefac-
tors A0,i can hardly be directly evaluated, as they de-
pend on numerous details of interlayer charge transfer
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FIG. 7. Dingle plots for the amplitudes of the α oscillations
(a) and the β oscillations (b), see text. The dashed lines are
fits based on Eqs. (4)-(6).

and scattering. However, taking into account that the
β orbit comprises roughly twice as many states as the α
orbit, one can tentatively assume A0,α/A0,β ∼ 1/2.

In spite of the mentioned issues affecting the accuracy
of BMB, our analysis yields some interesting qualitative
results.

We begin with fitting the amplitude of the β oscil-
lations. In the Dingle plot coordinates we obtain a
linear fit [dashed line in Fig. 7(b)] with the y-intercept
ln(A0,β) = 10.51 ± 0.02, in the units of the graph, and
the slope contributed by both the Dingle and MB factors,
Gβ = −(KµβTD,β + 2BMB) = −96.9± 0.3 T.

Next, we turn to the α oscillations. The slope of the
fitting curve in Fig. 7(a) is mainly determined by the Din-
gle factor, yielding TD,α = 0.48 ± 0.02 K. As mentioned
above, the effect of MB on the shape of the field de-
pendence is very weak. It leads to a barely visible non-
linearity of the Dinlge plot in Fig. 7(a). Obviously, this
nonlinearity cannot be unambiguously evaluated within
the present experimental accuracy.

Nevertheless, the MB field can be estimated from the
absolute value of the α-oscillation amplitude provided the
coefficient A0,α is known. Setting, as suggested above
A0,α = A0,β/2 and using for A0,β the value found by
fitting the β amplitude, we obtain a very low MB field:
BMB = 0.057 T. For instance, the corresponding energy
gap, ∆MB ∼ 0.3 meV, is more than an order of magni-

tude lower than in κ-(BEDT-TTF)2Cu(NCS)2 [55–57].
But the large difference between the two cases is not sur-
prising. Indeed, the lack of the inversion symmetry of the
crystal structure in the latter compound is expected to
produce a much larger gap than the subtle mechanisms
discussed above in relation to our material, see Sects. III,
IV A. However, it should be kept in mind that the present
estimation of BMB crucially depends on the assumed ra-
tio A0,α/A0,β . A decrease of this ratio would lead to a
proportional increase of the estimated MB field. Thus,
the obtained value of BMB should only be considered as
a very rough estimate.

Coming back to the β oscillations, we see that the term
associated with MB provides a negligibly small contribu-
tion to the slope of the B-dependence. Even a 10-fold
increase of the given above BMB value would only lead
to a change of ∼ 1% in Gβ . So the evaluation of the
Dingle temperature is robust against the uncertainty in
the MB field. Using the cyclotron mass µβ = 7.0, we find
TD,β ≈ Gβ/Kµβ = 0.94 K.

The obtained values of TD,α and TD,β differ from each
other by a factor of ≈ 2. This apparently comes at
odds with momentum-independent scattering commonly
assumed for our materials at low temperatures. The dif-
ference can be somewhat reduced by a more accurate con-
sideration of many-body renormalization effects. Strictly
speaking, both the cyclotron mass and the Dingle tem-
perature in the expression for RD in Eq. (5) are renor-
malized. It was shown both theoretically [58–60] and
experimentally [61] that the effects of electron-phonon in-
teractions on µ and TD compensate each other in a broad
field and temperature range. The influence of electron-
electron interactions is less studied in this respect. How-
ever, it was argued [62] that at least for a 2D Fermi liquid
the same compensation should be valid for any inelastic
process, including electron-electron scattering, as long as
the oscillations are weak, i.e. RT , RD � 1. These condi-
tions are obviously fulfilled in our case. Therefore we can
consider the Dingle temperature in Eq. (5) to be free of
many-body renormalization but simultaneously replace
the renormalized mass µ, by the band mass µb. By doing
that, we come to new values for the Dingle temperatures
in our fits: TD,α = 1.4±0.05 K and TD,β = 2.28±0.005 K.
One can see that the relative difference between them
has reduced, however is still quite large and cannot be
explained by the experimental error or uncertainties in
the fitting procedure.

Thus, the assumption of a momentum-independent
scattering time τ seems to be inappropriate in our case.
As mentioned in Sect. IV B, the nesting property of the
rhombus-like α orbit may cause enhanced scattering on
this part of the Fermi surface. However, this should lead
to a relative increase of TD,α ∝ 1/τα, whereas our esti-
mated value is considerably lower than TD,β .

Another possibility is to consider a momentum-
independent mean free path ` instead of τ as a charac-
teristic parameter of scattering for different states on the
Fermi surface [63]. This may be a realistic scenario, for
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example, if scattering is mainly determined by a 2D dis-
location network [42]. In Eq. (5) the scattering time can
be replaced by the mean free path with the help of the
approximate relation ` ≈ τpF/mc, where pF '

√
2eh̄F

is the relevant “averaged” Fermi momentum estimated
from the SdH frequency F . Then, using the given above
estimations of TD,α and TD,β , we obtain `α ' 97 nm and
`β ' 77 nm for the α and β orbits, respectively. These
two values are much closer to each other than TD,α and
TD,β . This is because the relatively large τα is partially
compensated by the strongly enhanced effective cyclotron
mass mc,α, see Sect. IV B. Of course, these are only rough
estimates, taking into account the approximations made
above. However, one can consider this result as a hint to
an important role of dislocations in the damping of SdH
oscillations in the present material.

V. SEMICLASSICAL MAGNETORESISTANCE

A. Field perpendicular to layers: effects of
magnetic breakdown and field-induced dimensional

crossover

Apart from the quantum oscillations, the magne-
toresistance of κ-(BETS)2Mn[N(CN)2]3 exhibits several
other features, which can be seen in detail in Fig. 8. At
zero field the material is superconducting. However, the
zero-resistance superconducting state is very rapidly sup-
pressed in this field geometry: the normal-state resis-
tance is already restored at B ≈ 0.5 T. The resistive tran-
sition is followed by a small sharp peak. This anomaly
is better pronounced at liquid 4He temperatures [5] and
has been observed on a number of other layered organic
superconductors [38, 64, 65]. Its origin is most likely
associated with a specific influence of superconducting
fluctuations on the interlayer conduction in a strongly
anisotropic, quasi-2D superconductor [66–68].

In the fully normal state the resistance begins to in-
crease rapidly with the field. However, already starting
from ∼ 1.2 T it gradually flattens out, shows a broad
maximum around 4 T and slightly, by ∼ 1%, decreases
as the field is further increased to ≈ 5.5 T.

One can qualitatively explain this behavior in terms
of the MB effect. Generally speaking, at low fields,
B � BMB, there are two distinct types of electron orbits
on the Fermi surface: closed orbits on the α pockets and
the orbits on the open Fermi sheets. The contribution
of the carriers on the closed orbits to the interlayer con-
ductivity only weakly depends on magnetic field, whereas
the contribution from the open orbits decreases propor-
tionally to 1/B2 [69–71]. Thus, in the absence of MB,
the open orbits are “freezing out” and magnetoresistance
rapidly increases with field, asymptotically approaching
a value solely determined by the closed cyclotron orbits.
When the field becomes comparable to BMB, tunneling of
carriers through the MB gap gives rise to new closed or-
bits and reduces the relative weight of the classical open
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FIG. 8. (a) Close-up of the field-dependent resistance data
from Fig. 4 for fieldsB < 7 T. The star marks the crossover be-
tween different magnetoresistance regimes, see text. (b) The
nonoscillating resistance component plotted against square-
root of magnetic field. Starting from ∼ 10 T the resistance
acquires the

√
B-dependence. The dashed straight line is a

guide to the eye.

orbits. Finally, at B � BMB almost all the carriers ex-
ecute the large closed β orbit, equally contributing to
the interlayer conductivity. This leads to a significant
increase of interlayer conductivity, hence, decrease of re-
sistivity in comparison to what it would be without MB.

While the above description is only qualitative, one
could try to roughly estimate the MB field, ascribing it
to the field at which the magnetoresistance considerably
curves down from its initial slope. According to Fig. 8(a),
it happens in the interval between 1.5 and 3 T, which
would imply a MB gap ∆MB ' 1.3 − 2 meV. This is
much higher than 0.3 meV obtained from the analysis
of the quantum oscillations. However, as pointed out
in Sect. IV C, the latter value is also only a very rough
estimation. Therefore, the obtained discrepancy should
not be considered as a severe contradiction between two
methods but rather as an illustration of subtlety of such
kind of estimations.

At high enough fields, B � BMB, the large closed or-
bit β dominates. However, the magnetoresistance does
not keep saturating, as the standard magnetotransport
theory [69–71] predicts, but rather grows notably start-
ing from Bcr ' 6 T all the way up to the highest field.
Above 10 T it precisely follows a

√
B-dependence, as il-

lustrated in Fig. 8(b). The same field dependence has
recently been reported for another highly anisotropic lay-
ered conductor and explained in terms of a field-induced
dimensional crossover to a “weakly coherent” interlayer
transport regime [72]. The latter is defined as coher-
ent interlayer charge transfer under a strong magnetic
field, when the cyclotron frequency ωc significantly ex-
ceeds both the zero-field intralayer scattering rate 1/τ0
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and the interlayer tunneling rate ∼ t⊥/h̄. At such con-
ditions the impact of scattering on point-like defects on
charge transport is enhanced similarly to the case of a
purely two-dimensional system [73]. As a result, the scat-
tering rate and hence interlayer resistance are predicted
[52, 73, 74] to grow proportionally to

√
B.

Assuming that bending of the R(B) dependence at Bcr

is entirely caused by the crossover to the weakly coherent
regime, one can evaluate the upper limit for the interlayer
transfer integral: 2t⊥ ≤ h̄ωc,cr ≡ h̄eBcr/mc,β = 0.1 meV
(here we used the value for the cyclotron mass mc,β =
7.0me obtained from the SdH data). Estimating, further,
the Fermi energy as εF ∼ h̄eFβ/mc ≈ 70 meV, we obtain
the anisotropy ratio, εF/2t⊥ ≥ 700. The information on
t⊥ in known BETS salts is very scarce. Comparing with
better studied κ-type BEDT-TTF salts, similar values
have been reported for the most anisotropic compounds
κ-(BEDT-TTF)2X with X = Cu(NCS)2 [75] and I3 [76].
The very low value of t⊥ is fully consistent with the ab-
sence of beats in the SdH oscillations and thus further
justifies the use of the 2D Lifshitz-Kosevich-Shoenberg
formula (4) for the oscillation amplitude.

In Figs. 4 and 8, the bending of magnetoresistance at
Bcr may look somewhat too sharp for what one would
generally expect from a gradual crossover. However, a
similar sharp bending has been found on pressurized α-
(BEDT-TTF)2KHg(SCN)4 at ' 1 T [72]. Moreover, the
recent numerical calculations of the interlayer magnetore-
sistance in a quasi-two-dimensional metal [77] made in
the self-consistent Born approximation have reproduced
a relatively sharp crossover from a nearly constant value
to a

√
B-dependence in a field when the Landau level

separation becomes larger than their width 2Γ0 = h̄/τ0.
Note that in this case the crossover is determined by
scattering rather than by interlayer charge transfer: the
condition h̄ωc � 2t⊥ is supposed to be fulfilled already
at lower fields. If we adopt the same crossover crite-
rion, h̄ωc,cr ' 2Γ0, for our case, we can estimate the
transport scattering time, τ0 ' mc,β/eBcr ≈ 6.5 ps.
This value is much higher than the scattering time de-
rived from the Dingle factor of the SdH oscillations,
τD = h̄/2πkBTD ≈ 0.6 ps. Such a large difference is not
uncommon for organic metals [72, 78, 79] and is caused by
different scattering mechanisms dominating in the charge
transport and quantum oscillation damping. In partic-
ular, as argued in Sect. IV C, the Dingle factor in our
material is mainly determined by scattering on disloca-
tions, which usually plays only a minor role in the charge
transport, especially in the interlayer direction.

B. Angle-dependent magnetoresistance and the
Fermi surface geometry

The main panel of Fig. 9 shows examples of the re-
sistance recorded at rotating the sample in a constant
magnetic field, B = 28 T. The resistance was measured
as a function of polar angle θ at different fixed azimuthal

- 1 0 0 - 5 0 0 5 0 1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

1
- 1

32

- 2

- 3
- 4

1 1 7 °

8 7 °

5 4 °

B  =  2 8  T  
T  =  1 . 3  K

*

*
**

*

R (
Ω

)

θ  ( d e g . )

ϕ:
- 3 6 °

- 5 5
- 2

2

ϕ  =  5 4 °

t a n  θN

N  �  1 / 4

( b )

( a )

FIG. 9. (Color online) Examples of the angular dependence
of the resistance in a magnetic field of 28 T at different az-
imuthal orientations ϕ indicated on the right-hand side. The
curves are vertically shifted for clarity. The arrows point to
the positions of AMRO maxima, see text. The stars mark
the -1st and +1st maxima corresponding to additional oscil-
lations dominating near ϕ ' 90◦. Insets: (a) high-θ part of
the R(θ) dependence at ϕ = 54◦ in an enlarged scale, showing
high-order AMRO maxima; (b) AMRO positions plotted in
the tan θ vs. N scale, for ϕ = 54◦. The positive and negative
indices N are shifted, respectively, to the left and to the right
by 1/4, in order to enable a common linear fit according to
Eq. (7).

angles ϕ, see Sect. II. The measurements were done in
the range −36◦ ≤ ϕ ≤ 144◦. For most of the azimuthal
orientations clear oscillations periodic in tan θ have been
detected. In Fig. 9 the relevant local maxima are marked
by arrows. These angle-dependent magnetoresistance os-
cillations (AMRO), also known as Yamaji oscillations,
originate from periodic geometric resonances of the in-
terlayer charge transport in a quasi-2D metal in a tilted
magnetic field [80–85]. They are frequently observed in
organic metals and utilized for exploring the Fermi sur-
face geometry [20].
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FIG. 10. (Color online) Inplane cross section of the Fermi
surface determined from the AMRO data as described in the
text. The red symbols are the values of kmax

B (ϕ) in polar
coordinates. Filled symbols are the data obtained directly
from the R(θ) curves at the corresponding angles ϕ; open
symbols are the same data shifted by 180◦. For a comparison
with the theoretical predictions the Fermi surface from Fig. 2
is shown by the thick dashed line.

To determine the shape of the Fermi-surface inplane
cross section, we follow the procedure proposed in Ref. 86
for the general case of a low-symmetry layered system.
First, for each θ-sweep the AMRO period is evaluated
from the linear fit of the N -th local maximum positions
plotted in the tan θ-scale against N , according to the
condition:

|tan θN | = ∆0 (|N + γ| − 1/4) , N = ±1,±2, ...,
(7)

where the offset γ (−1 < γ < 1) is determined by the in-
plane projection of the interlayer hopping vector [86]. An
example of such fitting for ϕ = 54◦ is shown in Fig. 9(b).
In the figure, the positive and negative indices are shifted
by −1/4 and +1/4, respectively, in order to include data
for both positive and negative angles in a common fit.

The period ∆0 is given by the ratio of the recipro-
cal lattice period Kz in the interlayer direction and the
maximum inplane Fermi wave vector projection kmax

B
on the field rotation plane: ∆0(ϕ) = 1/2 [Kz/k

max
B (ϕ)].

Thus, using the experimentally determined AMRO pe-
riods and substituting Kz = 3.24 nm−1 taken from the
low-temperature crystallographic data [5], we evaluate
kmax
B for different azimuthal orientations ϕ. The result,

in polar coordinates, is shown in Fig. 10. Here, the filled
circles represent the data obtained directly from the ex-
periment, while the open circles are the same data trans-
lated by 180◦, taking into account the inversion symme-
try of the Fermi surface. Further, through each point

kmax
B (ϕ) a straight line perpendicular to the direction ϕ

is drawn (thin dashed lines in Fig. 10) and the inplane
Fermi surface (thick green line) is constructed as a con-
tour inscribed in the whole set of these straight lines.

The size of the obtained Fermi surface is close to that of
the first Brillouin zone, in agreement with the large Fermi
surface predicted by the band structure calculations and
with the frequency of the fast quantum oscillations pre-
sented above. No AMRO associated with the small α
pockets of the Fermi surface have been found. This is
obviously a consequence of the strong MB regime which
governs the magnetoresistance behavior at B = 28 T even
at relatively high tilt angles, at least up to ' 70◦.

As to the shape of the Fermi surface, it is also quite
similar to the theoretical one, which is indicated in Fig. 10
by the thick dashed line. It also has relatively flat seg-
ments inclined by ' ±40◦ with respect to the kc-axis and
a sharp “nose” along kc. The dimension along kc appears
to be slightly smaller and along kb slightly larger than
calculated. However, the difference does not exceed the
experimental error bar. Therefore we can speak about
very good quantitative agreement between the theoreti-
cal predictions and the experimental results.

Surprisingly, at azimuthal orientations in a narrow in-
terval of ' ±5◦ around kb direction the conventional
AMRO vanish. In this interval the R(θ) dependence
is governed by other, nonperiodic oscillations, see the
ϕ = 87◦ curve in Fig. 9. The new features seem to com-
pete with the AMRO. Outside the mentioned ϕ range
they only persist at low tilt angles, |θ| < 30◦. At the
same time the AMRO maxima, which are expected at
the positions pointed by dotted arrows in Fig. 9, are com-
pletely suppressed. By contrast, at higher θ the conven-
tional AMRO are restored, whereas the new features dis-
appear. Thus, there seems to be no angular range where
both kinds of oscillations coexist. It should be noted that
at the angles, at which switching between the two kinds
happens, no change in the cyclotron orbit topology is
expected.

Similarily to the AMRO and other geometrical effects
of the Fermi surface in a quasi-2D metal [20], the new fea-
tures appear to keep their angular positions at changing
the field strength. This is illustrated in Fig. 11 where the
R(θ) dependence is shown for two azimuthal orientations
at B = 28 and 15 T. On the other hand, the influence of
the field strength on the amplitude of the features is rela-
tively weak: Fig. 11(a) shows that at decreasing the field
to 15 T the usual AMRO practically vanish, whereas the
peak around θ = 5.5◦ only becomes slightly lower and
more smeared.

All in all, the new features are unlikely a pure effect of
the Fermi surface geometry. One may look for their origin
in coupling between charge and spin degrees of freedom.
Indeed, the magnetoresistance, especially in the inter-
layer direction, may be sensitive to the magnetic state
of Mn2+ ions in the anion layer. The ambient-pressure
magnetic experiments [16–18] have revealed a dramatic
slowing of the spin dynamics in the manganese subsys-
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tem at low temperatures and considerable interactions
with antiferromagnetically ordering π-electron spins in
the Mott-insulating state. However, at present we do not
have enough data to establish a direct link between the
magnetoresistance behavior and magnetic properties. A
further study, for example, combined angle-resolved re-
sistance and magnetic measurements in the metallic state
should be helpful for clarifying the situation.

Finally, we discuss the dependence of magnetoresis-
tance on the inplane field orientation. Figure 12 shows
the resistance values corresponding to θ = 90◦, taken
from the R(θ) curves recorded at different ϕ. The no-
table variation of the resistance, as the field is turned
in the layer plane, is generally associated with coher-
ent interlayer charge transport in a layered system with
an anisotropic inplane cross section of the Fermi surface
[87, 88]

The shape of the R(ϕ) dependence resembles that ob-
served on materials with open Fermi sheets such as Bech-
gaard salts (TMTSF)2X [89–91] or (DMET)2X [92, 93].
The magnetoresistance is at a maximum when the field is
directed along the plane of the sheets, in our case ϕ = 0◦

(i.e. B‖c), and decreases towards ϕ = 90◦, exhibiting two
minima at ϕ ≈ 90◦ ± 30◦. As shown in Fig. 12, a change
of the field strength by almost a factor of two only affects
the absolute value of magnetoresistance; the shape of the
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FIG. 12. (Color online) Angular dependence of the resistance
in a field parallel to the conducting layers, at B = 15 and
28 T. Dotted lines are guides to the eye.

ϕ-dependence remains largely unchanged. Most impor-
tantly, the angles of the resistance minima stay the same,
suggesting that they are associated with the Fermi sur-
face geometry. At first glance, they can be ascribed to the
“third angular effect”at the field directions perpendicular
to inflection points on the Fermi surface [89, 90]. How-
ever, our Fermi surface contains, besides the open sheets,
a cylindrical α-pocket. Moreover, since the gaps between
the sheets and the pocket are very small, it is the large
closed Fermi surface cross section delineated in Fig. 10,
which basically determines the magnetoresistance behav-
ior. Assuming a momentum-independent scattering rate,
one would expect minima of R(ϕ) at a field perpendic-
ular to the parts of the Fermi surface with the smallest
curvature [20], that is, perpendicular to the flat segments
of the α-pocket. According to Figs. 2 and 10, these di-
rections are tilted by ≈ 40◦ from the b-axis, i.e. 10◦

away from the positions of the detected resistance min-
ima. This discrepancy definitely exceeds the experimen-
tal error bar and the uncertainty in the Fermi surface
shape.

A shift of the resistance minimum positions from the
directions given by the Fermi surface geometry may oc-
cur if the carrier mobility significantly depends on mo-
mentum For example, Sugiwara et al. [94, 95] used the
apparent mismatch between the R(ϕ) dependence and
the Fermi surface shape to evaluate the k-dependence of
scattering rate in some BETS and BEDT-TTF salts. In
our case, the shift of the resistance minima towards the
direction of the b-axis can be explained by a suppressed
mobility on the α Fermi pocket. This seems to be a
likely scenario, keeping in mind the particularly strong
enhancement of the effective mass mc,α revealed in the
SdH experiment.

As mentioned above, the significant ϕ-dependence of
magnetoresistance associated with the Fermi surface ge-
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ometry is an evidence of a coherent interlayer charge
transport. On the other hand, a broad dip observed in all
θ-sweeps around θ = ±90◦, see, e.g., Fig. 9, reveals the
presence of an incoherent conduction channel [88, 96].
Thus, the total interlayer conduction includes both the
coherent and incoherent channels. However, the small
amplitude of the dip (< 10% of the total magnetoresis-
tance) indicates that only a minor fraction of the total
conductivity is incoherent.

Despite the dominant contribution of the coherent con-
duction channel, we were unable to detect a sharp peak in
the angle-dependent magnetoresistance around θ = 90◦

[97, 98], which is often considered as a fingerprint of
the coherent interlayer transport regime. The reason
for that is most likely the very high anisotropy. In-
deed, besides the effective field-strength parameter ωcτ ,
the magnitude of such “coherence peak” depends on the
anisotropy ratio [98]. The peak is particularly strong in
clean quasi-2D metals with a moderately high anisotropy,
εF/2t⊥ ∼ 100− 200 [86, 98–100] but diminishes in more
anisotropic materials [75, 76, 88]. In a clean sample of
κ-(BEDT-TTF)2Cu(NCS)2, showing an anisotropy sim-
ilar to our compound, the peak height was found to be
only few percent of the total resistance in fields 42−45 T
[57, 75]. In our experiment the highest field was 1.5 times
lower and the Dingle temperature about 4 times higher
(TD ' 2 K against 0.5 K in Ref. 57), which explains the
absence of the peak in the present data.

VI. SUMMARY

We have studied the Fermi surface properties of κ-
(BETS)2Mn[N(CN)2]3 both theoretically and experi-
mentally. The experiment was done under a moderate
pressure, in order to stabilize the metallic ground state.
The large cylindrical Fermi surface predicted by the cal-
culations is found to be split into a pair of open sheets ex-
tended in the kakc-plane and a cylinder with a rhombus-
like inplane cross-section area of ≈ 27% of the first Bril-
louin zone. The sheets and the cylinder are separated
from each other by small, of the order of 1 meV, gaps
on the Brillouin zone boundary caused by a disorder of
the dicyanamide groups in the anion layers and, possi-
bly, by a weak spin-orbit interaction. The predicted size
and shape of the Fermi surface are confirmed by the SdH
oscillations as well as by the classical AMRO. In partic-
ular, the SdH spectrum shows two fundamental frequen-
cies corresponding, respectively, to the classical cyclotron
orbit α on the small Fermi cylinder and to the large β
orbit caused by magnetic breakdown through the gaps.
While the topology of the Fermi surface is typical of the
κ-type salts of BEDT-TTF and BETS, there are a few
interesting features specific to the present compound.

The effective cyclotron masses determined from the
T -dependence of the SdH oscillations show a strong en-
hancement which can only partially be attributed to the
peak in the calculated one-particle DOS near the Fermi

level. The main reason for the enhancement is the renor-
malization effect of electron correlations in the vicinity
of the Mott-insulating transition. The effect clearly ex-
hibits a momentum dependence, being especially strong
on the α-pocket of the Fermi surface. A likely reason for
the momentum-selective enhancement of correlations is a
partial flattening of the conducting band, associated with
the α-pocket, which places this part of the system more
close to the metal-insulator transition. Additionally, the
nesting property of this pocket could contribute to the in-
stability of the metallic state. The heavier effective mass
leads to a lower mobility of the carriers on the α-pocket.
Indeed, a close examination of the ϕ-dependence of the
classical magnetoresistance in conjunction with the shape
of the inplane Fermi surface indicates a suppressed con-
tribution of these carriers to the interlayer conductance.
Further experiments at different pressures are required
in order to understand how the insulating instability de-
velops on different parts of the Fermi surface upon ap-
proaching the metal-insulator transition.

The field dependence of the SdH amplitude reveals a
considerable difference between the Dingle temperatures
corresponding to the α and β orbits. The apparent con-
tradiction can be solved by suggesting a constant mean
free path instead of scattering time to be the relevant pa-
rameter in the Dingle factor. This is a realistic scenario
if the Landau level broadening responsible for damping
of the oscillations is mainly determined by scattering on
a 2D dislocation network. By contrast to the quantum
oscillations, the classical magnetoresistance is largely in-
sensitive to dislocations. As a result, the scattering time
estimated from the crossover in the magnetoresistance
field dependence is considerably longer than that inferred
from the quantum oscillations.

The crossover field also sets the upper limit for the in-
terlayer transfer energy, 2t⊥ ≤ 0.1 meV, which is ' 700
times lower than the Fermi energy. Despite the weak
coupling between the layers, the interlayer charge trans-
port is dominated by the coherent conduction channel.
This is indicated both by prominent AMRO and by the
considerable ϕ-dependence of the magnetoresistance in a
field parallel to layers.

Besides the well-known AMRO effect, an additional
series of pronounced nonmonotonic features has been
found in the θ-dependent magnetoresistance. These fea-
tures are unlikely a pure effect of the Fermi surface ge-
ometry. Keeping in mind the proximity to the insu-
lating state with nontrivial magnetic properties, they
might be a result of charge-spin coupling in the pres-
ence of a magnetic instability. Ideally, combined resis-
tive and magnetic studies under pressure should clar-
ify this point. This is, however, a difficult experimen-
tal task due to the very small size of the samples. On
the other hand, one could gain additional information
from a magnetoresistance study of the mixed salt κ-
(BETS)2Co0.13Mn0.87[N(CN)2]3. This sister compound
displays very similar phase diagram and zero-field re-
sistive properties but a considerably different magnetic
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anisotropy as compared to the present salt [101]. Con-
fronting the magnetoresistance behaviors of the two salts
may be helpful for understanding the origin of the new
oscillations.
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Phys. Rev. Lett. 85, 5420 (2000).

[7] F. Kagawa, T. Itou, K. Miyagawa, and K. Kanoda,
Phys. Rev. Lett. 93, 127001 (2004).

[8] Y. Kurosaki, Y. Shimizu, K. Miyagawa, K. Kanoda,
and G. Saito, Phys. Rev. Lett. 95, 177001 (2005).

[9] L. Brossard, R. Clerac, C. Coulon, M. Tokumoto, T. Zi-
man, D. K. Petrov, V. N. Laukhin, M. J. Naughton,
A. Audouard, F. Goze, A. Kobayashi, H. Kobayashi,
and P. Cassoux, Eur. Phys. J. B 1, 439 (1998).
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