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SUMMARY

Direct generation of a homogeneous population of
skeletal myoblasts from human embryonic stem
cells (hESCs) and formation of three-dimensional
contractile structures for disease modeling in vitro
are current challenges in regenerative medicine.
Previous studies reported on the generation of
myoblasts from ESC-derived embryoid bodies (EB),
but not from undifferentiated ESCs, indicating the
requirement for mesodermal transition to promote
skeletal myogenesis. Here, we show that selective
absence of the SWI/SNF component BAF60C (en-
coded by SMARCD3) confers on hESCs resistance
to MyoD-mediated activation of skeletal myogene-
sis. Forced expression of BAF60C enables MyoD to
directly activate skeletal myogenesis in hESCs by in-
structing MyoD positioning and allowing chromatin
remodeling at target genes. BAF60C/MyoD-express-
ing hESCs are epigenetically committed myogenic
progenitors, which bypass the mesodermal require-
ment and, when cultured as floating clusters, give
rise to contractile three-dimensional myospheres
composed of skeletal myotubes. These results iden-
tify BAF60C as a key epigenetic determinant of
hESC commitment to the myogenic lineage and
establish the molecular basis for the generation of
hESC-derived myospheres exploitable for ‘‘disease
in a dish’’ models of muscular physiology and
dysfunction.
INTRODUCTION

Generation of tridimensional (3D) structures that recapitulate

histological and functional properties of adult organs and tissues

is a current challenge in regenerative medicine because it

requires abundant and homogeneous population of committed

progenitors from human embryonic stem cells (hESCs). For

instance, formation of hESC-derived contractile 3D skeletal
muscles has never been reported, reflecting the unsuccessful

attempts to directly generate homogeneous populations of skel-

etal muscle progenitors from undifferentiated hESCs. Previous

studies have demonstrated that generation of skeletal myoblasts

could be achieved from embryoid body (EB)-derived meso-

dermal cells (Darabi et al., 2008, 2012; Iacovino et al., 2011) or

from mesenchymal derivatives of ESCs (Barberi et al., 2007;

Goudenege et al., 2012), indicating the requirement for transition

through the mesodermal stage to activate skeletal myogenesis.

This evidence suggests an ‘‘intrinsic’’ resistance to the activation

of the myogenic program in ESCs prior to mesoderm formation.

Indeed, no evidence of direct generation of skeletal muscle

progenitors from undifferentiated hESCs has been reported so

far, raising the question of whether hESCs can be directly re-

programmed into skeletal muscle cells. Direct myogenic conver-

sion of somatic nonmuscle cells upon introduction of MyoD has

provided evidence that a single tissue-specific transcriptional

activator is able to reprogram the nucleus of host cells into the

skeletal muscle phenotype (Weintraub et al., 1989; Gerber

et al., 1997; Chambers and Studer, 2011). However, it is currently

unknown whether ESCs can be reprogrammed into skeletal

myoblasts by ectopic expression of MyoD.

RESULTS AND DISCUSSION

Selective Absence of BAF60C in hESCs Prevents
Activation of Skeletal Myogenesis by Ectopic
Expression of MyoD
We tested the ability of hESCs to undergo direct myogenic

conversion in response to the ectopic expression of MyoD as

compared to human fibroblasts that typically convert into skel-

etal muscle cells upon MyoD expression (Weintraub et al.,

1989). Surprisingly, expression of MyoD in hESCs failed to

activate skeletal myogenesis under the same culture conditions

in which massive myogenic conversion was observed upon

expression ofMyoD inH27 human fibroblasts (Figure 1A and Fig-

ure S1A). Resistance to MyoD-induced myogenic conversion

was observed in different hESC lines tested (H9 and H1) (Fig-

ure S1B). Figure 1A shows that ectopic MyoD was expressed

at comparable levels and was properly localized in the nuclei

of hESCs as well as fibroblasts but failed to activate muscle

gene expression only in hESCs (Figure 1A and Figure S1),
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Figure 1. BAF60C2 Rescues MyoD-Mediated Myogenic Conversion in hESCs

(A) Immunofluorescence staining to detect myosin heavy chain (MHC) (green) and MyoD (red) in human fibroblasts (H27) and hESCs (H9) infected with MyoD or

a control virus (Pgk). Nuclei are visualized by DAPI staining (blue). Cells were cultured in monolayer and induced to differentiate by shifting medium from growing

conditions (growth medium [GM]) to promyogenic differentiation medium (DM). See Experimental Procedures for details.

(B) Relative gene expression of BAF60 subunits (A,B,C) in hESCs (H9), human skeletal myoblasts (husk), and human fibroblasts (H27). Error bars represent ±SD.

(C) Relative gene expression of BAF60 variants and human BAF60C isoforms C1 and C2 were measured at the indicated time points during H9 differentiation

into EBs.

(D) Representative fluorescence staining to detect MHC (red) and Baf60c (green) in human fibroblasts (H27) infected with lentivirus expressing MyoD and in

hESCs (H9) with lentiviruses expressing MyoD alone or together with BAF60C2. After infection, cells were cultured in monolayer and induced to differentiate by

shifting medium from GM to DM.

(E) Efficiency of myogenic conversion was calculated as a percentage of the nuclei contained within the myotubes (n = 3; error bars represent ±SD).

See also Figures S1and S2.
suggesting that hESCs might have a ‘‘nuclear landscape’’ not

permissive for activation of themyogenic program.We reasoned

that this could be due to a deficiency in a key component(s) of the

chromatin-modifying machinery that enables MyoD to activate

transcription from target genes. We therefore analyzed the integ-

rity of the chromatin-modifying complexes that are known to

enable MyoD-activated gene expression (de la Serna et al.,
662 Cell Reports 3, 661–670, March 28, 2013 ª2013 The Authors
2006; Guasconi and Puri, 2009; Sartorelli and Juan, 2011). We

measured by quantitative RT-PCR (qRT-PCR) the expression

levels of key components of these complexes in distinct hESC

lines (H1, H7, and H9) and human H27 fibroblasts and found

that the large majority of them were expressed in all cell lines

analyzed, with the notable exception of the structural sub-

units of the SWI/SNF chromatin remodeling complex, BAF60C



(encoded by SMARCD3), and the alternative SWI/SNF ATPase

BRM (Figure S2). Lack of Baf60c and Brm proteins in mouse

embryonic stem cells was previously observed by Crabtree

and colleagues (Ho et al., 2009). However, while Baf60c is abso-

lutely required for the activation of skeletal myogenesis (Forcales

et al., 2012; Lickert et al., 2004), Brm appears dispensable

(Reyes et al., 1998), with Brg1 being the essential ATPase of

the SWI/SNF complex that remodels the chromatin at MyoD

target genes (Ohkawa et al., 2006; Forcales et al., 2012). Three

alternative variants of the BAF60 subunits—BAF60A, B, and

C—are expressed in somatic cells, with mutually exclusive pres-

ence in distinct SWI/SNF complexes (Debril et al., 2004; Wang

et al., 1996). Of note, while all three variants are expressed in

human skeletal myoblasts and fibroblasts, which are competent

to activate the myogenic program, expression of BAF60A and B,

but not BAF60C, was detected in hESCs, which are resistant

to the activation of the myogenic program (Figure 1B). Interest-

ingly, BAF60C was induced upon EB formation (Figure 1C),

a stage permissive for the activation of skeletal myogenesis

(Iacovino et al., 2011). Two BAF60C isoforms are expressed in

human somatic cells: BAF60C1 and BAF60C2. However, only

BAF60C2 was significantly upregulated during EB formation

(Figure 1C). Thus, we hypothesized that BAF60C2 could be a

limiting factor for the direct activation of the myogenic program

in hESCs and tested whether forced expression of BAF60C2 in

hESCs could restoreMyoD-mediated activation of themyogenic

program. Figures 1D and 1E show that ectopic expression of

BAF60C2 enabled MyoD-directed conversion of hESCs into

myosin heavy chain (MyHC)-positive muscle cells.

Efficient Generation of Skeletal Muscle Cells from
hESCs Requires an Epigenetic Commitment by
BAF60C2 and MyoD, Followed by Activation of Skeletal
Myogenesis within Floating Clusters
Because the efficiency of myogenic conversion in BAF60C2/

MyoD-expressing hESCs was reduced as compared to the

myogenic conversion of MyoD-expressing fibroblasts (Fig-

ure 1E), we considered the possibility that hESCs could receive

optimal differentiation cues from their physiological context; that

is, the network of signals generated by cell aggregation (such

that occurring within EBs) (Keller, 1995). It is well established

that cell-to-cell interactions promote intracellular promyogenic

signaling (Krauss, 2010). To this purpose, we devised a protocol

for generation of skeletal muscle cells from hESCs that included

the transition through an aggregation stage (EB-like clusters)

equivalent to the standard culture conditions that typically

promote EBs from hESCs (see scheme in Figure 2A and Exper-

imental Procedures for details). We generated hESCs (H9 line)

stably expressing BAF60C2 and MyoD (hereby referred to as

hESCBAF60C2/MyoD) and cultured them in conditions permissive

for aggregation into floating clusters for 5 days (pre-EB condi-

tions), followed by dissociation into single cells that were

subsequently exposed to standard myogenic differentiation

medium (post-EB condition; see scheme in Figure 2A). Of note,

we tested various combinations of expression timing of MyoD

andBAF60C2 in different hESC lines and observed the activation

of the myogenic program only when BAF60C2 was expressed

prior to MyoD (data not shown). This protocol led to a dramatic
enhancement in the activation of the myogenic program in

hESCBAF60C2/MyoD, with the generation of a homogeneous popu-

lation of committed cells (Figure 2B, pre-EB conditions) that

became competent to activate skeletal myogenesis upon aggre-

gation into EB-like clusters, leading to massive formation of

myogenin/MyHC-positive myotubes after dissociation and ex-

posure to DM conditions (Figures 2B [post-EB conditions] and

2C). Under these conditions, the percentage of myogenic

conversion of hESCBAF60C2/MyoD was much higher (60.1% ±

5% MyHC-positive cells) (Figure 2B) than that observed in stan-

dard conditions for myogenic conversion shown in Figure 1D

(4.67% ± 0.8% MyHC-positive cells). Sporadic formation of

myogenin-positive cells was observed in MyoD-expressing

H9 hESCs (hESCMyoD) cultured in EB medium (Figures 2B and

2C), possibly due to localized upregulation of endogenous

BAF60C2 or to the compensatory activity of BAF60B, as previ-

ously described for cardiomyogenesis (Takeuchi and Bruneau,

2009). However, only hESCBAF60C2/MyoD differentiated into

MyHC-positive myotubes with high efficiency after culture in

EB conditions (60.1% ± 5% MyHC-positive cells from

hESCBAF60C2/MyoD versus 2.5% ± 0.5% from hESCMyoD). Inter-

estingly, forced expression of BAF60C2 alone in hESCs

(hESCBAF60C2) could not activate the skeletal myogenesis in

the absence of MyoD (Figure 2B), indicating that BAF60C2

requires the presence of MyoD to activate muscle gene ex-

pression. These results indicate a multistep progression of

hESCBAF60C2/MyoD through sequential stages of cellular differen-

tiation, including lineage determination by MyoD and BAF60C2

(pre-EB stage) followed by competence to respond to differenti-

ation signals and formation of terminally differentiated myotubes

(post-EB stages). Previous works demonstrated the key role of

BAF60C2 in at least two essential epigenetic events underlying

myogenic differentiation, such asMyoD binding to the chromatin

of target genes and the signal-dependent recruitment of BRG1-

based SWI/SNF chromatin remodeling complex (Forcales et al.,

2012). We used chromatin immunoprecipitation (ChIP) to inves-

tigate the sequential recruitment of MyoD, BAF60C2, and BRG1

to MyoD target genes in hESCBAF60C2/MyoD or hESCMyoD or

control PGK-infected hESCs (hESCPgk) at pre-EB and post-EB

stages. We focused on human MYOGENIN gene, since activa-

tion of MYOGENIN transcription is invariably required for the

execution of the myogenic program during development and

post-natal life (Hasty et al., 1993; Ohkawa et al., 2006). More-

over, the sequential recruitment of MyoD/BAF60C complex,

followed by BRG1-based SWI/SNF complex, has been demon-

strated on myogenin promoter in skeletal myoblasts (Forcales

et al., 2012). In the absence of BAF60C2 (hESCMyoD), MyoD

could not bind theMYOGENIN promoter either in pre-EB condi-

tions or after exposure to the differentiation signals within EB-like

clusters (post-EB conditions) (Figure 2D). Forced expression of

BAF60C2 (hESCBAF60C2/MyoD) enabled MyoD recruitment to

MYOGENIN promoter together with BAF60C2, but not BRG1,

in pre-EB conditions (Figure 2D). Formaldehyde-assisted isola-

tion of regulatory elements (FAIRE) showed that BAF60C2 and

MyoD binding to MYOGENIN promoter correlated with incipient

chromatin accessibility in correspondence of the PBX binding

site (Berkes et al., 2004) in hESCBAF60C2/MyoD as compared

to control lines in pre-EB conditions (Figure 2E). This evidence
Cell Reports 3, 661–670, March 28, 2013 ª2013 The Authors 663



Figure 2. Efficient Generation of Muscle Cells from hESCBAF60c2/MyoD Is Achieved through BAF60C-Dependent Chromatin Targeting ofMyoD

prior to Differentiation into EBs

(A) Protocol to derive muscle cells from undifferentiated hESCs (H9) infected sequentially with BAF60C2 (B) andMyoD (M) lentiviruses. Cells were collected at the

pre-EB or post-EB stages, as indicated, for further analysis.

(B) Representative images of hESCs infected with control (Pgk), BAF60C2-IRESGFP, MyoD, and BAF60C2/MyoD lentiviruses. Pre-EB cells were stained with

antibodies against MyoD and green fluorescent protein to reveal exogenous proteins. Post-EB cells were stained for MHC and myogenin (Myog) to monitor the

myogenic conversion.

(C) qRT-PCR analysis performed at pre- and post-EB stage. Error bars represent ±SD.

(D) ChIP analysis onMYOGENIN promoter and NKX2.5 enhancer. Chromatin from Pgk, M, and BM cells at pre-EB and post-EB stages was immunoprecipitated

with antibodies against MyoD, Baf60c, and Brg1, and IgG was used as a control. Protein recruitment is expressed as relative enrichment of each factor (black

bars) compared to IgG (white bars) after normalization for total input control (n = 3; error bars represent SEM).

(E) FAIRE assay performed in pre- and post-EB cells to assess chromatin status onMYOGENIN promoter and NKX2.5 enhancer. A representative experiment is

shown (n = 3). Primer amplicons are depicted.

(F) Recruitment of Pol II ser5P and Pol II ser2P on MYOGENIN promoter or coding region performed on pre-EB and post-EB cells as described in (D).

664 Cell Reports 3, 661–670, March 28, 2013 ª2013 The Authors



indicates an instructive role of BAF60C2 in the early recognition

of MyoD target sequences. Moreover, only in hESCBAF60C2/MyoD

BRG1 recruitment to MYOGENIN promoter was detected in

response to differentiation signals (post-EB conditions) (Fig-

ure 2D). The recruitment of BRG1-based SWI/SNF complex

correlated with a dramatic enhancement in chromatin accessi-

bility that was extended to the MEF2/Ebox sites (Figure 2E)

and the engagement of the elongation-competent (serine 2

phosphorylated) form of polymerase II (Pol II ser2P) (Figure 2F),

leading to activation of transcription (Figure 2C). Interestingly,

serine 5 phosphorylated Pol II (Pol II ser5P) was detected at

the transcription start site of MYOGENIN promoter in hESCs

regardless the presence of MyoD and/or BAF60C2 (Figure 2F),

according to the ‘‘poised’’ conformation of the chromatin at

tissue-specific genes previously described in ESCs (Azuara

et al., 2006; Boyer et al., 2006; Lee et al., 2006; Mikkelsen

et al., 2007). Of note, BAF60C2 and BRG1 were not detected

on the enhancer of the cardiac-specific gene NKX2.5 in

hESCBAF60C2/MyoD (Figure 2D). NKX2.5 is induced by BAF60C2

and the transcriptional activators GATA4 and TBX5 in cardiac

progenitors (Lickert et al., 2004; Takeuchi and Bruneau,

2009) and was expressed in control hESCPgk and hESCMyoD,

but not in hESCBAF60C2/MyoD (see Figure 3A). Consistently,

NKX2.5 enhancer showed a closed chromatin conformation in

hESCBAF60C2/MyoD, while in hESCPgk and hESCMyoD an increased

accessibility was detected at GATA4 binding sites (Figure 2E).

This evidence further supports the conclusion that BAF60C2

enables selective activation of skeletal muscle genes by MyoD.

The sequential and dynamic chromatin modifications shown in

Figures 2D–2F define two distinct stages that reflect a ‘‘silent’’

epigenetic commitment to the myogenic lineage (pre-EB condi-

tions) followed by the transcriptional activation of muscle genes

in post-EB conditions.

Ectopic Expression of BAF60C2/MyoD Bypasses the
Requirement for Mesodermal Transition to Promote
Skeletal Myogenesis in hESCs
The direct activation of muscle gene expression by MyoD in

hESCBAF60C2/MyoD is consistent with the nuclear reprogramming

toward the skeletal muscle lineage, which is typically accompa-

nied by the silencing of pluripotency genes and repressing

alternative cell fates. Indeed, pluripotency genes were readily

repressed in hESCs upon MyoD and BAF60C2 expression

(data not shown), likely reflecting the functional antagonism

between tissue-specific transcriptional activators and pluripo-

tency. Similarly, markers of the alternative lineages within the

three germ layers were repressed in hESCBAF60C2/MyoD as com-

pared to hESCPgk (Figure 3A). Most of these markers showed

a peak of expression between days 3 and 5 in hESCPgk-derived

EBs but not in hESCBAF60C2/MyoD-derived EBs (Figure 3A). Inter-

estingly, while the expression pattern of many of these genes

was partly overlapping in hESCMyoD- and hESCBAF60C2/MyoD-

derived EB-like clusters during the first days of cultures in EB

conditions, a late increase (between days 4 and 5) in the expres-

sion of lineage-specific markers, such as NKX2.5, CERBERUS1,

and NESTIN, was observed in hESCMyoD-derived aggregates

(Figure 3A). This might reflect that ability of MyoD to repress plu-

ripotency (Watanabe et al., 2011) via a BAF60C2-independent
mechanism that leads to spontaneous commitment to various

lineages by default (S.A. and P.L.P., unpublished data).

Importantly, primitive markers of mesoderm (BRACHYURY T,

MESOGENIN, and MESP1) were specifically repressed in

hESCBAF60C2/MyoD-derived EBs (Figure 3A). The only meso-

dermal gene that showed an earlier and more robust pattern of

expression in hESCBAF60C2/MyoD-derived EB-like clusters, as

compared to hESCPgk- and hESCMyoD-derived clusters, was

the skeletal muscle progenitor marker PAX3, which estab-

lishes the myogenic identity within the paraxial mesoderm

(Buckingham and Relaix, 2007) (Figure 3A). This is consistent

with the selective activation of the skeletal muscle program in

hESCBAF60C2/MyoD. Figure 3B shows that hESCBAF60C2/MyoD-

derived EBs uniformly express PAX3 (78.5% ± 6%), while the

primitive mesoderm marker BRACHYURY T could not be de-

tected. By contrast, PAX3-positive cells were detected at

much lower frequency in hESCPgk- and hESCMyoD-derived EB-

like clusters (10.0% ± 2.4% and 22.2% ± 3%, respectively),

most of which coexpressed BRACHYURY T (Figure 3B), possibly

reflecting the myogenic commitment of a subset of mesodermal

derivatives. Thus, BAF60C2 and MyoD appear to generate

an ‘‘epigenetic landscape’’ that imposes the selective activation

of muscle gene expression in hESCs, leading to their direct

conversion into skeletal myoblasts without the transition

through the mesodermal stage. This evidence is well supported

by the recruitment of BAF60C2 and BRG1 and activation of

the MYOGENIN promoter, but not the NKX2.5 enhancer, in

hESCBAF60C2/MyoD (Figures 2D–2F).

To further demonstrate the homogeneous composition of

hESCBAF60C2/MyoD by skeletal muscle progenitors, we dissoci-

ated hESCBAF60C2/MyoD-derived EB-like clusters (as compared

to the equivalent population from hESCPgk and hESCMyoD) and

sorted them by fluorescence-activated cell sorting (FACS) using

the surface marker CD56 (NCAM1), which has previously been

used to isolate human skeletal myoblasts (Zheng et al., 2007).

Surprisingly, we found that the large majority of cells from disso-

ciated hESCBAF60C2/MyoD-derived floating aggregates, as well as

hESCPgk and hESCMyoD, were NCAM1 positive. This result

reveals that NCAM1 expression cannot define by itself a popula-

tion of skeletal muscle progenitors from hESCs and indicates

that NCAM1 is probably expressed in cells undergoing transition

toward a variety of lineages (Evseenko et al., 2010). However,

when we measured the relative expression levels of NCAM1 in

our hESC populations as compared to those of human primary

skeletal myoblasts (HSkM), we found that hESCBAF60C2/MyoD

were enriched in cells with expression levels (73%) of NCAM1

that were higher than those of hESCPgk (22%) and hESCMyoD

(54%) and similar to those detected in HSkM (data not shown).

We therefore gated the high NCAM1-expressing cells among

the population of NCAM1-positive FACS hESCs (Figure 3C)

and measured their myogenic potential in vitro as percentage

of myogenin/MyHC double-positive multinucleated cells formed

among the same number of cells cultured in differentiation

medium (Figure 3D). Figure 3D shows that the high NCAM-posi-

tive cells sorted from hESCBAF60C2/MyoD-derived EB-like clusters

evenly differentiated in myogenin/MYHC double-positive multi-

nucleated myotubes (81.7% ± 3%), while only a minority of cells

from hESCMyoD-derived aggregates (4.3% ± 0.7%) and none of
Cell Reports 3, 661–670, March 28, 2013 ª2013 The Authors 665
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Figure 3. Direct Generation of Myogenic Progenitors from hESCBAF60C2/MyoD

(A) hESCs H9 infected with control (Pgk), MyoD (M), or BAF60C2+MyoD (BM) were collected for 5 consecutive days from the onset of differentiation into EB-like

clusters and analyzed by qRT-PCR to monitor the expression of genes indicative of the three germ layers (mesoderm, endoderm, ectoderm). Values are ex-

pressed as relative to Pgk day 0. Error bars represent SEM (n = 3).

(B) EB-like clusters at day 4 (d4) were stained for early precursormarkers BRACHYURY T and PAX3. Scale bars are 50 mm. Insets show the highermagnification of

nuclear staining for the indicated proteins.

(C and D) Isolation and characterization of CD56pos (expressing high levels of CD56) population sorted from day 5 aggregates derived from hESCs infected with

Pgk, MyoD, or BAF60C2/MyoD. Histogram plots show the specific staining signal (Pgk, M, BM) versus unstained signal (unst) and the percentage of cells ex-

pressing CD56 (NCAM) (C). CD56pos cells were induced to differentiate and analyzed for the expression of skeletal muscle proteins myogenin and MHC by

immunofluorescence (D).
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Figure 4. Generation of Skeletal Myospheres from hESCBAF60C2/MyoD and Electrophysiological Properties

(A) Schematic representation of the protocol used to generate 3D-skeletal myospheres.

(B) hESCs cultured in EB conditions to generate EBs according to the protocol depicted in (A) were subsequently sectioned and stained for the indicated muscle

markers.

(C) Percentage ofMYOG/MHC-positive cells within single EBs. EBswere classified based on the enrichment ofmyogenic fibers as follows: nomyofibers (�), up to

10% (+), up to 30% (++), up to 100% (+++).

(D) Representative profile of gene expression of myogenic markers such asMYOG, embryonic MYHC (MYH3), perinatal MYHC (MYH8),MYOD1, and the cardiac

marker GATA4. Values are expressed as relative to Pgk day 0 (bars represent SD).

(E) Snapshot from Movie S1 showing contraction of myospheres.

(F) Representative calcium transient recordings in hESC-derived cardiomyocytes (CM, black line), human skeletal myotubes derived from human fibroblasts

converted by MyoD (SkM, blue line), and hESCBAF60C2/MyoD-derived myospheres (red line).

(G) Snapshot from Movie S2 showing the local calcium distribution inside skeletal muscle cells.

(H) Scheme of the three-step generation of myospheres form hESCBAF60C2/MyoD.

See also Figure S3.
the cells from hESCPgk-derived bodies could differentiate into

myotubes under the same conditions. This result demonstrates

that hESCBAF60C2/MyoD-derived EB-like clusters are composed

of a homogeneous population of skeletal myoblasts that retain

the ability to differentiate into skeletal myotubes.

Generation of Contractile Myospheres from
hESCBAF60C2/MyoD

We therefore hypothesized that such a homogeneous population

of hESC-derived myoblasts could bias the composition of EB-
like clusters toward the formation of 3D contractile structures en-

riched in skeletal myofibers (skeletal myospheres). We devised

a specific protocol by culturing hESCBAF60C2/MyoD (or hESCPgk

and hESCMyoD) in EB medium for 5 days, followed by the expo-

sure of derived EB-like clusters to myogenic differentiation

medium for additional 14 days (see scheme in Figure 4A). This

protocol differs from the one shown in Figure 2A because it

does not include dissociation of floating EB-like clusters and is

therefore permissive for the formation of 3D structures. Only

hESCBAF60C2/MyoD gave rise to EB-like structures that were fully
Cell Reports 3, 661–670, March 28, 2013 ª2013 The Authors 667



enriched in myogenin/MyHC-positive myofibers (Figures 4B and

4C) and expressed typical skeletal muscle markers, such as

myogenin, MyH3, and MyH8, but not cardiac-specific genes,

such as GATA4 (Figure 4D). hESCMyoD-derived EBs showed

rare areas, rather than diffuse formation, of myogenin/MYHC-

positive cells (Figures 4B and 4C), possibly reflecting localized

concentrations of EB-derived signals, such as morphogenes,

that might induce endogenous BAF60C2 expression in MyoD-

expressing cells. Importantly, hESCBAF60C2/MyoD-derived EB-

like structures underwent spontaneous contraction at very

high frequency, as it was detected in about 20% of the EBs

during 60 s observation of each plate (Movie S1 [snapshot in Fig-

ure 4E]; Figure S3A). We therefore defined them as contractile

‘‘myospheres.’’ Dissociation of hESCBAF60C2/MyoD-derived myo-

spheres resulted in the formation of myogenin/MyHC-positive

myofibers (Figure S3B). We investigated the contractile activity

of hESCBAF60c2/MyoD-derived myospheres. We used dynamic

distribution of the cytosolic calcium in live cells to discriminate

skeletal muscle-type contraction from cardiac-type contraction

behavior. Figure 4F and Movie S2 (snapshot in Figure 4G)

show that hESCBAF60c2/MyoD-derived myospheres are exhibiting

the slow-rising long-lasting increase in local calcium concentra-

tion typical of skeletal muscle-type calcium artifacts (Capes

et al., 2011). Individual fluorescent Fluo-4 signals from either

intact myospheres derived from hESCBAF60C2/MyoD or dissoci-

ated cells from myospheres during 20 s recordings show intra-

cellular calcium dynamics typically reflecting skeletal muscle

contractions (Figure 4F, compare blue and red lines) that are

clearly distinguished from cardiac contraction contractions

(Figure 4F, black line; see also Movie S2). The finding that

hESCBAF60C2/MyoD-derived myospheres, either intact or dissoci-

ated, showed a pattern of calcium transient similar to control

skeletal myotubes demonstrates that the vast majority of con-

tracting cells in hESCBAF60c2/MyoD-derived myospheres exhibit

skeletal muscle contractile activity (Figures 4F and 4G). This

evidence, together with the lack of activation (Figure 2) and

expression (Figures 3 and 4) of cardiac markers, conclusively

demonstrates that BAF60C2 and MyoD are sufficient to convert

hESCs into a homogeneous population of committed myoblasts

that, when cultured in EB conditions, generate 3D contractile

myospheres. These data emphasize the importance of imposing

an epigenetic landscape that commits hESCs to myogenic

progenitors and makes them competent to respond to the

signals derived from EB-like structures (myobodies), ultimately

leading to the formation of spontaneously contracting myo-

spheres (Figure 4H).

Collectively, these data demonstrate that the requirement for

transition through the mesodermal stage to activate myogenesis

in hESCs can be bypassed by forced expression of BAF60C2

and MyoD. The identification of BAF60C2 as a limiting factor

for the epigenetic reprogramming of hESCs to the myogenic

lineage is of particular relevance because it provides the molec-

ular explanation of the previously reported requirement of

mesodermal transition to activate skeletal myogenesis in ESCs

(Darabi et al., 2008, 2012; Iacovino et al., 2011). The evidence

that BAF60C2 instructs tissue-specific transcriptional activators

(such as MyoD) to activate lineage-specific gene expression

suggests that repression of BAF60C2 in undifferentiated hESCs
668 Cell Reports 3, 661–670, March 28, 2013 ª2013 The Authors
is a necessary event to maintain pluripotency, presumably to

prevent the formation of an epigenetic landscape permissive

for commitment to the myogenic lineage. Along this line, we

speculate that BAF60C2 derepression in hEBs (mimicked in

our experimental conditions by hESCBAF60c2/MyoD) might confer

on hESCs the competence to properly respond to complex intra-

cellular events elicited by external signals (e.g., activation of p38

and AKT pathways) (Serra et al., 2007) and developmental cues,

such as TGFbeta-SMAD2/3 signaling (Capes et al., 2011) that

enable MyoD to activate muscle gene expression. Overall, the

ability to epigenetically reprogram hESCs into a homogenous

population of skeletal muscle progenitors that can generate 3D

contractile myospheres provides an unprecedented opportunity

to establish ‘‘in dish’’ models of study of skeletal muscle physi-

ology and mechanism of diseases.

EXPERIMENTAL PROCEDURES

hESC Culture

Undifferentiated hESCs, H9 and H1 (passages 35–45), were cultured and

manipulated as indicated in Extended Experimental Procedures.

Intracellular Calcium Recording Assays in Living Cells

Calcium-transient hESC cell clusters were recorded using the IC100 High

Content Imaging system equipped with the KIC (Kinetic Image Cytometer)

electrical field stimulation module. For labeling and recording, see Extended

Experimental Procedures.

Immunofluorescence and Immunocytochemical Analysis

See Extended Experimental Procedures for the details and antibody used. EBs

were prepared according the protocol described in Gomes et al. (2010).

Gene Expression Analysis

Total RNA was isolated with TRIzol and retrotranscribed using reverse tran-

scription reagent (Applied Biosystems). qRT-PCR was performed according

the manufacturer’s instructions on Mx3000P (Stratagene) using SYBR Green

Master Mix. Data were normalized to the expression of GAPDH gene (for

SYBR Green) and relative quantification was calculated by the Comparative

Ct method. Primers used are listed in Table S1.

FAIRE

Chromatin for FAIRE (formaldehyde-assisted isolation of regulatory elements)

analysis was prepared as previously described in Simon et al. (2012). A total of

10 ng of FAIRE purified DNA or 10 ng of purified input DNA was analyzed by

qRT-PCR. The signal of FAIRE-purified chromatin is presented as a fraction

of input-purified chromatin. See details in Extended Experimental Procedures.

Primers used are listed in Table S1.

ChIP Assay

ChIP was performed as described in Forcales et al. (2012) with some modifi-

cations (see Extended Experimental Procedures for details). Chromatin

extracts were immunoprecipitated overnight on rotating platform at 4�C with

the following antibodies: anti-MyoD (Santa Cruz, sc-760) anti-Brg1 (Santa

Cruz, sc-17796X), custom-made anti-BAF60c antibody, anti-Pol II ser5P

(39233, activemotif) and anti-Pol II ser2P (Abcam, ab24758) with immunoglob-

ulin (Ig) G-IgM linker antibody (Abcam, ab9175) or normal IgG as control.

Primers used are listed in Table S1.

Statistical Analysis

Data are presented as mean ± SEM unless otherwise indicated. Differences

between groups were analyzed for statistical significance using unpaired the

Student’s t test with significance being defined as *p < 0.05, **p < 0.01, or

***p < 0.001.
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