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Computer simulations of experimentally comparable system sizes in Soft Matter often require considerable elapsed times. The use

of many cores can reduce the needed time, ideally proportionally to the number of processors. In this paper a parallel computa-
tional method using Coarray Fortran is implemented and tested for large systems of purely block copolymer melts, as well as block
copolymer nanocomposites. A satisfactory strong scaling is shown up to 512 cores while a weak scaling with a drop in performance is
achieved up to 4096 cores. The scaling of the parallel cell dynamic simulations scheme displays no drawbacks over MPI and provides
an example of the simplicity of the Coarray approach. The code has been tested on several architectures and compilers. The hybrid
block copolymer/nanoparticle algorithm can achieve previously unavailable system sizes.

1 Introduction

Block copolymers (BCP) are a particular type of polymer macromolecule in which chemically different
monomer blocks are joint into a single chain. In the simplest case, diblock copolymer (DBCP) melts can
self-assemble into well-ordered periodic structures due to the chemical incompatibility of the A and B
monomers in a A-b-B macromolecule. Experiments[1, 2| and theory [3, 4, 5, 6, 7, 8] have described the
rich phase diagram of DBCP melts, such as lamellae, hexagonally ordered cylinders and spheres among
other phases. Additionally, DBCP thin films are of interest for lithography applications due to their abil-
ity to form nanoscale patterns near substrates[9, 10, 11, 12, 13].

The addition of colloidal nanoparticles (NPs) can greatly modify the inherent properties of block copoly-
mer systems, [14, 15, 16, 17, 18, 19, 20] for instance, modifying the shape of block copolymer microparticles[21]
in solvents. Block copolymer melts can exhibit changes in the electrical and optical properties[22] in the
presence of colloids while nanoparticles can be found to assemble in hierarchical ordered configurations
when mixed with BCP[23, 24, 25, 26]. Simulations of BCP/NP composite systems generally involve up
to 5 BCP periods|27, 28]. Moreover, many physically relevant mechanisms require taking into account
large length scales, such as the global ordering of BCP in the presence of NPs. BCP systems require
large simulation box sizes in order to study their properties[29] as small simulation boxes can artificially
pin systems in intermediate states[30].

Several microscopic approaches have been used to study BCP nanocomposites systems, namely Discon-
tinuous Molecular Dynamics[31] and Monte Carlo simulations [32, 33, 34]. Self-consistent field theory
has been largely used to obtain the equilibrium behaviour of nanocomposites[14, 15|, studying, for exam-
ple, the selectivity of NPs within BCP domains[35]. Additionally, Dissipative Particle Dynamics (DPD)
provides a particle-based mesoscopic model to simulate relatively large systems, which has been used to
study the aggregation of NPs within BCP domains[36, 37]. While DPD is a coarse-grained method that
can use large time-steps to reach long time scales, its particle-based nature limits the ability to reach
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more than 10 BCP periods. Cell Dynamic Simulations (CDS) is a highly efficient continuous method
that has been used to predict the mesoscopic properties of BCP nanocomposites . It has been coupled
with Brownian Dynamics for nanoparticles, resulting in a computationally inexpensive model to study
the mesoscopic properties of nanocomposites[27, 38, 39]. The inherent speed of CDS can be further ex-
ploited by using parallel computing, allowing to reach larger system sizes while maintaining moderate
computational times.

Coarray Fortran (CAF) is a parallelisation technique introduced in recent versions of the Fortran stan-
dard, which allows to parallelise computational codes with minimal modifications[40, 41]. CAF is an
abstraction of Message Passing Interface (MPI) that simplifies the treatment of scalars or multidimen-
sional arrays by creating several images which execute a program asynchronously[42] . Moreover, CAF
uses distributed memory, meaning that each image or processor has its own workspace and communica-
tions between processors should be explicitly called. In fact, CAF belongs to the parallel model called
partitioned global address space (PGAS). In CAF, a standard variable is purely local to the current im-
age (processor), while a coarray can be accessed from remote images. In recent years there has been a
growing number of programs using CAF[43, 44, 45, 46, 47] due to the simplicity of its approach and the
popularity of Fortran in the field of High Performance Computing(HPC)[48]. The OpenCoarrays project,
for instance, has introduced wrapper compiler and executable launchers among other utilities[42]. CAF
performance has been previously compared with MPI, finding no drawback in the use of CAF over MPI
[49]. A recent review provides historical context on the development of CAF as well as key features[50].
This work is organised as follows: the model for CDS is presented, followed by its parallel implementa-
tion. Secondly, the Brownian Dynamics scheme for colloids is presented, along with the parallel imple-
mentation for colloids as well as the coupling between BCP and NPs. The results for CDS are shown, in
order to compare with previous MPI implementations, and also as a way of validating the physical re-
sults. Finally, the novel results for BCP/NP systems are shown along with simulation snapshots.

2 Model

The evolution of the BCP/colloids system is determined by the excess free energy which can be sepa-
rated as[51]
Ftot:Fpol+fcc+fcpl (1)

with F,y being the free energy functional of the BCP melt, F.. the colloid-colloid interaction and the
last contribution being the coupling term between the BCP and the colloids.

2.1 Polymer dynamics: Cell Dynamics Simulations

The diblock copolymer is characterized by the order parameter v (r,¢) which represents the differences in
the local volume fraction for the copolymer A and B

1/)(I',t) - ¢A(r7t) - d)B(r? t) + (1 - 2f0) (2)

with respect to the relative volume fraction of A monomers in the diblock, fo = Na/(Na + Ng), where
N4 and Npg represent the number of repeated units of A or B kind, respectively, in a block copolymer
chain.

The dynamics of the order parameter is dictated by the Cahn-Hilliard equation, following mass conserva-

tion of ¥(r,t),
e <r ) a¢(r7t) =M v2 (5]'—1:015[1/}}) (3)
o 5

where M is a phenomenological mobility constant.
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The copolymer free energy is a functional of the local order parameter which can be expressed in terms
of the thermal energy kT as[52]

Fralte)] = [ e [1100) + 50170 +

%B / dr / dr' G(r — ') (r)b(r')

where the first and second terms are the short and the long-range interaction terms respectively, the co-
efficient D is a positive constant that accounts for the cost of local polymer concentration inhomogeneities,
the Green function G(r — r’) for the Laplace equation satisfies V2G(r — ') = —d(r —r’), B is a param-
eter that introduces a chain-length dependence to the free energy[53] and H () is the local free energy

(53, 54] ,

(4)

H() = ¢ [0+ AL~ 20o)"] 07

) o (5)
“o(l =2 -

+ 3U( fo)v® + 41/1
where 79, A, v, u are phenomenological parameters[55] which can be related to the block-copolymer molec-
ular specificity.

We can express the time evolution of ¢/ , Equation 3, using CDS as

P(ri,t 1) = (s, 1) = SH{ (T (r3,4)))

~D(r;,t) + B[L — P(r;, )y (i, )]} (6)

r; being the position of the node 7 at a time tdt, and the isotropic discrete laplacian for a quantity X is
given by [56, 57, 58] @[((X)} — X]. In three dimensions,

SOZ%L Zw+ d (7)

NNNN

NN, NNN, NNNN meaning nearest neighbours, next-nearest neighbours, and next-next-nearest neigh-
bours, respectively. A scheme of the stencil in 2D can be found in figure S1 in the supporting informa-
tion.

In Equation 6 we have introduced the auxiliary function

P(r, 1) = g((r, 1) = ¢(r, 1) + D[{(¢(r, 1)) = o(r,1)] (8)
and also, the map function [59, 55]

9(W) = =7 —v(1 = 2f)¥* — uyp’® (9)

2.2 Parallel CDS scheme

Coarray Fortran provides an efficient abstraction of the MPI parallelisation scheme. It naturally allows
for a partition of a large system into smaller parts, which are divided into images. Each image performs
an execution of the whole program, except from user-specified conditions. While each image has its own
workspace, co-dimensions can be used to share values across images.

Thanks to this partition utility, we break-up the system size V' = L, X Ly, X L, into nimages = Ny X Ny X N,
images with one processor per image. Images are accordingly distributed such that each partition spans
a region of system space Vpgrtition = DNy A, with A, = L,/N, and o = z,y and z. Computationally,
each image possess a local 1 version of the order parameter scalar field. This local image is allocated a
size (A, +2) x (A, +2) x (A, +2), in order to allow space to read from neighbouring processors. Ghost
points are indeed needed only in the exchange of information required to calculate the Laplacian in the
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Cahn-Hilliard equation. In this work we make use a single-layer halo exchange method performed just
before the calculation of the laplacian of V2 and V2u. A flowchart of both the serial and the parallel
algorithm is provided in figure S4 in the supporting information. This communication step is consider-
ably simple using CAF, which can be executed in a single line to read the values of ¥ boundaries (and
u) from neighboring processors into the local version of the array. An example where processor [p, q, h]
communicates with its next neighbor in the X direction [p — 1,¢, h] is

psi(1,2:(DY+1),2:(DZ+1)) = psi(DX+2,2:(DY+1),2:(DZ+1))[p—1,q,h]

where the square brackets indicate the processor index from which data is read. In this example the lo-
cal processor reads a two-dimensional surface into the local array (the colon in the second and third in-
dex indicating a range of values). On the other hand, MPI communications require specifying additional
details which are unnecessary in CAF, as CAF is particularly adapted for numeric array communica-
tions. Therefore, CAF can be used as a simplified way requiring less modifications of the original code
and technical knowledge over parallelisation. CAF is particularly well-suited for scientific computing
applications involving arrays. Because the CDS scheme is strongly short ranged, we do not require any
long range communication as opposed to Fast Fourier Transforms [60].

2.3 Colloidal dynamics

Contrary to the continuous block copolymer description, colloidal NPs are individually resolved. The
presence of a number N, of colloidal NPs into the BCP melt is introduced via a coupling term in the

free energy
cpl - Z /dr wc wO] (1())

where 1)y represents the colloidal chemical afﬁmty while the tagged function . relates to the size and
shape of the particle[61]. A smoothly decreasing function is chosen to represent the core and corona of
the NP

bemexp |1 — (11)

2
. r—R;|
Reyy

where the cut-off of the coupling interaction is R.fs such that ¢.(r > R.ss) = 0.
Additionally, the colloid-colloid contribution to the free energy can be expressed as

Zv r; —r;) (12)

with V' describing the inter-colloidal pairwise additive potential. A purely repulsive soft potential such
as a Yukawa-like potential has been previously used to allow to select a large time step[62].

The colloidal dynamics is diffusive and governed by the Langevin equation in the over-damped regime.
Each NP centre of mass R; follow Brownian Dynamics as

d;: ! (fcc £7 1 \/2kpT g) (13)

with ~ the friction coefficient, kgT is the NP thermal energy and ¢ is a random Gaussian term satisfying
the Fluctuation—Dissipation theorem.

2.4  Parallel hybrid CDS/Brownian Dynamics algorithm

Adding NPs into a parallel CDS simulation model requires an efficient parallelisation of the calculation
of the BCP /NP coupling (forces and chemical potential) along with the inter-particle forces. Using CAF,
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it is essential to have a spatial decomposition of the system. We choose to respect the same spatial de-
composition into N,, N,,, N, processors, respectively assigned to A, A,, A, subregion of the system, as
described in the previous section. To this end it is desirable to use a Cell List method [63], in which the
system size is divided into cells and particles are sorted into linked list. We use a number N ., = MMy M
number of cells. Therefore, each processor is dedicated to particles in the region occupied by their re-
spective cells. A schematic flowchart of the serial and parallel algorithm can be found in figure S4 in the
supporting information, showing a single iteration of the algorithm.

The calculation of the coupling forces and chemical potentials is non-local, involving an spatial integral
as shown in equation 10. In order to obtain the forces acting on each particle, first loop through all par-
ticles in cells within the local processor. Given the finite size of the NPs, it is crucial to account for the
overlapping of particles into neighbouring processors, ie, a particle volume can span over several proces-
sors’ sub-domains, even if the centre of mass of the particle is within a processor different from the local
one. For this reason we perform a two-step calculation: First, a loop over neighboring processors’ cells is
performed to search for NPs overlapping the local processor domain. Then, the coupling contributions of
these particles is added to the chemical potential and forces.

A similar two-step process is used for the calculation of colloid-colloid forces: first the forces for pairs of
particles within the local processor are calculated and afterwards the calculation is extended for neigh-
boring cells. Once all forces are determined (coupling and inter-particle), the positions of particles are
updated and communicated within processors.

2.5 Analysing the parallel scheme

In order to analyse the efficiency of parallel implementations, it is common to test the scaling of the code
with the number of processors for a fixed system size (strong scaling) or for a fixed amount of elements
per processor (weak scaling). The speed-up of a parallel algorithm is defined as

T(m,1)

S(m,n,) = T(mm)

(14)
where m is the size of the system, ie, the number of grid points and the number of processors is denoted
by n,.

3 Results

In this section we will characterize the efficiency of the implementation in various supercomputers: Mare
Nostrum, CSCS, ARCHER and the cluster present at the University of Lincoln (UoL). In section 1 of
the supplementary information we provide detailed information on each supercomputer specifications as
well as the scaling results in these machines.

3.1 Scaling of the CDS model

The correct scaling of the purely polymeric code (N, = 0) should provide the foundation of the more
complex hybrid code. An appropriate parallel implementation should ideally reduce the required time
linearly with the number of processors in use. In order to test this behaviour, we can explore the effect
of parallelisation of a system with size V' = L,L, L, into n, = N, N, N, processors.

The strong scaling of the CDS code is shown in figure 1 for three system sizes V = 1283,256% and 5123
in the CSCS supercomputer, using 8 cores per node, that is, spanning up to 1024 cores for the largest
system size. A considerably linear -close to ideal, in dashed lines- behaviour can be observed up to 16,
32 and 64 nodes for increasingly larger system sizes V = 1283, 2563 and 5123, respectively. Larger sys-
tem sizes lead to larger in-processor calculations versus inter-processor, therefore, the increase in per-
formance with the lateral system size is explained. This is particularly clear in the drop in performance
for V' = 2563, where the use of 64 nodes (512 cores) leads to a larger computational time than using 32
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nodes. This is expected as the number of grid points per core become considerably small Viurtition = 323,
with the communications between processors dominating the computational time. A direct compari-

son of the scaling of the reported MPI code and the present CAF scheme is shown in figure S3 in the
supporting information. The present CAF scaling displays no drawbacks over MPI, showcasing the ef-
ficiency of the Coarray approach. Figure S2 in the supplementary information displays the strong scal-
ing in other supercomputers, finding a good scaling in other architectures and compilers limited to single
node.
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Figure 1: Strong scaling of the purely CDS polymeric part in the CSCS supercomputer for three system sizes V. = L3 vs
the number of nodes, using 8 cores per node. In the inset we provide a detail of the small number of nodes regime.

The ability to reach large number of processors is best shown in the weak scaling analysis, where the
system size is increased linearly with the number of nodes, in order to keep the sub-domain per core (re-
ferred to as images in Coarray Fortran terms) constant. In figure 2 we can observe the scaling ¢(1)/t(n,) ~
1 in a semi-logarithmic plot, which can be seen to weakly decrease with the number of nodes. Nonethe-
less, the scaling never decreases below 0.85, motivating the possibility to simulate considerably large sys-
tem sizes, for example V = 20483 for 512 nodes, ie, 4096 cores. The performance drop can be attributed
to the large system size and large number of processors. Synchronisation is required after communica-
tions, which can decrease the performance of the simulation as the number processors is increased.



WILEY-VCH
3.1 Scaling of the CDS model

Weak Scaling
>
S

<
N

0.85
10° 10! 10 10°
Nodes

Figure 2: Weak scaling of the purely CDS polymeric part in the CSCS supercomputer, using 8 processors per node. The
scaling of the wall clock time is done with respect to the single node simulation.
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3.2 Scaling of hybrid CDS/BD

The scaling of the hybrid CDS/Brownian Dynamics scheme is more complex than the purely polymeric
program. For this reason, it is useful to separately explore many of the contributions to the total elapsed
time. Firstly, we can study how the program scales with the number of particles in the system. Figure 3
shows the elapsed time in function of the number of particles in the system for a system V = 128% and 8
processors for Ng.ps = 1000. The scaling is seen to be strongly linear with the number of particles. This
is expected, as the two main colloid-dependent contributions to the time of the program are: colloid-
colloid interaction and coupling between BCP/NP. The colloid-colloid calculation of forces naively scale
with (NV,)?, but can be reduced to a (N,)! scaling by using a cell list scheme [63].
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Figure 3: Scaling of the elapsed time with respect to the number of particles N,,. The number of processors and system
sizes is fixed: n, = 8,V = 1283%. The particles size is set to R,y = 1.56 grid points. These simulations are performed on
ARCHER.

Figure 3 suggests that the NP contribution to the computational time is not negligible for relevant num-
ber of particles, as the elapsed time more than doubles for N, ~ 10* compared with N, = 0. For this
reason, it is essential to use an efficient NP algorithm. In a second step, we can differentiate between
the coupling and the colloid-colloid contributions to the computational time. Figure 4 shows the elapsed
time with respect to IV, differentiating two values of the coupling constant introduced in equation 10:

o = 1 and 0. In the present code, the program skips the BCP-NP coupling calculations if the coupling
constant o is set to zero. Therefore, it is an easy way to separate different contribution to the elapsed
time. We can observe that both the total and the colloid-colloid times are strongly linear with N,, while



WILEY-VCH
3.2 Scaling of hybrid CDS/BD

the coupling is clearly the most important contribution. This suggests that the used cell-list scheme is
considerably efficient as it is sub-dominant over the more computationally-heavy coupling calculations.
Additionally, the linearity of the coupling contribution suggest that the neighbour cell search algorithm
described in section 2.4 is efficiently implemented. Further details on the effect of the different steps (see
flowchart in figure S4 in the supporting information) can be found in the bar chart in figure S7 in the
supporting information where the total time is broken-down into in-processor and communication steps
for polymeric, coupling and colloid parts of the algorithm. The colloid-colloid force calculation, colloid
position update and colloid communications are found to be always negligible compared to computa-
tional time of the coupling forces. Nonetheless, the weight of the coupling itself compared to the poly-
meric part is strongly dependent on the concentration of particles, as already demonstrated in figure 3
and 4. These results suggest that the largest contribution to the elapsed time depends on the concentra-
tion of particles in the system: low concentration simulations spend the biggest share of the simulation
time calculating the laplacians of ¢ and pu, while for high concentration simulations the bottleneck of the
simulation is the coupling step. Finally, the coupling force calculation clearly scales as N,R?, as the force
calculation involves triple loops around the particle centre of mass.
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Figure 4: Simulation time (8 cores, UoL cluster) dependence with the number of particles IV, for colloids with a size
Rery = 2.34. Two sets are produced: for 0 = 1and o = 0. In the latest the coupling calculations are ignored, which
can be seen to lead to a considerable reduction in the elapsed time.

In Figure 5 the strong scaling for a system sized V' = 256 with N,, = 10* NPs is shown, with simula-
tions performed in the CSCS cluster using 8 processors per node. The NP size is set to R.sy = 1.56. The
scaling behaviour is considerably close to ideal for 8 nodes (n, = 32 processors) but the curve drops in
efficiency faster than the purely polymeric scaling shown in figure 1 for 16 nodes. A similar behaviour
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is shown in figure S6 in the Supporting Information for the Mare Nostrum cluster, where the efficiency
similarly drops for a larger system.

0 5 10 15
Nodes

Figure 5: Strong scaling of the hybrid BCP/NP code vs the number of nodes. The speed-up S is compared with the ideal,

linear scaling(dotted line). The number of particles is N, 10 in a V = 2563 system performed in CSCS, using 8 cores

per node. The coupling constant is set to o = 1.

Due to the parallel implementation that has been described, we can achieve previously unavailable sys-
tem sizes. In Figure 6 a large simulation box V' = 400 x 400 x 300 with N, = 100 is shown. The NP size
is relatively large with a radius R.;y = 13.26 grid points immersed in a symmetric BCP mixture. The
parallel code allows to simulate a large number of lamellar periods along with colloidal NPs.

4 Conclusions

Coarray Fortran has been used to develop a parallel code of the well-established CDS scheme for BCP
melts and BCP nanocomposites systems. This relatively simple approach based on spatial decomposi-
tion shows no drawbacks when compared with a more elaborate method using MPI [60]. The scaling
of the pure CDS code is highly linear for relatively large system sizes and improves the previous imple-
mentation using MPI. It allows to scale up large system sizes while maintaining reasonable computa-
tional times: the weak scaling test has shown the ability to simulate systems with 2048° grid points us-
ing 512 nodes, with a small drop in the performance. This code has been tested in various national and
academic-wide supercomputers. The best scaling behaviour has been found using the CRAY Fortran

10
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Figure 6: Large scale simulation of relatively large NPs with radius R.yy = 13.26 selective towards one of the block ¢y =
—1 of a lamellar-forming BCP f, = 1/2.

compiler in the CSCS supercomputer.

The ability of this algorithm to scale up to a large number of computer nodes allow us to reach previ-
ously unavailable system sizes. For instance, the largest system size of lateral size 2048 grid points can
model 128 BCP periods. This would correspond to approximately V' ~ (5um)? for typical lamellar peri-
odicities.

Secondly, a scheme for a parallel hybrid BCP/NP mesoscopic model has been presented. Similarly as
the purely polymeric CAF implementation, this code has the ability to scale linearly with the number of
processors in use, although the range of linearity is smaller than for the purely polymeric algorithm. The
actual scaling of the code depends heavily on colloidal size -due to its influence in the cell size- but the
code has been found to perform efficiently. This parallel code opens the possibility to study more com-
plex systems involving block copolymer nanocomposites at considerably large length scales[62].

Supporting Information
Supporting Information is available from the Wiley Online Library or from the author.
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