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ABSTRACT
It is shown that the action of an oscillating force on particles moving through a deformable-walled channel causes them to travel greater
distances than in the case of a rigid channel. This increase in the transport efficiency is due to an intensification of the stochastic resonance
effect observed in corrugated rigid channels, for which the response to the force is maximal for an optimal value of the thermal noise. The
distances traveled by the particles are even larger when the oscillation of the micro-channel is synchronized with that of an applied transverse
force and also when a constant external force is considered. The phenomenon found could be observed in the transport of particles through
elastic porous media, in drug delivery to cancerous tissues, and in the passage of substrates through transporters in biological membranes.
Our results indicate that an appropriate channel design and a suitable choice of applied forces lead to optimal scenarios for particle transport.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0080125

I. INTRODUCTION

Identifying the conditions under which particles can be most
easily transported through micro-channels is vital in the study of
molecular transport and microfluidics and underpins many different
biological functions and medical applications.1–9 Particle invasion
of a porous medium and drug delivery to cancerous tissues are
examples where knowing the optimal conditions for transport is
crucial.10–16

Transport in micro-channels is virtually one-dimensional.
Their irregular shapes, which in many cases can change over time,
result in restrictions on the space that particles can occupy, leading
to entropy variations along the length of the channels and over time.
Thus, particles diffuse through entropic barriers. Entropic transport
models have proven to be very fruitful in the study of transport in
confined media.17–28

The application of a periodic external force to particles mov-
ing in a rigid micro-channel results in the occurrence of resonances
that cause the fluctuations of the particle position to follow the
oscillations of the force for an optimal value of the thermal noise.
Consequently, resonance quantifiers, such as the signal-to-noise
ratio or the so-called spectral amplification, show a maximum for
such an optimum value.29–31 Moreover, at this value, the amplitude
of the oscillations of the particles produced by the periodic force

is maximal, so they can travel a longer distance along the channel.
Examples of resonant behavior in rigid channels can be found in the
pumping of protons in mitochondria, in the transport of large poly-
meric molecules through nanopores, and in the design of nano-scale
sensors.32–36

In many cases, however, channels can change shape due to vari-
ations in the pressure of the medium in which they are immersed,
forces exerted by particles passing through them, or the existence
of external sources of energy and electrochemical gradients, as
in the case of ion channels and transporters where the energy
supplied comes from ATP hydrolysis.19,37,38 Transport in flicker-
ing pores may give rise to the appearance of resonances.39,40 It
has also been shown that channel deformations can cause reso-
nances and anti-resonances that may have an impact on transport
properties.37,41–43

The question, therefore, arises as to whether there are optimal
conditions for transport in this case that take into account the fact
that the canals cannot be considered isolated from the environment.
This is precisely the aim of this article. We will show that the consid-
eration of channel deformations in the particle dynamics leads to an
amplification of the particle path, which can reach distances larger
than those obtained in the rigid-walled channel model.

We will display that periodic variations of the shape of a chan-
nel, in particular, that of its bottleneck, lead to an intensification of
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the stochastic resonance effect and to an increase of the mean posi-
tion reached by the particles. The particles can be transported over
even greater distances when a force is applied parallel to the channel
axis, such as that resulting from a particle concentration gradient.
In this case, although the energy efficiency decreases due to higher
dissipation, the transport efficiency increases.

This article is organized as follows: In Sec. II, we propose the
model of particles confined in a deformable channel. In Sec. III, we
analyze the spectral amplification and the average penetration length
of the particles along the channel, showing that the latter is maximal
when the oscillations of the channel wall are synchronized with those
of a force perpendicular to the channel. In Sec. IV, we summarize our
main conclusions.

II. MODEL
When the channel is narrow enough, the particle distribution in

the transverse direction very quickly reaches a state of equilibrium.
Under this condition, a coarse-grained description can be made in
which the transport is practically one-dimensional, with a proba-
bility density obeying a Fick–Jacobs (FJ) equation. This description
has been widely used in the study of transport properties in con-
fined media and applied to physico-chemical and biological systems
at the nanoscale, such as microfluidic channels, porous media, ion
channels, and membrane transporters.14,15,21,37,41 In this article, we
will use this approach to study the resonant behavior of Brown-
ian particles moving in a deformable channel, analyzing the energy
efficiency and the optimization of particle transport. We will com-
pare the results obtained with Brownian dynamics (BD) simulations
carried out on the basis of the Langevin equation.

A. Langevin dynamics
We consider the motion of non-interacting Brownian particles

through a channel whose walls may change shape due to interac-
tions with the medium surrounding the channel41 (see Fig. 1). The
particles are subjected to the action of the external periodic force,

Fex = Fo sin(Ωxt)ex +Go sin(Ωyt)ey, (1)

where Fo and Go are amplitudes, Ωx and Ωy are frequencies, and
ex and ey are the unit vectors along the x- and y-directions. As in
biological and artificial membrane channels,15,37,41 the differences in
chemical potential Δμ give rise to a particle flux whose associated
force in the x-direction is

f μ = Δμ
Lx

ex, (2)

where Lx is the half-period of the channel. When the local slope of
the channel is small and its oscillations are also small, this force can
be considered constant. Due to the Brownian nature of the particles,
a random force Fr

i also acts on them. It is of zero mean and fulfills
the fluctuation–dissipation theorem ⟨Fr

i (t′)Fr
i (t)⟩ = 4kBTξδ(t − t′),

where ξ is the friction coefficient.
In the overdamped regime, the velocity of a particle evolves

according to the Langevin equation written in dimensionless form
as follows:

ξ
dr
dt
= −Fo sin(Ωxt)ex −Go sin(Ωyt)ey + f μex + Fr , (3)

FIG. 1. Shape of the oscillating channel at t (solid line) and at t + Δt (dashed line).
Lx = 1.0 is the half-period of the channel, Ly = 0.25 is defined by fixing initially the
aspect ratio ε of Eq. (4), and b(t) is the time-dependent bottleneck width.

where the x and y coordinates are measured on the scale of Lx and Ly

and time with respect to the diffusion time τ = ξL2
x

kBTR
, with TR being

a reference temperature.44 Moreover, Fo = ξLx
τ , Go = Go/Fo, and f μ

= Δμ
Lx
/Fo.
Channel deformations are modeled by means of oscillations

of frequency ω, with the half-width of the top (t) and bottom (b)
boundaries of the channel given by ht(x, t) = −hb(x, t) ≡ h(x, t). We
will assume that h(x, t) is of the form

h(x, t) = −(ε(x4 − 2x2)(α cos(ωt) + β) − b(t)
2
), (4)

where ε = Ly
Lx
= 1

4 for Lx = 1.0 and Ly = 0.25, b(t) is the bot-
tleneck width, and α and β are the coefficients whose values,
obtained by imposing the channel volume conservation, are given
in the Appendix. If ω = 0, Eq. (4) becomes the equation for an
undeformable channel h(x) = −(ε(x4 − 2x2) − b/2), with b = 0.02.

B. Fick–Jacobs model
When the channel is sufficiently narrow (h small), the particle’s

distribution equilibrates very rapidly in the perpendicular direction.
Under this condition, a coarse-grained description can be made
by eliminating the y-coordinate.17,18 The 2D Fokker–Planck equa-
tion, thus, transforms into the 1D Fick–Jacobs equation for the
probability distribution P(x, t),

∂P(x, t)
∂t

= ∂

∂x
(D

∂P(x, t)
∂x

+ ∂Vt(x, t)
∂x

P(x, t)), (5)

where D = T
TR

is the dimensionless diffusion coefficient and V t(x, t)
is the total potential defined in the following equation:

∂Vt(x, t)
∂x

= ∂V(x, t)
∂x

+ f μ − F(t), (6)

where F(t) = Fo sin(Ωxt) and V(x, t) is given by44

V(x, t) = −D ln[ 2D
G(t) sinh(G(t)h(x, t)

D
)], (7)
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with G(t) = Go sin(Ωyt). In the case in which Go ≫ 1, this poten-
tial is purely energetic, V(x, t) = Goh(x, t), whereas for Go ≪ 1, it
is purely entropic, V(x, t) = −D ln(2h(x, t)).31 These two behaviors
are found for D≪ 1 and D≫ 1, respectively.

The Fick–Jacobs equation holds under the assumption of local
equilibration of the distribution of particles in the transverse direc-
tion. It was shown in Ref. 20 that this condition is fulfilled when
the diffusion time in the transverse direction is much shorter than
that in the longitudinal direction and the characteristic time of
the drift force, which is usually the case for very narrow channels.
This requirement is not fulfilled in the case of high wall oscillation
frequencies. However, for slow wall motions, the probability distri-
bution in the transverse direction is a quasi-equilibrium distribution.
Then, in the coarse-grained (1D) description, the entropy depends
on the cross-sectional area of the channel, which is a function of
time, in the same way as in the case of solid walls. A Fick–Jacobs
equation can thus be obtained, in which the effective diffusion coef-
ficient and the drift may be time-dependent.41 Quasi-equilibrium
distributions are often found in systems with slow relaxation
dynamics.45 In Eq. (5), we have considered a constant diffusion coef-
ficient. In general, this coefficient may depend on position18 and
time.41 Measurements of the coefficient46 for undeformable chan-
nels have confirmed the importance of hydrodynamic effects in
particle transport. In our case, we have considered that the size of the
channel is much larger than the size of the particles, which implies
that entropic forces are dominant, which justifies that D is practically
constant.

The increase of the bottleneck size due to wall oscillations facil-
itates the transit of particles from one compartment to the other. We
will solve the FJ equation [Eq. (5)] by using a finite difference explicit
scheme, with the boundary conditions ∂P(x,t)

∂x ∣x=−Lx
= ∂P(x,t)

∂x ∣x=Lx

= 0 and the initial condition P(x, 0) = δ(x + Lx).
The presence of stochastic resonance can be detected through

the behavior of the spectral amplification η as a function of the noise
level. This quantity is given by

η = (M1

Fo
)

2
, (8)

which corresponds to the relation between the power stored in the
response M1 of the system and the power of the driving signal Fo.
It can be interpreted as the energetic efficiency of the process.29,30,44

In Eq. (8), M1 is the first harmonic in the expansion47 of the particle
position average,

⟨x(t)⟩ = ∫ xP(x, t)dx, (9)

which can be computed from the solution of the FJ equation.
The average ⟨x(t)⟩ can also be computed by means of Brownian

dynamics simulations in the long-time limit. The mean first passage
time and the mean free flying time have also been used to character-
ize the resonance.31,42 To solve the Langevin dynamics [Eq. (3)], we
have implemented an Euler discretization scheme of the form

rt+Δt
i = rΔt

i + Δt(−F(t)ex −G(t)ey + f μex) +
√

2DΔtwi, (10)

where Δt is the time step and wi is a random vector of zero
mean, which fulfills the fluctuation–dissipation theorem.48,49 As a
boundary condition, we assume that the position of the particles
crossing the channel boundaries, by application of Eq. (10), is

corrected to be the one immediately before the collision with the
wall. It was shown in Ref. 50 that this condition is consistent with a
reflecting boundary condition. The frequencies we have used scale
with the characteristic frequency 1/τ. In drug delivery through
cancer tissues, this frequency is 1/τ ∼ 10−2 Hz.15

III. RESULTS AND DISCUSSION
Using the FJ model, we have analyzed different resonant behav-

iors corresponding to the cases where the channel walls and the
perpendicular force oscillate. We have also evaluated the effect on
the resonance of a chemical potential difference between the two
compartments of the channel.

It was pointed out that the presence of SR in a periodically
driven washboard potential is hardly detectable.51 However, the
average maximum distance that the particles reach can be measured,
as was done in the case of drug delivery to cancerous tissues where
nanoparticles move through entropic barriers.15,52 In the treated
cases, we calculated the mean maximum particle displacement from
Eq. (9),

xmax ≡ max(⟨x(t)⟩), (11)

which is a function of the noise level. Note that xmax is dimensionless
and scaled with Lx. The theoretical results obtained (lines) have been
compared with those of Brownian simulations (symbols), obtaining
good agreement in all the cases studied.

A. Resonance induced by a periodic transverse force
In Fig. 2, we present the results for both the maximum average

distance reached by the particles xmax and the spectral amplification
η as a function of D. They have been obtained from the solution of
the FJ equation (lines) and from BD simulations (symbols).

FIG. 2. Maximum average value of particle displacement xm as a function of the
noise level D for a constant transverse force Go = 5 (black solid line–white dia-
monds) and for an oscillating transverse force at two different frequencies (dashed
line–black squares and gray line–gray circles) in a solid wall channel for which
ω = 0. The arrows indicate the transition zone between energy- and entropy-
dominated regimes. The inset shows the corresponding spectral amplification
η for the same parameter values. All curves are obtained for Fo = 0.5, Ωx

= 0.1, and Δμ = 0.
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In the solution of the FJ equation, we have considered that the
values of the oscillation frequencies must be small enough to ensure
local equilibration in the perpendicular direction, which is required
for the validity of that equation.

We can see that when the transverse force is constant (black
solid line) and the noise level is low, the particles cannot overcome
the barrier. They do so when the noise is greater than the values
belonging to the interval D ∼ (0.1, 0.15), which defines a transition
zone between energy-dominated and entropy-dominated regimes,
corresponding to the cases in which the forces Fo and Go are dom-
inant. Beyond that noise interval, the particles may overcome the
barrier assisted by entropic forces and xmax increases monotonically
with D. When G(t) oscillates (dashed line and gray solid line), the
maximum distance is reached at lower values of the noise. We can
see that for high noise, the values of xmax obtained from the solu-
tion of the FJ equation agree with those of the BD simulations.
In the energy-dominated regime, however, the agreement is not so
good. The discrepancy is due to the presence of small deviations of
the particle distribution along the transverse direction from local
equilibrium, which makes the FJ description not so accurate. Inter-
estingly, an increase of Ωy does not give rise to an increase of xmax,
which indicates the existence of optimal conditions to enhance parti-
cle transport. One can also notice from Fig. 2 that, for G constant, the
noise value corresponding to the maximum displacement is the same
as the one for which the spectral amplification reaches a maximum.

This coincidence is due to the fact that in this case, xmax is pro-
portional to η, as shown in Ref. 29. In the inset of Fig. 2, we have
represented the spectral amplification for three different values of
Ωy. We see that at low frequencies (Ωy = 0.05), it increases mono-
tonically until the value D = 0.35 and decreases. These results are
in agreement with those previously obtained in Refs. 44 and 53 in
which stochastic resonance occurs at low values of frequency.

B. Resonances in a deformable channel
Figure 3 shows the fact that when the bottleneck opens up, the

particles can pass through it more easily, thus leading to an increase
of the probability distribution obtained from the FJ model. This
behavior agrees with the snapshots of the Brownian simulations.

The results for xmax and η are represented in Fig. 4(a). Both the
quantities exhibit peaks located at approximately the same value of
the noise, whose heights depend on the oscillation frequency. The
inset of the figure shows how the energetic efficiency increases with
the increase in the frequency. As in the case of a peristaltic channel,42

a spectral amplification is observed at low frequencies and different
noises. At low frequencies, the size of the bottleneck varies slowly,
allowing the particles to pass easier. This fact means that the parti-
cles need less energy to overcome the barrier. Consequently, periodic
changes in the size of the bottleneck enhance transport of particles
with a lower energy dissipation. In Fig. 4(a), we have shown the

FIG. 3. Snapshots of the position of
the particles (upper) and the probability
distribution P(x, t) (lower) for t = 0
(a), t = 10 (b), t = 30 (c), t = 50
(d), t = 70 (e), and t = 100 (f). For
particles under a constant transverse
force G = Go, the values of the para-
meters are Fo = 0.5, Go = 5, Ωx = 0.1,
ω = 0.05, D = 0.25, and Δμ = 0.0. The
progressive opening of the bottleneck
facilitates the passage of the particles.
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FIG. 4. Maximum mean particle distance and spectral amplification (inset) for the
cases in which the channel oscillates with frequency ω and the transverse force
is constant (a) [ω = 0 (white diamonds), ω = 0.05 (gray circles), ω = 0.1 (gray
squares), and ω = 1.0 (dark diamonds)] and when the transverse force oscil-
lates with the same frequency Ωy = ω (b) [ω = 0 (white diamonds), ω = 0.05
(gray circles), and ω = 0.1 (gray squares)]. The values of the parameters are
Fo = 0.5, Go = 5, Ωx = 0.1, and Δμ = 0.

spectral amplification for optimal values of the frequency ω at which
the resonance peaks are higher. These values differ by at most one
order of magnitude from the frequency of the oscillation of the lon-
gitudinal force Ωx = 0.1. At high frequencies, the bottleneck opens
and closes very quickly, making it more difficult for the particles to
overcome the entropic barrier. The consequence is that the resonant
peaks are much smaller and may even disappear.

In Fig. 4(b), we show the results for the case in which channel
oscillations are synchronized with the oscillations of the transverse
force. The mismatch between the results and the simulations, at
low noise levels, is also due to the absence of local equilibration in
the transverse direction. In the inset, we observe that the peaks of
the spectral amplification at different frequencies occur at almost
the same value of the noise level (0.25 < D < 0.35). We can then

FIG. 5. Position of the particle under a constant transverse force G = Go in an
oscillating channel as a function of time: real value (a) and mean value (b). We
see that the applied force imposes its periodicity on both the quantities. The words
“open” and “closed” refer to the maximum and minimum openings of the channel.
The values of the parameters are Fo = 0.5, Go = 5, Ωx = 0.1, ω = 0.05, Δμ = 0,
and D = 0.25.

conclude that the synchronization of the two oscillations results in
an increase in transport and a decrease in dissipated energy.

As shown in Figs. 4(a) and 4(b), channel oscillations lead to
higher energy and transport efficiencies. Whereas the heights of the
peaks of xmax as a function of ω do not show a monotonic behavior,
those of η increase with ω.

This seemingly counter-intuitive behavior is due to the fact
that some of the particles that pass through the bottleneck from
left to right do not return and remain oscillating only on the right
side, which increases the transport efficiency and decreases the
average amplitude of the oscillations and, consequently, the energy
efficiency.

In Fig. 5, we represent the fluctuating position of a single par-
ticle xi(t), which, for an optimal value of the noise level, becomes
synchronized with the opening and closing motion of the bottle-
neck. The average in the ensemble of particles ⟨x(t)⟩ also changes
periodically with varying amplitude.

FIG. 6. Effect of a constant driving force on the maximum mean particle distance
and spectral amplification when the transverse force is a constant, Go = 5, and
for Fo = 0.5, Ωx = 0.1, ω = 0. Δμ = 0 (white diamonds), Δμ = 0.5 (gray circles),
and Δμ = 1 (gray squares). On average, the particles may reach the extreme
right-hand side of the channel.
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FIG. 7. The direction of the driven force f μ = Δμ
Lx

, when the transverse force is

a constant, Go = 5, affects the value of xmax (a) but has no effect on η (b). Fo

= 0.5, Ωx = 0.1, ω = 0.

C. Influence of a constant driving force on resonance
The presence of a constant driving force f μ, resulting from

the existence of a concentration gradient, causes more particles to
accumulate on one side of the channel. The results of this case
are presented in Fig. 6. We can see that an increase of the driving
force leads to an increase of the maximum position the particles
can reach. This quantity shows a remarkable increase, similar for
different values of μ, for noise levels in the range D ∼ (0.05, 0.1).

In the inset of Fig. 6, we can see that the presence of the force
yields a decrease of the spectral amplification. This is due to the fact

FIG. 8. Effect of the driving force on xmax and η when channel and transverse
force oscillations are synchronized, Ωy = ω = 0.05, and Δμ = 0.5 (gray dashed
line and gray squares), and when a constant force Go = 5 is applied and Δμ = 0
(black solid line and white diamonds).

that the presence of the force entails more energy dissipated; there-
fore, a higher noise level is necessary to get all particles through the
bottleneck, irrespective of the direction of the force, as follows from
Figs. 7(a) and 7(b).

The results for the case in which the driving force is positive
or negative, when both frequencies are synchronized, are presented
in Fig. 7. One can observe that xmax always decreases, which indi-
cates the absence of the two distinct energetic and entropic regimes
that appear in the cases studied above, even when the force is large
(Fig. 8). The spectral amplification (dashed line in the inset) shows

FIG. 9. Snapshots of the total poten-
tial V t , probability P(x, t), and distribu-
tion of the particles indicated by the red
dots in the insets. Results correspond to
t = 0 (a), t = 100 (b), t = 200 (c), and
t = 500 (d). The values of the para-
meters are Fo = 0.5, Go = 5, Ωx = 0.1,
Δμ = 0.5, Ωy = ω = 0.05, and D = 0.4.
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a peak at a value of the noise similar to that observed in Fig. 4(b),
which shows that the particles do not need a high noise level to be
able to overcome the barrier, even when an external constant force
is applied. In this case, the peak is lower than the one of the cases
of oscillating walls and a constant perpendicular force. This fact
indicates that although the presence of f μ generates more energy dis-
sipation, the synchronized oscillations of G(t) and h(x, t) help the
particle to jump the barrier. The opening–closing dynamics of the
channel is then the main mechanism that enhances particle trans-
port. In Fig. 9, we show the snapshots of the particle distribution
obtained in the simulations together with the computed probability
density and the total potential that is tilted due to the presence of the
constant driving force. In the simulations, we have assumed that the
strength of the force is equal to the amplitude of the periodic force
( f μ = F0), which leads to changes from a bistable state [Fig. 9(a)] to
a metastable state [Figs. 9(b) and 9(c)].

IV. CONCLUSION
We have investigated the transport of Brownian particles

through a narrow micro-channel whose shape varies with time while
preserving the total volume in order to identify the optimal trans-
port conditions. For this purpose, we have proposed a model for a
very narrow oscillating channel in which the diffusion time in the
transverse direction is much shorter than that in the longitudinal
direction and the confinement is described by an entropic potential.

By subjecting the particles to time-periodic external forces, lon-
gitudinal and transverse to the channel, we have found the presence
of entropic stochastic resonances whereby the energy efficiency of
the process and the distance the particles reach increase for an opti-
mal value of the thermal noise intensity. The increase is even greater
when the oscillation of the channel is synchronized with that of the
transverse force. These oscillations are therefore a key element in
improving transport.

We have also analyzed the influence of a constant external force
directed along the channel, such as that generated by a concen-
tration gradient in ion channels and transporters, on the resonant
behavior of the system. We have found that, while the energy
efficiency decreases, due to increased dissipation, the transport effi-
ciency increases so that the particles can on average reach the end of
the channel.

From our results, we conclude that by engineering the shape of
the channel and the appropriate choice of a driving force, we can
propose optimal scenarios for particle transport.
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APPENDIX: VOLUME CONSERVATION CONDITION

As in Ref. 44, we have assumed that the height of the channel
is given by a polynomial function. To impose channel volume con-
servation during the oscillation, we will equate the volume of the
channel at time t,

V = ∫
l

−l
(h(x, t))2dx, (A1)

which can be obtained by using the expression of the height
of the channel given in [Eq. (4)], with its value at t = 0, V(t
= 0) = ∫ l

−l(h(x, 0))2dx = 0.04. Under this condition, one obtains the
time-dependent bottleneck width given by

b(t) = −bb(t) +
√

bb(t)2 − 4ba(t)bc(t)
ba(t)

, (A2)

where bb = 0.12 cos(ωt) + 1.06, ba = 2.2, bc = 0.04 cos(ωt) + 0.002
(cos(ωt))2 − 0.07, and b(t = 0) = b. The value of the remaining
parameters is α = 0.1 and β = 0.9.
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