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Phase separation of self-propelled disks with ferromagnetic and nematic alignment
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We present a comprehensive study of a model system of repulsive self-propelled disks in two dimensions with
ferromagnetic and nematic velocity alignment interactions. We characterize the phase behavior of the system
as a function of the alignment and self-propulsion strength, featuring orientational order for strong alignment
and motility-induced phase separation (MIPS) at moderate alignment but high enough self-propulsion. We
derive a microscopic theory for these systems yielding a closed set of hydrodynamic equations from which
we perform a linear stability analysis of the homogenous disordered state. This analysis predicts MIPS in the
presence of aligning torques. The nature of the continuum theory allows for an explicit quantitative comparison
with particle-based simulations, which consistently shows that ferromagnetic alignment fosters phase separation,
while nematic alignment does not alter either the nature or the location of the instability responsible for it. In
the ferromagnetic case, such behavior is due to an increase of the imbalance of the number of particle collisions
along different orientations, giving rise to the self-trapping of particles along their self-propulsion direction.
On the contrary, the anisotropy of the pair correlation function, which encodes this self-trapping effect, is not
significantly affected by nematic torques. Our work shows the predictive power of such microscopic theories to
describe complex active matter systems with different interaction symmetries and sheds light on the impact of
velocity-alignment interactions in motility-induced phase separation.
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I. INTRODUCTION

Inspired by living organisms, active matter made of self-
propelled units comprises a wide variety of systems whose
common feature is the continuous consumption of energy
converted into directed motion. Several well-known examples
of active systems can be found in the biological world as
well as synthetically realized in manmade systems across
scales [1]: examples range from flocks of birds [2], bacte-
ria [3–6], cells [7–9], or cytoskeletal components [10–13] to
self-propelled colloids [14–16] or grains [17–19]. One of the
main interests of these systems lies in the fact that, since they
are intrinsically out-of-equilibrium and host different kinds of
complex interactions, they display a wide range of emergent
collective phenomena. For instance, particle’s aggregation in
the absence of attractive interactions [14,16,20–22] and the
emergence of collective motion [3,4,10,17,22] are among the
most salient examples.

The description of these nonequilibrium phenomena has
attracted a great deal of theoretical work over the last decades
[23,24]. Much progress has been achieved through the study
of minimal models capturing some key, hopefully generic,
features of active systems. Among them, so-called “dry mod-
els” have played (and are still playing) an important role in
the development of a theoretical framework to understand
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and classify different collective behavior observed in active
systems [25,26]. Dry models, as their name suggests, neglect
the role played by the surrounding medium hosting these
self-propelled components, besides as a source of fluctuations
and dissipation. They are based on minimal symmetry and di-
mensionality considerations, following a trend of ideas surely
inspired by the theory of critical phenomena. Following the
symmetry of their constituents, dry models can be classified
in different universality classes. For active matter, however,
an extra ingredient with no equivalent in the theory of equi-
librium critical phenomena has to be taken into account: the
symmetry associated to the self-propulsion mechanism itself.
In this work, we focus on particles carrying an orientation
which sets their self-propulsion direction. Thus, since one can
associate an “arrow” to each particle, they are said to be polar.
On top of that, one has to consider, as usual, the symmetry of
their interactions.

A natural, and extensively studied, class of active systems
made of polar self-propelled particles is the one defined by
isotropic particle-particle interactions. This encompasses the
active Brownian particle (ABP) model [27–29], which de-
scribes agents performing a persistent walk and interacting
solely through volume-exclusion (as illustrated in the first
column Fig. 1). Together with its coarse-grained theories
[30–37], this class of models describes the aggregation of
self-propelled particles in the absence of attractions, resulting
in a macroscopic phase separation at high enough density and
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FIG. 1. Schematic representation of our model system, compris-
ing active Brownian particles subjected to (i) only isotropic excluded
volume interactions (first column), (ii) ferromagnetic velocity-
alignment (second column), and (iii) nematic velocity-alignment
(third column).

self-propulsion strength: the so-called motility-induced phase
separation (MIPS) [38–49].

The arguably most studied and first introduced “uni-
versality class” in active matter is the one that considers
ferromagnetic (or polar) interactions, meaning, particles that
locally align their velocity with the one of their neighbors. The
celebrated Vicsek model [50] and its continuous descriptions
pioneered by Toner and Tu [51], describing the emergence
of collective motion, belong to this class (second column
Fig. 1).

Many extensions of the Vicsek model have been consid-
ered, accounting for different kinds of alignment rules [25]. In
particular, the case in which particles align along a preferred
axis with head-tail nematic symmetry has received consid-
erable attention [52–55], as being models of self-propelled
elongated objects, such as most swimming bacteria (third col-
umn Fig. 1). This class of active systems is typically referred
to as active rods [56], both for self-propelled particles with
an alignment rule à la Vicsek, and for rigid elongated ob-
jects for which nematic alignment results from collisions, i.e.,
anisotropic excluded volume interactions [57–63]. Despite
sharing the same nomenclature, self-propelled rods interact-
ing via volume exclusion feature different emergent states
than the simplified polar point-like particles with nematic
alignment. They can, for instance, form coherently moving
polar clusters while Vicsek-like particles cannot, and their as-
pect ratio turns out to be a crucial parameter as it allows them
to go from an alignment dominated regime, to an isotropic
regime exhibiting MIPS.

Here, we investigate the interplay between excluded vol-
ume and velocity alignment. Most recent studies addressing
this problem focus on the role played by the particles’ shape
in the emergence of different states, mainly looking at how
MIPS destabilizes in favor of oriented structures [60–63]. To
disentangle the role played by each one of these two inter-
action mechanisms, short-range repulsion and alignment, we
consider a system of self-propelled particles with isotropic
excluded volume interactions but anisotropic aligning torques,
both of ferromagnetic and nematic nature, as illustrated in

Fig. 1. In other words, we aim at understanding (i) how
(isotropic) excluded volume interactions affect the collective
behavior of the ferromagnetic and nematic Vicsek-like class
of systems, without interfering with more complex aspects
related to the shape of the particles and (ii) how ferromag-
netic and nematic alignment affect the MIPS of self-propelled
disks. Such questions have recently been addressed for ferro-
magnetic [22,64–70], nematic [71], and other kinds of more
complex aligning mechanisms present in colloidal experi-
ments [72]. However, a unified framework allowing to unravel
the impact of aligning torques with different symmetries on
the phase behavior of ABP is still lacking.

The paper is organized as follows. In Sec. II, we introduce
a microscopic ABP model combining excluded volume and
velocity alignment interactions. In Sec. III, we discuss the
phase diagram of the system subjected to either ferromag-
netic or nematic alignment obtained from Brownian dynamics
simulations. In Sec. IV, we systematically derive a contin-
uum description by explicitly coarse-graining the stochastic
particle dynamics. We then perform a linear stability analysis
of the resulting effective hydrodynamic equations, focusing
on the stability of the homogeneous isotropic state. Finally,
we compare the numerical results to the predictions of the
analysis of the continuum equations and discuss how a ferro-
magnetic and a nematic coupling affect the phase separation
of repulsive self-propelled disks.

II. MICROSCOPIC ABP MODEL

We consider a 2D system of N particles in a L×L box with
periodic boundary conditions at positions ri and with orien-
tations ei = (cos ϕi, sin ϕi ), whose dynamics are governed by
the set of coupled over-damped Langevin equations:

ṙi(t ) = v0ei + μFi({r j (t )}) +
√

2D0ηi(t ), (1)

ϕ̇i(t ) = −μr
∂H
∂ϕi

+
√

2Drνi(t ). (2)

Particles self-propel at constant speed v0 in the direction given
by ei. The time evolution of ei is subjected to local torques
Ti = − ∂H

∂ϕi
which derive from a Vicsek-like alignment rule that

we specify below. Particles also interact through isotropic,
short-range, repulsive forces, Fi. The system is in contact
with a thermal bath, modeled by ηi, a Gaussian white noise
with zero mean and unit variance. Orientations are subjected
to rotational noise, νi, also described by a Gaussian white
noise with zero mean and unit variance. Rotational noise sets
a characteristic time scale, given by the inverse of the rota-
tional diffusion coefficient, τr = D−1

r , the persistence time,
and a characteristic length scale given by lp = v0τr , the per-
sistence length. The thermal diffusion coefficient D0 and the
mobility μ fulfill the Einstein relation D0 = μkBT , where
kB is the Boltzmann constant and T the temperature of the
bath.

We now specify the different interaction terms, included in
our model equations Eqs. (1) and (2) and used in the present
work.
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A. Excluded volume

The excluded volume interaction, Fi = −∑ j �=i ∇iu(ri j ),
derives from a WCA potential,

u(ri j ) =
{

4u0

[(
σ
ri j

)12
−
(

σ
ri j

)6]
+ u0 ri j � R,

0 ri j > R,
(3)

where ri j = |ri − r j |. The cutoff distance is R = 21/6σ and u0

corresponds to the characteristic energy scale of the potential.

B. Aligning torques

Local torques derive from the following Hamiltonian (po-
tential)

H = −
∑
i, j

v(ri j )w(ϕi j ), (4)

where ϕi j = ϕi − ϕ j and

v(ri j ) =
{ 2

πR2
ϕ

(ri j − Rϕ )2 ri j < Rϕ

0 ri j > Rϕ

(5)

is a spatially decaying function with a cutoff distance Rϕ ,
setting the interaction range beyond which particles do not
align. The spatial dependency of v(ri j ) ensures that there
are no discontinuities in the resulting torque. The angular
dependency of the alignment potential, w(ϕi j ), is chosen in
different ways to study interactions of different nature: (a)
ferromagnetic and (b) nematic alignment.

In the absence of alignment interactions, the model de-
scribed by Eqs. (1) and (2) reduces to the Active Brownian
Particle model. In this limit, the system undergoes motility-
induced phase separation upon increasing the self-propulsion
speed. Furthermore, in the absence of excluded volume in-
teractions, u0 = 0, the model describes pointlike particles à la
Vicsek, subjected to alignment interactions of different nature.

1. Ferromagnetic alignment

Ferromagnetic torques lead to a Langevin variant (in con-
tinuous time) of the Vicsek model, which, in the limit of
vanishing velocities reduces to the equilibrium 2D XY model
of a ferromagnet. Indeed, a ferromagnetic coupling in Eq. (2)
can be derived from the 2D XY Hamiltonian

H = −J
∑

i

∑
j∈ωi

v(ri j ) ei · e j, (6)

meaning

w(ϕi j ) = J cos (ϕi j ), (7)

where ωi is the vicinity of particle i, defined by Rϕ , and J > 0
is the coupling strength.

2. Nematic alignment

Nematic torques tend to align the direction of self-
propulsion of neighboring particles along the same axis but
with no head-tail preference, see Fig. 1, in the same fashion
as uniaxial nematic liquid crystals [73]. Thus, the nematic
interaction can be modeled by the following Hamiltonian:

H = −J
∑

i

∑
j∈ωi

v(ri j ) qi · q j, (8)

where qi = ei ⊗ ei − 1
21 is the nematic tensor [74]. Note that

Eq. (8) has the same structure as the 2D XY model interaction,
but now the nematic tensor plays the role of the orientation
of the particles (spins) [75]. From such Hamiltonian one gets
(see Appendix A)

w(ϕi j ) = J cos (2ϕi j ). (9)

At this stage, it is possible to identify the relevant set of
dimensionless parameters: the average packing fraction

φ = NπR2

4L2
≡ ρ

πR2

4
, (10)

the reduced coupling parameter

g = 2μrJ

πR2
ϕDr

, (11)

accounting for the strength of the alignment interaction as
compared to the rotational diffusion, and the Péclet number

Pe = v0

RDr
= lp/R, (12)

quantifying the persistence of the particle’s motion.
We systematically study the system’s phase behavior fix-

ing φ = 0.4 and varying g and Pe. To this end, we perform
Brownian dynamics simulations of the model described in
Eqs. (1) and (2) with N = 4000–16 000 particles in a L×L box
subjected to periodic boundary conditions (PBC). The steric
interaction cutoff distance is set to R = 1, which in turn gives
the unit of length (interpreted as the effective diameter of the
particles). The strength of the pairwise repulsive interaction is
u0 = 100, in units of the thermal energy, kBT = 1. The time
unit is given by τ0 = R2/D0 = 1, where the thermal diffusion
coefficient is D0 = R2Dr/3, with fixed rotational diffusion
coefficient Dr = 3/τ0. This, in turn, sets the characteristic
decorrelation time, τr = D−1

r . The alignment cutoff distance
is set to Rϕ = 2R, so that particles need not be in contact to
mutually align their directions of self-propulsion. We explore
a range of v0 values that goes from 0 to 400, corresponding
to Pe ∈ [0, 133.3]. The coupling constant J takes values from
0 to 320 and thus g ∈ [0, 17.0]. Finally, mobilities are set to
μ = μr = 1.

The simulations are performed by initializing the system
in a random configuration and letting it relax to its steady
state. The results reported are obtained by averaging over en-
sembles of 1000 independent configurations at the stationary
state (in the regime of low Pe where density and polariza-
tion fluctuations are bigger, we sample systems of N = 8000
and average over 5000 independent configurations). We use
an Euler-Mayurama algorithm to integrate the equations of
motion. The timestep employed to discretize the equations of
motion ranges from �t = 10−5 to �t = 2×10−6, depending
on the value of Pe. Each simulation lasts for 320τr , in terms
of the decorrelation time τr . Initially, we let the system evolve
for 120τr , until it reaches the steady state, and then record
a configuration every 2τr for further statistical analysis. We
explored by means of numerical simulations the behavior of
the system by varying g and Pe, subjected to either ferromag-
netic or nematic alignment at fixed φ = 0.4. The resulting
state diagram obtained for systems with N = 4000 is shown in
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FIG. 2. Phase diagram in the (g, Pe) plane for a system at φ = 0.4 with (a) local ferromagnetic alignment and (b) local nematic alignment.
The phase separation from a homogeneous (H) to a MIPS state is indicated by blue squares. The prediction of the phase separation given by
the continuum theory is marked by grey circles. The onset of ferromagnetic order (FO) and nematic order (NO) is marked by red symbols with
error bars. The inset in panel (b) shows the onset of nematic order up to a value of Pe = 133.4 in log-log scale. Broken lines correspond to
g = gf = 0.93 in panel (a) and g = 2gf in panel (b). Snapshots of the system at different points of the phase diagrams (indicated by symbols)
(c) (0, 13.3); (d) (0.37, 16.6); (e) (7.96, 16.6) in the ferromagnetic case; (f) (2.12, 3.3); (g) (2.12, 23.4); (h) (13.23, 23.4) in the nematic
case. Particles are colored according to their self-propulsion direction, using a cyclic color code. Particles with the same color share the same
orientation.

Fig. 2. Aligning torques induce the emergence of orientational
order in the system, either of ferromagnetic or nematic nature,
while the competition between self-propulsion and excluded
volume interactions triggers phase separation. The study of
the latter in the presence of aligning interactions is the main
object of the present article and presented in Secs. IV and V.

III. PHASE BEHAVIOR

A. Emergence of orientational order

Upon increasing the tendency of particles to align at fixed
self-propulsion velocity, the system undergoes a phase transi-
tion between an isotropic and an oriented state (see snapshots
in Fig. 2). At low values of the coupling parameter, the ori-
entational dynamics of particles is dominated by rotational
noise, thus leading to a disordered state. Upon increasing g,
local alignment torques overcome rotational noise and even-
tually trigger the emergence of global orientational order.
A macroscopic fraction of the particles in this state is thus
aligned, leading to the emergence of collective motion (or
flocking), Figs. 2(e) and 2(h).

Obviously, the nature of the ordered phases strongly de-
pends on the symmetry of the alignment interactions. For
ferromagnetic alignment, the ordered state displays polar or-
der and strong density heterogeneities in the form of lanes, as

illustrated in Fig. 2(e), along which a macroscopic fraction of
the system moves (roughly) along the same direction. The for-
mation of dense structures such as traveling bands are typical
in flocking Vicsek-style models [25]. Extensions of such mod-
els including volume interactions display richer structures,
and among them, it is typical to find lanes [64,65,67].

Local nematic torques lead, instead, to an ordered state
where particles self-propel along the same axis but in opposite
directions, Fig. 2(h). Here, the ordered phase is also character-
ized by the formation of dense structures, although of different
nature than in the ferromagnetic case. Particles with nematic
alignment aggregate into coherently-moving structures, with
a high degree of local polar order. These domains collide
and interpenetrate, giving rise to elongated, nematically or-
dered structures that we call, by extension of Vicsek-type
models, nematic bands. An illustration of these nematic bands
is provided by the snapshots Figs. 2(g)–2(h). While nematic
bands are generically found in Vicsek-type models of active
rods [25], the situation becomes quite more intricate when
excluded volume interactions are considered. In active rod
models, made of elongated self-propelled particles that align
through collisions, one generically observes the formation of
polar lanes, similar to the ones we observe in the ferromag-
netic case, at high enough densities and shape anisotropy
[58,60,62,63]. Here, we also find a tendency towards polar
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FIG. 3. (a) Global polarization as a function of the normalized
ferromagnetic alignment strength for different values of the self-
propulsion speed; (b) global nematic order as a function of the
normalized nematic alignment strength.

ordering, however, only locally. The isotropic shape of our
particles does not allow for the establishment of a large-scale
polar structure even for very strong coupling.

The emergence of ferromagnetic order is characterized by
a nonzero value of the polarization

P =
∣∣∣∣∣ 1

N

N∑
i=1

ei

∣∣∣∣∣, (13)

while nematic order is quantified by the scalar nematic order
parameter S [76], defined as

S = 2

N

[(∑
i

cos2 ϕi − 1

2

)2

+
(∑

i

cos ϕi sin ϕi

)2] 1
2

.

(14)

The evolution of the averaged order parameters as a function
of the coupling strength is shown in Figs. 3(a) and 3(b) in the
ferromagnetic and nematic case, respectively. To locate the
onset of global ferromagnetic order shown in red symbols in
the phase diagram, Fig. 2(a), we compute the susceptibility
χ (P) = N (〈P2〉 − 〈P〉2), where 〈·〉 denotes an ensemble av-
erage. In the case of nematic alignment, we observe strong
fluctuations in S at low Pe, resulting in a broad susceptibility
with an ill-defined peak. However, at high values of Pe, χ (S)
peaks at a value of g corresponding to S = 0.2. It is for this
reason that we use the latter threshold value as a criterion to
locate the onset of nematic order at any value of Pe. The phase
diagram Fig. 2(b) shows in red symbols the critical value of g
corresponding to S = 0.2.

From this analysis, we identify the onset of ferromagnetic
order at g f = 0.93. This critical coupling is largely indepen-
dent of the value of Pe, see Fig. 2(a). The independence of
the onset of flocking on Pe has been already reported in nu-
merical simulations [67,68] and mean-field calculations [65],
according to which it is located at g ≈ 0.63.

The onset of nematic order gn(Pe) has a stronger depen-
dence on the value of Pe for the finite system sizes explored.
The higher the Pe is, the lower the alignment strength has
to be to trigger nematic order. A Pe-dependence of the onset
of nematic order has been recently observed in other simula-
tions of nematically aligning ABP [71]. The parallel analysis
of ferromagnetic and nematic interactions we perform here

allows us to identify that, as Pe increases, the critical value
gn decreases, first approaching 2g f , the value expected in the
absence of self-propulsion, and then going below that value at
very large Pe, saturating at a value around gn(Pe 
 1) ≈ 1.15.
Note that in this high-Pe regime, the persistence length lp

becomes larger than the linear system size L = 88.6, such that
large-scale fluctuations are strongly suppressed. Thus, the be-
havior at high Pe is likely to be strongly affected by finite size
effects and controlled by mean-field behavior. For Pe > 89,
the persistence length of the particles exceeds the linear size
of the box L. Larger system sizes, such that L/lp � 1, would
be needed to analyze finite size effects in this high activity
regime. We however did not attempt to characterize the nature
of the orientated state. Above Pe = 89, the observed flocking
transition is mean-field like and does not depend anymore on
the value of Pe. Instead, for smaller values of Pe, or larger
system sizes, the nematic order parameter decays at fixed g
for increasing lp.

It is worth mentioning at this stage that the nature of the
ordered state in systems of Vicsek particles with nematic
alignment has arouse some debate over the last decade. While
it is now clear that true long-range order can arise for ferro-
magnetic interactions, numerical and analytical results have
not convincingly yield a conclusion in this respect for the
nematic case [52,77], until very recently [55]. In this latter
work, it is shown that very large systems need to be explored
to grasp the asymptotic quasi-long-range order nature of the
ordered state. Thus, in finite, yet large, systems of linear
size smaller than a characteristic length scale (which can be
made very large) nematic order appears to be long-range. The
location of the threshold reported in Fig. 2 has thus to be
taken as a description of the behavior of our finite system,
bearing in mind the aim of the present study, which is the
understanding of the particle aggregation mechanism in the
presence of different kind of aligning interactions. The ex-
ploration of the phase diagram presented here responds to
the need of setting the parameters for our subsequent study
of phase separation, but not as an attempt of establishing the
asymptotic behavior of the system in the N → ∞ limit. In the
presence of excluded volume interactions though, the nature
of the phase transition triggered by nematic interactions in
systems of self-propelled particles remains an open challenge.
We do not aim at addressing this question here.

B. Phase separation

In the absence of effective torques, g = 0, the system un-
dergoes a phase separation from a homogeneous (denoted H)
to a phase-separated state (MIPS) by increasing Pe (Fig. 2).
At finite g below the emergence of orientational order, there
is a region of the phase diagram where the system demixes
into a dense region, where particles move slowly, and a di-
lute region where particles move fast. As shown in Ref. [68]
for ferromagnetic alignment, such phase separation can be
attributed to the MIPS mechanism, meaning, a fast reduction
of the particles velocity with increasing local density.

In what follows, we study the impact of alignment (both
ferromagnetic and nematic) on the global phase separation
induced by motility. We use the fraction of particles in the
largest cluster of the system, , as a phenomenological order
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FIG. 4. Phase coexistence regions for several values of the
(a) ferromagnetic and (b) nematic alignment strength, g. The co-
existence region shifts to lower values of Pe as the ferromagnetic
coupling is increased, while increasing the nematic coupling does
not significantly affect the coexistence region of nonaligning ABP.

parameter to identify the onset of phase separation (see
Appendix B for further details), or spinodal line. We consider
the system in a phase separated state when  > 0.08 and
report the critical value of Pe obtained in this way in the phase
diagrams Figs. 2(a) and 2(b).

As shown in Fig. 2(a), for ferromagnetic alignment, MIPS
is shifted to lower values of Pe as the coupling parameter g is
increased, as reported in Refs. [68,78]. Ferromagnetic align-
ment enhances the aggregation of particles and the eventual
phase separation of the system. In contrast, for nematic align-
ment, the critical self-propulsion speed at which MIPS takes
place remains fairly unchanged as the coupling parameter g is
increased, as shown in Fig. 2(b).

To further characterize the effect of different alignment
interaction on MIPS, we construct the binodals of the system,
shown in Fig. 4, from the analysis of local density distribu-
tions. For ferromagnetic alignment, the region of coexistence
is shifted to lower values of Pe as g is increased. On the
contrary, for nematic alignment, the coexistence regions do
not change within our numerical accuracy, in agreement with
the results presented in Fig. 2. The MIPS coexistence region
of ABP is not significantly affected by the presence of ne-
matic alignment interactions. The system’s finite size does

not have a strong effect in the MIPS characterization. To
show the robustness of the results obtained at N = 4000 we
have reproduced the binodals for bigger system sizes (N =
8000, 16 000), see Fig. 9 in Appendix C.

With the aim of shedding light on the mechanisms trigger-
ing MIPS in the presence of aligning interactions, we develop
below a continuum theory by explicitly coarse-graining the
microscopic ABP dynamics Eqs. (1) and (2). We then perform
a linear stability analysis of the resulting field equations that
we can directly compare with our simulation results, thus ex-
plaining why ferromagnetic interactions enhance MIPS while
nematic ones do not.

IV. COARSE-GRAINED DESCRIPTION

A. Derivation of hydrodynamic equations

The overdamped Langevin dynamics Eqs. (1) and (2) can
be equivalently described by the following N-body Smolu-
chowski equation [30–32,79],

∂tψN =
N∑

i=1

∇i · [(∇iU )ψN − v0eiψN + D0∇iψN ]

+
N∑

i=1

∂ϕi [(∂ϕiH)ψN + Dr∂ϕiψN ], (15)

where ψN (� = {ri, ϕi}i=1..N , t ) is the joint probability distri-
bution to find our N particles at a given position with a given
orientation at time t . Particles self-propel at constant speed
v0 and are subjected to translational and rotational diffusion.
From now on we consider D0 = 1 and drop it in the fol-
lowing expressions. Short-range interactions are modeled by
two independent potentials, describing excluded volume and
alignment interactions,

U ({r j}) =
i=N∑
i=1

∑
i< j

u(|r j − ri|),

H({r j}, {ϕ j}) =
∑
i< j

v(|r j − ri|)w(ϕ j − ϕi ). (16)

Assuming the indistinguishability of particles, it is
possible to integrate out (N − 1) variables, ψ1(r1, ϕ1; t ) =
N
∫∞
−∞ dr2...drN

∫ 2π

0 dϕ2...dϕNψN , to obtain a Smolu-
chowski equation for the one-body distribution,

∂tψ1 = −∇1 · [F(r1, ϕ1; t ) + v0e1ψ1 − ∇1ψ1]

− ∂

∂ϕ1

[
T (r1, ϕ1; t ) − Dr

∂ψ1

∂ϕ1

]
. (17)

The effective force reads

F(r1, ϕ1; t ) =
∫ ∞

−∞
dr2

∫ 2π

0
dϕ2u′(r12)

r12

r12
ψ2, (18)

and the effective torque corresponds to

T (r1, ϕ1; t ) =
∫ ∞

−∞
dr2

∫ 2π

0
dϕ2v(r12)w′(ϕ12)ψ2, (19)

where r12 = r2 − r1 and ϕ12 = ϕ2 − ϕ1. Note that both
F(r1, ϕ1; t ) and T (r1, ϕ1; t ) depend on the two-body
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r2 − r1

ϕ2

e1

θ

FIG. 5. Schematic representation of two Active Brownian Parti-
cles located at r1 and r2, setting the notations used throughout the
paper. θ is the angle encompassed between the vector distance and
the direction of self-propulsion, e1 = (cos ϕ1, sin ϕ1).

probability density, ψ2(r1, r2, ϕ1, ϕ2, t ), and encode the mi-
croscopic interactions exerted by the surrounding particles
into the tagged particle (labeled 1). Equation (17) thus consti-
tutes the first equation of a BBGKY-like hierarchy of coupled
equations involving multibody distribution functions.

We decompose the two-body probability density using the
following identity:

ψ2(r1, r2, ϕ1, ϕ2, t ) = ρ̄ ψ1(r1, ϕ1, t )G(r12, θ, ϕ12, t ), (20)

where ρ̄ is the average density, G(r12, θ, ϕ12, t ) the pair-
correlation function and θ the angle encompassed between the
vector distance r12 and the orientation of the tagged particle
(see sketch in Fig. 5). This decomposition allows us to encode
all the information on the microscopic structure of the system
in the correlation function G(r12, θ, ϕ12, t ), interpreted as the
probability of finding a particle with orientation ϕ2 in the
plane-direction θ , at a distance r12 = |r12| from the tagged
particle (at r1 with orientation ϕ1, see Fig. 5). From now on,
we drop the subscripts for clarity.

We then insert the two-body probability density decom-
position Eq. (20) in Eqs. (18) and (19), and consider the
projected effective force in the direction of self-propulsion of
the tagged particle, which leads to the expression

e · F = −ρ̄ψ1ζ , (21)

where ζ is a scalar coefficient that reads

ζ = −
∫ ∞

0
dr ru′(r)

∫ 2π

0
dθ cos θ

∫ 2π

0
dϕG(r, θ, ϕ, t ).

(22)

Similarly, the torque can be expressed as

T = −ρ̄ψ1ε, (23)

where the ε coefficient reads

ε = −
∫ ∞

0
dr rv(r)

∫ 2π

0
dθ

∫ 2π

0
dϕw′(ϕ)G(r, θ, ϕ, t ).

(24)

We have thus recast the dependence on pair-wise correlations
in the two coefficients ζ and ε (see Appendix D 1 for more
details).

We now write the force F(r1, ϕ1; t ) in the vector basis
defined by the direction of self-propulsion, e, and the gradient
of the probability density, ∇ψ1, following a Gram-Schmidt

procedure (see Appendix D 2 for the full derivation), leading
to

F ≈ (e · F
)
e + (1 − D

)∇ψ1, (25)

where

D = 1 − F · [∇ψ1 − (e · ∇ψ1)e]
1

|∇ψ1|2 . (26)

This is an approximation as the basis vectors chosen are time
dependent and might eventually, although unlikely, become
collinear at some particular time during the evolution.

One can then rewrite the one-body Smoluchowski equa-
tion, Eq. (17), inserting the projected force, Eq. (21), as well
as the expression of the torque, Eq. (23), to obtain

∂tψ1 = −∇ · [vρ̄ eψ1 − D∇ψ1] + ∂

∂ϕ

[
ρ̄ψ1ε + Dr

∂ψ1

∂ϕ

]
.

(27)

The first term in the right-hand side (RHS) stands for trans-
lational advection, defining an effective self-propulsion speed

vρ̄ = v0 − ρ̄ζ (28)

that decays with the mean density ρ̄ at a rate given by ζ , which
can thus be interpreted as a translational friction coefficient,
accounting for the arrest of particles in crowded environ-
ments and stemming from excluded volume interactions [see
Eq. (22)]. The second term in the RHS of Eq. (27) corre-
sponds to translational diffusion with an effective diffusivity
D. Following Refs. [30,32], we make the assumption that D
is uniform, corresponding to the long time diffusion coeffi-
cient of the system in the passive limit. Such approximation
of the effective diffusivity Eq. (26) has been justified and
put into test in previous works [32,80]. The diffusivity from
the long-time mean-squared displacement can be written as
D = D + v2(ρ)/2, such that in the absence of self-propulsion
D corresponds to the diffusion coefficient of a passive sys-
tem. This implies that, from now on, all the dependency on
pair-wise correlations will be fully encoded in ζ and ε. The
effect of the third term in the RHS of Eq. (27) is to advect
the orientations. Similar to ζ , ε can be interpreted as a rota-
tional friction coefficient. The last term accounts for rotational
diffusion.

To proceed, we close the hierarchy of coupled equations
by considering the effective friction coefficients as constants
[30]. This is the central approximation of our approach which
allows us to construct an effective hydrodynamic description.
We define the first three moments of the one-body probability
distribution, ψ1, namely, the density field

ρ(r, t ) ≡
∫ 2π

0
dϕψ1(r, ϕ, t ), (29)

the polarization

p(r, t ) ≡
∫ 2π

0
dϕeψ1(r, ϕ, t ), (30)

and the nematic tensor

Q ≡
∫ 2π

0
dϕ(e ⊗ e − 1/2)ψ1(r, ϕ, t ). (31)
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Integrating the (mean-field) closed evolution equation of the
one-body probability distribution, Eq. (27), we obtain the
effective hydrodynamic equations for each one of the three
fields

∂tρ(r, t ) = −∇ · [vρ̄p − D∇ρ], (32)

∂t p(r, t ) = −∇ · [vρ̄

(
1
2ρ1 + Q

)− D∇p
]

− ρ̄εp⊥ − Drp, (33)

∂t Q(r, t ) = −∇ · (vρ̄Y) − 1
4∇ ⊗ (vρ̄p) + 1

4∇⊥ ⊗ (vρ̄p⊥)

+ D∇2Q − 2ρ̄εQ⊥ − 2DrQ, (34)

where ⊥ indicates a rotation corresponding to p⊥ = Rp,

∇⊥ = R∇, and Q⊥ = RQ with R = (0 −1
1 0

)
.

Note that the time evolution equation of each moment is
linearly coupled to the next order moment. Consequently, the
time evolution of the nematic tensor, Eq. (34), is coupled
to the tensor Yαβγ ≡ ∫ 2π

0 dϕ[eαeβeγ − 1
4 (δαβ pγ + δαγ pβ +

δβγ pα )]ψ1(r, ϕ, t ), corresponding to the third moment of ψ1.
As it is shown in the next subsection, ρ(r, t ) constitutes the
slowest moment of the probability distribution. Therefore,
higher-order moments are enslaved to ρ(r, t ) and become
irrelevant for the study of an infinite wavelength instability
[40,61]. This remark thus justifies to cut the hierarchy of
equations by dropping the dependency on Yαβγ . As a result,
we obtain a closed set of hydrodynamic equations accounting
for the time evolution of the particle density, polarization
vector, and nematic field tensor. Note that the hydrodynamic
description we obtained is general and applies to any kind
of interaction potentials U and H. The different behaviors
observed for ferromagnetic and nematic alignment have thus
to be captured by the coefficients ζ and ε, which contain all
the information regarding the microscopic interactions at this
level of description.

1. Linear stability analysis

We now assume that the density ρ(r, t ) is a slowly varying
field. This is justified as long as we are interested in the
stability of a homogeneous state. In this case, one can thus re-
place ρ̄ by the local density field ρ(r, t ) in the hydrodynamic
equations [30], where now

vρ̄ → v[ρ] = v0 − ρ(r, t )ζ . (35)

We now perform a linear stability analysis of the homo-
geneous and isotropic solution (ρ, p, Q) = (ρ, 0, 0) of the
hydrodynamic equations obtained after such replacement. To
this end, we introduce a small perturbation, ρ(r) = ρ̄ + δρ,
p(r) = δp and Q(r) = δQ and obtain a set of five independent
linearized equations in Fourier space [see Eqs. (D11) to (D13)
in Appendix D 3 for details].

Let us first focus on the linear stability in the absence of
alignment interactions. As shown in Ref. [30], considering
the density and polarization fields only, the homogeneous
solution in this case suffers a long wavelength instability as-
sociated to MIPS in a given parameter regime (see Appendix
D 4 for full derivation). Adding the nematic field equation
does not change this scenario, since Eq. (34) has also a term

proportional to the characteristic frequency Dr , ensuring a fast
decay. It is then justified to assume that the fast moments,
p̂α and Q̂αβ (where ∗̂ denotes the Fourier transform), are
adiabatically enslaved to the slow moment ρ̂, associated to
a conserved field (Goldstone theorem).

This also justifies cutting the hierarchy of hydrodynamic
equations, Eqs. (32) to (34) on the next (third) order moment
Yαβγ , since it also relaxes faster than the density field.

We then perform an adiabatic approximation on the po-
larization and nematic field, i.e., ∂t pα ≈ 0 and ∂t Qαβ ≈ 0, to
obtain an effective diffusion equation in Fourier space,

∂tδρ̂(q) = Deff
q q2δρ̂(q), (36)

where

Deff
q =

[
1

2
(v0 − ρ̄ζ )(v0 − 2ρ̄ζ )

Aq

A2
q + B2

q
− D

]
, (37)

with

Aq = −
⎧⎨
⎩
⎡
⎣1

4

(v0 − ρ̄ζ )2

Dq2 + 2Dr

1

1 + ( 2ρ̄ε

Dq2+2Dr

)2 + D

⎤
⎦q2 + Dr

⎫⎬
⎭

(38)

Bq = −
⎡
⎣1

4

(v0 − ρ̄ζ )2

(Dq2 + 2Dr )2

2ρ̄ε

1 + ( 2ρ̄ε

Dq2+2Dr

)2 q2 − ρ̄ε

⎤
⎦ (39)

A linear instability at a wave vector q is signaled by a nega-
tive effective diffusion coefficient Deff

q < 0. The limit of linear
stability of the homogenous disordered gas can therefore be
computed by setting Deff = 0, which at q → 0 leads to

8

(
v0

v∗ − ζ̃

)(
v0

v∗ − 2ζ̃

)
1

1 + ε̃2
+ 1 = 0. (40)

Here, v0
v∗ is the reduced self-propulsion speed, where v∗ =

4
√
DDr . The translational and rotational friction coeffi-

cients are also written in their dimensionless form, ζ̃ =
ρ̄

v∗ ζ and ε̃ = ρ̄

Dr
ε, and encode all the specificities of the

(anisotropic) interactions between particles. Eq. (40) thus con-
stitutes our mean-field prediction of the spinodal of a system
of self-propelled disks subjected to generic aligning torques,
explicitly written in terms of the relevant nondimensional
parameters of the model ( v0

v∗ , ζ̃ , ε̃).

V. CONTINUUM THEORY VERSUS
MICROSCOPIC SIMULATIONS

In this section, we confront quantitatively the prediction
from the linear stability of the hydrodynamic equations with
direct numerical simulations of ABP with different alignment
interactions. To do so, we will employ the Pe as the control
parameter quantifying the degree of activity in the system,
instead of v0/v

∗, as it is customary in simulations of ABP.
Both parameters are related through

v0/v
∗ = R

4
√
D/Dr

Pe = 0.638Pe, (41)

where we have numerically computed the value of D, see
Appendix E, taken from the long-time diffusion coefficient of
a passive system (v0 = 0).
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We have derived the evolution equation for the one-body
probability distribution ψ1, where the two-body correlations
have been cast into two effective friction coefficients ζ̃ and
ε̃ which are given by integrals of the the pair correlation
function G(r, θ, ϕ, t ) (we only consider steady states and
therefore, from now on, we drop the time dependency). The
excluded volume potential imposes a planar rotational sym-
metry, G(r, θ, ϕ) = G(r,−θ, ϕ), and the alignment ones (both
ferromagnetic and nematic) impose G(r, θ, ϕ) = G(r, θ,−ϕ).
As a result, ε̃ = 0 and the limit of stability thus reduces to

8

(
v0

v∗ − ζ̃

)(
v0

v∗ − 2ζ̃

)
+ 1 = 0. (42)

To test this prediction against particle-based simulations,
we now have to compute ζ̃ for different values of the micro-
scopic parameters and determine whether they fall or not in
the instability region predicted by the hydrodynamic model.
As ζ̃ is given by the pair correlation function, we first start by
assessing the impact that the different interactions have on the
in-plane structure of the system, defined by coordinates r and
θ ; see Fig. 5.

To this end, we compute G(r, θ ) = ∫ 2π

0 dϕ G(r, θ, ϕ) using
Brownian dynamics simulations. In Fig. 6 we show G(r, θ =
0) and G(r, θ = π ), the pair correlation function ahead and
behind a tagged particle, for four representative cases: (a)
isotropic passive particles, (b) isotropic ABP, (c) ferromag-
netic ABP, and (d) nematic ABP; using fixed Pe=16.6 and
g/g f ,n = 0.4 (below the onset of orientational order) in the
presence of alignment. [In Figs. 12(a)–12(d) in Appendix F
we show the full G(r, θ ).] As expected, G(r, θ ) is isotropic for
a passive suspension of disks, thus yielding ζ = 0. Activity
breaks this spatial isotropy: it is more likely for the tagged
particle to find other particles in front of it (θ = 0) than behind
(θ = π ), giving rise to the self-trapping mechanism at the
origin of MIPS. Particles block each other in the direction
of self-propulsion, giving rise to a reduction of vρ̄ . Such
anisotropy of G(r, θ ) is at the origin of the nonzero value of
ζ , which quantifies the decay rate of the self-propulsion speed
with the density.

In the presence of ferromagnetic alignment, the structural
anisotropy in the system is enhanced as compared to the
nonaligning ABP case. The peak structure of G(r, θ ) is more
pronounced, as also is the contrast between G(r, θ = 0) and
G(r, θ = π ). Thus, the mutual kinetic arrest due to collisions
just described is also enhanced and as a result also the ag-
gregation of particles. This is in qualitative agreement with
our earlier results Fig. 2, showing that MIPS occurs at lower
values of Pe and φ as the ferromagnetic coupling is increased.
The peak structure of G(r, θ ) at short distances in this case
also shows that ferromagnetic ABP aggregate into denser
structures with a higher degree of spatial order than their
isotropic counterpart at a given Pe.

The spatial distribution of particles subjected to nematic
alignment seems not to be significantly affected by the pres-
ence of torques. In Fig. 6(d) we show G(r, θ = π ) and
G(r, θ = 0) for a nematic coupling of the same relative
strength as the one used for the ferromagnetic case. The re-
sults show that nematic alignment does not significantly affect
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2.0G(r,θ = 0)(a) Passive G(r,θ = π)

0.0

5.0

10.0

15.0
G(r,θ = 0)(b) Isotropic G(r,θ = π)

0.0

10.0

20.0
G(r,θ = 0)(c) Ferromagnetic G(r,θ = π)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

5.0

10.0

15.0
G(r,θ = 0)

 1.01.52.02.53.0

(d) Nematic G(r,θ = π)

r

FIG. 6. Radial distribution function along two opposite direc-
tions of the (r, θ )-plane, corresponding to the front (θ = 0, right
column) and the back (θ = π , left column) of the tagged particle
for (a) Pe = 0 and g = 0 (passive suspension); (b) Pe = 16.6 and
g = 0; (c) Pe = 16.6 and ferromagnetic g/gf = 0.4; (d) Pe = 16.6
and nematic g/gn = 0.4.

the self-trapping phenomenon triggered by the competition
between self-propulsion and excluded volume interactions.

Overall, the interpretation of the G(r, θ ) from the viewpoint
of the microscopic theory leading to the hydrodynamic equa-
tions is in qualitative agreement with the results presented in
Figs. 2 and 4. The emergence of MIPS can be understood
as particles blocking each other preferentially along their
self-propulsion direction, a mechanism well captured by the
appearance of anisotropy in the pair correlation functions.
Ferromagnetic interactions favor MIPS, while nematic ones
do not significantly affect it. In the following, we push this
picture further, and show that it can provide a quantitive agree-
ment with particle-based simulations through the calculation
of ζ .

The limit of stability of the homogeneous and isotropic
phase predicted by the hydrodynamic model in dimensionless
units is

ζ̃± = 3

4

v0

v∗ ± 1

4

√(
v0

v∗

)2

− 1. (43)

In all the region encompassed between ζ̃− < ζ̃ < ζ̃+ the
homogeneous state is unstable. This unstable region is repre-
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FIG. 7. Linear instability region at ε̃ = 0 (blue region) together
with the ζ̃ coefficient computed from particle-based simulations as
a function of the Pe for different values of (a) ferromangetic and
(b) nematic alignment strength.

sented in blue in the (Pe, ζ̃ ) diagrams, Figs. 7(a) and 7(b). In
the same figures we also plot ζ̃ , computed from the G(r, θ, ϕ)
obtained from Brownian dynamics simulations.

Let us first focus on the numerical values of ζ̃ computed at
g = 0 and depicted in Fig. 7 as a function of Pe. As Pe grows,
ζ̃ also does, as a consequence of a larger anisotropy in the pair
correlation function for increasing activity. Beyond Pe ≈ 16,
the value for which ζ̃ eventually penetrates the instability
region, the rate of growth of ζ̃ increases significantly. Such
behavior is due to the presence of a finite fraction of slow
particles belonging to a dense cluster. At large Pe, the slow-
down of particles due to the collision persistence is enhanced,
triggering the feed-back mechanism by which the phase sep-
aration takes place. The value of Pe at which ζ̃ crosses ζ̃− is
identified with the onset of MIPS.

We turn now our attention to the system with ferromagnetic
alignment. The values of ζ̃ extracted from simulations are
shown in Fig. 7(a). As we already pointed out, the anisotropy
in the correlation function G(r, θ, ϕ) is enhanced by the pres-
ence of ferromagnetic alignment. As a result, the numerical
values of ζ̃ are now larger than the ones in the g = 0 case. The
penetration into the instability region happens at lower values
of Pe. The values of Pe at which the curves of ζ̃ enter the
instability region are indicated in Fig. 2(a), showing that the

prediction of the microscopic theory matches the numerical
simulation results accurately.

In the case of nematic alignment, the structural anisotropy
of the system is not enhanced as compared to the isotropic
g = 0 case. Thus, the change in tendency of the numerical
values of ζ̃ and the crossing of the limit of stability happens at
approximately the same value of Pe, regardless of the align-
ment interaction strength; see Fig. 7(b). This prediction also
agrees well with the numerical simulation results [Fig. 2(b)].

In our Brownian dynamics simulations, we observed that
the region of coexistence is shifted to lower values of Pe
as the ferromagnetic coupling is increased [Fig. 4(a)]. On
the contrary, for nematic alignment, the coexistence region
remains at the same values of Pe within our numerical accu-
racy; see Fig. 4(b). We can therefore conclude that the results
obtained from particle-based simulations and the continuum
model are in good agreement, and predict the same phase
behavior: ferromagnetic torques enhance the aggregation of
particles and the formation of MIPS, while nematic torques
have a neutral effect.

VI. CONCLUSIONS

We have introduced a 2D model of spherical Active
Brownian Particles, subjected to both excluded volume and
velocity-alignment interactions. Our model decouples the
alignment mechanism from steric effects, allowing to dis-
entangle these two and tune the strength of nematic or
ferromagnetic alignment with no need of introducing shape
anisotropy.

We studied such model system both analytically and nu-
merically. First, to grasp the role played by the self-propulsion
and alignment strength, we explored the phase behavior of
the system by varying the Pe and coupling strength g by
means of Brownian dynamics simulations. We identified the
emergence of oriented states featuring different collectively
moving structures, such as polar and nematic lanes. Unlike
systems of self-propelled elongated particles, here the nematic
phase keeps the symmetry of the interaction, with no signature
of large-scale polar lanes.

We then focused on the main aspect of the present work,
namely, phase separation, or MIPS, triggered by the compe-
tition between excluded volume effects and self-propulsion
in the presence of velocity alignment, yet in the absence of
global orientational order. We systematically derived a con-
tinuum description of the system taking as a starting point
the N-body Smoluchowski equation. This yields a set of
coupled hydrodynamic equations for the density, polarization
and nematic fields, which directly follow from the micro-
scopic Langevin equations. A key advantage of this approach,
which generalizes the work in Ref. [30] to include alignment
interactions, is that the resulting field equations are written
in terms of the microscopic parameters of the particle-based
model, allowing for an explicit comparison between the two,
as opposed to more phenomenological approaches based on
symmetry arguments [37,77].

The microscopic mechanism giving rise to MIPS within
the theory, is a long-wavelength linear instability of the ho-
mogenous disordered state due to the anisotropy of the pair
distribution function. The latter arises from the fact that
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particles have a higher tendency to collide with their neigh-
bors along the direction of self-propulsion, leading to the
formation of clusters and eventually a full phase separa-
tion. We have shown that such self-trapping mechanism is
enhanced in the presence of ferromagnetic alignment but re-
mains largely unaffected in the nematic case. The predictions
of the onset of MIPS from the microscopic theory agree quan-
titatively with particle-based simulations.

We showed that the mechanism behind MIPS appears
to be preserved in the presence of alignment interactions.
The present study opens the possibility of extending the this
formalism to study more complex situations. For instance,
studying how chirality (circle swimming) [81–84], quench
disorder [85–87] or other kind of interactions [88–90] af-
fect MIPS, constitute interesting lines of future investigation.
Here, we have focused on the long-wavelength instability of
the disordered state. However, other linear instabilities can
take place. This means that, in different parameter regimes,
the theory might be able to account for the richness of differ-
ent structures observed in particle-based simulations across
the phase diagram. As a next step, it would be very interest-
ing to extend the theory and explore all the unstable modes
associated to both the homogeneous disordered state and the
homogeneous oriented one. We leave this challenging task for
future work.
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APPENDIX A: DERIVATION OF THE NEMATIC TORQUE

We write the Hamiltonian of a system of N particles sub-
jected to a local nematic alignment interaction,

H = −J
∑

i

∑
j∈ωi

qi · q j, (A1)

where the uniaxial nematic tensor reads qi = ei ⊗ ei − 1
21 and

ei = (cos ϕi, sin ϕi ) and a · b = Tr(ab). In the case of study,
the trace can be expressed as

Tr(qiq j ) = 1
2 (cos 2ϕi cos 2ϕ j + sin 2ϕi sin 2ϕ j ). (A2)

Using the trigonometric relation cos(ϕi − ϕ j ) =
cos ϕi cos ϕ j + sin ϕi sin ϕ j , it is possible to rewrite the
Hamiltonian in terms of the phase difference ϕi j = ϕi − ϕ j ,

H = −J
∑

i

∑
j∈ωi

1

2
cos (2ϕi j ). (A3)

Further trigonometric relations can be used to write
the Hamiltonian in different ways, such as cos(2ϕi j ) =
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FIG. 8. Probability to belong to the largest cluster as a function
of the normalized swimming speed Pe at different values of the
(a) ferromagnetic and (b) nematic alignment strengths.

2 cos2(ϕi j ) − 1, which leads to

H = −J
∑

i

∑
j∈ωi

(
cos2 ϕi j − 1

2

)
. (A4)

Deriving with respect to an angle on gets the desired expres-
sion for the torque,

Ti = −∂H
∂ϕi

= −J
∑

j

sin (2ϕi j ). (A5)

APPENDIX B: CHARACTERIZATION OF MIPS

We compute the fraction of particles in the largest cluster
of the system,  (Fig. 8). Clusters are defined by setting a
threshold distance below which two particles are considered
to belong to the same cluster. Here, we set this threshold to
be the cutoff distance of the steric potential, R = 1, and we
compute  as a function of Pe. As Pe increases, collisions
between self-propelled particles become more probable, thus
enhancing mutual blocking due to the swimming persistence.
This leads to further aggregation between particles and, con-
sequently, to the growth of .

Nevertheless, the curves of (Pe) do not tend to  = 1 as
Pe is increased, but they saturate at lower values of , when
g approaches the flocking phase transition from below. This
is due to the fact that local orientational correlations grow
at g �= 0, setting a different characteristic interparticle length
than the one induced by purely excluded volume interactions.
As a result, particles are further apart and clusters defined
according to the cutoff distance R = 1 are now smaller in size.

APPENDIX C: FINITE-SIZE EFFECTS

We plot in Fig. 9 the binodals at a fixed nematic align-
ment strength g = 0.64 and for three different system sizes
N = 4000, 8000, 16 000.

In the same spirit, we also compute the numerical values
of ζ̃ at fixed nematic alignment strength g = 0.64 for system
sizes N = 8000, 16 000 (Fig. 10). We observe that the pene-
tration of ζ̃ into the instability region occurs at the same value
of Pe as it does for N = 4000, within numerical accuracy.

We can therefore state that the numerical data obtained
at N = 8000, 16 000 agree well with the one obtained at
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N = 4000, showing the robustness of the results presented to
characterize the phase separation induced by the motility.

APPENDIX D: CONTINUUM MODEL

1. Expressions of force and torque

The mean force and torque exerted by the surrounding
particles into the tagged particle (labeled 1) are expressed as

F(r1, ϕ1; t ) =
∫ ∞

−∞
dr2

∫ 2π

0
dϕ2u′(r12)

r12

r12
ψ2, (D1)

and the mean torque is

T (r1, ϕ1; t ) =
∫ ∞

−∞
dr2

∫ 2π

0
dϕ2v(r12)w′(ϕ12)ψ2. (D2)
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FIG. 10. Linear instability region at ε̃ = 0 (blue region) together
with the ζ̃ coefficient computed from particle-based simulations as
a function of the Pe for a fixed nematic alignment strength g = 0.64
and different system sizes N = 4000, 8000, 16 000.

Introducing the decomposition of ψ2(r1, r2, ϕ1, ϕ2, t )
stated in Eq. (20), as well as the changes of variables
r12 = r2 − r1 and ϕ12 = ϕ2 − ϕ1, which yield dr12 = dr2 and
dϕ12 = dϕ2, it is possible to rewrite Eq. (D2) as

F(r1, ϕ1; t ) = ρ̄ψ1(r1, ϕ1, t )
∫ ∞

−∞
dr12

∫ 2π

0
dϕ12

× u′(r12)
r12

r12
G(r12, θ, ϕ12, t ), (D3)

T (r1, ϕ1; t ) = ρ̄ψ1(r1, ϕ1, t )
∫ ∞

−∞
dr12

∫ 2π

0
dϕ12

× v(r12)w′(ϕ12)G(r12, θ, ϕ12, t ). (D4)

It is straightforward to see that the projection of the force in
the direction of self-propulsion, e, can be expressed as e · F =
−ρ̄ψ1ζ , where ζ has the functional form Eq. (22). Similarly,
the torque can also be decomposed in T = −ρ̄ψ1ε, where ε is
expressed as in Eq. (24).

2. Gram-Schmidt orthonormalization of the force

We perform a Gram-Schmidt orthonormalization on the
force F to decompose it in the vector basis formed by the
direction of self-propulsion and the gradient of the probability
distribution, {e,∇ψ1}.

We pick the first vector of the orthonormal set {u1, u2} we
want to construct, u1 = e. This one already fulfils |e| = 1.
Then the second vector is

u2 = ∇1ψ1 − proju1
(∇1ψ1), (D5)

where the projection operator is proja(b) = a·b
a·a a, giving the

projection of vector b along the axis spanned by a. Thus, we
can rewrite Eq. (D5),

u2 = ∇1ψ1 − (e · ∇1ψ1)e. (D6)

We now proceed to normalize u2,

u2 = ∇1ψ1 − (e · ∇1ψ1)e
|∇1ψ1 − (e · ∇1ψ1)e| . (D7)

We have thus constructed an orthonormal vector basis. We
can now decompose the force,

F = (e · F)e

+
( ∇1ψ1 − (e · ∇1ψ1)e

|∇1ψ1 − (e · ∇1ψ1)e| · F
) ∇1ψ1 − (e · ∇1ψ1)e

|∇1ψ1 − (e · ∇1ψ1)e|

=
[

(e · F) −
(

(∇1ψ1 − (e · ∇1ψ1)e) · F
|∇1ψ1 − (e · ∇1ψ1)e|2

)
(e · ∇1ψ1)

]
e

+
(

(∇1ψ1 − (e · ∇1ψ1)e) · F
|∇1ψ1 − (e · ∇1ψ1)e|2

)
∇1ψ1. (D8)

We first consider that the projection of the force
along ∇1ψ1−(e·∇1ψ1 )e

|∇1ψ1−(e·∇1ψ1 )e| is much smaller than its projec-
tion along e. Second, we also consider that |∇1ψ1 − (e ·
∇1ψ1)e|2 ≈ |∇1ψ1|2, assuming that e and ∇1ψ1 are “almost”
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FIG. 11. Log-log plot of the mean-squared displacement for a
passive system of particles at packing fraction φ = 0.4.

perpendicular vectors. This leads to

F ≈ (e · F)e +
(

(∇1ψ1 − (e · ∇1ψ1)e) · F
|∇1ψ1|2

)
∇1ψ1

= (e · F)e + (1 − D)∇ψ1, (D9)

where the first term on the right-hand side corresponds to
Eq. (21) and D corresponds to Eq. (26).

3. Fourier transform of the hydrodynamic equation

Writing Eqs. (32) to (34) in Fourier space,

u ∼ ûeiq·r, (D10)

where u = (δρ, δpx, δpy, δQxx, δQxy), we obtain the follow-
ing time evolution equations for the perturbation,

∂tδρ̂ = −iqβ[(v0 − ρ̄ζ )δ p̂β − iqβDδρ̂], (D11)

∂tδ p̂α = −iqβ

[
1
2 (v0 − 2ρ̄ζ )δρ̂δαβ + (v0 − ρ̄ζ )δQ̂αβ

− iqβDδ p̂α

]− ρ̄εδ p̂⊥
α − Drδ p̂α, (D12)

∂tδQ̂αβ = −iqγ

[
(v0 − ρ̄ζ )

(− 1
2δαβδ p̂γ + 1

4 (δαβδ p̂γ

+ δαγ δ p̂β + δβγ δ p̂α )
)− iqγDδQ̂αβ

]
− 2ρ̄εδQ̂⊥

αβ − 2DrδQ̂αβ, (D13)

where qβ is the β-component of the wave vector. Equations
(D11) to (D13)) constitute a system of five independent evo-
lution equations (the nematic tensor has just two independent
components due to the traceless and symmetric conditions).

4. Linear stability analysis of a system of isotropic
repulsive disks

We consider a system of isotropic polar active disks with-
out alignment interactions. Since there are no local torques
(ε = 0) and the only effective interaction between particles
is of steric origin, we cut the hierarchy of effective hydro-
dynamic equations to first order. Hence, the time evolution

(a)
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FIG. 12. Correlation function G(r, θ ) of a particle in a system at
φ = 0.4 for parameters (a) Pe = 0 and g = 0 (passive suspension);
(b) Pe = 16.6 and g = 0; (c) Pe = 16.6 and ferromagnetic g/gf =
0.4; (d) Pe = 16.6 and nematic g/gn = 0.4. The front of the particle
is marked by the white arrow, corresponding to θ = 0.

for the density and the polarization field in Fourier space now
reads

∂tδρ̂ = −iqβ[(v0 − ρ̄ζ )δ p̂β − iqβDδρ̂], (D14)

∂tδ p̂α = −iqβ

[
1
2 (v0 − 2ρ̄ζ )δρ̂δαβ − iqβDδ p̂α

]− Drδ p̂α.

(D15)

Writing the system of equations in matrix form
∂t (δρ̂ δ p̂x δ p̂y)T = M(δρ̂ δ p̂x δ p̂y)T , where

M =

⎡
⎢⎣

−Dq2 −i(v0 − ρ̄ζ )qx −i(v0 − ρ̄ζ )qy

−i 1
2 (v0 − 2ρ̄ζ )qx −(Dq2 + Dr ) 0

−i 1
2 (v0 − 2ρ̄ζ )qy 0 −(Dq2 + Dr )

⎤
⎥⎦,

it is possible to compute its eigenvalues det(M − λ1) = 0,
which are

λ1 = −(Dr + Dq2),

λ2 = − 1
2 (2Dq2 + Dr ) + 1

2

√
D2

r − 2q2(v0 − ρ̄ζ )(v0 − 2ρ̄ζ ),

λ3 = − 1
2 (2Dq2 + Dr ) − 1

2

√
D2

r − 2q2(v0 − ρ̄ζ )(v0 − 2ρ̄ζ ).

(D16)

We subsequently expand the eigenvalues up to second or-
der,

λ1 = −(Dq2 + Dr ),

λ2 = −1 +
[
−D + (v0 − ρ̄ζ )(v0 − 2ρ̄ζ )

2Dr

]
q2 + O(q3),

λ3 = 0 +
[
−D − (v0 − ρ̄ζ )(v0 − 2ρ̄ζ )

2Dr

]
q2 + O(q3).

(D17)
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Out of the three eigenvalues, the only mode which can become
unstable (positive) is λ3. The limit of stability is given by

ζ = 3

4

v0

ρ̄
± 1

4ρ̄

√
v2

0 − 16DDr . (D18)

APPENDIX E: COMPUTATION OF PARAMETERS

We compute the long-time diffusion coefficient, D, which
will allow us to calculate numerically the normalization factor
of the self-propulsion speed, v∗ = 4

√
DDr . To this end, we

measure the mean-squared angular displacement of a pas-
sive system of particles at φ = 0.4, D = limt→∞ 1

4t 〈[r(t ) −
r(0)]2〉. The value of the fit corresponds to D = 0.46, Fig. 11,
which is in good agreement with previous results in the liter-
ature [30].

APPENDIX F: CORRELATION FUNCTION
IN THE (r, θ)-PLANE

In the absence of both self-propulsion and local align-
ment, the correlation function G(r, θ ) is spatially isotropic,
as depicted in Fig. 12. It is thus equally probable to find a
particle in front than behind the tagged particle, represented
by a white arrow. Introducing a finite self-propulsion speed
breaks the spatial isotropy, making it more probable to find
particles in front than behind the tagged particle [Fig. 12(b)].
Ferromagnetic alignment further enhances the spatial struc-
ture in the plane and the anisotropy between the front and
the back of particles [Fig. 12(c)]. On the contrary, nematic
alignment leaves the spatial structure unchanged [Fig. 12(d)],
with respect to the case with no alignment.
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