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Active matter deals with systems whose particles consume energy at the individual level in order
to move. To unravel features such as the emergence of collective structures several models have been
suggested, such as the on-lattice model of run-and-tumble particles implemented via the Persistent
Exclusion Process (PEP). In our work, we study a one dimensional system of run-and-tumble repul-
sive or attractive particles, both on- and off-lattice. Additionally, we implement a cluster motility
dynamics in the on-lattice case (since in the off-lattice case cluster motility arises from the individ-
ual particle dynamics). While we observe important differences between discrete and continuous
dynamics, few common features are of particular importance. Increasing particle density drives
aggregation across all different systems explored. For non-attractive particles, the effects of particle
activity on aggregation are largely independent of the details of the dynamics. On the contrary,
once attractive interactions are introduced, the steady-state, which is completely determined by the
interplay between these and the particles’ activity, becomes highly dependent on the details of the
dynamics.

I. INTRODUCTION

Active matter encompasses any kind of soft matter
system where particles consume energy at the individual
level to achieve motion, thus leading the system to be
intrinsically out of equilibrium even in the absence of
applied forces and external fields [1, 2]. Such features
lead to the appearance of common properties to any
active matter system [3] such as the emergence of col-
lective structures with qualitatively different behaviors
from individual ones[4, 5], out-of-equilibrium phase
transitions from disordered to ordered systems and
vice-versa (coarsening [6] and clustering [7–10]), pattern
formation at the mesoscale[11–13], special mechanical
and rheological properties[14–16], novel fluctuation
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Electrónica, Facultad de Ciencias F́ısicas, Universidad Com-
plutense de Madrid, 28040, Madrid, Spain
† Department of Physics and Astronomy, Institute for the Physics

of Living Systems, University College London, London WC1E
6BT, United Kingdom.; MRC Laboratory for Molecular Cell Bi-
ology, University College London, London WC1E 6BT, United
Kingdom.; Departamento de Estructura de la Materia, F́ısica
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statistics with respect to equilibrium and other non-
equilibrium systems[17–20].

To understand, predict and even reproduce these active
matter features, the most common procedure is to
take a bottom-up approach and, from the individual
behavior of the constitutive parts, describe the collective
properties of a system by means of statistical physics
tools. Individual behaviors, however, are in general
quite complicated and a first modelling step is needed,
thus boiling down the elements of a system to moving
particles obeying few straightforward rules that replicate
the observed dynamics while keeping the number of free
parameters fairly low [3].

Some models define the particles’ dynamics from the
speed’s direction, establishing aligning rules leading to
collective organized motion [21, 22], while others focus
on the speed, making particles move slower where the
density is higher, leading to aggregation events, (Motility
Induced Phase Separation - MIPS) [23, 24]. An extreme
case of MIPS in non-aligning active systems is Excluded
Volume (EV), which enforces that two different particles
cannot overlap, also leading to aggregation events when
particles are locally trapped together. A simple imple-
mentation of EV is the Persistent Exclusion Process
(PEP) introduced in Ref.[25]. This consists of a discrete
on-lattice model of self-propelled particles obeying
run-and-tumble dynamics with the only added condition
that two different particles cannot occupy the same
lattice site at the same time. Thus, the whole dynamics
can be expressed only in terms of two parameters: the
tumbling rate α and the number density φ. Interestingly,
this is enough to detect clustering and ordering in the
system. This model has later been expanded to a finite
maximum occupation number per site [26], leading to
the existence of three different phases (gas, clusters and
solid). Recently, the PEP model has also been used to
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explain wetting transitions in bacterial populations [27].

Following a similar idea, there exists a number of studies
on pattern emergence and self-organization in active
systems resulting from the competition between self-
propulsion and excluded volume interactions reporting
the effects of alignment interactions [28] or attractive
forces [8, 29–31] both in 1D and 2D. In particular,
Ref.[29] gives a very interesting example where simple
attraction rules and excluded volume lead to complex
aggregation dynamics even in one dimension. Indeed,
not only does the model presented in Ref.[29] allow
for aggregation, but, more importantly, leads to the
emergence of motile clusters. It is thus one of the
few existing modelling attempts to describe collective
migration and swarming clusters without alignment
interactions.

Collective particles’ motion is indeed a key element of
active matter, often observed in natural phenomena
and of which there exist plenty of experimental studies
[32, 33]. Most often, such dynamics are replicated
via alignment interactions between particles as in the
Vicsek model [21]. There is evidence, however, that in
a one-dimensional system of self-driven particles, such
alignment is not needed to display collective aggregated
motion, also achieved with attraction forces [29].

In the same spirit, it has been recently shown that
self-propelled droplets, confined in a one dimensional
micro-fluidic channel, experience a collective dynamics
characterised by flocks of neighbouring clusters. This
phenomenon is the result of the interplay between veloc-
ity fluctuations and the absence of Galilean invariance
[34]. Cluster condensation takes place as a transient
phenomena which slows down the dynamics, before the
system settles into a homogeneous aligned phase.

Other works have recently also turned to the dynamics
of one-dimensional systems of active particles (both
the works by Dolai et al. [35] and Caprini et al. [36]
are relevant examples) revealing universal scaling and
alignment behaviours in one-dimensional active systems.
Whether active systems in discrete and continuous space
belong to the same universality class is a matter of
debate [37]. Note that Active Brownian Particles cannot
be rigorously defined in 1D since the direction of motion
cannot change continuously [23, 38].

In this work we study a one dimensional system of ac-
tive run and tumble particles, both on- and off-lattice,
for repulsive (excluded volume) and attractive (Lennard-
Jones) interactions. We also implement additional dy-
namics that enables explicit cluster movement in the on-
lattice case (in the off-lattice case cluster motility arises
naturally from the individual particle dynamics). To
characterize the phase behaviour of these systems we look
at different analysis tools such as the cluster size distri-

bution (CSD), the fraction of jammed particles (J) and
the mean cluster size (M).

II. ONE DIMENSIONAL MODELS

In this work we consider a one-dimensional system of
self-propelled particles obeying run-and-tumble dynam-
ics both on- and off-lattice, considering repulsive (ex-
cluded volume) and attractive (Lennard-Jones like) inter-
actions for two reference densities: φ = 0.8 and φ = 0.1,
to see the qualitative difference between an active liquid
and and an active gas, where interactions are scarcer.
Under such dynamics, particles can aggregate in clus-
ters. Where the details of the model only allow static
clusters to arise naturally, we explicitly introduce a clus-
ter dynamics where clusters are not at rest but can move
according to the individual dynamics of their constituent
particles.

A. On-lattice system

1. Particle dynamics

We consider a one-dimensional realization of the Persis-
tent Exclusion Process (PEP) model reported in Ref. 25
for 108 simulation steps. The system consists of N parti-
cles on a lattice of L sites, whose density is φ (N = φL).
The size of the lattice sites is the same as that of the par-
ticles, σ, which we fix equal to 1. Particles only move on
the lattice sites and are characterized by their position xi
and swimming direction di = ±1: di = +1 if a particle i
moves to the right (in blue in Fig. 1) and di = −1 if a
particle i moves to the left (in red in Fig. 1).

FIG. 1. Visual representation of the system of L = 10 and
N = 6 at two consecutive time steps (t = 0, top row and
t = 1, bottom row). Left-pointing particles are printed in red
and right-pointing particles in blue. The numbers indicate
the order of updates and the arrows the direction of motion
while particle ids are labeled a-f.

Particles move according to the following scheme mim-
icking run and tumble dynamics, where both particles
positions and directions of motion are updated over dis-
crete time steps. Periodic Boundary Conditions (PBC)
are enforced on the system.
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1. At each time step N particles are chosen at ran-
dom, allowing for repetitions, and are updated se-
quentially.

2. Each of these has a swimming direction (particle
orientation) di = ±1 which can be redefined with
probability Ptumble = α (the tumbling probability)
every time the particle is updated.

3. Next, the interaction force is computed only if the
attractive interactions are included, as discussed
below. If only repulsive interactions are present
this step is skipped.

4. We thus define a new moving direction djump = ±1
for each particle as the sign of the resulting to-
tal force it experiences (propulsion plus attractive,
when present) and a jumping probability[39] Pjump

as the magnitude of such force normalized by the
maximum possible force Fmax. The specific defini-
tions of these forces for each system are discussed
in below.

5. Each particle then performs a one-site jump in the
new moving direction djump with probability Pjump

only if the landing site is empty (excluded volume
is enforced). Otherwise, the particle stays in its
original position.

In Fig. 1, we present an illustrative example of such a
system of purely repulsive particles at two consecutive
time steps: N = 6 particles are updated sequentially
(as indicated). To give a few examples: 1) one particle
(labeled d) is updated twice, while another (labeled a)
is not.; 2) particles pointing to an occupied site do not
move (see particle labeled c); 3) a particle updated twice
ends up on its initial site, since it has changed direction (a
tumble occurred) during its second update (see particle
labeled d), before the jump was performed.

2. Short-range attractive and repulsive potentials

To model short-range attractive interactions between
particles we define a modified Lennard-Jones potential
(truncated, shifted and offset - TSOLJ - VTSOLJ) van-
ishing at a cutoff distance of rcut = 3σ to capture second
neighbour interactions in this discrete system. The po-
tential is also shifted in the r coordinate in order for
the minimum to be in rmin = σ instead of rmin = 6

√
2σ

as the usual Lennard-Jones potential (VLJ): roff(r) =

r + sgn(r)( 6
√

2 − 1), see Fig. 2. Attractive forces are
thus computed by summing the contributions of neigh-
bour particles with F (r) = −∂rVTSOLJ(r). Repulsive
interactions, on the other hand, are implemented via the
excluded volume algorithm described in point 5 of the
previous section.
The TSOLJ potential introduces a new variable: ε, the
depth of the potential well. Therefore we expect the
steady-state of the system to be completely determined

FIG. 2. Lennard-Jones potential at particle 0 (in green): the
value chosen for each lattice site (i = 1, 2, 3 . . . , rcut) inside
the influence of the potential, is just the value of the potential
at that point: V (1, 2, 3) = −ε, −0.0415 ε, −0.0025 ε respec-
tively.

by α, φ and ε. Constructing phase diagrams of the sys-
tem will thus allow to better understand the interplay
between these three elements.

3. Cluster dynamics

To capture collective dynamics, we propose to modify the
classic PEP model [25] by introducing a cluster motion,
independent of the individual dynamics. To start with,
we identify a cluster of particles as a group of two or
more neighbouring particles ”trapped” in a certain po-
sition (with particles at the boundaries having opposing
directions, as in Fig. 3).

FIG. 3. Visual representation of a five-particle cluster and
its resulting jumping direction. Left-pointing particles are
printed in red and right-pointing particles in blue. The arrow
indicates the resulting cluster jumping direction.

To implement cluster mobility, at each time step we carry
out the following steps:

1. We evaluate whether particles belong to a cluster.

2. We compute the cluster’s direction of motion DC .
by a majority rule, summing each particle’s direc-

tion DC =
∑

di

|
∑

di| (di ± 1).

3. Each cluster will move with a given probability

PC = |
∑

di|
l (where l is the size of the cluster), in-

dependently of the rest of the dynamics, and only
once all particles positions have been updated.

B. Off-lattice system

As opposed to the previous model, we also study a con-
tinuum system. In this scenario we consider a one di-
mensional system of active particles described by their
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position xi ∈ [0, L] (a continuous variable) and their
propulsion direction di = ±1. As in the on-lattice model,
i ∈ [1, N ] denotes the particle and L the size of the system
and PBC are implemented. For this continuous system
we implement two different dynamics, aiming to unveil
universal features of the one dimensional system. The
first is a classical implementation of Langevin dynam-
ics (underdamped) with elastic collisions, for which we
make use of the molecular dynamics software LAMMPS
[40]. The second is a typical Brownian dynamics (over-
damped) of particles propelled with a force F p [41] for
which we develop our own code in C. The Langevin dy-
namics is described in the main text, whereas the Brow-
nian dynamics will be left for discussion in the supple-
mentary information.

1. Particle dynamics

First we consider particles subject to Langevin dynamics.
The force that each particle feels,

m

γ
ẍ = −ẋ+

D

kBT
(F p + F i) +

√
2Dη (1)

m~̈x = − γ~̇x + Fpθ̂ − ∇U + γ
√

2D ~η(t) (2)

where F p is the self-propelling force of constant magni-
tude |Fp| = 1, which randomly changes its direction after
a typical reorientation time τr = 1/α, and F i are the
conservative forces at play. η is a delta-correlated white
noise. In this equations the friction coefficient is defined
as γ = kBT/D. We fix m = γ = σ = 1, where σ is the
diameter of the particle, and D = kBT = 10−4. We
choose this low temperature value to allow comparison
with the on-lattice system but not a lower one to
avoid losing the ergodicity of the system when strong
attractive interactions are present.

The dynamics is actually controlled only by two dimen-
sionless parameters:

Pe =
vτr
σ

and ξ =
F pσ

ε
. (3)

The first is the Péclet number [42], Pe, which captures
the contributions of activity relative to diffusion (here,
v = F pD/kBT is the self-propelling velocity). The
second, ξ, is the strength of the interaction potential
relative to the propulsion force [43], which defines the
ratio between the active and conservative forces, it is
defined only for finite ε, being ε the amplitude of the
potential.

It should be noted that care needs to be taken when
choosing how to vary the Péclet number, since varying
different parameters (for instance v or τr) leads to differ-
ent state diagrams and/or dynamical properties[42, 44].

Throughout this work we choose to vary the Péclet num-
ber by changing the reorientation time, or equivalently,
the tumbling rate α = 1/τr.

2. Short range attractive and repulsive potentials

We will first consider only excluded volume interactions,
for which we set the interaction to a WCA [45] potential,
which is a truncated and shifted Lennard-Jones poten-
tial with the cutoff chosen at the minimum of the po-
tential, rcut = 6

√
2σ. Later on we will also consider at-

tractive interactions, for which we use another modified
Lennard-Jones potential (Truncated and Shifted - TSLJ,
with rcut = 2.5σ), analog to the one used in the on-lattice
system [46].

VLJ(r) = 4ε

[(σ
r

)12

−
(σ
r

)6
]

(4)

VTSLJ(r) =

{
VLJ(r)− VLJ(rcut), r ≤ rcut

0, r > rcut

3. Cluster dynamics

Because in the present case mobile clusters emerge nat-
urally, we find that explicitly implementing cluster dy-
namics like we do for the discrete system has little effect
on the measured observables. Consequently, after proper
verification data not shown, we have decided not to in-
clude an explicit cluster move in the off lattice dynamics
for the remaining of this work.

C. Computational Details

For all systems and models considered we time average
the measured observables in the stationary regime. To
discard finite size effects, we have carefully performed
simulations for systems with varying number of par-
ticles N ∈ [250, 1000] (see Supporting Information)
and concluded that no finite size effects were present.
Consequently, for the remaining of this work we will only
consider systems of size N = 500 particles, adapting
the lattice size L to match the particle density φ. The
simulation time, depending on the kind of system, is set
in the range Tsim = 106 − 108 time steps, with dt in
the range of 10−3 − 5 × 10−2. We simulated the one
dimensional off-lattice system using LAMMPs [40] for
5×107 steps with a time step of 0.02 and for 500 particles.

The simulations were carried out using GNU-parallel [47]
on desktop workstations and using Brigit HPC server
[48], the codes are available at our GitHub[49].
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D. Differences between the on-lattice and
off-lattice models

Even though it would be possible to include the tem-
perature effects in the on-lattice model, we choose to
simulate the system at T = 0 to focus on the athermal
aspects of the dynamics. In the continuous dynamics, on
the other hand, we cannot remove temperature effects
completely. Consequently, we set T to a very low value in
order to favour the athermal dynamics here as well and
work with comparable discrete and continuous systems.
We find that setting D = kBT = 10−4 is sufficient to
have activity dominated dynamics (high Péclet number)
while retaining proper dynamics (avoiding non-ergodic
states for instance).

As a consequence, in the on-lattice system, when the
attraction strength ε increases above a certain value,
particles aggregate and the aggregate never breaks.
Whereas in the off-lattice system, the presence of the
white noise, although weak, allows for the possibility of
particles not only to merge into an aggregate but also to
leave an aggregate (theoretically for an arbitrarily high
ε).

As it will be explained in the Results section (Section IV),
above some attraction strength, the two models show
different behaviours: the on-lattice system ceases to be
ergodic and enters an absorbing state, whereas the off-
lattice system displays slower dynamics when increasing
the attraction strength but does not fall into an absorb-
ing state.

III. ANALYSIS TOOLS

Throughout this work we are particularly interested in
characterizing the state of aggregation of the system. To
this end, we have used the following analysis tools: 1)
the cluster size distribution; 2) the fraction of jammed
particles, J ; and 3) the normalized average cluster size
M .

To measure the cluster size distribution at time step t
(Pl,t) we compute the number of clusters of size l at time
t (nl,t) and normalize by the total number of clusters at
that time.

Pl,t =
nl,t∑
l nl,t

(5)

As expected, the system relaxes to an out-of-equilibrium
steady-state with a constant cluster size distribution
P (l) = 〈Pl,t〉t, as in the PEP model. Therefore, one
needs to wait for the system to reach a steady state in
order to be able to measure aggregation.

Defining a cluster in the discrete systems is straightfor-
ward: any grouping of two or more particles in direct

contact with each other (adjacent lattice sites). How-
ever, for continuous systems a cutoff distance between
particles needs to be defined in order to determine
that they are part of the same cluster. We set such
cutoff at xcluster = 1.3σ so that we reach further than
the potential minimum ( 6

√
2σ) but not far enough for

spurious coarsening effects to arise, as detected above
xcluster = 1.4σ.

While the cluster size distribution constitutes a key
element in the study of the system, it doesn’t provide a
quantitative measure of the state of aggregation. This is
the reason why we introduce the aggregation parameter
J corresponding to the average fraction of jammed
particles (trapped in clusters) in the steady state. Its
physical interpretation is straightforward: the closer J
is to 1, the more aggregated the system will be. If J = 1
all particles are trapped in clusters and there are no free
active particles in the dilute regions. On the contrary, if
J = 0 all particles are free and no aggregation occurs.

However, J by itself isn’t sufficient to assess whether
the system is in a coarsened or clustered state as J can
be close to 1 independently of the number of clusters.
Indeed, ideally, all particles could be trapped in a few
small clusters (so the system would be in a clustered
state) or in a single large cluster (so the system would
be in a coarsened state) and J would still be equal to 1
in both cases.

Therefore, to properly determine what state of aggre-
gation the system is in, we define another aggregation
parameter, M , as the normalized average cluster size in
steady state ranging from 0 to 1.

M =
1

NC

∑
l

P (l)l, (6)

Where NC is the total number of clusters. Again, its
physical meaning is very straightforward as the closer
M is to 1 the more coarsened the system will be.

Since both J and M allow to determine the state of
aggregation of the system quantitatively, they can be
interpreted as ”order parameters” for the aggregation
of the system. However, these are strictly not order pa-
rameters since we are not dealing with a thermodynamic
phase transition, so we will refer to them as aggregation
parameters.

IV. RESULTS

For each system studied, on-lattice, on-lattice with ex-
plicit cluster moves and off-lattice, we start with a quali-
tative description of the structural features and then turn
to a quantitative description using the above mentioned
analysis tools.
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A. On-lattice

Qualitative behaviour. In Fig. 4 we represent some
particle trajectories of the on-lattice system without ex-
plicit cluster dynamics for a wide set of parameters: the
density, φ, the tumbling rate, α, and the potential depth,
ε.

FIG. 4. Particle trajectories for the on-lattice system in sta-
tionary state for high (0.8) and low (0.1) densities and three
values of the potential intensity ε: 0 (repulsive), 8 (attractive
force ∼ propulsion force) and 10 (attractive force > propul-
sion force). High/low values for the tumbling rate α are shown
(some of the high values are different for a better visualisa-
tion). In each panel, time flows from bottom to top, each row
corresponds to a snapshot of the system at a given time. Left
and right moving particles are colored blue and red, respec-
tively.

When particles are repulsive (WCA) the system only
forms immobile clusters that never merge (the system
is not phase separated). As expected, the system is
more aggregated (larger clusters) for high densities
(φ = 0.8) and low tumbling rates (α = 10−3). Whereas
for low densities (φ = 0.1) small clusters form and break
continuously, effect that is enhanced for higher tumbling
rates (α = 1).

When we switch on the attractive interaction and
its order of magnitude is comparable to that of the
propulsion force (ε ≈ 8), we find that the aggregation
decreases for low α (see for instance α = 10−3) with
respect to the repulsive case. For higher tumbling rates,
however, (see for instance α = 0.5) we find that the
presence of attraction increases the overall aggregation
of the system. This feature is similar to the reentrant
behaviour explained in Ref. 9 and depicts the counter-
intuitive consequence of decreasing the aggregation while
increasing the attraction between particles. A detailed
explanation of this behaviour is given in the following
cluster size distribution section. We also observe that
attractive interactions combined with propulsion provide
some mobility to small clusters.

For the strongest attractions studied (ε = 10), the
system enters an absorbing state, in which nothing
moves because the attractive force between particles
overtakes the propulsion force, and particles that stick
together form clusters that never break apart due to the
absence of thermal noise.

We can estimate the value of ε for which the first neighbor
cannot escape anymore is that in which the attractive
force cancels the propulsive force Fp = 1:

|Fc| = V ′TSOLJ = |Fp| = 1 → εtrap ≈ 8.27, (7)

This value is consistent with the one observed in the
simulations, where 8 < εtrap ≤ 8.5. Indeed, when we
consider points in the parameter space beyond this
value we find that the system ceases to be ergodic (right
column of Fig. 4). Consequently, the time average
we perform does not correspond to the ensemble aver-
age, so the results in this case have to be taken with care.

Cluster size distribution. To better understand the
aggregation states presented above let us now turn to the
distribution of cluster sizes in the stationary regime.

FIG. 5. Cluster size distribution P (l) for the on-lattice dy-
namics where particles interact repulsively (panels a) and c))
and attractively (panels b) and d)). Top panels (a-b) cor-
respond to low density, bottom panels (c-d) to high density
(note that x-axis scale is different for better visualization).
Purple points are data for α = 0.001, green for α = 0.1 and
red for α = 0.5. The solid lines of the left column represent
the theoretical prediction of [25], Eq. 8, and the dashed lines
an exponential fit of the data.

In Fig. 5 we represent the cluster size distributions P (l)
for the on-lattice system without any explicit cluster dy-
namics, where particles are either repulsive (panels a)
and c)) or attractive (panels b) and d)), where attraction
competes with propulsion. They all follow an exponen-
tial law. For repulsive interactions (ε = 0, panels a) and
c)) we observe the expected behaviour: clusters are big-
ger for lower tumbling rates and higher densities (purple
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data, bottom row). When comparing to Ref. 25, our re-
sults for the low density repulsive system (Fig. 5, top left
panel) agree quite well with their theoretical prediction
for the cluster size distribution,

P (l) = Ace
− l

lc , lc =

√
2φ

(1− φ)α
(8)

This serves as a check that the model has been imple-
mented correctly. For higher densities (Fig. 5, panel c))
our results differ slightly, especially for higher tumbling
rates. This may be due to the fact that the assumption
of non-interacting clusters is no longer valid in this
regime.

Surprisingly, when we switch on the attractive inter-
actions (see panels b) and d) in Fig. 5) the system
turns out to be less aggregated for small tumbling rates
(α = 10−3) and more aggregated for larger tumbling
rates (α = 0.1, 0.5). Furthermore, now the system for
α = 0.5 is more aggregated than for α = 0.1. As we
can see in panels b) and d), the red curve passes over
the green one, i.e. now clustering is non-monotonic as
a function of the tumbling rate (similar behaviour for a
2D system can be found in Ref. 31).

This counter intuitive fact, i.e. the system is less aggre-
gated when attraction is present, can be explained by
small clusters moving less than in the repulsive case. As
position updating is sequential, cluster motion will only
arise from the individual dynamics when cluster’s parti-
cles are aligned and allowed to temporarily escape it, such
that they successively move in their common swimming
direction. This second requirement is greatly limited by
attractive interactions, which will lower the probability of
particles to ”swim away” from their cluster, which results
in clusters with reduced natural motility. Such unphysi-
cal behaviour, that arises from sequential updating, also
motivates the addition of the explicit cluster dynamics
described in section IV B. Note that this only happens for
the lowest tumbling rates (e.g. α = 0.001) because only
in this case is aggregation driven by the mobility of small
clusters. Indeed, such mobility depends on the probabil-
ity of all particles of the cluster to remain aligned in the
next step, which corresponds to the joint probability that
no particle inside the cluster changes its orientation and
decreases monotonically with the tumbling rate α and
the cluster size l:

Palign =
(

1− α

2

)l
, (9)

Following this then, for low tumbling rates aggregation
is dominated by the mobility of small clusters, which
in turn is hindered by the presence of an attractive
potential, resulting in lower aggregation for attractive
particles than repulsive ones (in this regime of α values).
Conversely, for high tumbling rates aggregation is
dominated by free particles falling into clusters rather

than cluster mobility. This is because in this regime
clusters are inherently less likely to remain aligned (and
thus collectively move, see Eq. 9) and more particles are
in the dilute regions because of the lower average time
edge particles stay in a cluster (inversely proportional
to the tumbling rate). Consequently, in this scenario,
introducing attractive interactions favours aggregation
as it will increase the cluster lifetime by hindering
particle escape. Note that this argument also explains
the crossing observed for M (at low α M decreases with
increasing ε while at high α M increases with ε) in Fig.
6, discussed in detail in the following section.

Parameters J and M . In Fig. 6 we report results
for the mean cluster size and the fraction of jammed
particles computed for the on lattice (left-hand column),
on lattice with cluster move (center column) and off
lattice systems (right-hand column). Particles interact
via repulsive or attractive interactions, are characterized
by different tumbling rates and suspensions are dense or
dilute.

When dealing with the on-lattice system without cluster
moves (left-hand column), M decreases as we increase
the tumbling rate α between α = 10−3 and α ≈ 10−1

for values of ε ≤ 8 for both φ = 0.1 and φ = 0.8. This
illustrates the fact that as the particles reorient more
frequently, it is harder for them to aggregate in larger
clusters because they tend to leave the cluster before a
new particle comes in increasing the cluster size. This
happens for both densities. At some point between
α = 10−2 and α = 10−1 the mean cluster size reaches
a minimum for ε = 8 (this corresponds to the overtake
of the green curve over the red one for attractive
systems in Fig. 5-right panels). This can be explained
since above certain α, the probability that a particle
that has left a cluster comes back is greater and this
is amplified by the presence of the attractive interactions.

The crossing observed can be explained by the reentrant
behaviour[9] described previously and the fact that the
larger the tumbling rate (lower Péclet number), the
more the system behaves as a passive system [50], where
attraction drives aggregation. However for smaller
tumbling rates (larger Péclet number) activity acts as
an effective repulsion, thus leading to smaller clusters.

For ε > 8 the attractive force overtakes the propulsion
force, so the role of α becomes negligible. Since we are at
T = 0 the system “freezes” reaching an absorbing state
where particles that stick together never break apart.
The system ceases to be ergodic.

B. On-lattice with cluster moves

Qualitative behaviour. In Fig. 7 we represent a few
particle trajectories of the on-lattice system with explicit
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FIG. 6. Mean cluster size M (top), and fraction of jammed particles J (bottom) as a function of the tumbling rate α for
two different densities (φ = 0.1 red, φ = 0.8 blue) and four different values of the attractive Lennard-Jones potential depth ε
ranging from 0 to 10 in the on-lattice systems and 0 to 2.5 in off-lattice one (for ε = 0 we consider a purely repulsive WCA
potential with ε = 1). Each column contains one of the three systems studied.

cluster dynamics for a wide set of parameters: the den-
sity, φ, the tumbling rate, α, and the potential depth, ε.

FIG. 7. Particle trajectories for the on-lattice dynamics with
explicit cluster move in stationary state for high (0.8) and
low (0.1) densities and three values of the potential intensity
ε: 0 (repulsive), 8 (attractive force ∼ propulsion force) and
10 (attractive force > propulsion force). High/low values for
the tumbling rate α are shown (some of the high values are
different for a better visualisation). In each panel, time flows
from bottom to top, each row corresponds to a snapshot of
the system at a given time. Particles moving left (right) are
colored blue (red).

For the repulsive system (ε = 0) and for low density and
tumbling rates we now have bigger mobile clusters than
in the previous case (compare left panels in Fig. 7 with
left panels in Fig. 4), since clusters are now able to move
and merge together. However, this effect disappears for
higher tumbling rates as activity acts as an effective
temperature that prevents cluster formation. For higher
densities we find that the system phase separates in two
phases: a condensed phase (consisting of one big cluster)
that contains the majority of the particles and a dilute
phase surrounding the cluster. Again when we increase
α the system dissolves completely. Therefore, we suggest
that the cluster motion acts as an effective attraction.

Now we switch on the attractive potential (ε = 8).
For low tumbling rates (α = 10−3) we observe little
difference with respect to the repulsive case. This is
reasonable because small tumbling rates already act
as an effective attraction. For higher tumbling rates
(α = 0.8), in contrast with the diluted state of the
repulsive system (ε = 0), the low density system is in a
clustered state whereas the high density system coarsens.
Hence, at low density (φ = 0.1) attractive interactions
trigger a dilute-to-clustered transition, whereas at high
densities (φ = 0.8) attractive interactions trigger a
clustered-to-coarsened transition.

For the strongest attraction (ε = 10) analyzed, the
absorbing state of the on-lattice case is broken by the
mobility of the clusters, we encounter that the system
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coarsens to form a macroscopic cluster surrounded by
vacuum for all four cases: all particles join in one big
cluster.

Therefore, depending on the system parameters α and
φ, we distinguish three steady-state regimes: clustering,
coarsening and a transition regime.

Concerning the coarsening regime (see for example 1st
and 3rd rows, or 3rd column of Fig. 7), the system
evolves towards a steady-state of maximum aggregation
where all particles get trapped in a single or few very
large clusters, surrounded by a very dilute gas of free
particles in constant dynamical exchange.

On the contrary, in the clustering regime (see Fig. 7
for α = 0.8, φ = 0.1 and ε = 0) the system reaches a
state of minimum aggregation where clusters dissolve
before merging together so that particles are trapped in
clusters of very small size surrounded by a dense gas of
free particles.

Finally, for a given parameter choice (see Fig. 7 when
α = 0.8, φ = 0.1, 0.8 and ε = 8) we find that the system
behaves in an intermediate way (transition regime),
with clusters merging together and increasing in size but
without reaching their maximum size, either because
of their small mobility or because dissolving too quickly.

FIG. 8. Cluster size distribution P (l) for the on-lattice with
cluster move dynamics where particles interact repulsively
(panels a) and c)) and attractively (panels b) and d)). Top
panels (a-b) correspond to low density, bottom panels (c-d)
to high density.

Cluster size distribution. In Fig. 8 we represent the
cluster size distributions P (l) for the on-lattice system
where an explicit cluster move is implemented.

In the repulsive case (excluded volume), at low density
(panel a)), we identify a clustering regime. This is
consistent with what was already detected in the system
without explicit cluster dynamics. However, this regime

happens only at the highest tumbling rates (α = 0.1, 0.5,
yellow and red dots).

Note here the single decaying branch in the cluster size
distribution (Fig. 8, panel a)), which is quite similar,
for this parameter choice, to that observed in the simple
PEP model [25].

For α = 0.01 the distribution is no longer exponential
since now particles are sufficiently active to start form-
ing clusters which now can move and merge together
creating bigger clusters (entering the transition regime).
For even lower tumbling rates, α = 0.001, we observe
a bimodal distribution starting to emerge (coarsening
regime). Since now particles spend more time moving in
one direction before they tumble, they will form bigger
clusters (right peak of the distribution) surrounded by
a dilute phase (left peak). Again, these clusters will
move, thus absorbing both other clusters and particles
in their way. However, as the cluster size increases, the
cluster will move slower. This is the reason why we
encounter less clusters of intermediate sizes: they merge
forming bigger and bigger clusters until they are so big
that they are too slow to keep encountering each other.
This leads to the coarsening regime discussed earlier
which corresponds to the right peak of the distribution
reaching l/N = 1.

For the attractive and low density case (panel b)), we
observe that interactions drive the system from the clus-
tering regime to the transition regime for α = 0.1, 0.5,
increasing the aggregation also for α = 0.01. This
makes sense as one would expect that attraction makes
the system more aggregated. Surprisingly, as we also
detected in the previous case (sec. II A), the system for
α = 0.001 with attractive interactions neither appears to
be more nor less aggregated than the repulsive one. This
fact suggests that attractive interactions play no role
in driving aggregation at high activities (low tumbling
rates, high persistence length), which is dominated by
cluster merging. Also, as for the previous case, the
system is slightly more aggregated for α = 0.5 than for
α = 0.1. As explained before, this can be due to the
reabsorbing probability of particles: for low α a particle
that evaporates from a cluster may never come back,
while for higher α the probability of being reabsorbed
into a cluster increases and is amplified by the attractive
interactions.

Parameters J and M . In the central column of Fig. 6
we represent the mean cluster size, M , and the fraction
of jammed particles, J for the on-lattice system with
cluster move. We observe that the system is overall
more aggregated or at least equally aggregated than in
the case without explicit cluster move (right column of
Fig. 6). Even though the functional forms of both M
and J curves are similar to the ones obtained without
cluster moves.
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The effect of adding the cluster dynamics on J does
not seem to be as relevant as its effect on M , where
we observe that at low tumbling rates the system is
much more aggregated than the system without explicit
cluster dynamics. Moreover, as we have suggested
before, since 1) the cluster move acts as an effective
attraction and 2) this effect is especially present for
lower tumbling rates, we also observe that a higher
attraction (ε = 8) is needed in order to distinguish
the M curves among each other, since now aggregation
at low α is mostly driven by the explicit cluster dynamics.

As observed in the absence of explicit cluster dynamics, ,
here we also detect a crossing of the M curves, although
it is much more subtle. This can be explained for the
same reasons as before: 1) now clusters move explicitly
as a whole, so attractive interactions reduce much
less the mobility of small clusters (although they do
reduce it to some extent since clusters can still move
due to their particles being aligned) and 2) the larger
the tumbling rate (lower Péclet number), the more
the system behaves as a passive system [50], where
attraction drives aggregation. However, for smaller
tumbling rates (larger Péclet number) activity acts as
an effective repulsion, thus leading to smaller clusters.
Although in this case (where explicit cluster moves are
present) the activity-driven aggregation is much stronger
since it is amplified by the cluster moves.

Moreover, as before, for ε > 8 the attractive force
overtakes the propulsion force. However, when explicit
cluster dynamics is present, the effect of α is more
relevant (since it is present in the probability of cluster
moves). The absorbing state reached previously is
broken due to the explicit cluster dynamics, which leads
to coarsening kinetics and a macroscopic cluster, where
M = J = 1 (see also right column of Fig. 7).

C. Off-lattice Langevin dynamics

In this section we will consider the same system of active
particles, subject to a continuum, Langevin dynamics,
where inter-particle collisions are not inelastic.
Qualitative behaviour. In Fig. 9 we represent the
particles’ trajectories for this dynamics for a wide set of
parameters: the density, φ, the tumbling rate, α, and
the potential depth, ε.

When particles are repulsive (ε = 0) the system forms
clusters that now have some mobility. Since we are
in continuous space, particles can “push” each other
due to momentum conservation during collisions. This
is different with respect to what was observed in the
on-lattice model, where one particle at the edge of the
cluster could block the entire cluster, even if the rest of

FIG. 9. Particle trajectories for the off-lattice system for low
(0.1) and high (0.8) densities and three values of the poten-
tial intensity ε: 0 (repulsive), 1 (attractive force ∼ propulsion
force) and 2.5. High/low values for the tumbling rate α are
shown (some of the high values are different for a better vi-
sualisation). In each panel, time flows from bottom to top,
each row corresponds to a snapshot of the system at a given
time. Particles moving left (right) are colored blue (red).

the particles were pointing in the same direction against
it. This type of behaviour is reminiscent of spatial
velocity correlations recently observed in systems of
active particles, both in phase-separated configurations
[51] or homogeneous active liquids [52].

As we would expect, the system is more aggregated
for high densities (φ = 0.8) and low tumbling rates
(α = 10−3). Although under visual inspection the sys-
tem seems more aggregated for the off-lattice dynamics,
the cluster size distribution shows otherwise. Clusters
might have longer lifetimes but they are overall smaller
than in the on-lattice case.

When we switch on the attractive interaction we observe
that the aggregation increases with ε as expected. For
low density (φ = 0.1), the system in a cluster state
evolves towards a transition regime (between clustering
and coarsening). For α = 0.5 the system dynamics
slows down, getting closer to the absorbing state de-
scribed earlier for the on-lattice system. However, in
this case the system does not completely reach the
absorbing state, due to the non-zero temperature and
the momentum conservation during collisions. For high
density (φ = 0.8) and high tumbling rate (α = 0.5), the
attraction strength ε leads to a coarsening transition,
undetected in the on-lattice system due to the reduced
cluster mobility. For α = 0.001 and ε = 2.5, the system
enters a new phase of small, long-lived and dynamic
clusters, undetected in the simple on-lattice case. For
off-lattice attractive dynamics, activity acts as an
effective repulsion[7, 53], reason why we observe a lower
aggregation for α = 0.001 (high activity)[50] than for
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α = 0.5 (low activity).

Cluster size distribution. Fig. 10 displays the cluster
size distribution, P (l), for continuum dynamics for repul-
sive (panels a) and c)) and attractive (panels b) and d))
interactions at ε = 1.

FIG. 10. Cluster size distribution P (l) for the off-lattice dy-
namics where particles interact repulsively (panels a) and c))
and attractively (panels b) and d)). Top panels (a-b) cor-
respond to low density, bottom panels (c-d) to high density
(note that x-axis scale is different for better visualization).

For repulsive interactions (panels a) and c) - Fig. 10),
all curves seem to follow an exponential law, resembling
on-lattice dynamics (Fig. 5), even though in the off-
lattice case the slopes are steeper (smaller aggregation
overall). This can be explained since in the off-lattice
case (continuous dynamics) particles have more freedom
to move than in the on-lattice case (discrete dynamics).
For φ = 0.8 (panel c)), the system is obviously more
aggregated and starts deviating from an exponential
distribution for the lowest tumbling rate, α = 10−3.

For attractive interactions (panels b) and d) - Fig.
10), the slopes are smaller, corresponding to a higher
aggregation, as expected. Note that in the presence of
attraction, particle activity acts as an effective repulsion,
opposing attraction-induced particle aggregation. This
is the reason why the overall aggregation is lower for
α = 0.001 than α ≥ 0.1. The specific value of α which
separates between activity-driven and attraction-driven
aggregation is yet to be explained. This can also be seen
when comparing attractive and repulsive systems at the
same tumble rate: the increase in aggregation due to the
attraction (ε = 1) is less noticeable for higher activity
(lower α). For higher density (panel d)) and high tumble
rate (low activity) the system rapidly coarsens into
a single or a few clusters, due to the combination of
high density, attractive interactions and almost passive
dynamics (see the green and red curves in Fig. 10).

Parameters J and M . The right column of Fig. 6
displays the mean cluster size, M , and the fraction of
jammed particles, J for off-lattice dynamics. The mean
cluster size, M , increases with epsilon, regardless of
α, as expected, which is one of the main differences
with respect to on-lattice dynamics, where increasing ε
decreases M for α . 0.1.

Particle aggregation as a function of α exhibits different
trends depending on the magnitude and type of particle
interactions. For repulsive interactions, aggregation de-
creases with increasing α as in the absence of attraction,
high activity (low α) drives aggregation. This can be
observed both in J and M (Fig. 6). Note that both for
the on-lattice and for the off-lattice systems aggregation
monotonically decreases with the tumbling rate for the
repulsive system. As soon as the attraction is switched
on aggregation increases. However, its dependence on
particle activity (tumbling rate) becomes non-monotonic
due to the interplay between inter-particle attraction and
self-propulsion. For low α, the particles have high per-
sistence and the activity dominates over the attraction.
The role of activity is twofold: it dampens or screens the
aggregation induced by attractive interactions but at
the same time it also drives aggregation induced by the
persistence of particles motion. Hence the aggregation
curves (J and M) decay with α in a similar way to that
of the repulsive case. As the tumbling rate increases,
the persistence of the particles drops, and the attraction
begins to take over (more so for higher values of ε) until
the dynamics are completely dominated by the attractive
interactions for high α (similar to a passive system). In
this extreme case we observe that the fraction of jammed
particles J reaches 1 for all simulations and the average
cluster size M collapses to a single value as a function
of φ. Individual particle activity is completely hindered
here and aggregation (beyond initial cluster formation)
is determined by emergent collective cluster mobility
(which decays with cluster size). Consequently, the
crossover between these two extreme scenarios (activity
or attraction dominated dynamics) is characterised by
a minimum in overall aggregation J and M . We have
to mention that care has to be taken in the region of
high α and high ε, since the dynamics of clusters slows
down strongly and we cannot assure that the steady
state is reached. The curve collapse is a finite size effect.
Clusters evolve more slowly as their size increases; the
times reached in the simulations cannot capture the
evolution of clusters beyond a given threshold size.
Accordingly, the curve of highest attraction (ε = 2.5)
sets the saturation of the aggregation parameters, which
decreases as α increases. This dependence is consistent
with the fact that clusters move slower for higher
tumbling rates and/or stronger attraction so aggregation
events become harder to capture over the simulation
times considered. Furthermore, the saturation values
depend on the density of the system φ, which relates to
the fact that clusters have to travel on average a greater
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distance before collision in low density scenarios.

The distinction between individual particle dynam-
ics and collective cluster dynamics is also observed
on-lattice dynamics. Indeed, when explicit cluster
moves are implemented (see middle column in Fig. 6)
we observe a sharp increase in aggregation with the
attraction strength.

In conclusion the differences between on-lattice and
off-lattice dynamics cannot be attributed to inertial
effects present in the latter. We have shown that a sys-
tem with overdamped Langevin (Brownian) dynamics,
where inertia is not taken into account, shows similar
results to those obtained for the Langevin system (see
the supplementary information).

V. DISCUSSION

We have studied a one dimensional system of active run-
and-tumble particles whose dynamics is either on-lattice
or off-lattice (Langevin-like). To unravel the role played
by the inter-particle interactions, we have considered the
effect of repulsive and attractive short range interactions.

While important differences between discrete and contin-
uous dynamics, a few common features are of particular
importance. As expected intuitively, increasing particle
density φ drives aggregation across all the different
dynamics and scenarios explored. The effects of particle
activity (self-propulsion) on aggregation are largely inde-
pendent of the details of the dynamics for non-attractive
particles. All repulsive systems display monotonically
decaying aggregation for increasing tumbling rate α
(inversely proportional to the particles’ persistence
length and a measure of the activity in the system).
However, once attractive interactions are introduced,
the steady-state, which is completely determined by
the interplay between these and the particles’ activity,
becomes highly dependent on the details of the dynamics.

In essence, aggregation can occur in two ways, each of
which will dominate the system’s dynamics under differ-
ent conditions:

1. Particle capture in clusters: when a free
particles encounters an existing cluster and falls
’jammed’ inside. For this mechanism we distinguish
two regimes: a) For non-attractive particles, per-
sistence (∼ 1/α) favours this type of aggregation.
b) For attractive particles, the interaction strength
favours particle trapping but the activity favours
escaping and the trade-off between the two will de-
termine how dominant this process is (beyond the
initial cluster nucleation).

2. Custer merging: when two existing clusters en-
counter one another. This requires clusters to be
mobile and is therefore what depends most on the
details of the dynamics. For discrete dynamics
without explicit collective cluster motion (what we
call ’on-lattice’ systems) it is very difficult for these
clusters to achieve motility as this requires all par-
ticles to be aligned and for the sequential update to
occur in the right order. If cluster move is allowed,
clusters become very dynamic and this aggregation
mechanism can be dominant in the system. Fi-
nally, for continuous dynamics, because particles
can push one another, mobile clusters are not as
rare as in the discrete scenario but still require some
degree of alignment and will not display the same
dynamics as the ’on-lattice with cluster move’.

Let us now summarize how the two aggregation mecha-
nisms act for the different analyzed dynamics.

Discrete “on-lattice” dynamics. First, for repulsive
interactions we recover the results obtained by Ref. 25.
Second, in the presence of attractive interactions, inter-
actions do not break the exponential shape of cluster
size distribution but change the global aggregation in
different ways depending on the activity regime. This
is because, as explained above, in this type of system
clusters are mostly immobile, which prevents cluster
merging. Consequently, aggregation is dominated by
particle capture and: a) for low α (high activity), since in
this system attraction decreases cluster mobility, it leads
to a decrease in the mean cluster size M : activity-driven
aggregation. b) for high α (low activity), attraction
leads to an increase of M because the system behaves
as a passive system controlled by attraction-driven
aggregation. When the attractive forces dominate over
propulsion, the system is no longer ergodic, due to the
absence of thermal fluctuations, and enters an absorbing
state.

To improve the cluster mobility with respect to the
above scenario, we implemented an explicit cluster
move in the on-lattice system. This fundamentally
changes the aggregation dynamics of the system, which
becomes easily dominated by cluster merging and can
achieve a novel coarsened state for a range of parameters
(inter-particle interactions or particle density) as long
as particles display sufficiently persistent dynamics
(low α). In this regime (e.g. α = 0.001) attractive
interactions have almost no effect on the steady state
of the system because aggregation is dominated by
collective dynamics (cluster motion). However, as we
decrease particle activity, the global aggregation (both
J and M) is reduced. This decay is less pronounced
for higher attraction strengths ε. This is because as the
attraction overtakes the activity and clusters become
more stable, merging aggregation mechanisms result in
larger clusters in the system and can eventually drive
complete particle aggregation in a single stable cluster.
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In this regime, the cluster size distribution is bimodal,
rather than exponential, accounting for the dilute (left
peak) and aggregated regions (right peak). Note that
when cluster moves are implemented, the system is
never trapped in an absorbing state.

As a result, in this system we detect three different
regimes depending on the choice of parameters. 1) A
clustering regime, with the system consisting of small
dynamic clusters. 2) A coarsening regime, with the
system consisting of few large particle aggregates, sur-
rounded by a dilute region of particles and small clusters.
3) A transition regime, with the system consisting of a
phase in between clustering and coarsening: the clusters
life time is sufficiently long for them to start merging
into bigger clusters.

In order to understand the relevance of particles being
confined to a lattice, we extended the above models
to continuous space, where particles evolve over time
according to a Langevin dynamics.

Continuous “off-lattice” system. Because in the
Langevin dynamics clusters can move naturally, cluster
merging can further drive aggregation and we observe
similar steady state ’phases’ to those of the on-lattice
model with cluster moves, with both clustering and
coarsening. In this case, however, the range of pa-
rameters where the system coarsens into a single large
aggregated body is much more limited (e.g. we only
detect such a regime for large particle density φ). This
is because, instead of being enforced, here the collective
dynamics required for this level of aggregation only arise
under certain conditions where clusters are sufficiently
stable (i.e. attractive interactions are sufficiently strong
to hinder escape events).

As a result, the aggregation in the steady state is
completely determined by the interplay between activity,
attraction and thermal noise. Indeed, in the absence of
attraction, activity drives aggregation, with both the
fraction of jammed particles J and the mean cluster
size M being higher for lower tumbling rate α: the
aggregation dynamics are completely dominated by free
particles captured by clusters. However, when attraction
is introduced, the effect of activity is inverted as it is now
favouring particles escaping clusters, which are in turn
stabilised by the interactions. This results in cluster
merging taking over for sufficiently low activity or suffi-
ciently high attraction, which drives aggregation back up.

It is worth noting that the greater number of allowed
states of the system (due to continuum space) leads to a
lower global aggregation than its lattice counterpart in
the absence of inter-particle attraction. The robustness
of the results described are further confirmed by the
study of continuum, overdamped dynamics, which
displays analogous behavior in the absence of inertial

effects (see SI, section I).

VI. CONCLUSION

Overall, we find that one-dimensional systems of in-
teracting (attractively or repulsively) run-and-tumble
particles display very rich and complex aggregation
dynamics resulting in a variety of steady state mor-
phologies. The most common of these is the clustering
regime, characterised by the formation of many small
particle aggregates in constant dynamic exchange with
the gas phase surrounding them. When such clusters are
sufficiently long-lived and display collective dynamics the
system evolves towards a novel coarsened phase where
all particles aggregate into a single or a few large clusters
surrounded by a gas phase of free particles whose den-
sity decreases with increasing inter-particle attraction.
Steady state aggregation is completely determined by
particle density, φ, particle activity, α, and interaction,
determined by the potential strength, ε. The details of
the system (i.e. the particular dynamics implementation
and the choice between continuous or discrete space)
appear to only affect the general results in how they
hinder or enable emergent or explicit collective cluster
dynamics, which are essential for reaching the coarsened
steady state described above. Among the studied cases,
this state only occurs in two: discrete repulsive with
cluster moves at low tumbling rate and continuous
attractive at high tumbling rate, since these are the ones
that include the two main ingredients for coarsening:
long lived and motile clusters. It should be noted that
alignment between particles orientations plays no role
in the formation of these clusters, although it has been
shown that they can promote MIPS[54]. This work thus
offers a comprehensive view of the dynamics of particles
confined to a single dimension, highlighting the diversity
and complexity arising from such an a priori simple
system.

Finally, it is worth mentioning that unlike 2D off-lattice
repulsive run-and-tumble systems, in 1D we cannot
strictly speak of MIPS at low tumbling rates because,
although particles aggregate in clusters with a given size
distribution, these do not merge into one dense phase[35].
We believe that future work extending the results pre-
sented here to two-dimensional systems should prove
helpful in untangling the role played by dimensionality
in this systems. This research could also be extended
by deriving a length scale lc, similar to Eq. (8), that
captures the attractive on-lattice clustering behaviour
or by considering distributions of the studied param-
eters instead of fixed values, much in the spirit of Ref. 55.
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