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We provide a quantitative analysis of all kinds of topological defects present in 2D passive and
active repulsive disk systems. We show that the passage from the solid to the hexatic is driven by the
unbinding of dislocations. Instead, although we see dissociation of disclinations as soon as the liquid
phase appears, extended clusters of defects largely dominate below the solid-hexatic critical line.
The latter percolate at the hexatic-liquid transition in continuous cases or within the coexistence
region in discontinuous ones, and their form gets more ramified for increasing activity.

In two-dimensions (2D), thermal fluctuations often
prevent the emergence of long-range order (LRO), as il-
lustrated by the absence of spontaneous magnetization
in 2D Heisenberg magnets [1] and positional order in
2D particle systems [2]. However, different kinds of
phase transitions driven by topological defects can still
occur: for example, in 2D planar magnets, the binding-
unbinding of vortices mediate the so-called Berezenskii-
Kosterlitz-Thouless (BKT) transition between a param-
agnet and a low temperature critical phase with quasi-
long-range magnetic order (QLRO) [3, 4].

The nature of the melting transition in 2D crystals is
far more involved and controversial [5, 6], partly due to
the fact that particle systems might have two types of or-
der, translational and orientational, and thus two kinds
of topological defects, dislocations and disclinations. The
most standard picture of 2D melting in spherically sym-
metric particle systems follows the work of Kosterlitz-
Thouless-Halperin-Nelson-Young (KTHNY) [7, 8], ac-
cording to which the transition from the solid (with po-
sitional QLRO and orientational LRO) to the isotropic
liquid occurs in two-steps, separated by an intermedi-
ate hexatic phase characterized by orientational QLRO.
These solid-hexatic and hexatic-liquid transitions are
of BKT type, driven by the unbinding of dislocations
and disclinations, respectively. While evidence for the
KTHNY scenario has been given in some experiments [9]
and simulations [10–13], alternative mechanisms have
also been proposed [5, 6] and, in particular, one in which
the continuous two-step scenario is preempted by a single
solid-liquid first-order transition driven by the aggrega-
tion of defects into grain-boundary-like structures [14–
16]. Recent simulations [17–19] and experiments [20]
have shown that the melting of equilibrium (passive) re-
pulsive disks shares aspects of both scenarios: a BKT
solid-hexatic transition but a first-order hexatic-liquid
one, if the interaction potential is stiff enough. It has thus

been suggested that the disclination-unbinding mecha-
nism should be preempted by a first-order transition in-
volving the proliferation of clusters of defects, forming
a percolating network in the liquid regime [12, 18, 19].
However, neither a quantitative analysis of such clusters
nor the derivation of a theory for the stability of the hex-
atic phase against grain-boundaries have been conducted.
Moreover, and surprisingly enough, no clear experimental
evidence and very little numerical one [19] for dislocation
unbinding at the solid-hexatic transition exists.

Besides the issues that still remain unclear for systems
of passive particles, the classical problem of 2D phase
transitions is experiencing a resurge of interest in the
context of active matter systems. These are collections
of self-propelled particles which pump energy from their
environment and convert it into motion in the presence
of dissipation, but in a way that breaks detailed balance
[21–23]. The question now is how these non-equilibrium
‘active’ fluctuations affect the phase behavior of 2D par-
ticle systems [24–28] and the role played by topological
defects. It has recently been shown that self-propelled
hard-disks follow the two-step melting scenario of their
passive counterparts at small activities, up to a thresh-
old above which hexatic-liquid coexistence, characteris-
tic of the first-order nature of the transition, disappears
[26, 28]. Both the hexatic-liquid and solid-hexatic transi-
tions are shifted to higher densities as the degree of activ-
ity is increased and, at sufficiently high activities, these
transitions overlap with a coexistence region purely trig-
gered by self-propulsion, the so-called Motility-Induced
Phase-Separation (MIPS) [29]. Although topological de-
fects are known to be crucial in understanding 2D equi-
librium phase transitions, little attention has been paid
to their study in self-propelled systems [25, 28] and thus
the very nature of the phase transitions is still to be un-
derstood.

In this Letter we systematically study the full spectrum
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of topological defects in 2D systems of passive hard and
soft, and active hard disks. Besides a careful analysis
of point-like defects, we also characterize more complex
structures, in the form of extended clusters. We first
show that the solid-hexatic transition is driven by the
unbinding of dislocations and agrees with the KTHNY
scenario at all activities. Next, we find that 2D melting
is generically accompanied by cluster percolation close to
the hexatic-liquid transition, both for active and passive
systems. Although the presence of a spanning cluster,
similar to critical percolation, seems to be independent
of the order of the transition, the nature and geometry
of the clusters does vary from case to case.

We consider N Active Brownian Particles (ABP) lo-
cated at ri in an Lx × Ly box with periodic boundary
conditions and obeying (see [26] for details)

γṙi = Factni −
∑
j(6=i) ∇iU(rij) +

√
2γkBTξi ,

θ̇i =
√

2Dθηi ,
(1)

where Fact is the self-propulsion force acting along ni =
(cos θi(t), sin θi(t)), rij = |ri− rj | and U(r) is a repulsive
(i) hardcore UH(r) = 4ε[(σ/r)64−(σ/r)32]+ε if r < σd =
21/32σ and 0 otherwise or (ii) soft US(r) = ε(σd/r)

6 if
r < 2.6 σd potential [18]. The components of ξ and η are
zero-mean and unit variance independent white Gaussian
noises. The units of length and energy are given by σd
and ε, respectively. We fix Dθ = 3kBT/σ

2
dγ, γ = 10,

N = 5122, and kBT = 0.05 for the hard disks and kBT =
1 for the soft ones. We vary the packing fraction φ =
πσ2

dN/(4LxLy), where Lx/Ly = 2/
√

3, and the Péclet
number Pe = Factσd/(kBT ).

The topological defects are mis-coordinated particles,
or cells in the Voronoi construction, with respect to the
hexagonal lattice. Free disclinations correspond to indi-
vidual cells with 5 or 7 neighbors (5-fold and 7-fold de-
fects), while free dislocations to pairs of neighboring cells
with 5 and 7 neighbors (5-7 pairs). Vacancies, point de-
fects resulting from the removal of a particle in an hexag-
onal packing, can be identified with different configura-
tions involving, either groups of pairs of bounded dislo-
cations (two or more), or higher order mis-coordinated
cells (with less than 5 or more than 7 neighbours), see
Fig. 1. The number density of each kind of defect is
defined as the ratio between the number of cells with
the selected type of defect and the total number of cells.
The free disclination, free dislocation, vacancy and clus-
ter values are shown in Fig. 2 in four representative cases:
(i) passive hard-disks, Pe = 0; (ii) passive soft-disks, Pe
= 0; (iii) ABP at Pe = 20 (for which the liquid-hexatic
transition is continuous); (iv) ABP at Pe = 100 (which
exhibits MIPS) [26]. In the MIPS coexistence region, we
only count defects belonging to the dense phase.

The first noticeable fact in all panels concerns the tran-
sition between the solid and hexatic phases. Free discli-
nations and dislocations are absent in the solid phase (or-
ange) of hard systems (a), (c) and (d). At the vicinity of

the hexatic phase (blue), the number of free dislocations
increases sharply, indicating that they break positional
QLRO and mediate the solid-hexatic transition for all
Pe. For soft particles this number is different from zero
at all φ but its variation is faster below the transition (b).
Such behavior departs from a recent study reporting that
the melting of the active solid is not driven by the pro-
liferation of dislocations, as a KTHNY scenario would
predict, opening the possibility of breaking orientational
LRO in the absence of any defect [28].

As regards free disclinations, their density is very close
to zero in the hexatic and detaches significantly from this
value when the liquid appears, either as a pure phase (b)
and (c) or co-existing with the hexatic (a) and (d). The
KTHNY unbinding arises in the liquid component.

The density of each kind of defect (inset Fig. 2 (d))
remains almost unchanged below the point where orien-
tational correlations change behavior from algebraic to
exponential (blue dashed line, see [26]) in the MIPS coex-
istence region and until the low density spinodal [26, 30].
This means that the dense phase generated through
MIPS is characterized by a given number of defects set by
Pe and not φ. (For more details on the behavior beyond
the dashed line and spinodal see the SM [31].)

Importantly enough, most mis-coordinated cells can-
not be identified as disclinations or dislocations, but ap-
pear in clusters comprising defects of alternating topo-
logical charge. These objects lie beyond the KTHNY
theory (see Fig. 1) and, to understand the role they play,
we systematically analyze them. Vacancies do not break

FIG. 1. (Color online.) Detailed view of a typical snapshot
(Pe = 20 and φ = 0.820) with different kinds of defects. Par-
ticles in 5-fold cells are colored in red, 7-fold ones in blue,
and all other mis-coordinated ones in grey. Disclinations are
highlighted in grey, dislocations in blue, vacancies in orange
and clusters of defects in red. A grain boundary delimiting
regions with different hexatic order is marked in yellow.



3

positional QLRO and can thus be present in the solid
phase. As shown in Fig. 2 (d), at high Pe (e.g. Pe =
100) the number of vacancies increases as we decrease
φ in the solid regime and rapidly decays as we get into
the hexatic, with a peak at the transition. Such decay
is concomitant with an increase in the number of free
dislocations: vacancies leave away free dislocations. Va-
cancies must be distinguished from defect clusters that
do break positional order. To do so, we associate a unit
vector eij to each pair of neighboring defects, pointing
from a cell with coordination number mi < 6 to a neigh-
boring one with mj > 6 (see Fig. 1). If the sum of these
vectors over all the cells in a structure of more than 2
connected mis-coordinated cells, is smaller than half the
mean distance between particles, we identify it as a va-
cancy, and as a cluster otherwise [32]. (In this counting,
a bounded dislocation pair is equivalent to a vacancy.)

As shown in Fig. 2, clusters dominate the distribution
of defects in the hexatic phase, proving that topologi-
cal excitations are collective rather than localized in this
regime. Importantly, this also suggests that their pro-
liferation might drive melting, instead of the unbinding
of disclinations. Clusters of defects in hard-disk systems
have been associated to the formation of grain bound-
aries delimiting regions of different hexatic order [18, 19],
which could drive an alternative first-order melting mech-
anism in 2D [14–16]. However, the relationship between
generic clusters of defects as counted here, and grain

FIG. 2. (Color online.) Normalized number of dislocations
and disclinations as a function of φ for passive hard-disks (a),
passive soft-disks (b), ABP at Pe = 20 (c) and Pe = 100
(d). All defects, including vacancies and clusters of defects,
are shown in the insets. The solid, hexatic, phase-coexistence
and liquid regions are shown in orange, blue, grey and white,
respectively. The dashed blue line inside the MIPS region (d)
indicates the φ above which local orientational correlations
are scale-free.

FIG. 3. (Color online.) Cluster size distribution for (a) pas-
sive hard-disks, (b) soft-disks, (c) ABP at Pe = 20 and (d)
Pe = 100 at different φ. We represent in red the curve we
identify with percolation-like behavior. We show an algebraic
decay P (n) ∝ n−τ with τ = 2.09, 2.08 and 2.18 for (a), (b)
and (c), respectively, τ = 1+d/df. In (d) the dashed lines are

n−2e−n/n
∗

decays with n∗ = 30, 102 and 2.103 in the solid,
hexatic and MIPS.

boundaries, is not clear yet. Moreover, for passive soft-
disks and active hard-disks at Pe = 20, there is no evi-
dence for a first-order transition, and yet the density of
clusters at the liquid-hexatic transition is very close to
the passive hard-disk value (≈ 0.05). This suggests, as
we show below, that the proliferation of clusters might be
generic and not responsible for the first-order character
of the hexatic-liquid transition of passive hard-disks.

To clarify whether grain boundaries or defect clusters
show percolation-like behaviour and, if so, its connection
with 2D melting [12, 18, 19, 33–35], we use the framework
of percolation theory [36]. Grain boundaries are visually
identifiable as chains of closely spaced defects (see Fig. 1),
though the latter are not fully connected at the single
cell scale. The microscopic gaps are filled via a coarse-
graining procedure, routinely applied to study gelation
[37]. To be quantitative, we divide our system into cells
of linear size ds [38], and define a coarse-grained cluster as
a set of connected cells with, at least, one defect. In the
following we use ds = 3σd (see SM [31] for a discussion)
and analyze the cluster size distribution P (n) obtained
by measuring the number of coarse-grained clusters made
of n defected cells, excluding the spanning one.

In Fig. 3 we show P (n) for (a) passive hard-disks, (b)
soft-disks, (c) ABP at Pe = 20 and (d) Pe = 100, and
varying φ across the different phase transitions. Starting
from the solid, the effect of decreasing φ is clear for all
Pe, as the distribution broadens to include larger clus-
ters. For passive disks, both hard and soft, and at Pe
= 20, P (n) becomes scale free (very) close to the value
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FIG. 4. (Color online.) Coarse-grained clusters of defects.
The largest cluster is painted yellow or green whether it per-
colates or not. Pe = 0 in (a) φ = 0.720 and (b) φ = 0.715. Pe
= 20 in (c) φ = 0.825 and (d) φ = 0.820.

of φ above which orientational correlations become al-
gebraic. In Fig. 3 we show P (n) ∼ n−τ , with τ fixed
from τ = 1 + d/df, df being the fractal dimension of the
clusters (see below). In the finite systems studied, at
the hexatic-liquid transition, the statistics of the coarse-
grained clusters is close to the one of clusters at critical
percolation, irrespective of its discontinuous (for passive
hard-disks [17]) or continuous (for passive soft disks [18]
and ABP at Pe = 20 [26]) character. At Pe = 100,
MIPS preempts the liquid-hexatic transition and thus the
percolation-like behavior. The size distribution remains
largely invariant within MIPS at fixed Pe, similarly to
what we saw in Fig. 2 (d).

The percolation of coarse-grained clusters is further
evidenced by the snapshots shown in Fig. 4. For equi-
librium hard-disks in the solid phase, the largest cluster
(in yellow) does not span the system. As we decrease φ,
the size distribution broadens until a percolating cluster
arises (in green), right in the middle of the liquid-hexatic
coexistence region [26]. The location of the percolating
structure is correlated with the one of the liquid. This
is shown by the map of the local hexatic order param-
eter, ψ6(rj) = N−1j

∑
k∈∂j e

i6θjk , where θjk is the an-
gle formed by the segment that connects the center of
the jth disk and the one of its kth, out of Nj nearest
neighbors, see Fig. 5 (a). (They are also the regions of
low local density [26].) Indeed, most defects are in the
liquid-hexatic boundaries, cfr. Fig. 4 (b) and Fig. 5 (a),
and the emergence of a percolating cluster at Pe = 0 can
be attributed to the percolation of the liquid domain.
For Pe = 20, there is no liquid-hexatic coexistence, and
yet there is percolation close to the hexatic-liquid transi-
tion (also for soft particles, not shown here, see [31]). In

FIG. 5. (Color online.) Map of ψ6(r), projected on the mean
orientation, for equilibrium hard-disks (a) and active hard-
disks (c). (b) Fractal dimension as a function of Pe at the
hexatic-liquid transition. (d) Zoom over the square in (c) with
the defect cluster shown in green over the ψ6(r) background.

this case, coarse-grained clusters can be identified with
grain-boundaries, as shown in Fig. 5 (c)-(d), and percola-
tion with the emergence of a system-spanning network of
them. Finally, at higher Pe, in the MIPS regime, we see
large hexatic domains, leaving behind a network of grain-
boundaries, that can become large but remains finite, see
[31].

An essential aspect of critical percolation is the frac-
tal morphology of the clusters. A way to study their
geometry is to relate their size, nC , to a length scale,
e.g., their radius of gyration RgC = [

∑
i∈C(ri−rC)2/nC ]

1
2

(the sum runs over all cells in the cluster and rC is the
position of its center of mass) via the fractal dimension
df: nC ∼ RgC

df . At criticality, the hyper-scaling relation
τ = d/df + 1 (d being the space dimensionality) relates
df to the exponent τ of the size distribution. The evolu-
tion of df with Pe, is shown in Fig. 5 (b), suggesting that
clusters get more ramified as Pe increases, in agreement
with Fig. 4. Indeed, for higher Pe, local crystalline order
is enhanced leaving behind sharper grain boundaries and
thus string-like clusters with smaller df. The measure-
ment of df provides a consistent prediction for τ in P (n),
as shown in Fig. 3.

Experience teaches us that we have to be extremely
careful before claiming that there is a strict relation be-
tween a thermodynamic phase transition driven by the
competition between interactions and fluctuations, such
as melting, and a phenomenon of purely geometric na-
ture, like percolation. In many spin models, the proper-
ties of their second order thermal phase transitions can
be rigorously described in terms of the critical percola-
tion of suitably defined Fortuin-Kasteleyn (FK) clusters,
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that are not the obvious geometric ones one could a priori
try to use [36, 39]. Although the FK clusters should not
be useful to describe a first order thermodynamic tran-
sition, in cases with very long correlation lengths such
as the 2D Potts model with Q >∼ 4, one could easily
see them percolate close to the transition in finite size
samples [40]. Our simulation results (on finite systems)
provide clear evidencies that active, passive, continuous
and discontinuous hexatic-liquid transitions are accom-
panied by the percolation of defect clusters. However,
we cannot posit that the relevant clusters to describe the
transition are the (coarse-grained) defect ones we used
and, therefore, we cannot establish a rigorous connexion
between melting and percolation.

We have characterized the melting of passive and ac-
tive disks in terms of the statistics of topological defects.
On the one hand, we found that a KTHNY scenario de-
scribes the transition from the solid to the hexatic for
all values of the activity. Next, we generically observed
the percolation of clusters of defects at the vicinity of
the hexatic-liquid transition. Although such a percola-
tion has been usually associated to first-order melting
scenarios, we found it across both first and second-order
transitions, in- and out-of-equilibrium. The geometry of
the percolating cluster depends, though, on the activ-
ity. While we see percolation of a liquid phase across
the first order transition in equilibrium hard disks, the
clusters that percolate across the melting of the active
hexatic, at intermediate Pe, are due to grain boundaries.
At high Pe, MIPS prevails over the hexatic-liquid tran-
sition, and clusters of defects are large and ramified, but
do not percolate. The present work clarifies the nature of
phase transitions in systems of active particles and sheds
new light on the old problem of 2D melting.
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