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The effect of boundaries and how these can be used to influence the bulk behavior in geometrically
frustrated systems are both long-standing puzzles, often relegated to a secondary role. Here, we use
numerical simulations and “proof of concept” experiments to demonstrate that boundaries can be
engineered to control the bulk behavior in a colloidal artificial ice. We show that an antiferromagnetic
frontier forces the system to rapidly reach the ground state (GS), as opposed to the commonly implemented
open or periodic boundary conditions. We also show that strategically placing defects at the corners
generates novel bistable states, or topological strings, which result from competing GS regions in the bulk.
Our results could be generalized to other frustrated micro- and nanostructures where boundary conditions
may be engineered with lithographic techniques.
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In the thermodynamic limit, the bulk properties of a
statistical ensemble are no longer influenced by its boun-
daries. However, in frustrated spin systems, the boundaries
can induce configurations that propagate far into the bulk
[1,2]. Among several examples of frustrated systems in
nature, the most representative one is spin ice [3–5], which
can be considered the magnetic “analog” of the water ice
[6]. Artificial spin ice systems (ASIs) based on lithographic
engineering recently emerged as a versatile experimental
platform to investigate geometric frustration effects [7]. An
ASI is composed by a lattice of nanoscale ferromagnetic
islands, arranged to induce frustration [8–10]. In contrast to
natural magnets, an ASI allows one to directly visualize the
spin arrangement, a feature that has been used to investigate
the effect of disorder [11–13], thermalization [14,15], and
degeneracy in many geometries [16–20]. Alternative real-
izations include arrays of nanowires [21], patterned super-
conductors [22,23], macroscopic magnets [24], Skyrmions
in liquid crystals [25,26], superconducting qubits [27], and
colloidal particles in bistable potentials [28].
In such systems, the presence of disorder or a finite

temperature often prevents them from reaching the ground
state (GS), and, instead, they fall to a metastable state
containing defects in the form of charged vertices. These
defects can be characterized by a topological charge Q and
have a topological nature, since they can be destroyed only
when annihilating with other defects of opposite charge. In
the GS, the vertices satisfy the ice rule that prescribes a
minimization of the local charge, Q ¼ 0. While much
attention has been placed on how temperature or external
fields drive a system toward its GS, the role of boundaries
in finite systems has been often overlooked. This is
of especial importance when dealing with interacting

magnetic systems where the interaction energies are gov-
erned by long-range dipolar forces.
Here, we show how boundaries can be engineered to

control the bulk behavior and the formation of topological
states such as point defects and topological domain walls
spanning the bulk. We demonstrate this concept with an
artificial colloidal ice, a system that recently emerged as a
microscale soft-matter analog to ASI [29]. Colloidal ice
consists of an ensemble of paramagnetic colloids two-
dimensionally (2D) confined by gravity in topographic
double wells, where the particles may sit in two stable
positions and an external magnetic field B induces repul-
sive dipolar interactions [Fig. 1(a)]. One can assign a vector
(analogous to a spin) to each well such that it points toward
the vertex’s center (spin in) or away from it (spin out); see
Fig. 1. When arranged in a square lattice, one can classify
six possible vertex types, each of them with an associated
topological charge Q ¼ 2n − cN , where n is the number of
particles in and cN the lattice coordination number. For the
square, it is cN ¼ 4. Thus, vertices of type III and type IV
haveQ ¼ 0 and fulfill the ice rule, and type III gives rise to
the GS. Topological defects are charged vertices with
Q ≠ 0 or closed loops of type-IV vertices [Fig. 1(e)].
To simulate colloidal ice, we perform Brownian dynam-

ics, carefully parametrized to mimic the experiments [28].
We consider a 2D array of double wells, each filled by one
paramagnetic colloid of diameter d ¼ 10.3 μm and mag-
netic volume susceptibility χ ¼ 0.048. The overdamped
equation of motion for one colloid at position ri is

γ
dri
dt

¼ FT
i þ Fdd

i þ η; ð1Þ
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where γ ¼ 0.032 pN s μm−1 and FT
i is the force from the

double well which is modeled as a bistable harmonic
potential; more details are in the Supplemental Material [30].
The dipolar force acting on particle i due to the neighboring
colloids is Fdd

i ¼ ð3μ0=4πÞ
P

j≠iðm2r̂ij=jrijj4Þ, where
m ¼ χVB=ðμ0Þ is the dipolemoment induced by the external
field B, μ0¼4π×10−7 H=m, and r̂ij ¼ ðri − rjÞ=jri − rjj.
To consider long-range dipolar interactions between the
particles, we apply a large cutoff of 200 μm. Finally, η
represents a random force due to thermal fluctuation,
with zero mean, hηi ¼ 0 and delta correlated, hηðtÞηðt0Þi ¼
2kBTγδðt − t0Þ, with a temperature T ¼ 300 K. Simulations
are performed for different system sizes, ranging from
L ¼ 3 to L ¼ 40, where L is the number of vertices
along the side. We increase B linearly up to B ¼ 25 mT,
at a rate 0.03125 mT=s. For B ¼ 25 mT, the pair potential
between two particles in the closest (farthest) place of two
doublewells isU ¼ 1176kBT (U ¼ 115kBT).Our strategy to
fix the boundary consists in placing a particle in a single
harmonic well at a location such that it corresponds to a spin
pointing in or out.

We consider four different situations: two fixed boun-
dary conditions, namely, antiferromagnetic (AFM) and
domain wall (DW), illustrated in Fig. 1(b). In AFM
boundaries, colloids are placed alternately pointing in
and out. However, flipping a subset of the colloids in an
AFM boundary can create defects that are topologically
constrained to the inner region, as illustrated in Fig. 1(d).
This is the basis of the Gauss’ law analog introduced in
Ref. [27] for a qubit system. As constructed, the AFM state
has a neutral charge at the boundaries. This charge neutral-
ity is broken when a spin is changed from out to in and two
defects are created on the AFM state. With this strategy, we
introduce in Fig. 1(d) the antiferromagnetic domain wall
(AFMDW), where we mix AFM boundaries with DW
corners. This configuration produces different behavior
with system size L. With L even, two corners point in, two
point out, and the charge isQ ¼ 0. Instead, with L odd, the
four corners point either in or out, and a total charge
Q ¼ �4 is locked inside the bulk. Furthermore, we also ran
simulations with periodic boundaries, that are similar to
previous simulations on particle-based ice [31,32], and with
open boundaries, which represent the experiments with no
fixed particles [Fig. 1(c)].
To show how borders can be manipulated in experi-

ments, we realize a square colloidal ice with antiferromag-
netic domain walls. The system setup has been described in
Ref. [33]. Here, we modify the boundaries of an isotropic
lattice by adding nonmagnetic silica particles to the
corresponding double wells. The silica particles induce
local jamming, fixing the paramagnetic particle to a stable
location, as shown below.
We start by showing in Fig. 2(a) how the four different

boundary conditions influence the bulk behavior in terms
of the fractions of type-III vertices (top) and of the average
vertex charge (bottom). Both the open and DW frontiers
show very similar trends, failing to reach the GS for all
sizes. For these type of boundaries, the system accumulates
charged defects at the boundaries, which are all negative
for open boundaries and positive (negative) for inward-
pointing (outward-pointing) spins in the DW. Only open
boundaries allow the appearance of a net nonzero topo-
logical charge, which converges to a size-dependent neg-
ative value at high field, as shown in the bottom in Fig. 2(a).
This effect can be appreciated also from the time evolution
of the system in Fig. 2(b) and in Video S1 [30]. Above
B ¼ 16.6 mT, all the borders exhibit particles displaced
toward the outer region (spins out), a radial polarization
effect predicted in Ref. [34]. Such an effect arises since
the analogy between spin and colloidal ice is broken near
the boundaries due to the repulsive interactions between the
particles, while in ASIs nanoislands interact due to in-plane
dipolar forces. In contrast, periodic, AFM, and DW satisfy
the conservation of topological chargeQ for all field values
and system sizes. As shown in Fig. 2(b) and Videos S2
and S3 [30], we find that a system with periodic or DW

AFM

AFMDW

(b)

(d)

(a)

(e)

(c)

FIG. 1. (a)–(e) Different schematics showing (a) the double-
well geometry with paramagnetic colloids and the method of
fixing the boundaries by using a single well; (b),(c) the three basic
types of boundary conditions, antiferromagnetic (AFM), domain
wall (DW), and (c) open boundaries; and (d) AFMDW bounda-
ries designed with defects which can carry a net charge (Q ¼ 4,
left) or can be neutral (Q ¼ 0, right). The shaded region indicates
boundaries which topologically protect the enclosed charge.
(e) Different vertex types with their effective normalized ener-
getic weight (bottom) and topological charge (side). Vertices are
ordered by increasing energetic ratio respect to type III. The
associated spins are shown on the type-III vertex.
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boundaries induces the formation of system-spanning
domain walls, not allowed by the AFM (Video S4 [30]).
These defect lines are very difficult to erase by increasing B
further, as they require the simultaneous flipping of large
GS regions in the bulk. In a system with periodic
boundaries, the parity of the domain walls is also topo-
logically protected: When the boundaries are of even size
(L ∈ 2Zþ), defect lines can appear only in pairs. In
contrast, for odd values of L, at least one defect line is
always present. This effect appears also in Fig. 2(c), where
the periodic boundaries exhibit a zigzag trend: Odd lengths
have an excess of type-IV vertices, which become less
relevant as the boundary to bulk ratio becomes smaller. In
contrast, we found that AFM boundaries can equilibrate to
the GS faster and at lower fields, since they restrict the
phase space as predicted in Ref. [1]. The kinetics of the
defects is analyzed in Fig. 2(d) for AFM boundaries and
compared to the periodic case. Both display coarsening
dynamics with a power law scaling. This behavior can be
also appreciated from the time evolution of the type-III
domains in Fig. 2(e). Initially, both systems create similar
domain structures, but, while a system with periodic
boundaries falls to a metastable state with several smaller
domains, the AFM creates a single loop of defects that
continuously shrink, giving rise to the GS.
We now explore the behavior when boundaries are fixed

in the AFMDW state. Figure 3 shows a system with
Q ¼ −4, where, if the energy of the type-IV vertices were

similar to that of type III, the charge would be contained in
a single type-I vertex, with four lines of type IV connecting
it to the corners. However, due to line tension, as the
applied field increases, it becomes more stable to break up
the excess of charges and distribute them along two lines
connecting the four corners. This leads to a symmetry
breaking, where the system must choose whether to arrange
the two connecting lines horizontally [state 0 in the left of
Fig. 3(a) and Video S5 [30]] or vertically (state 1 in the right
of Fig. 3(a) and Video S6[30]). We quantify this bistability
using the order parameterΦ ¼ hjs · êxj − js · êyji, where s is
a sum over the vectors associated to charged vertices and
h� � �i is an average calculated over all vertices. By definition,
Φ acquires a positive (negative) value for defects arranged in
the state 0 (state 1) [Fig. 3(b)]. As shown in Fig. 3(c), we
observe a bifurcation starting fromB ∼ 5.6 mT. The process
of choosing one of these two states develops via a coarsening
of small type-III domains and consequent reduction of the
highly charged defects until three main domains are formed
at B ∼ 9.4 mT. From here, the rest of the process consists
of pulling, through line tension, the defect line toward
the edges.
Another type of AFMDW boundary condition can be

imposed by introducing only two defects in opposite corners.
This constraint creates two equal and incompatible type-III
regions that meet along the diagonal and are separated by a
string of type-IV vertices. The corresponding evolution from
a disordered state is shown in Figs. 4(a) and 4(b) and in

(a)

(c)

(b)

(e)

(d)

FIG. 2. (a) Fraction of type-III vertices (top) and average vertex charge (bottom) for different system sizes (numbers) and type of
boundaries (symbols). (b) Maps of defects for different types of boundaries. The colored circles indicate charges, while colorless arrows
indicate type-IV defects. The system width is L ¼ 20 vertices. (c) Fraction of vertices at the maximum field (B ¼ 25 mT) versus system
size, for open (solid lines) and periodic (dotted lines) boundaries. (d) Number of defects Ndef vs time for the AFM and periodic case; the
line denotes t−2 scaling. (e) Type-III domain area AD vs time for AFM (top) and periodic (bottom).
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Video S7 [30]. In the simulations, after B ∼ 5 mT, the
system nucleates two type-III regions which coarsen to the
two final domains at B ¼ 25 mT. The final straightening
process of the topological string results from line tension, as
also confirmed by experiments [Fig. 4(b)]. However, we find
that this defect line is not always completely stretched, and
defects might appear in the form of small distortions
connected by a string of type-IV vertices, parallel and
pointing along the opposite direction from the main defect
line (Fig. S1 [30]). We capture this effect by measuring in
Fig. 4(c) the distribution of the number of defects. As the
field increases, the system gets rid of all non-type-III
vertices, until it reaches a steady state close to the topo-
logically protected minimum number of defects, which is
equal to L [dotted white line in Fig. 4(c)]. Nevertheless, the
inset shows that such a minimum value is not reached by
many of the realizations, since many systems fall to a state
with a small number of defects distributed along the domain
wall and deviating from the diagonal.

In conclusion, we show how to engineer different
boundary conditions to control the bulk behavior in a
geometrically frustrated soft-matter system. We demon-
strate this concept with an artificial colloidal ice combining
numerical simulation and experimental realizations.
Topological defects placed at the boundaries propagate
inside the bulk, forming bistable states with symmetry
breaking or topologically protected strings. The fact that
the observed phenomena display a topologically protected
nature suggests that they could be observed on other
systems such as nanomagnetic artificial ice. This could
be tested experimentally, for example, by using lithography
to design smaller and compact islands such as ferro-
magnetic cubes [35], cylinders [36], or disks [37] at the
system edges to impose a desired bulk configuration. From
the technological perspective, writing or erasing defect
lines in the GS region can be used to freeze information into
the system by applying a bias during the equilibration
process [38].

(b)

(d)

(a)

(c)

FIG. 3. (a) Schematics showing two states that appear after
application of the field when using the AFMDW configuration.
Here, topological charges can be connected either horizontally
(right) or vertically (left). (b) Bifurcation of the order parameter
observed for N ¼ 100 simulations. (c) Color map showing the
field-induced symmetry breaking where the system chooses the
state 0. (d) Experimental observation of the first type of defect
pattern; the second one is in Supplemental Material [30]. The
enlargement shows the trap jammed by silica particles. The scale
bar is 20 μm, and red (blue) dots indicate positive (negative) Q.

(a)

(b)

(c)

FIG. 4. (a) Color map illustrating the time evolution of the
topological line connecting two edge defects in the AFMDW
configuration. (b) Experimental realization of the line of defects
using the AFMDW configuration. The scale bar is 20 μm. (c) The
probability of finding a specific number of defects in a system, as
a function of the field. The dotted line indicates the system’s
width (L ¼ 14). The inset shows an enlargement of the central
portion of the curve.
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