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Hydrodynamic interactions between fluid-dispersed particles are ubiquitous in soft matter and biological
systems and they give rise to intriguing collective phenomena. While it was reported that these interactions
can facilitate force-driven particle motion over energetic barriers, here we show the opposite effect in a
flow-driven system, i.e., that hydrodynamic interactions hinder transport across barriers. We demonstrate
this result by combining experiments and theory. In the experiments, we drive colloidal particles using
rotating optical traps, thus creating a vortex flow in the corotating reference frame. We observe a
jamminglike decrease of particle currents with density for large barriers between traps. The theoretical
model shows that this jamming arises from hydrodynamic interactions between the particles. The impact of
hydrodynamic interactions is reversed compared to force-driven motion, suggesting that our findings are a
generic feature of flow-driven transport.
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Collective transport of microscale particles in fluid
media can occur either due to external forces or to a flow
that drags the particles. Prominent examples include driven
motion of particles through narrow channels [1–3], in
micro- and nanofluidic devices [4–6], in pores of zeolites
[7], and through carbon nanotubes with relevance to
biotechnological and biomedical applications [8].
Hydrodynamic interactions (HI) are always present in
viscous fluids but only a few studies so far have tackled
their influence on the collective transport behavior [9–17].
However, most of these studies have considered force-
rather than flow-driven systems where HI were found to
facilitate particle motion. In particular, it was reported that
HI make it easier to surmount potential barriers when
particles are driven by a force across an optical sawtooth
potential [18]. Here we show that the opposite is true for
flow-driven transport of particles through periodic poten-
tials. Using a combined experimental and theoretical
approach, we show that HI can lead to an effective
enhancement of potential barriers, causing a slowing down
of particle motion and a jamming at high density.
To experimentally realize a well-controlled flow-driven

system, it is necessary to overcome several difficulties. For
example, the pressure field should be precisely control-
lable, and one should be able to vary the number of particles
and the height of the potential barriers. Usually, flow-driven
systems are realized in lithographically designed chambers,
where the flow is produced by connecting a microfluidic

channel to two particle reservoirs at different pressures.
However, for studying many-particle dynamics, such sys-
tem could introduce unwanted effects, including fluctua-
tions of the particle number in the channel and, even more
importantly, the collective dynamics may be affected by
strong channel-reservoir coupling effects. These couplings
can lead to nonequilibrium steady states, where the particle
number density is determined by uncontrollable details
[19]. We avoid such complications by experimentally
generating a flow in a confined system with periodic
boundary conditions. This is a typical setup considered
in theoretical studies, which we realize here by driving
particles dispersed in a liquid via a traveling-wave-like
potential along a ring. In a reference frame comoving with
the traveling wave, the particle transport then corresponds
to that in a flow-driven system.
Specifically, Ntr ¼ 27 optical traps are positioned along

a ring of radius R ¼ 20.2 μm in the xy plane, see Fig. 1.
We created the traps by passing an infrared continuous
wave laser through two acousto-optic deflectors (AODs)
that are capable of deflecting the beam to a different
position every 20 μs; thus each trap is generated once
every 0.54 ms. A fluid cell with an aqueous solution of
spherical polystyrene colloids of radius a ¼ 2 μm (CML,
Molecular Probes) is sealed by two cover slips separated
by ∼100 μm and placed on a custom-built inverted optical
microscope. The particles sediment by gravity close to the
bottom cell and float there at a surface to surface distance of
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∼200 nm. Thus, they are far from the top plate and also from
the in-plane boundaries located a few centimeters away.
The microscope is equipped with a CMOS camera (Ximea
MQ003MG-CM) and tracking is done using the Crocker-
Grier method [20]. Note that the particle diameter 2a ¼
4 μm is comparable to the distance λ ¼ 2πR=Ntr ≅ 4.7 μm
between neighboring traps.
Because of the fast deflection of the laser beam, all traps

appear simultaneous, as the typical self-diffusion time of
the particles is D0=a2 ∼ 30 s, where D0 ≅ 0.13 μm2 s−1 is
the particle diffusion coefficient. We independently
obtainedD0 by measuring the time-dependent mean-square
displacement in the absence of the optical ring.

Figure 1(a) illustrates the optical potential landscape
UðrÞ, which confines the particles to a ring with potential
valleys at the trap centers. Expressed in polar coordinates,
Uðr;φÞ has a deep minimum along the radial direction at
r ¼ R. Along the azimuthal direction, it has Ntr pro-
nounced minima at the trap positions shown by the dark
red lines in Fig. 1(a). By changing the phase of the
circulating beam linearly in time, the traps move at a
constant angular velocity of ω ¼ 0.63 rad s−1 ≅ 6 rpm and
the potential becomes time dependent, U ¼ Uðr;φ − ωtÞ.
All of the following observations are done in the reference
frame where the trap positions are stationary: φ → φ − ωt.
From our setup depicted in Fig. 1(a), one should expect

the potential to be periodic along the azimuthal direction
with a period 2π=Ntr, corresponding to a wavelength
λ ¼ 2πR=Ntr. To check whether this is the case and to
obtain parameters for our simulations, we measured the
optical forces by dragging a single particle along the ring
and analyzed particle displacements between successive
frames, similar to Ref. [21]. Videos S1 and S2 of the
Supplemental Material [22] show that the particles exhibit
negligible radial displacements, and thus we can consider
the dynamics to proceed only along the ring through a one-
dimensional potential UφðφÞ ¼ UðR;φÞ. However, the
potential turned out not to be perfectly λ periodic, because
the AOD response is not flat along the sample, causing the
deflected laser power to vary weakly with φ. This leads to a
static modulation of the potential amplitude with a relative
strength ξ. In the corotating frame, the potential is peri-
odically varying with angular frequency ω, yielding a time-
dependent potential

Uφðφ; tÞ ¼
U0

2
½1þ ξ sinðφþ ωtÞ� cos ðNtrφÞ: ð1Þ

The parameters of Eq. (1) were obtained by fitting the
forces for various laser powers in the range 11–40 mW.
Figure 1(b) shows a typical outcome, where the dashed line
represents the modulation caused by the AODs response.
As shown in Fig. 1(c), the modulation strength ξ ¼
0.22� 0.02 is almost independent of the laser power,
while the mean barrier height U0 between the traps
increases linearly with the laser power from 70 to
150 kBT, where kBT is the thermal energy.
To check the parameters U0, ξ, and D0, we performed

Brownian dynamics simulations (see below) and compared
simulated with measured drag velocities v0 for the ampli-
tudes U0 applied in the experiment. The results in Fig. 1(d)
show an excellent agreement between simulated and
measured data.
We now study the fundamental diagram [23] of the

many-particle dynamics, i.e., the relation between the
current J along the azimuthal direction and the particle
density ρ. To determine the current, we first calculated the
instantaneous velocities of each particle in the stationary

(a)

(b)

(c) (d)

FIG. 1. (a) Image of 15 particles (black circles) confined to a
ring of radius R with 27 equidistantly placed optical traps
(contrast was enhanced by standard gamma correction). The
ring rotates with angular velocity ω. The lines mark isolines of
the optical potential Uðr;φÞ. Along the azimuthal direction, the
potential is given by Uφðφ; t0Þ in Eq. (1) for a fixed time t0 and
r ¼ R. (b) Potential Uφðφ; t0Þ as a function of φ. The faded line
shows the potential at a later instant t0 þ Δt, and the dashed black
lines indicate the potential amplitude modulation. Experimental
data (markers) are determined by averaging the position incre-
ments of a single particle measured at a sequence of times
tn ¼ t0 þ 2πn=ω, n ¼ 0; 1; 2;… The red line is a fit of Eq. (1) to
these experimental data. (c) Mean barrier height U0 and modu-
lation parameter ξ as a function of the laser power. (d) Average
single-particle velocity v0 normalized to the flow velocityωR as a
function of the mean barrier height U0. Experimental values
(symbols) are compared to simulations (line) for the potential
in Eq. (1).
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state from changes of the particle positions in small time
steps (successive frames) along the azimuthal direction.
We then averaged these velocities over time and all
particles. The resulting mean velocity hvi gives the current
J ¼ Nhvi=ð2πRÞ. For the density, we use the fraction of
traps occupied by the particles, ρ ¼ N=Ntr.
The current JðρÞ is shown in Fig. 2(a) for various barrier

heights U0. To see the impact of the particle interactions,
we normalized JðρÞ with respect to the current of a single
particle, Jsp ¼ v0=ð2πRÞ. For independent particles, we
would expect a linear function JðρÞ=Jsp ¼ ρ, represented
by the straight black line in the figure. All curves JðρÞ=Jsp
approach this line in the limit ρ → 0, while for ρ > 0 the
current is smaller, and as U0 is increased, the current
suppression is larger.
When U0 ≲ 80 kBT, the suppression of the current is

relatively weak for all ρ, while at larger U0 ≳ 100 kBT, we
find a strong suppression at large ρ. A local maximum in
JðρÞ occurs, which is a signature of jamming, i.e., a
transition from a fluidlike continuous motion to a thermally
activated behavior with blocking effects. A prominent
simple model for this jamming is the asymmetric simple
exclusion process [24,25] where the current follows,
JðρÞ=Jsp ¼ ρð1 − ρÞ, which we included in Fig. 2 as a
reference (black dotted line). However, the dynamics in our
experiment are more complex as witnessed by the more
complicated shapes of the current-density relations and
their strong dependence on U0.
The jamming signatures seen in Fig. 2(a) suggests that

it arises from the strong confinement of the particles along
the ring, which hinders them from overtaking each other
(single-file transport). Is this jamming originating solely
from a hard-sphere-type interaction between the polystyrene

colloids? Or is the combined effect of this interaction with
the time dependence of the potential in Eq. (1) essential?
And what is the impact of HI?
To answer these questions, we performed Brownian

dynamics simulations of hard-sphere interacting particles.
The optical forces acting on the particles at positions ri are
described by the potential Uðri − uitÞ, where ui ¼ ω × ri
are the azimuthal velocities of the particles (ω ¼ ωẑ, where
ẑ is the unit vector in the z direction).
In the reference frame that corotates with the traps, the

translational motion ofN particles in the presence of HI can
be described by the Langevin equations [26]

_ri ¼ −ω × ri þ
XN
j¼1

½kBT∇jμij þ μijf i� þ ηi; ð2aÞ

f i ¼ −∇iUðriÞ þ f inti ; ð2bÞ

where f inti is the interaction force exerted on particle i by the
other particles, and μij ¼ μijðr1;…; rNÞ is the mobility
tensor, which accounts for HI by the mobility method [27].
The vector ηi is a Gaussian white noise with zero mean and
covariance matrix in accordance with the fluctuation-
dissipation theorem, i.e., hηiðtÞ⊗ηjðt0Þi¼2kBTμijδðt−t0Þ.
Equation (2a) shows that our experiment indeed corre-

sponds to a flow-driven system of interacting particles. The
term ω × ri equals the driving in a radially symmetric
vortex flow field. When averaging Uφðφ; tÞ from Eq. (1)
over one time period 2π=ω, it becomes time independent
and periodic in φ with period 2π=Ntr. Accordingly, when
averaging the force of the time-averaged potential over one
period 2π=Ntr along the azimuthal direction, it is zero.

(a) (b) (c)

FIG. 2. Fundamental diagrams for (a) experiments and (b),(c) simulations based on Eqs. (2a) and (2b). The current JðρÞ is normalized
with respect to the single-particle current Jsp ¼ v0=2πR, where v0 is the single-particle velocity from Fig. 1(d). Filled circles (solid lines)
and open circles (dash-dotted lines) refer to simulations with and without HI, respectively. In (b) results are shown for the time-
dependent potential in Eq. (1) with amplitude modulation (ξ ¼ 0.22). (c) Results for the ideal periodic potential (ξ ¼ 0) and for a force-
driven system (squares and dotted lines). The legend in (b) applies also to (c). In all graphs, the solid black line marks the behavior for
independent particles and the thin dotted line indicates the function ρð1 − ρÞ as a reference to jamming (see text).
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Shortly speaking, in a fluid at rest, there would be no
particle current on average [28].
To take the HI into account, we used the procedure

developed in [29], where the mobilities μij are given by the
Rotne-Prager form, both for the reflective fluid flows
resulting from the coverslip underneath the particles and
the fluid flows induced by the movements of the particles.
This consideration of HI constitutes a minimal model,
where we neglect lubrication effects, possible translation-
rotation couplings and expansions of the mobilities beyond
the Rotne-Prager form for particles coming close to each
other. In all simulations, we included the reflective fluid
flow and constrained the particle movement to the azimu-
thal direction. When we refer to simulations with and
without HI in the following, we mean the particle-particle
HI, which we calculated in full three-dimensional space.
Figure 2(b) shows the simulated normalized current

JðρÞ=Jsp obtained for the potential (1) with amplitude
modulation as in the experiment (ξ ¼ 0.22). The open
circles connected by the dash-dotted lines refer to the
simulations without HI. In contrast to a suppression of the
current, they show an enhancement at larger densities. This
enhancement is due to the fact that, with increasing density,
regions of large driving force are more strongly populated.
The behavior changes drastically when including the HI
(filled circles connected by solid lines). The normalized
current now decreases at large ρ in qualitative agreement
with the experiments. In particular, the jamming signatures
becomes stronger with increasing U0. The details of
the behavior differ from the experiments in Fig. 2(a),
and we attribute this to the limitations of our minimal
model of HI.
To clarify whether the amplitude modulation plays a

crucial role for the jamming, we performed additional
simulations for the ideal case when the periodic potential is
time independent [ξ ¼ 0 in Eq. (1)]. The results shown in
Fig. 2(c) are very similar to those in Fig. 2(b). Without HI,
JðρÞ exceeds the single-particle current. In the presence
of HI, the current is smaller than that of independent
particles and decreases with ρ at large densities, reflecting
jamming.
In order to explore if the jamming would occur in a

force-driven system, we solved the Langevin equations (2)
for particles driven by the external torque f extðφ̂Þ ¼ −ωRφ̂,
where φ̂ denotes the unit vector along the azimuthal
direction; this means that Eq. (2a) becomes _ri ¼P

j fkBT∇jμij þ μij½f i þ f extðφ̂iÞ�g þ ηi. In contrast to
the flow-driven case, the results for the force-driven one
show a strong current enhancement in agreement with
previous findings [9]; see the squares connected by dotted
lines in Fig. 2(c).
We now provide an argument for the current suppression

in flow-driven transport. To this end, we consider the
equation of motion of a single particle in the potential given
by Eq. (1),

_φ ¼ −
μ0
R2

∂
∂φ

�
ωR2

μ0
φþ Uφðφ; tÞ

�
þ ηφ; ð3Þ

where hηφðtÞηφðt0Þi ¼ 2D0R−2δðt − t0Þ with D0 ¼ kBTμ0.
Hence, Uφðφ; tÞ is tilted by the linear potential ωR2φ=μ0,
resulting in the effective potential Ueff

φ ðφ; tÞ ¼ Uφðφ; tÞþ
ωR2φ=μ0. For small U0, this effective potential exhibits no
barriers, implying that a single particle is essentially
dragged by the flow. The part Uφ in Ueff

φ can be viewed
as creating a resistance for the flow-driven particle motion,
causing v0 to be smaller than the flow velocity ωR for
U0 > 0 and to decrease with U0.
When U0 becomes larger than a critical amplitude U0c,

the single-particle motion becomes thermally activated. For
determining U0c, we take the temporally period-averaged
potential Ūeff

φ ðφÞ ¼ ðω=2πÞ R 2π=ω
0 Uφðφ; tÞdt, which is also

the effective potential for the ideal case ξ ¼ 0 [time-
independent periodic potential, see Eq. (1)]. The barriers
in Ūeff

φ ðφÞ emerge when U0 passes the critical ampli-
tude U0c ¼ 2ωR2=ðμ0NtrÞ ≅ 147 kBT.
The above result shows that all experiments are below

the critical amplitude, and therefore one would expect
linear current-density relations with no pronounced jam-
ming effect. This is indeed confirmed by the simulated data
without HI shown in Fig. 2(b). However, the HI leads to an
effective increase of the potential barrier. Within the Rotne-
Prager level of description, the terms μijf j contain the part
ðμijÞφφ∂Uφ=∂φ, where ðμijÞφφ is the φφ component of the
tensor μij in cylindrical coordinates. In the absence of HI,
only the term μ0∂Uφ=∂φ for j ¼ i contributes to the sum
over j. In the presence of HI, the additional contributions
for j ≠ i are dominated by the particles j closest to particle
i. For a particle j located at a neighboring trap of particle i,
in particular, the corresponding additional contribution is
μ0½ð3a=2λÞ − ða=λÞ3�∂Uφ=∂φ (a, particle size; λ, wave-
length of the potential).
This can be viewed as an effective enhancement of the

mean barrier height U0 by HI to a value

UHI
0 ¼

�
1þ 3a

2λ
−
a3

λ3

�
U0: ð4Þ

Because a < λ, the additional contribution is always pos-
itive, i.e., UHI

0 > U0. Using Eq. (4) with λ ¼ 2πR=Ntr ≅
4.71 μm and a ≅ 2 μm, U0 is increased by about 56%. For
largeU0 in experiment, this givesUHI

0 > U0c, which implies
that the effective potential Ueff

φ (now for one particle in the
many-particle system) exhibits barriers. The dynamics thus
becomes thermally activated and strongly slows down. This
barrier enhancement effect should become stronger with
larger occupation probabilities of neighboring traps, i.e.,
density. In addition, blocking effects can lead to a further
slowing down with increasing ρ [30,31]. Indeed, we have
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seen indications of a hopping motion and jamming in the
measured trajectories for large U0 and high densities; see
videos in the Supplemental Material [22].
Our analysis can be made more precise by refining the

description beyond the Rotne-Prager approximation. This
can include higher-order terms in the expansion of mobil-
ities in powers of the particle radius to interparticle distance
ratio a=λ, lubrication effects, and an additional consider-
ation of the rotational dynamics of the particles. One can
imagine to reach a quantitative agreement between experi-
ments and modeling with large-scale simulation methods,
as, for example, by implementing multiparticle collision
dynamics [32]. However, our model is able to qualitatively
reproduce the experimental findings and it provides an
understanding of the mechanisms governing the current
suppression in our system.
To conclude, we have found that HI in flow-driven

many-particle systems can lead to an effective barrier
enhancement, which induces a jamming effect. We support
this conclusion by combining experiments with numerical
simulations and we provide a minimal approach for
exploring the impact of HI on the translational motion.
The flow driving is essential for the observed phenomena
and the reported effect is present regardless of imperfec-
tions of the external potential, which makes our findings
relevant for nonideal situations in nature.
Particle transport over energetic barriers occurs in many

soft matter and biological systems. We expect that the
phenomena uncovered here, namely, the HI-induced barrier
enhancement and jamming effects, will be of general
importance for further studies and applications of flow-
driven many-particle systems.
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