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1 Deriving probabilistic soil distribution coefficients (Kd). Part 3: Reducing 

2 variability of americium Kd best estimates using soil properties and chemical 

3 and geological material analogues
4

5 Abstract

6 The solid-liquid distribution coefficient (Kd) is a key input parameter in radioecological risk 

7 models. However, its large variability hampers its usefulness in modelling transport processes 

8 as well as its accuracy in representing soil-radionuclide interactions. To assist in the selection 

9 of Kd values and their cumulative distribution functions for study areas without site specific 

10 information, a critically reviewed dataset was developed, containing more than 5000 soil Kd 

11 entries for 83 elements and an additional 2000 entries of Kd data for 75 elements gathered 

12 from a selection of other geological materials. For the specific case of americium (Am), the 

13 dataset contained 109 entries for soils and 33 additional entries for sediment and subsoils. The 

14 analysis of the Am Kd soil dataset showed that values varied 4-orders of magnitude, and 

15 consequently the resulting Am Kd best estimate (geometric mean (GM): 4.6 x 103 L kg-1) 

16 lacked sufficient reliability. The objective of this study was to calculate cumulative 

17 distribution functions and statistically evaluate this dataset to determine if the Am Kd 

18 variability in soils could be reduced by considering various factors, including: 1) 

19 measurement methods, 2) key soil properties, 3) the use of chemical analogue data, and 4) the 

20 use of analogue data. Accounting for Am Kd experimental method (i.e., sorption vs. 

21 desorption; long- vs. short-term experiments) had little effect on reducing variability. 

22 However, accounting for key soil factors (i.e., organic matter content (OM), pH, soil texture) 

23 succeeded in reducing variability of Am Kd, especially when combining pH and OM. While 

24 previous data sets have used 20% OM content as a critical value to distinguish between 

25 mineral and organic soils, this study shows that this critical value should be reduced to 10% 

26 OM to minimize Am Kd variability. The inclusion in the dataset of Am Kd from other 

27 geological materials (e.g., gyttjas, tills, and subsoils) and Kd values from trivalent lanthanides 

28 (Ln (III)) and actinides (An (III)) (172 additional entries) did not statistically affect the Am Kd 

29 geometric means of the various pH and OM partial datasets. The larger composite dataset 

30 (>310 entries), with both chemical analogues and geological material analogues to address 

31 data gaps, increased the statistical power for calculating Kd best estimates with lower 

32 variability, thereby enhancing their usefulness for radionuclide risk calculations. 
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35 1. Introduction

36 There is a significant amount of qualitative and quantitative data on the interaction of selected 

37 radionuclides (radiocaesium, radiostrontium, and several naturally occurring radionuclides, 

38 such as uranium) with soils. However, there are evident knowledge and data gaps describing 

39 how some transuranic and actinide elements interact with soils in the environment and in 

40 nuclear waste disposal systems. Among these, americium (Am) is of special concern since 

41 some Am radioisotopes are long-lived alpha emitters. Other actinides and trivalent 

42 lanthanides have been reported to have several similar geochemical behaviours as Am due to 

43 similar chemical properties (such as ionic radii, coordination number and oxidation state) 

44 (GRS, 2012). 

45

46 Americium interaction with geological materials is affected by pH, organic matter (OM), and 

47 mineralogy, especially the presence of metal amorphous coatings, clay minerals and 

48 carbonates (Pavlotskaya et al., 2003; EPA, 2004). These phases not only provide sorption 

49 sites of different affinities, but also modify Am speciation in solution, which is pH-dependent 

50 and involves hydrolysis and complexation reactions with organic and inorganic ligands, such 

51 as fulvic/humic acids and carbonate (Lujaniene et al., 2007; Ho Lee et al., 2011). Sorption 

52 data on soils is scarce for actinides and lanthanides. Recent studies confirmed that Am 

53 sorption to soils is governed by pH, OM, specific surface area, and Am aqueous speciation, 

54 which in turn is affected by the presence of hydroxyl, phosphate and carbonate ligands in 

55 solution (Choppin, 2007; Ramírez-Guinart et al., 2016; Ramirez-Guinart et al., 2017). 

56

57 This is the last in a series of three papers (Ramírez-Guinart et al., 2020a; Ramírez-Guinart et 

58 al., 2020b), aimed at deriving sorption data suitable for risk assessment from soil Kd datasets, 

59 as well as developing a strategy to reduce and describe Kd variability based on probabilistic 

60 models, including the construction of distribution functions to statistically describe Kd values. 

61 As explained in parts 1 and 2 in this series of three papers, the TRS 472 dataset (IAEA, 2010) 

62 was the starting point of the work. Under the auspices of the IAEA-Modelling and Data for 

63 Radiological Impact Assessments (MODARIA I and MODARIA II) projects, the TRS-472 

64 dataset was updated and critically reviewed following agreed acceptance criteria (Ramirez-

65 Guinart et al., 2020a).
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66

67 Besides obtaining Am Kd distributions and best estimates for soils grouped based on their 

68 texture and organic matter content (Gil Garcia et al., 2009), in this work we examine 

69 additional strategies to reduce uncertainty, including the impact of: 1) experimental 

70 measurement method followed to derive the Am Kd values; 2) redefining the OM content 

71 threshold for distinguishing mineral and organic soils; 3) including pH as a grouping factor; 

72 and 4) including Am and Am-chemical analogue data to enhance partial datasets and to derive 

73 probabilistic Kd values that can be applied for both Am and for other actinides and 

74 lanthanides.

75

76 2. Data collection and treatment.

77 2.1. Current status of the Am Kd compilation

78 The update of the TRS-472 dataset was based on a number of criteria such as rejecting any Kd 

79 value originated from parametric regression equations, mass-transport experiments, or 

80 compilation Kd reference estimates; pooling values originated by varying non-relevant 

81 operational or soil variables; excluding values obtained from experiments not representative 

82 for environmental conditions (such as extremely low or high pH); accepting data from stable 

83 isotopes obtained at the lowest concentration range (Ramírez-Guinart et al., 2020a).   Kd 

84 values originating from soils, and not pure phases, such as clay minerals or metal 

85 (hydro)oxides, were included in the dataset.  Our working definition of soil was the 

86 unconsolidated geological material comprising the terrestrial root zone.  This definition has 

87 the benefit of using the same terminology commonly used by the authors of the original 

88 research and excluded those unconsolidated geological materials below the soil layer (aquifer 

89 sediments and vadose zone) and beneath waterways (streams, lakes, and oceans).  As will be 

90 discussed below, we also included some other types of geological materials (subsoils, tills, 

91 and gyttjas) to test if their Kd values differed significantly from soil Kd values.  Importantly, 

92 the dataset includes as much ancillary information of the sample as reported, such pH, OM 

93 content, clay and sand contents in the mineral fraction, carbonate content and cationic 

94 exchange capacity.  

95

96 The updated soil dataset contained 109 Am Kd entries, around 45 more than in the previous 

97 Kd compilation (IAEA, 2010), varying up to 4 orders of magnitude (the range was 2.7101 –

98  2.8105 L kg-1). In addition to this, 33 entries for Am Kd in subsoils (from 3 m down to 48 m 

99 depth) and surface sediments (mostly from estuaries), were available. Finally, another dataset 



5

100 (Analogue dataset) was created with data of lanthanides and actinides Kd (specifically, La, 

101 Sm, Eu, Gd, Er, Lu and Cm) in soils (116 entries), tills (28 entries), subsoils (4 entries) and 

102 gyttja (2 entries).

103

104 2.2. Soil factors and developed criteria to group Am Kd data

105 Dissolved organic matter (DOM), pH and specific surface area play a key role in Am 

106 interaction in soils (Ramírez-Guinart et al., 2016). Americium sorption increases in soils with 

107 a high specific surface area. The specific surface area is often not available from routine soil 

108 characterization data. Nevertheless, because the soil specific surface area is related to the 

109 presence of the finest soil particles (< 200 µm), the effect of specific surface area could be 

110 approximated by soil texture, a parameter that is commonly measured. Besides, Am sorption 

111 can be strongly inhibited by the formation of stable and anionic complexes with DOM that 

112 remains in solution because of their low affinity (electrostatic repulsions) for soil surfaces. A 

113 grouping criterion should distinguish between those soils in which Am sorption is controlled 

114 by the DOM, presenting a lower capacity to sorb Am, from those soils in which the Am 

115 sorption is controlled by the mineral fraction, presenting a higher capacity to sorb Am. The 

116 amount of DOM would then be a suitable soil factor for Am Kd data grouping. However, the 

117 scarcity of available DOM data hampered its use for grouping Kd values. Because DOM is 

118 derived from soil OM content, Kd data grouping based on the soil OM could serve as a 

119 reasonable surrogate parameter. Therefore, the OM Kd grouping criterion was applied as a 

120 first approach to separate Am Kd into two partial datasets, as previously defined (IAEA, 

121 2010). In short, Am Kd values were included in the Organic group if the soil had an OM 

122 content ≥ 20%, whereas they were included in the Mineral group if OM content was lower 

123 than 20%. Secondly, the Am Kd data contained in the Mineral group were split in three 

124 textural groups (Sand, Loam, and Clay), thus defining the OM+Texture criterion. Textural 

125 groups were operationally defined as follows: the Sand group had a sand fraction > 65% and a 

126 clay fraction < 18%; the Clay group had a clay fraction > 35%; and the Loam group were all 

127 other mineral soils.

128

129 Previous results (Ramirez-Guinart et al., 2016) suggested that the Am-DOC speciation in 

130 solution can be dominant even at low concentration of DOC and for OM contents around 

131 10%. Therefore, the OM threshold to distinguish between Mineral and Organic (20%) groups 

132 may not be the most suitable for minimizing Am Kd variability. Accordingly, a second 

133 analysis of the OM+Texture criterion was conducted to explore whether a lower OM 
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134 threshold would be more suitable for Am Kd values. This was accomplished by comparing 

135 changes in geometric means (GM) and geometric standard deviations (GSD) of the new 

136 mineral and organic datasets created when decreasing the OM threshold from 20% to 15% 

137 and 10%. 

138

139 A pH criterion for reducing Am Kd variability was also explored. Like the non-linear uranium 

140 Kd vs. pH dependence (Vandenhove et al., 2009; Ramírez-Guinart et al., 2020a), the Am Kd 

141 dataset was split into four partial datasets to reflect established trends of pH-dependent Am 

142 speciation in solution and pH-dependent affinity for sorption sites (Kaplan et al., 1996; 

143 Choppin, 2007; Ramírez-Guinart et al., 2016):

144 - pH < 6: presence of positively charged sorption sites and cationic Am species (primarily 

145 as Am3+) are expected to result in lower Am Kd values due to electrostatic repulsions.

146 - 6 ≤ pH < 7.5: presence of deprotonated sorption sites, leading to an increase in the 

147 sorption of cationic Am species (primarily as Am(OH)2+ and AmCO3
+).

148 - 7.5 ≤ pH < 9: increase of sorption sites due to increase in negative charge resulting from 

149 progressive deprotonation of functional groups. High Am Kd values are expected, 

150 excepting for soil-water systems with high content of dissolved carbonate with 

151 predominance of the anionic Am(CO3)2
- species.

152 - pH ≥ 9: unless Am precipitation or co-precipitation occurs, much lower Am Kd are 

153 generally expected since anionic and neutral Am species (primarily Am(CO3)3
-3 and 

154 Am(OH)3) are predominant.

155

156 Multiple linear regressions have been recently proposed to estimate the Am Kd values in soils 

157 from properties related to the soil factors mentioned above (Ramirez-Guinart et al., 2016). 

158 Therefore, grouping criteria can be developed by combining as many of these soil factors as 

159 possible by using soil properties that are frequently available. Since the pH-dependency of the 

160 Am sorption in soils remains unclear when DOM is present in the soil solution at 

161 concentrations high enough to control Am speciation, a combined grouping criterion 

162 involving pH and OM was also tested (the pH+OM criterion). Finally, since the Am sorption 

163 in soils is influenced by the soil specific surface area, a final attempt was done to improve Am 

164 Kd data grouping by further splitting the previous pH+OM partial datasets into sand, loam, 

165 and clay textural classes, thus leading to partial datasets containing Am Kd data only from a 

166 given soil texture (OM+pH+Texture grouping criterion). 

167
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168 2.3. Analyses of the influence of experimental approach on Am Kd data variability

169 As in the other two papers of this series (Ramírez-Guinart et al., 2020a; Ramírez-Guinart et 

170 al., 2020b), the influence of the experimental approach was simultaneously evaluated along 

171 with relevant soil factors.

172

173 The majority of Am Kd entries fell within the “short-term sorption” category (ST-S, that is, 

174 Am Kd derived from applying a sorption batch test based on putting in contact for short times 

175 (< 1 yr) a non-contaminated soil with a solution spiked with americium), and “short-term 

176 desorption” category (ST-D, Am Kd derived from applying an extraction batch test to soils 

177 recently (< 1 yr) contaminated with americium) (Ramirez-Guinart et al., 2020a). There were 

178 no entries that could be considered as “long-term desorption” data (that is, Am Kd derived 

179 from applying an extraction test to long-term contaminated solid materials with americium) 

180 (Ramirez-Guinart et al., 2020a). Consequently, the effect of sorption dynamics on Am Kd data 

181 could not be checked due to a lack of long-term data. 

182

183 The data treatment was based on group mean centring (GMC) to minimize the effect of soil 

184 factors identified as relevant on Am Kd variability (additional details are provided in Ramírez-

185 Guinart et al., 2020a). Firstly, the overall Am dataset was log-transformed, the log Am Kd 

186 data was then grouped according to the OM+Texture or pH criteria, the arithmetic mean 

187 (AM) of log Am Kd values of each soil-type group created was calculared and each single log 

188 Am Kd value within a given group was corrected by subtracting the AM log Am Kd value of 

189 the respective soil-type group. Subsequently, the GMC-corrected log Am Kd datasets were 

190 divided according to sorption and desorption data (Ramírez-Guinart et al., 2020a). Then, 

191 statistical tests (Fisher’s least significant differences (FLSD) test for multiple samples; 95% 

192 confidence level; StatGraphics 18) were performed to check whether the GMC-corrected log 

193 Am Kd data significantly differed between experimental approaches.

194

195 2.4. Construction of cumulative distribution functions to describe Am Kd variability

196 Cumulative Distribution Functions (CDF) of Am Kd data were constructed to describe their 

197 population and variability datasets. Since the Kd parameter is a ratio of concentrations, Kd 

198 data are expected to follow a lognormal distribution (Sheppard et al., 2011). For the 

199 construction of CDFs, Am Kd data were log-transformed and the presence of possible outlier 

200 values in the datasets was examined by performing an exploratory analysis based on box-and-

201 whisker plots. The log Am Kd data within every dataset were sorted by increasing value and 
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202 an empirical frequency (fexp,i) equal to 1/N (where N is the total number of Am Kd entries in 

203 the respective dataset) was assigned to each entry. Experimental cumulative frequency 

204 distributions were constructed by assigning to each sorted log Am Kd value their 

205 corresponding cumulative frequency (Fexp,i), i.e., the sum of the preceding frequencies 

206 . The Kolmogorov-Smirnov test was applied to ascertain that (F(Kd,j) = ∑j
i = 0f(Kd,i))

207 underlying frequency distribution in each Am Kd dataset did not differ from a lognormal 

208 distribution. As expected, it was confirmed that overall and partial Am Kd datasets followed a 

209 lognormal distribution. Consequently, the experimental cumulative frequency distributions 

210 constructed with the log Am Kd data were fitted to the theoretical normal CDF equation, and 

211 the related geometric mean (GM; 50th percentile) and percentile ranges (5th and 95th) were 

212 derived. Additional details are provided by Ramírez-Guinart et al. (2020a).  

213 To properly derive a reliable CDF from a given Kd dataset it is necessary that it contains a 

214 minimum number of entries. Although it was generally considered 10 entries as this minimum 

215 value (Ciffroy et al., 2009), CDFs were also constructed for those partial datasets containing 

216 between 7 and 10 entries. For the rest of cases GM values were calculated directly from the 

217 dataset.

218

219  3. Analyses of Am Kd distributions

220 3.1. Influence of the experimental approach on Am Kd data

221 The overall Am Kd dataset contained Kd data gathered by applying sorption experiments in a 

222 short-term scenario (ST-S; n =60), and desorption experiments in a short-term scenario (ST-

223 D; n=36). When the statistical analysis was performed without applying the GMC correction, 

224 statistical differences were observed between the two datasets (GM ST-S: 2760 L/kg; GM ST-

225 D: 8713 L/kg), which agrees with reported data in which desorption rates for actinides appear 

226 to be slower than sorption rates in geological materials (Kaplan et al., 2004; Wong et al., 

227 2015). However, after applying the GMC correction to the partial datasets created from the 

228 application of either the OM or the pH criteria, the FLSD test revealed that there were not 

229 significant differences between ST-S and ST-D datasets. This finding suggested that the 

230 variability on Am Kd values due to the method applied for its quantification and/or the 

231 sorption/desorption scenario was negliglible with respect to that caused by the contrasting 

232 properties of the soils, that is, pH or organic matter content. Consequently, experimental 

233 approach factor was not considered in subsequent statistical analyses of the Am Kd dataset.

234
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235 The lack of long-term data prevented a proper evaluation of the effect of sorption dynamics 

236 on the Am Kd values. However, it can be predicted to be of lower significance than the effect 

237 of soil properties, as it has been shown that Am and other trivalent lanthanide are quickly and 

238 strongly bound to soils, thus it is expected to have a minor effect on Am sorption dynamics 

239 (Ramírez-Guinart et al., 2016).

240

241 3.2. Am Kd best estimates and CDFs based on the OM+Texture criterion

242 3.2.1. Am Kd best estimates and CDFs based on the initial OM+Texture criterion

243 Table 1 summarises the descriptors of the Am Kd distributions obtained by applying the 

244 OM+Texture criterion. Those Am Kd entries originated from the same soil sample, but from 

245 sorption and desorption tests, were pooled into a single, mean value for this and subsequent 

246 analysis included in this work. A few of the derived partial datasets (Organic and Clay 

247 datasets) did not have enough Am Kd entries to construct CDFs. The statistical analyses 

248 showed that there were not significant differences among Mineral and Organic datasets. 

249 Moreover, the GM among the textural classes did not follow the anticipated sequence of GM 

250 Sand < GM Loam < GM Clay. The GM Loam was similar to GM Clay, but the former was 

251 statistically higher than GM Sand. Besides, neither GM Loam nor GM Sand differed to the 

252 GM of the Organic dataset (this latter dataset with a low number of entries). Thus, it seems as 

253 if the initial OM+Texture criterion, with the 20% OM threshold, did not capture the actual 

254 mechanisms governing Am sorption. Thus, other OM threshold and other soil factors more 

255 specifically related to the Am-soil interaction, such as pH, were evaluated to properly and 

256 efficiently group Am Kd data.

257

258 3.2.2. Am Kd best estimates and CDFs based on the refined OM+Texture criterion

259 The differences between the descriptors of the mineral and organic soil distributions were 

260 examined for OM thresholds of 20, 15 and 10% (Table 2). The low number of entries in three 

261 derived partial datasets weakened the statistical power of Fisher’s Least Significant 

262 Difference test.  However, applying the 10% OM threshold led to a better distinction than the 

263 15% or 20% thresholds for distinguishing between the Mineral and Organic groups, with the 

264 GM-Mineral being around 2-fold greater than the GM-Organic, and with decreasing GSD for 

265 the Organic groups when decreasing the percent OM thresholds. When applying the 10% 

266 threshold, it was possible to confirm statistical differences between the Organic and the 

267 Mineral-Loam datasets, whereas no changes were observed for the Clay group still with a 

268 very low number of entries. These findings generally agreed with the Am sorption 
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269 mechanisms, as Am is sorbed in a lesser extent in soils with higher OM content (potentially 

270 leading to higher DOM), whereas those soils with higher specific surface area (here indirectly 

271 represented by the clay content) present higher Am sorption capacity. Therefore, and despite 

272 the low number of entries in the derived datasets, a new 10% OM content threshold was 

273 established to distinguish between mineral and organic soils for Am Kd. 

274

275 Although the variability decreased with respect to that of the overall dataset, the data 

276 variability was still very high in the partial datasets despite the redefined OM+Texture 

277 criterion, in which Kd data still varied more than 2-3 orders of magnitude. This fact suggests 

278 that the redefined OM+Texture criterion does not capture all the factors relevant to the Am 

279 sorption, such as pH. 

280

281 3.3. Am Kd best estimates and CDFs based on soil factors related to Am sorption mechanisms.

282 3.3.1. The pH criterion

283 As an alternative approach, the Am Kd overall dataset was split based on the pH, as described 

284 in Section 2.2 (Table 3). As no entries with a pH lower than 3 were available, this value 

285 defined the lowest pH value of the examined pH ranges. Consistent with basic understanding 

286 of trivalent geochemistry (Choppin 2007), the GM of the pH partial datasets gradually 

287 increased within the 3 - 9 pH range, and decreased at higher pH values, which was consistent 

288 with the Am sorption mechanisms. At pH ≥ 9, especially for mineral soils, the lower GM Kd 

289 values are consistent with the observation that greater concentrations of dissolved Am-

290 carbonate complexes are formed; these species bond relatively much weaker to mineral or 

291 OM surfaces. 

292

293 The pH criterion was suitable to propose Am Kd best estimates with a lower related 

294 variability, sometimes lower than 2-orders of magnitude, as it directly considers one of the 

295 parameters with greater relevance for the Am sorption in soils. However, the relatively high 

296 GSD values, especially at pH > 9, suggest that other factors than pH may further decrease Am 

297 Kd variability.

298

299 3.3.2. Hierarchical application of pH, OM and Texture criteria

300 A combined grouping criterion, considering simultaneously the soil pH and OM (the pH+OM 

301 criterion) was applied to further decrease Am Kd variability. Table S1 in the Supplementary 

302 Material summarises the Am Kd descriptors of the distributions derived from the pH+OM 



11

303 criterion. The application of the pH+OM criterion led to Mineral - pH partial datasets that did 

304 not significantly differ from the respective pH partial datasets derived from the pH criterion, 

305 without a further reduction in variability. Thus, it was confirmed the key role of the pH factor 

306 in the Am sorption in mineral soils. It was also confirmed that Am GM for pH < 6 and > 9 

307 mineral soils groups were lower than for the intermediate pH ranges. Regarding Organic soils, 

308 although conclusions were preliminary due to the low number of entries, the GM of the 

309 derived partial datasets indicated a negligible role of the pH, thus confirming that when there 

310 is a sufficient amount of organic matter, this factor overcomes pH in the Am interaction. 

311

312 A final attempt was made to propose Am Kd best estimates with a lower variability by 

313 analysing the simultaneous use of all the previously examined factors (OM, pH and Texture) 

314 for Am Kd grouping of mineral soils. However, most of the derived partial datasets generally 

315 did not contain either enough data (N << 10) to construct CDFs or a single entry was only 

316 available. Only the pH - Loam datasets had enough data to reliably construct a CDF.

317  

318 3.4. Exploring Kd data potentially analogous to soil Am Kd data to decrease variability: 

319 consideration of Am analogue elements and soil analogue geological materials

320 To further address the combined use of pH, OM and texture to decrease Am Kd variability, 

321 and to overcome the observed data gaps, the use of Kd data originating from Am in sediments 

322 and soils and from analogue elements in soils or in similar geological materials were 

323 evaluated. Thus, the dataset was enriched with data from trivalent actinides and lanthanides 

324 (especifically, La, Sm, Eu, Gd, Er, Lu and Cm) and with geological materials other than soils 

325 (gyttjas, tills, and subsoils), thus defining an Analogue Kd dataset with around 170 entries. To 

326 test that the use of these analogues was appropriate, the Analogue Kd dataset was split into 

327 partial datasets based on the geological material (soil, till, gyttja, and subsoil). Subsequently, 

328 data of each material partial dataset was grouped, when possible, according to the OM and pH 

329 criteria. 

330

331 The statistical tests revealed that soil Am Kd data for the OM and pH partial datasets did not 

332 significantly differ from corresponding groups of Kd values created with the analogue data 

333 (Table 4). Besides this, the Analogue Kd GMs, as well as the 5th-95th percentile ranges of the 

334 CDFs that could be constructed, followed the same trend as Am Kd (i.e., GM tended to 

335 increase when increasing pH, until pH values >9), whereas in some cases the higher number 

336 of entries permitted to statistically confirm previous conclusions derived from Am Kd (i.e. , 
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337 GM of the Mineral soils was statistically higher than that for Organic soils; the GM of the 

338 materials within the 7.5 ≤ pH < 9 range were statistically higher). 

339

340 Given these statistical characteristics of the Analogue dataset with respect to the Am Kd soil 

341 dataset, it was concluded that the Analogue dataset was suitable for enhancing the soil Am Kd 

342 soil partial datasets. Thus, all available Am and Analogue Kd were pooled into a single dataset 

343 and the OM, pH and Texture criteria were applied with the intention of creating partial 

344 datasets with lower overall variability. Table 5 summarises the Kd descriptors of the enhanced 

345 distributions, whereas Figure 1 plots the CDFs of selected scenarios. The inclusion of 

346 Analogue Kd data succeeded in enhancing the number of entries for most partial datasets, 

347 although there were still data gaps for certain pH - Textural combinations that did not permit 

348 the calculation of CDF, especially for pH+Clay datasets (Table 5). Texture criterion was not 

349 applied for samples with pH > 9 because, as stated before, sorption mechanisms at this pH 

350 range do not depend on texture.

351

352 Regarding the OM criterion, the GM of the Mineral and Organic samples statistically differed, 

353 with a significant decrease in the Kd variability, especially for the Organic soils, with low 

354 GSD and 5th-95th percentiles ranging within only one order of magnitude (Figure 1a). 

355 Moreover, the relative sequence of Kd GMs for each textural class being statistically different 

356 and they followed the expected sequence: GM Sand < GM Loam < GM Clay (Figure 1b).  

357

358 Regarding the pH criterion, previous conclusions were verified, as for mineral soils the GM 

359 increased when increasing pH <9, with values being statistically different and related 

360 variability decreased, especially when excluding organic soils, with values ranging within 2-

361 order of magnitude or less (Figure 1c). Moreover, variability of these pH+Mineral groups was 

362 lower than for the overall mineral group, especially when the percentiles of the derived CDF 

363 are compared. On the contrary, GM for the Organic groups did not vary among the pH ranges 

364 tested with a sufficient number of entries, thus confirming that pH is not a relevant factor to 

365 decrease Am Kd variability when dealing with organic soils. The single value of Kd for 

366 organic soils with pH ≥ 9 indicated a lower value than for the previous pH ranges.  Going 

367 further from the pH+OM criterion by splitting data into textural classes for mineral soils did 

368 not lead to further improvements, especially due to the lack of data for clay soils at a given pH 

369 range, although in some cases the Loam texture had statistically different GM, with only 1 

370 order of magnitude variability.
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371

372 Although this work does not aim at examininig multivariate correlations between soil 

373 properties and Kd of lanthanides (Ln (III)) and actinides (An (III)) in depth, it is of interest to 

374 check whether simple, linear regressions may agree with the main conclusions drawn from 

375 distribution descriptors summarized in Table 5. As an example, the correlation between Kd 

376 and pH and clay content (% with respect to total soil weight) for mineral soils at pH < 9 was 

377 examined. The resulting equation was: 

378
379 log Kd = 2.00 (0.25) + 0.34 (0.14) x log clay + 0.25 (0.04) x pH (N=127; r = 0.62; p = 1.510-13) (Eq. 1)

380

381 where the values into brackets indicate the standard error of every coefficient. As this 

382 multivariate correlation originates from a highly heterogenous dataset (it includes data from 

383 several lanthanides and actinides, from diverse geological materials, and obtained by different 

384 experimental methods), it is thus confirmed that these soil properties, often obtained in 

385 routine soil analyses, are key factors to describe and thus reducing Kd variability of these 

386 elements in mineral soils, and thus they can also be used in predicting the order of magnitude 

387 of Kd values of Ln (III) and An (III) in mineral soils. 

388

389 4. Conclusions and recommendations

390 The Am Kd values in soils in the current compilation initially varied more than 4 orders of 

391 magnitude, primarily because of the contrasting properties of the soils. It was demonstrated 

392 that when soils are grouped based on soil properties, statistically different probabilistic Am Kd 

393 data are obtained for different soil-types, and generally, with much lower uncertainty. 

394 Therefore, it is not recommended the use of a single Am Kd best estimate or CDF to perform 

395 radiological assessments related to soils contaminated with Am because it may not be 

396 representative of numerous scenarios, and Am Kd best estimates (as calculated from the 50th 

397 percentile of CDF distributions) may differ in nearly two orders of magnitude depending on 

398 soil characteristics, especially pH and organic matter content.

399

400 Kd data available of Am chemical analogues (trivalent actinides and lantanides) gathered from 

401 soils and other geological materials were used to fill some of the Am Kd data gaps. These 

402 analogue Kd value entries did not statistically differ from Am Kd in the materials tested, which 

403 allowed to for enhancement of existing CDFs but also additional comparisons for other 

404 pH and texture combinations, and to confirm conclusions based on improved statistical 
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405 analyses. However, some data gaps still exist and, therefore, it was not possible to 

406 unequivocally suggest CDF for all soil groups created based on pH+OM+texture criterion. 

407 From the analyses of the Kd of the Am+Analogues it was demonstrated the suitability of 

408 interchangeably using Am and Ln (III) and An (III) data in radiological assessments dealing 

409 with these families of elements.

410

411 The Kd best estimates to be used will eventually depend on the available information of the 

412 soil at the study site. Geological materials should be increasingly characterized in terms of 

413 specific surface area and DOM for a better examination of Am Kd variability, as OM content 

414 and texture may only serve as subrogates for these properties. If only information on pH is 

415 available, best estimates can be selected as shown in Table 5 for the overall soils. For soils 

416 having an OM content > 10%, a single best estimate value could be recommended for soils 

417 having a pH < 9 (4.5x103 L/kg), with a 5th-95th range of only one order of magnitude, and one 

418 order of magnitude lower best estimate (4.4x102 L/kg) for organic soils with pH ≥ 9. If no pH 

419 information is available, the first value could also be used. On the other hand, for those soils 

420 with an OM content < 10%, best estimates included in Table 5 can be selected depending on 

421 whether pH information is available or not. In some cases, using textural information may 

422 lead to best estimates with a much lower uncertainty, especially when distinguishing sand 

423 soils from clay and loam soils.

424    
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Table 1

Descriptors of Am Kd (L kg-1) distributions after applying the OM+Texture criterion.

Partial dataset N GM GSD FLSD1 FLSD1 5th 95th

Mineral+Organic 55 7.3103 5.8 2.1102 9.1104

Mineral (OM < 20%) 49 8.1103 5.8 a 2.8102 9.1104

Clay* 3 1.1104 15 - n.a.* n.a.

Loam 28 1.1104 4.2 a 9.9102 1.0105

Sand 14 5.8103 4.9 b 6.7101 3.7104

Organic (OM ≥ 20%)* 6 4.0103 6.0 a ab n.a n.a.

N = number of observations, GM = geometric mean, GSD = geometric standard deviation
1 Different letters indicate significant differences between GMs according to the Fisher’s Least Significant 
Differences test.
*CDF not constructed due to lack of Am Kd data (N << 10); n.a.: not applicable
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Table 2

Descriptors of Am Kd (L kg-1) distributions for soils grouped according to the redefined 

OM+Texture criterion. 

Partial dataset N GM GSD FLSD1 FLSD1 5th 95th

Mineral (OM < 20%) 49 8.1103 5.8 a 2.8102 9.1104

Organic (OM ≥ 20%)* 6 4.0103 6.0 a n.a.* n.a.

Mineral (OM < 15%) 46 8.5103 6.1 a 2.8102 9.1104

Organic (OM ≥ 15%) 9 5.0103 4.2 a 2.1102 4.9104

Organic (OM ≥ 10%) 10 5.1103 3.9 a a 2.1102 4.9104

Mineral (OM < 10%) 45 8.8103 6.2 a 2.8102 9.1104

Clay* 3 1.1104 15 n.a. n.a.

Loam 25 1.2104 4.3 b 9.9102 1.0105

Sand 13 4.8103 5.2 a 6.7101 3.7104

N = number of observations, GM = geometric mean, GSD = geometric standard deviation
1 Different letters indicate significant differences between GMs according to the Fisher’s Least Significant 
Differences test.
*CDF not constructed due to lack of Am Kd data (N << 10); n.a.: not applicable
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Table 3

Descriptors of Am Kd (L kg-1) distributions for soils grouped according to the pH criterion. 

Partial dataset N GM GSD FLSD1 5th 95th

3 < pH < 6 34 3.2103 4.5 ab 2.0102 4.8104

6 ≤ pH <7.5 23 7.3103 5.3 bc 1.8102 3.6104

7.5 ≤ pH < 9 21 1.1104 5.8 c 1.3103 1.0105

pH ≥ 9 9 4.8102 8.7 a 2.7101 2.2104

N = number of observations, GM = geometric mean, GSD = geometric standard deviation
1 Different letters indicate significant differences between GMs according to the Fisher’s Least Significant 
Differences test.
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Table 4

Descriptors of Analogue Kd (L kg-1) distributions from soils and other materials grouped 

according to the OM and pH criteria.

Material Partial dataset N GM GSD FLSD1 5th 95th

Soil Mineral+Organic 116 8.3103 4.2 5.0102 9.6104

Organic (OM ≥ 10%) 54 6.3103 5.3 a 1.3103 1.5104

Mineral (OM < 10%) 62 1.4104 2.6 b 3.3102 9.8104

3 ≤ pH < 6 47 4.1103 3.3 a 5.0102 3.1104

6 ≤ pH < 7.5 34 8.3103 2.9 a 1.3103 4.0104

7.5 ≤ pH < 9 31 2.5104 5.9 b 2.9102 1.4105

pH > 9* 4 1.3104 3.1 - n.a.* n.a.

Till Mineral (OM < 10%) 28 3.3104 4.3 1.2103 7.6104

3 ≤ pH < 6 11 2.4103 5.4 a 1.2103 8.0104

6 ≤ pH < 7.5* 6 2.1104 2.2 - n.a. n.a.

7.5 ≤ pH < 9 11 5.1104 1.5 b 2.5104 7.6104

Subsoils Mineral (OM < 10%)* 4 2.5104 2.2 n.a. n.a.

Gyttja Organic (OM ≥ 10%) 24 2.6103 2.1 1.3103 9.0103

N = number of observations, GM = geometric mean, GSD = geometric standard deviation
1 Different letters indicate significant differences between GMs according to the Fisher’s Least Significant 
Differences test.
*CDF not constructed due to lack of Am Kd data (N << 10).  n.a.: not applicable
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Table 5

Descriptors of Am+Analogue Kd (L kg-1) distributions grouped according to the OM, pH and 

Texture criteria.

Partial dataset N GM GSD FLSD1 5th 95th

Mineral+Organic 240 7.4103 4.8 4.7102 7.8104

Organic 84 4.5103 2.7 a 1.3103 1.5104

Mineral 156 1.1104 5.7 b 3.5102 9.6104

Mineral Clay 15 5.6104 5.7 a 2.8102 3.9105

Mineral Loam 78 1.9104 3.4 b 2.7103 9.1104

Mineral Sand 44 4.9103 5.1 c 2.2102 3.7104

3 ≤ pH < 6 Overall 127 3.0103 3.6 a 4.1102 3.9104

6 ≤ pH < 7.5 Overall 76 9.8103 4.3 b 2.8102 6.1104

7.5 ≤ pH < 9 Overall 71 3.7104 5.1 c 6.9102 1.4105

pH ≥ 9 Overall 17 8.8103 16.5 ab 2.7101 2.2105

3 ≤ pH < 6 Mineral 54 2.1103 5.4 a 2.5102 5.2104

6 ≤ pH < 7.5 Mineral 48 1.0104 5.2 b 1.9102 4.7104

7.5 ≤ pH < 9 Mineral 62 3.7104 4.6 c 1.3103 1.1105

pH ≥ 9 Mineral 12 3.8103 10.4 a 2.7101 3.6104

3 ≤ pH < 6 Organic 69 3.2103 2.5 a 1.3103 1.4104

6 ≤ pH < 7.5 Organic 20 6.7103 1.9 a 1.7103 1.3104

7.5 ≤ pH < 9* Organic 5 5.0103 11.5 a n.a.* n.a.

pH ≥ 9* Organic 1 4.4102 n.a. - n.a. n.a.

3 ≤ pH < 6 Loam 24 7.4103 6.1 a 2.5102 6.3104

Sand 18 2.2103 4.2 a 6.7101 3.1104

6 ≤ pH < 7.5 Clay* 4 1.7103 20 a n.a. n.a.

Loam 26 1.5104 2.4 b 4.6103 4.9104

Sand 14 4.6103 5.3 a 1.8102 1.8104

7.5 ≤ pH < 9 Clay 11 9.2104 2.7 a 4.5103 1.4105

Loam 35 3.7104 3.1 a 2.7103 1.1105

Sand 20 4.9103 7.8 b 6.6101 4.7104

N = number of observations, GM = geometric mean, GSD = geometric standard deviation
1 Different letters indicate significant differences between GMs according to the Fisher’s Least Significant 
Differences test.
*CDF not constructed due to lack of Kd data (N << 10); n.a.: not applicable
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Figure captions

Fig. 1. CDFs of Am+Analogue Kd (L kg-1). 1A. Mineral and Organic datasets. 1B. Clay, Loam 

and Sand groups of the mineral soils. 1C. Mineral soils within 3 ≤ pH < 6, 6 ≤ pH < 7.5, 7.5 ≤ 

pH < 9, and pH ≥ 9 ranges. Points indicate individual dataset values whereas lines indicate the 

fitted distributions.   
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SUPPLEMENTARY MATERIAL

Deriving probabilistic soil distribution coefficients (Kd). Part 3: Reducing 

variability of americium Kd best estimates using soil properties and chemical 

and geological material analogues

Table S1

Descriptors of Am Kd (L kg-1) distributions for soils grouped according to pH+OM. 

N GM GSD FLSD1 5th 95th

3 ≤ pH < 6 Mineral 25 2.5103 5.7 ab 2.0102 4.8104

Organic 9 3.2103 1.6 - 1.6103 7.9103

6 ≤ pH < 7.5 Mineral 19 8.7103 6.2 b 6.7101 4.7104

Organic* 4 6.4103 1.2 - n.a.* n.a.

7.5 ≤ pH < 9 Mineral 18 1.4104 4.2 c 1.3103 1.1105

Organic* 3 2.9103 n.a. - n.a. n.a.

pH ≥ 9 Mineral  8 8.2102 10 a 2.7101 2.2104

Organic* 1 4.4102 n.a. - n.a. n.a.

N = number of observations, GM = geometric mean, GSD = geometric standard deviation
1 Different letters indicate significant differences between GMs according to the Fisher’s Least Significant 
Differences test.
*CDF not constructed due to lack of Am Kd data (N << 10); n.a.: not applicable




