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1. Introduction

This paper deals the problem of dynamic individual rationality (DIR) in cooperative

differential games with asymmetric players. Players can be asymmetric in their util-

ity functions and/or their discount functions. We address the problem for constant

and nonconstant discount rates. Two notions of DIR have been widely studied in

the literature: time-consistency (Petrosyan and Zenkevich [1996], Petrosyan [1997])

and agreeability (Kaitala and Pohjola (1990)). Suppose that players can make an

agreement in order to coordinate their strategies in the future, but this agreement

is not binding. An agreement (or cooperative solution) is said to be time-consistent

if, at any future moment, along the optimal trajectory, all players find if optimal

to stick to their parts in the agreement. If this property is satisfied, not just along

the optimal trajectory, but for any trajectory, the cooperative solution is said to be

agreeable.

Consider a cooperative differential game with equal and constant discount rates

for all players. Pareto optimal solutions can be found by maximizing a weighted
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sum of the payoffs. Conditions for time-consistency and agreeability were studied,

for linear-state differential games, in Jørgensen et al. [2003]; and for linear-quadratic

differential games, in Jørgensen et al. [2005]. In the case of TU cooperative differ-

ential games, if players maximize their joint payoffs, this sum will be non lower

than the sum of payoffs obtained under non cooperation. In that case, side pay-

ments schemes can be introduced to guarantee that, in any subgame starting along

the cooperative trajectory, all players will receive higher (nonlower) payoffs in the

cooperative solution than in the disagreement solution (see e.g. Jørgensen and Zac-

cour [2001] for a 2-player game, Yeung and Petrosyan [2004] for payoff distribution

procedures in N -player differential games, or Petrosyan and Zaccour [2003] for the

introduction of allocation schemes via the Shapley value). For NTU cooperative

differential games, among all the Pareto optimal solutions, one could look for those

guaranteeing the stability of cooperation. This issue was addressed in Yeung and

Petrosyan [2005] (see also Petrosyan and Yeung [2014] and references therein). More

recently, the possibility of introducing nonconstant weights for players in the search

of time-consistent (agreeable) solutions was proposed in Maŕın-Solano [2014] (for

differential games) and Yeung and Petrosyan [2015] (in a discrete time setting).

In Castañer et al. [2020] such nonconstant weights were obtained as the result of

repeated bargainings along time.

If players discount the future at different rates, or with nonconstant rates,

in the computation of the “optimal” decision rules, a different problem of time-

inconsistency arises: what is optimal for the coalition at time t is not optimal at

time s, for s > t. We refer to Maŕın-Solano and Shevkoplyas [2011] for the study

of differential games with time-inconsistent preferences, and to de-Paz et al. [2013]

and Ekeland et al. [2013] for a detailed analysis of the case in which players have

different discount rates (in the former paper the problem with different discount

functions and nonconstant discount rates was also briefly addressed). The solution

concept proposed in those papers is time-consistent and subgame perfect according

to the definition in noncooperative differential games (see e.g. Dockner et al. [2000]

or Haurie et al. [2012]). Indeed, in the computation of the solution, each coalition

solves a sequential game, in which the coalition at different times is seen as a different

player. However, it is not Pareto optimal, in general. As a result, joint payoffs under

time-consistent cooperation can be lower than under noncooperation (Maŕın-Solano,

[2015]). A way to avoid this problem is to assign nonconstant (state-dependent)

weights to the players. As mentioned above, Castañer et al. [2020] proposed a way

to fix such nonconstant weights as the result of a dynamic bargaining procedure.

The corresponding solution, that makes use of memory (trigger) strategies, satis-

fies the property of DIR (i.e., it is time-consistent and agreeable in the language

of NTU cooperative differential games). Alternatively, for memoryless strategies,

a time-consistent dynamic bargaining procedure has been recently introduced in

Castañer et al. [2021]. However, this solution concept, that is time-consistent and

subgame perfect in the language of noncooperative differential games, linked to the

issue of credibility of the announced strategy, may not satisfy the property of DIR.
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In the present paper, all the previous issues are discussed for general differential

games with possibly nonconstant and/or different discount rates, by paying special

attention to two classes of differential games. First, linear-state differential games are

studied. These games admit constant strategies and linear value functions, which

allows us to develop a more detailed analysis on both the different cooperative

solution concepts and the issues related to DIR. Next, homogeneous linear-quadratic

differential games are considered.

The paper is structured as follows. Section 2 describes the general model and pro-

vides the basic definitions. Section 3 presents a review of two new solution concepts,

based on bargaining theory, recently proposed in the literature of NTU coopera-

tive differential games. Section 4 is devoted to the study of linear-state differential

games with general discount functions, by paying special attention to conditions on

time-consistency and agreeability of the different solutions. Homogeneous linear-

quadratic differential games are analyzed in Section 5. Section 6 concludes the

paper.

2. Preliminaries

Consider an N -player differential game played on the time interval [0,∞). Let x ∈
X ⊂ R be the state variable. For each player i ∈ {1, . . . , N}, let ui ∈ Ui ⊂ R

be her control variable (each player has a scalar control), u = (u1, . . . , un) the

corresponding vector of decision rules, Li(x, u) the instantaneous utility function,

and θi(s) the discount function. The payoff functional of player i at time t is

Ji(xt;u1, . . . , un; t) =

∫ ∞

t

θi(s− t)Li(x(s), u1(s), . . . , un(s)) ds , with (1)

ẋ(s) = f(x(s), u1(s), . . . , uN (s)) , x(t) = xt . (2)

We will assume that functions Li, f and θi are, at least, continuously differentiable

in all their arguments. We will also assume that, along the admissible control tra-

jectories, equation (2) admits a unique solution and the integral in (1) converges.

The extension to the multidimensional state and control case is straightforward.

Note that Problem (1)-(2) is autonomous. In the present paper we will center our

attention in stationary solutions, so that equilibrium strategies and value functions

will not depend explicitly of time, but only on the state of the system.

First, we recall the definitions of time-consistency and subgame perfectness in

noncooperative differential games (see, e.g., Dockner et al. [2000] or Haurie et al.

[2012]), linked to the issue of credibility of the announced equilibrium strategies.

Definition 1. Let Γ(x0, 0) denote a game played along [0,∞), with initial state

x0 ∈ X, and let Γ(x, t) be the corresponding subgame defined on the time interval

[t,∞) with initial state x(t) = x ∈ X.

(1) Let (ϕ1, ϕ2, . . . , ϕN ) be a Markovian solution for the game Γ(x0, 0), and denote

by x∗(t) the unique state trajectory generated by the solution to the game. The
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solution is time consistent if, for each t ∈ [0,∞), the subgame Γ(x∗(t), t) admits

a Markovian solution (ψ1, ψ2, . . . , ψN ) such that ψi(y, s) = ϕi(y, s) holds for all

i ∈ {1, . . . , N} and all (y, s) ∈ X × [t,∞).

(2) If, for each (x, t) ∈ X × [0,∞), the subgame admits a Markovian solution

(ψ1, ψ2, . . . , ψN ) such that ψi(y, s) = ϕi(y, s) holds for all i ∈ {1, . . . , N} and

all (y, s) ∈ X×[t,∞), the solution (ϕ1, ϕ2, . . . , ϕN ) is said to be subgame perfect.

Next, we recall the definitions of time-consistent and agreeable cooperative so-

lutions. Let us denote by Vi(x) the payoff of player i under some cooperation or

agreement with all the other players. In a noncooperative setting, let Wi(x) repre-

sent the corresponding payoffs of all players. In the present paper,Wi(x) will denote

the payoffs in the Markov Perfect Nash Equilibria (MPNE).

Definition 2. Let xc(τ) be the trajectory along the cooperative solution. A cooper-

ative solution is time-consistent at (x0, 0) if, at any position (xc(τ), τ) and for all

τ ∈ [0,∞), it holds that

Vi(x
c(τ)) ≥Wi(x

c(τ)) for all i = 1, . . . , n . (3)

If inequality (3) is satisfied, not just along the cooperative trajectory, but for all

possible deviations of it, then we have:

Definition 3. A cooperative solution is agreeable at (x0, 0) if, for any feasible po-

sition (x(τ), τ), and for all τ ∈ [0,∞), it holds that

Vi(x
c(τ)) ≥Wi(x

c(τ)) for all i = 1, . . . , n . (4)

In Definitions 2 and 3 it is costumary to take as value functions Vi(x) the payoffs

of players obtained from joint maximization. If the players discount the future at the

same constant discount rate, this solution is time-consistent subgame perfect in the

sense of Definition 1 (but not, in general, time-consistent as a cooperative solution,

i.e., according to Definition 2). If discount rates are nonconstant and/or different, a

new solution concept, the t-cooperative equilibrium rule, has been proposed in the

last decade, that is time-consistent and subgame perfect in the sense of Definition

1. Next we present this solution concept for the general case of (possibly) unequal

and nonconstant weights. Following Maŕın-Solano (2014), in a cooperative setting

we can aggregate preferences as

Jc(xt, u, t) =

N∑
i=1

λi(xt)Ji(xt, u, t) =

N∑
i=1

λi(x)

∫ ∞

t

θ(s− t)Li(x(s), u(s)) ds . (5)

Coefficients λi(xt) ≥ 0 represent the weight of agent i at state xt and time t. In

this paper, since we are interested in stationary solutions, we assume that weights

do not depend explicitly on time t, and λi(x) are continuously differentiable.

If u∗(s) = ϕ(x(s)) is a continuously differentiable equilibrium rule for Prob-

lem (5) subject to (2), by denoting xt = x, the corresponding value function is
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V (x) =

N∑
i=1

λi(x)Vi(x), where Vi(x) =

∫ ∞

t

θi(s− t)Li(x(s), ϕ(x(s))) ds. For ϵ > 0

and ū = (ū1, . . . , ūN ), ūi ∈ Ui ⊂ R, let

uϵ(s) =

{
ū if s ∈ [t, t+ ϵ) ,

ϕ(x(s)) if s ≥ t+ ϵ .
(6)

Let J(x, uϵ, t) =

N∑
i=1

λi(x)Ji(x, uϵ, t), where

Ji(x, uϵ, t) =

{∫ t+ϵ

t

θi(s− t)Li(x(s), ū) ds+

∫ ∞

t+ϵ

θi(s− t)Li(x(s), ϕ(x(s))) ds

}
.(7)

If we expand J(x, uϵ, t) in ϵ, we obtain J(x, uϵ, t) = V (x) + P (x, ϕ, ū)ϵ+ o(ϵ).

Definition 4. A decision rule utc(s) = ϕtc(x(s)) is a t-cooperative equilibrium

with nonconstant weights λi(x), i = 1, . . . , N , if function P (x, ϕ, ū) attains its

maximum for ū = ϕtc(x). In the case with λ1 = · · · = λN we simply say that the

strategy is a t-cooperative equilibrium.

In Theorem 1 in Maŕın-Solano (2014) (for the case of constant weights, see de-

Paz et al. (2013) and Ekeland et al. (2013)) it is proved that, under certain regularity

conditions, t-cooperative equilibrium can be obtained by solving

(ϕtc1 , . . . , ϕ
tc
N ) ∈ argmax{ϕ1,...,ϕN}

{
N∑
i=1

λi(x) (Li(x, u) + V ′
i (x) · f(x, u))

}
. (8)

3. Dynamic bargaining

3.1. The agreeable dynamic bargaining solution

In Castañer et al. (2020) a new cooperative solution concept for NTU differential

games, the agreeable dynamic bargaining solution, was proposed. Its extension to

general discount functions is straightforward. The idea is to work within a Nash bar-

gaining setting, but taking into account the possibility that players can renegotiate

agreements achieved at time t at every future moment s > t (and, in particular,

immediately later). In case of disagreement, the threat point is to receive the non-

cooperative outcome given by a Markov Perfect Nash Equilibrium at perpetuity.

This threat point will be credible as long as, in case of disagreement, players will

not have the possibility to renegotiate in the future. From this perspective, memory

strategies are considered. Since in the trigger strategy (punitive mode of play) the

threat is an equilibrium, it becomes credible.

Let us consider the generalized Nash welfare function with strictly positive bar-

gaining powers η1, . . . , ηN

N∏
i=1

[Ji(x, c1, . . . , cN , t)−Wi(x, t)]
ηi . (9)
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Without loss of generality, we normalize bargaining powers so that
∑N

i=1 ηi = 1.

For η1 = · · · = ηN = 1/N we recover the classical Nash bargaining solution.

For a decision rule (u1, . . . , uN ) = (ϕ1(x), . . . , ϕN (x)) and a set of threat value

functions W (x, t) = (W1(x, t), . . . ,WN (x, t)) satisfying Ji(x, ϕ1(x), . . . , ϕN (x), t) −
Wi(x, t) ≥ 0, for all i = 1, . . . , N , let

Π(x, t) =

N∏
i=1

[Ji(x, ϕ1(x), . . . , ϕN (x), t)−Wi(x, t)]
ηi . (10)

If we take the variations (6), let Ji(x, uϵ, t) given as in (7). The corresponding Nash

product becomes

Π(x, uϵ, t) =

N∏
i=1

[Ji(x, uϵ, t)−Wi(x, t)]
ηi = Π(x, t) + Π1(x, ϕ, ū, t)ϵ+ o(ϵ) , (11)

with

Π1(x, ϕ, ū, t) = lim
ϵ→0+

Π(x, uϵ, t)−Π(x, t)

ϵ
.

Definition 5. A strategy ϕdb(x) = (ϕdb1 (x), . . . , ϕdbN (x)), with payments V db(x) =

(V db
1 (x, ϕdb(x)), . . . , V db

N (x, ϕdbN (x))), is said to be an agreeable dynamic bargaining

solution if

ϕdb(x, t) = argmax
{ū}

Π1(x, ϕ
db, ū) ,

where the threat point (W1(x), . . . ,WN (x)) in case of disagreement at time t, with

x(t) = x, is given as follows: For s ∈ [t,∞), players apply strategies ϕnc =

(ϕnc1 , . . . , ϕncN ) such that

Wi(x) = Ji(x, ϕ
nc) ≥ Ji(x, ϕ

nc
−i, σi) , ∀i, σi , i = 1, . . . , N ,

where σi:X → Ui ⊂ R is any possible admissible Markovian strategy for player i.

In Definition 5 we have omitted the temporal argument in the different expres-

sions. The reaon is that, in our autonomous problem, both the threat strategies and

the agreeable dynamic bargaining strategies are stationary, and the corresponding

value functions depend just on the state of the system. The following proposition

characterizes interior agreeable dynamic bargaining solutions.

Proposition 1. Assume that an agreeable dynamic bargaining solution exists sat-

isfying the constraints V db
i −Wi > 0, for all i = 1, . . . , N . Then it is the solution to

(8) with weight functions given by

λdbi (x) =
ηi

V db
i (x, ϕdb(x))−Wi(x)

.

Proof. It is similar to the proof of Proposition 1 in Castañer et al. (2020) for the

case of constant discount rates. □

Note that, by construction, the agreeable dynamic bargaining solution is agree-

able and, therefore, time-consistent, as a cooperative solution.
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3.2. The time-consistent dynamic bargaining solution

Whereas the agreeable dynamic bargaining solution is time-consistent (and agree-

able) in the language of NTU cooperative differential games, it makes use of memory

strategies: in case of disagreement, cooperation will not be allowed forever. If, on

the contrary, new negotiations can take place in the future (something that is not

unusual in real life situations), the threat losses credibility. The time-consistent dy-

namic bargaining solution proposed in Castañer et al. (2021) addresses this issue,

by taking into account that, in case of disagreement, new negotiations can take

place at every future moment and, in particular, immediately later. As a result, the

actual threat is to act in a noncooperative way just during a very small period of

time. In this section we extend the results in Castañer et al. (2021) to the case of

general discount functions.

As in the previous section, let us consider the generalized Nash welfare function

(9) or (10) for a particular decision rule. By taking variations (6), then we obtain

(11) with Ji(x, uϵ, t) given as in (7). The objective is, as in the agreeable dynamic

bargaining solution, to maximize the first order term Π1(x, ϕ, ū, t) for the new threat

point, in such a way that ū∗ = ϕ(x(t), t). However, the nature of the new threat point

implies that we can not proceed as in Proposition 1 to characterize the solution.

Let us assume that, for s ∈ [t, t+ ϵ), the decision rule in case of non cooperation

is given by ϕϵ,nc(x(s), s) and, for s ≥ t+ϵ, players follow ϕb(x(s), s). More precisely,

Definition 6. Assume that, at time t, players take as given the future decision rule

ϕb(x(s), s), for s ≥ t+ ϵ. The threat point in case of disagreement during the time

interval time [t, t+ ϵ), with x(t) = x, is given as follows:

W ϵ
i (x, t) = Ji(x, ϕ

ϵ,nc(x, t), t) ≥ Ji(x, ϕ
ϵ,nc
−i (x, t), σi(x, t), t) , ∀i, σi , i = 1, . . . , N ,

where

• σi:X × [t,∞) → Ui ⊂ R, i = 1, . . . , N , is given by

σi(x(s), s) =

{
σ̄i(x(s), s) if t ≤ s < t+ ϵ ,

ϕbi (x(s), s) if s ≥ t+ ϵ ;

• σ̄i:X × [t, t + ϵ) → Ui ⊂ R, i = 1, . . . , N , is any possible admissible feedback

law for player i for the problem with planning horizon [t, t+ ϵ); and

• ϕϵ,ncj :X × [t,∞) → Uj ⊂ R, j = 1, . . . , N , is such that ϕϵ,ncj (x(s), s) =

ϕbj(x(s), s), for s ≥ t+ ϵ.

Hence, the threat point is given by

W ϵ
i (x, t) =

∫ t+ϵ

t

θi(s− t)Li(x
ϵ(s), ϕϵ,nc(xϵ(s), s)) ds

+

∫ ∞

t+ϵ

θi(s− t)Li(x
ϵ(s), ϕb(xϵ(s), s)) ds ,
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for i ∈ {1, . . . , N}. Let xϵ(s) be the solution to ẋϵ(s) = f(xϵ(s), ϕϵ,nc(xϵ(s))), with

xϵ(t) = x, for s ∈ [t, t + ϵ) and xϵ(t) = x; x̄(s) the solution to ˙̄x(s) = f(x̄(s), ū),

with x̄(t) = x, for s ∈ [t, t + ϵ) and x̄(t) = x; and ẋϵ(s) = f(xϵ(s), ϕ
b(xϵ(s))) for

s ≥ t + ϵ, with the initial condition xϵ(t + ϵ) derived by continuity. From (7) for

ϕ = ϕb we obtain

Ji(x, uϵ, t)−W ϵ
i (x, t)

=

∫ t+ϵ

t

θi(s− t) [Li(x̄(s), ū)− Li(x
ϵ(s), ϕϵ,nc(xϵ(s), s))] ds

+

∫ ∞

t+ϵ

θi(s− t)
[
Li(xϵ(s), ϕ

b(xϵ(s), s))− Li(x
ϵ(s), ϕb(xϵ(s), s))

]
ds .

The first integral becomes
[
Li(x, ū)− Li(x, ϕ

0,nc(x, t))
]
ϵ+ o(ϵ). In addition, if the

discount rate is defined by ρi(τ) = − θ̇i(τ)
θi(τ)

so that θi(s) = exp
(
−
∫ s

0
ρi(τ) dτ

)
,

then θi(s − t) = θi(ϵ) · θi(s − t − ϵ) and, after some calculations, the second inte-

gral simplifies to
∂V b

i (x,t)
∂x

[
f(x, ū)− f(x, ϕ0,nc(x, t))

]
ϵ + o(ϵ) where, for x(t) = x,

V b
i (x, t) =

∫∞
t
θi(s − t)Li(x(s), ϕ

b
i (x(s), s)) ds. By simplifying, the Nash welfare

function becomes

N∏
i=1

[Ji(x, uϵ, t)−W ϵ
i (x, t)]

ηi = Π1(x, ϕ
b, c̄, t)ϵ+ o(ϵ) , where

Π1 =

N∏
i=1

[
Li(x, ū)− Li(x, ϕ

0,nc(x, t)) +
∂V b

i (x, t)

∂x

(
f(x, ū)− f(x, ϕ0,nc(x, t))

)]ηi

.(12)

Definition 7. Let

ϕϵi(x(s), s) =

{
ϕϵ,nci (x(s), s) if t ≤ s < t+ ϵ ,

ϕbi (x(s), s) if s ≥ t+ ϵ ;

be the decision rule followed by player i, for i = 1, . . . , N , in case of disagreement

during the time period [t, t+ ϵ). Let ϕ0(x, t) = limϵ→0+ ϕ
ϵ(x, t). We define the time-

consistent dynamic bargaining solution (TCB) as

ϕb = argmax
{ū}

Π1(x, ϕ
b, ū, t) , (13)

where Π1(x, ϕ
b, ū, t) is given by (12).

Note that, since there is no commitment and players can bargain again at any

possible future moment τ > t, ϵ can be arbitrarily small. Hence, the threat point

is given by ϕ0,nc(x, t) = limϵ→0+ ϕ
ϵ,nc(x, t), with ϕϵ,nc(x, t) given by Definition 6.

Since our problem is autonomous, in the limit ϵ→ 0+, strategies become stationary

and value functions do not depend on time. Hence, in the following, we will omit

the temporal argument in the expressions of the strategies and the value functions.
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If interior solutions to equation (13) exist, the first order optimality conditions

are given by

N∑
i=1

ηi

Li(x, ū)− Li(x, ϕ0,nc(x)) +
(
V b
i (x)

)′
[f(x, ū)− f(x, ϕ0,nc(x))]

(
∂Li(x, ū)

∂ūj

+
(
V b
i (x)

)′ ∂f(x, ū)
∂ūj

)
= 0 , (14)

for j = 1, . . . , N . It is important to realize that the TCB solution obtained from

Definitions 7 and 6 is, by construction, time-consistent and subgame perfect in the

sense of Definition 1. On the contrary, time-consistency and agreeability according

to Definitions 2 and 3 is not guaranteed, in general.

4. A linear-state differential game

Consider the N -player differential game

Ji(xt;u1, . . . , un; t) =

∫ ∞

t

θi(s− t) [hi(u1(s), . . . , un(s))− φi(s)] ds , with (15)

ẋ(s) = g(u1(s), . . . , uN (s))− δx(s) , x(t) = xt , (16)

i.e., in (1) and (2), Li(x, u1, . . . , uN ) = hi(u1, . . . .uN )−φix and f(x, u1, . . . , uN ) =

g(u1, . . . , uN )− δx, for i = 1, . . . , N . Then we have a linear-state differential game.

In the case with constant discount rates, it is well-known that linear-state differ-

ential games have the property that open-loop Nash equilibria are Markov perfect.

The same property is preserved in the case with nonconstant discounting. Indeed,

in a linear-state differential game with symmetric players and nonconstant discount

rates, Karp [2017] showed that the limit equilibriuma is unique, independent of

the state variable, and dominant, but there are many other differentiable state

dependent Markov Perfect equilibria. In this section we show that, for the four

solution concepts studied in the paper (MPNE, t-cooperative equilibrium, agree-

able Nash bargaining solution and time-consistent dynamic bargaining solution),

constant strategies exist, with corresponding linear value functions. In that case,

time-consistent cooperative solutions are also agreeable. Conditions for the time-

consistency (or agreeability) of the cooperative solutions are stated.

4.1. The general case

As in Section 3, we confine our interest to stationary solutions, as is standard in

autonomous differential games in infinite horizon.

aThe limit equilibrium is the limit of the sequence of equilibria of finite horizon models, as the
planning horizon goes to infinity.
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Proposition 2. In the linear-state differential game (15)-(16), for the MPNE,

the t-cooperative solution, the agreeable dynamic bargaining solution, and the time-

consistent dynamic bargaining solution, constant decision rules exist. Along those

solutions, the corresponding value functions are linear in the state variable and are

such that V J
i (x) = aix+ bJi , for J ∈ {tc, db, b}, and Wi(x) = aix+ bnci , with

ai = −φi

∫ ∞

0

θi(τ)e
−δτ dτ .

Proof. It follows from the computation of the four solutions.

Markov Perfect Nash Equilibrium. Let uncj = ϕncj (x), j = 1, . . . , N , be a candidate

to noncooperative MPNE. Then, as in the standard case (see Maŕın-Solano and

Shevkoplyas [2011]), Player i has to solve

max
{ui}

{
hi(ui, ϕ

nc
−i)− φix+ (Wi(x))

′ (
g(ui, ϕ

nc
−i)− δx

)}
.

From the first order optimality conditions, for all i = 1, . . . , N ,

∂hi(ui, ϕ
nc
−i)

∂ui
+ (Wi(x))

′ ∂g(ui, ϕ
nc
−i)

∂ui
= 0 . (17)

By guessing W (x) = anci x+ bnci , (Wi(x))
′ = anci that implies that unci are constant.

The coefficients anci and bnci are derived by solving the value function. Note that

Wi(x) =

∫ ∞

t

θi(s− t) [hi(u
nc
1 , . . . , uncN )− φix(s)] ds , (18)

where

ẋ(s) = g(unc1 , . . . , uncN )− δx(s) with x(t) = x . (19)

The solution to (19) is

x(s) = xe−δ(s−t) +
g(unc)

δ

(
1− e−δ(s−t)

)
. (20)

By substituting (20) in (18) we obtain Wi(x) = anci x+ bnci , with

anci (x) = −φi

∫ ∞

0

θi(τ)e
−δτ dτ , (21)

bnci =

∫ ∞

0

θi(τ)

[
hi(u

nc
1 , . . . , uncN )− φig(u

nc
1 , . . . , uncN )

δ

(
1− e−δτ

)]
dτ . (22)

t-cooperative equilibrium. For the calculation of the the t-cooperative decision we

solve (8) for λi = 1:

max
{u1,...,uN}

{
N∑
i=1

(hi(u1, . . . , uN )− φix) +

(
N∑
i=1

(
V tc
i (x)

)′)
(g(u1, . . . , uN )− δx)

}
,
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hence

N∑
i=1

∂hi(u1, . . . , uN )

∂uj
+

N∑
i=1

(
V tc
i (x)

)′ ∂g(u1, . . . , uN )

∂uj
= 0 , (23)

for j = 1, . . . , N . By guessing V tc
i (x) = atci x+ btci , the corresponding decision rules

are constant. The coefficients atci and btci are derived as in the noncooperative case.

By substituting the upper indices {nc} by {tc} in (18), (19) and (20), we obtain

that atci is given by (21) and

btci =

∫ ∞

0

θi(τ)

[
hi(u

tc
1 , . . . , u

tc
N )− φig(u

tc
1 , . . . , u

tc
N )

δ

(
1− e−δτ

)]
dτ . (24)

Agreeable dynamic bargaining solution. In this case, we have to compute the t-

cooperative equilibria for weights given as in Proposition 1. By using (8), solutions

to

max
{u1,...,uN}

{
N∑
i=1

(
λdbi (x)hi(u)− φix

)
+

(
N∑
i=1

λdbi (x)
(
V db
i (x)

)′)
(g(u)− δx)

}
(25)

satisfy

N∑
i=1

λdbi (x)
∂hi(u1, . . . , uN )

∂uj
+

N∑
i=1

λdbi (x)
(
V db
i (x)

)′ ∂g(u1, . . . , uN )

∂uj
= 0 . (26)

By guessing V db
i (x) = adbi x+ bdbi , from Proposition 1, weight functions are given by

λdbi (x) =
ηi

(adbi − anci )x+ (bdbi − bnci )
,

with anci and bnci given by (21) and (22), respectively.

It is clear that equation (26) have constant solutions (and hence the corre-

sponding value function will be linear in the state variable) if adbi = anci . Otherwise,

decision rules will be typically nonconstant, and the corresponding value functions

will be nonlinear, in contradiction with our hypothesis. Therefore, for adbi given by

(21) we obtain a solution to (25) with linear value functions, whose coefficients bdbi
are given by

bdbi =

∫ ∞

0

θi(τ)

[
hi(u

db
1 , . . . , u

db
N )− φig(u

db
1 , . . . , u

db
N )

δ

(
1− e−δτ

)]
dτ . (27)

Time-consistent dynamic bargaining solution. We guess V b
i (x) = abix + bbi . By de-

noting ub = (ub1, . . . , u
b
N ), from (14) we obtain

N∑
i=1

ηi
hi(ub)− hi(u0,nc) + abi (g(u

b)− g(u0,nc))

(
∂hi(u

b)

∂ubj
+ ai

∂g(ub)

∂ubj

)
= 0 , (28)

for j = 1, . . . , N . This equation system does not depend on the state variable. Since,

in case of disagreement, threat strategies u0,nc = (u0,nc1 , . . . , u0,ncN ) are constant, its
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solutions are also constant strategies. As in the previous solutions, the corresponding

value function is linear, with abi given as in (21) and

bbi =

∫ ∞

0

θi(τ)

[
hi(u

b
1, . . . , u

b
N )− φig(u

b
1, . . . , u

tc
N )

δ

(
1− e−δτ

)]
dτ . (29)

□

Corollary 1. In the linear-state differential game (15)-(16),

(1) If a t-cooperative equilibrium is time consistent in the sense of Definition 2,

then it is also agreeable.

(2) If a time-consistent dynamic bargaining solution is time consistent in the sense

of Definition 2, then it is also agreeable.

Proof. It follows from the fact that V J
i (x)−V nc

i (x) = bJi −bnci , for all i = 1, . . . , N

and J ∈ {tc, b}. □

For the calculation of the MPNE, we should solve the equation system (17), with

(Wi(x))
′ = anci = ai given by (21). The t-cooperative equilibrium can be computed

by solving (23) with (V tc
i (x))′ = ai. Agreeable dynamic bargaining strategies are

the solutions to (26) with (V db
i (x))′ = ai and weights

λdbi =
ηi

bdbi − bnci
,

with bnci given by (22). The calculation of the time-consistent dynamic bargaining

solution is more complicated because, before solving (28), we should compute first

the threat strategy u0,nc. We will do it in the example analyzed in Section 4.2.

In the case of constant discount rates, θi(t) = e−ρit,

ai = − φi

ρi + δ
.

In addition, from (22), (24), (27) and (29), for J ∈ {nc, tc, db, b},

bJi =
1

ρi

[
hi(u

J
1 , . . . , u

J
N )− φi

ρi + δ
g(uJ1 , . . . , u

J
N )

]
. (30)

4.2. Application: An environmental model of pollution control

As an application, consider an environmental problem where N countries can agree

in their pollution strategies. If the emissions of country i, Ei(t), are proportional to

its production, the revenue function can be expressed as a function of the emissions,

say Ri(Ei) = γi log(αiEi), for γi, αi > 0. If the damage function is a linear function

on the stock of the pollution S(t), then Di(S) = φiS, for φi > 0. Hence, the payoff

functionals are given by

Ji(S, t) =

∫ ∞

t

θi(s− t) [γi log (αiEi(s))− φiS(s)] ds . (31)
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As for the state dynamics, the evolution of the stock of pollution is governed by the

differential equation

Ṡ(s) =

N∑
i=1

βiEi(s)− δS(s) , (32)

where βi ≥ 0 is a positive transformation parameter of emissions into pollution

stock and δ is the natural absorption rate of pollution. For the case of a unique

and constant discount rate, the time-consistency and agreeability of the standard

cooperative solution was studied in Jørgensen et al. [2003]. In our more general

setting, we need to compute the value of the parameters bJi , for i = 1, . . . , N and

J ∈ {nc, tc, db, b}, and check if btci ≥ bnci (for the agreeability of the t-cooperative

equilibrium) and bdi ≥ bnci (for the agreeability of the time-consistent dynamic bar-

gaining solution). Since the agreeable dynamic bargaining solution is time-consistent

and agreeable, bdbi ≥ bnci , for all i.

In the following, we compute the solution to (31)-(32) for the diffferent solution

concepts.

4.2.1. Noncooperative MPNE

From (17), we can easily compute the emissions of each country under noncooper-

ation, that are given by

Enc
i =

γi

φiβi
∫∞
0
θi(t)e−δt dt

,

for i = 1, . . . , N .

In particular, in the case of constant discount rates, θi(t) = e−ρit,

Enc
i =

γi(ρi + δ)

φiβi
.

Note that emissions are increasing with the discount rate, i.e., more impatient coun-

tries pollute more, as expected. Concerning the payoffs, by substituting in (30) we

obtain that, in this case,

bnci =
1

ρi

γi log(αiγi(ρi + δ)

φiβi

)
− φi

ρi + δ

N∑
j=1

γj(ρj + δ)

φj

 .

4.2.2. t-cooperative equilibrium

By using (23), the emissions of each player under t-cooperative behavior becomes

Etc
i =

γi

βi
∑N

j=1 φj

∫∞
0
θj(t)e−δt dt

,

for i = 1, . . . , N .

As in the case with constant and equal discount rates, we obtain the classical

result Enc
i > Etc

i .
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If discount rates ρi are constant,

Etc
i =

γi

βi
∑N

j=1
φj

ρj+δ

.

Unlike the noncooperative case, if γ1 = · · · = γN and β1 = · · · = βN , emissions

coincide and do not depend on the discount rate of each particular country. There-

fore, in that case, it is beneficial for the society that all countries pollute the same,

independently of their differences in their discount rates.

Finally, in order to check the agreeability (or time-consistency) of the t-

cooperative decision rule, we should check if, for the values of the parameters of

a particular model, btci ≥ bnci , where btci is obtained by substituting in (30),

btci =
1

ρi

γi log( αiγi

βi
∑N

j=1
φj

ρj+δ

)
− φi

ρi + δ

N∑
j=1

γj∑N
k=1

φk

ρk+δ

 .

4.2.3. Agreeable dynamic bargaining solution

By solving (26) for the constant weights λdbi = ηi/(b
db
i − bnci ), we easily obtain

Edb
i =

γiηi

(bdbi − bnci )βi
∑N

j=1
φjηj

bdbj −bnc
j

∫∞
0
θj(t)e−δt dt

,

for i = 1, . . . , N . Again, we obtain that emissions under the agreeable dynamic

bargaining procedure are lower than under noncooperation, Edb
i < Enc

i .

In the case of constant discount rates ρi, emissions become

Edb
i =

γiηi

(bdbi − bnci )βi
∑N

j=1
φjηj

(bdbj −bnc
j )(ρj+δ)

.

Unfortunately, we can not derive an explicit expression for coefficients bbi in the value

function. Instead, we will have to solve numerically the highly nonlinear equation

system

bdbi =
1

ρi

γi log
 αiγiηi

(bdbi − bnci )βi
∑N

j=1
φjηj

(bdbj −bnc
j )(ρj+δ)


− φi

ρi + δ

N∑
j=1

γjηj

(bdbj − bncj )
∑N

k=1
φkηk

(bdbk −bnc
k )(ρk+δ)

 ,

for i = 1, . . . , N .

4.2.4. Time-consistent dynamic bargaining solution

According to the time-consistent dynamic bargaining procedure, decision rules are

obtained from (28), i.e.,
ηi

γi

(
logEb

i − logE0,nc
i

)
+ aiβi

(
Eb

i − E0,nc
i

) γi
Eb

i

= (33)
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−
N∑
j=1

ηjaj

γj

(
logEb

j − logE0,nc
j

)
+ ajβj

(
Eb

j − E0,nc
j

)βi ,
for i = 1, . . . , N , where ai = −φi/(ρi + δ).

Concerning the threat strategy, E0,nc
i , we have:

Proposition 3. In Problem (31)-(32), time-consistent bargaining solutions solve

the system of nonlinear equations (33) with threat strategies given by

ϕ0,nci =
γi

φiβi
∫∞
o
θi(s)e−δs ds

. (34)

Proof. First note that, from Definition 6, we have to compute a MPNE in a differ-

ential game played along the time interval [t, t + ϵ]. If ϕϵ,ncj (t) are the equilibrium

strategies for players j ̸= i, player i solves

max
{Ei}

γi log (αiEi)− φiS +
∂W ϵ

i

∂S

βiEi +
∑
j ̸=i

βjϕ
ϵ,nc
j (t)− δS

 .

Therefore,
∂W ϵ

i

∂S
= −γi

γi
βiϕ

ϵ,nc
i (t)

, soW ϵ
i (S, t) = − γi

βiϕ
ϵ,nc
i (t)

S + bϵ,nci (t) and, there-

fore,

W 0
i (S, t) = − γi

βiϕ
0,nc
i (t)

S + b0,nci (t) . (35)

Next, from Definition 6,

W ϵ
i (S, t) =

∫ t+ϵ

t

θi(s− t) [γi log (αiE
ϵ,nc
i (s))− φiS(s)] ds

+

∫ ∞

t+ϵ

θi(s− t)
[
γi log

(
αiE

b
i (s)

)
− φiS(s)

]
ds , (36)

with

Ṡ(s) =

N∑
i=1

βiϕ
ϵ,nc
i (s)− δS(s) , S(t) = S , for s ∈ [t, t+ ϵ) , and (37)

Ṡ(s) =

N∑
i=1

βiϕ
b
i (s)− δS(s) , S(t+ ϵ) = St+ϵ , for s ≥ t+ ϵ , (38)

where St+ϵ is the limit when s→ t+ ϵ of the solution to (37). By solving (38) and

substituting the value of S(s) for s ≥ t+ ϵ in (36),

W ϵ
i (S, t) =

∫ t+ϵ

t

θi(s− t) [γi log (αiE
ϵ,nc
i (s))− φiS(s)] ds+

+γi

∫ ∞

t+ϵ

θi(s−t) log
(
αiE

b
i (s)

)
ds−φi

∫ ∞

t+ϵ

θi(s−t)

∫ s

t+ϵ

e−δ(s−z)
N∑
j=1

βjϕ
b
j(z) dz

 ds
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−φiSt+ϵ

∫ ∞

t+ϵ

θi(s− t)e−δ(s−t−ϵ) ds . (39)

Next, by solving S(s) in (37), computing

St+ϵ = lim
s→t+ϵ−

S(s) = St +

∫ t+ϵ

t

e−δ(t+ϵ−τ)
N∑
j=1

βjϕ
ϵ,nc
j (τ) dτ ,

substituting in (39), and taking the limit ϵ→ 0, after several calculations we obtain

W 0
i (S, t) = −

(
φi

∫ ∞

0

θi(τ)e
−δτ dτ

)
S + b0,nci . (40)

Finally, by identifying (35) and (40), we obtain that the threat strategy is given by

(34). □

Remark 1. The threat strategy to be used for the calculation of the time-consistent

dynamic bargaining solution coincides, in this problem, with the standard MPNE.

This result is a consequence of the simple structure of the model. Indeed, a sim-

ilar result was also obtained in Castñer et al. [2021] in a simple nonrenewable

resource model with logarithmic utilities. However, for other power utilities, that

paper showed that MPNE are not the right threat point for this bargaining solution.

In deed, this is also the case for homogeneous linear-quadratic differential games,

as we show in Section 5.

Finally, once the strategies are determined by using numerical techniques, coef-

ficients bbi are easily obtained from (29) or, for the case of constant discount rates,

from (30).

4.3. The case of quadratic revenues

It is customary, in enviromental models of pollution control, to consider

that revenues are described by second degree polynomials of the form

Ri(Ei) = Ei

(
γi −

1

2
Ei

)
. Calculations for the different solution concepts can be

replicated. For example, for the case of constant discount rates, it is easy to check

that emissions are given by

Enc
i = γi −

φiβi
ρi + δ

,

Etc
i = γi − βi

N∑
j=1

φj

ρj + δ
,

Edb
i = γi −

βi
ηi

(
bdbi − bnci

) N∑
j=1

φjηj(
bdbj − bncj

)
(ρj + δ)

,
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and

ηi(
1− φi

ρi+δ

)(
Eb

i − E0,nc
i

) (Eb
i − γi

)
− βi

N∑
j=1

ηjφj

ρj+δ(
1− φj

ρj+δ

)(
Eb

j − E0,nc
j

) = 0 ,

with E0,nc
i = Enc

i .

Coefficients bJi , for J ∈ {nc, tc, db, b}, are obtained from (30). As in the case

with logarithmic utilities, the calculation of the two dynamic bargaining solutions

has to be performed numerically.

5. An homogeneous linear-quadratic differential game

As a second example, we study an homogeneous linear-quadratic differential game.

Homogeneous linear-quadratic differential games are characterized by the lack of

linear terms in the objective functionals of all players. They have some well-known

properties that simplify their analysis: stationary MPNE are linear in the state

variable and value functions are quadratic. As we will see, these properties are

important in the search of manageable agreeable and time-consistent dynamic bar-

gaining solutions. Otherwise, the search of these solutions can become extremely

complicated, in general. For the case of equal and constant discount rates, condi-

tions for the sustainability of cooperation for this class of differential games were

studied in Jørgensen et al. (2005).

In the present section, we study in detail the following simple homogeneous

game:

Ji =

∫ ∞

t

θi(s− t)
[
mix

2 + giu
2
i

]
ds , (41)

ẋ(s) =

N∑
j=1

βjuj − δx , (42)

with gi ̸= 0.

For the computation of the different solution concepts in Problem (41)-(42), we

proceed as in the previous section.

5.1. Noncooperative MPNE

From the first order optimality conditions of

max
{ui}

mix
2 + gix

2 + (Wi(x))
′

βiui + N∑
j=1,j ̸=i

βjϕ
nc
j (x)− δx


we obtain unci = −βi (Wi(x))

′

2gi
. By guessing V nc

i (x) = anci x2, the noncooperative

strategy of Player i becomes

unci (s) = −βia
nc
i

gi
x(s) . (43)
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18 J. Maŕın-Solano

For the calculation of anci we solve, for s ∈ [t,∞), the state equation (42) for the

strategy (43) and initial condition x(t) = x, that is given by

x(s) = e
−
(∑N

j=1

β2
j anc

j
gj

+δ

)
(s−t)

x .

By substituting in the value function and using (43),

Wi(x) = anci x2 =

∫ ∞

t

θi(s− t)
[
mi(x(s))

2 + gi(u
nc
i (s))2

]
ds =(

mi +
β2
i + (anci )

2

gi

)(∫ ∞

0

θi(τ)e
−
(∑N

j=1

β2
j anc

j
gj

+δ

)
τ
dτ

)
x2 .

Therefore,

anci =

(
mi +

β2
i + (anci )

2

gi

)(∫ ∞

0

θi(τ)e
−
(∑N

j=1

β2
j anc

j
gj

+δ

)
τ
dτ

)
.

In particular, for the case of contant discount rates ρi, coefficients anci satisfy the

following system of algebraic Riccati equations:

mi − anci (ρi + 2δ) +
β2
i

gi
(anci )

2 − 2anci

N∑
j=1

β2
j

gj
ancj = 0 .

The above non-linear equation system is highly coupled and coefficients anci must

be determined numerically in order to check time-consistency and agreeability.

5.2. t-cooperative equilibrium

We have to solve (8) for λi = 1, i.e.,

max
{u1,...,uN}


N∑
i=1

(
mix

2 + gix
2
)
+

(
N∑
i=1

(
V tc
i (x)

)′) N∑
j=1

βjuj − δx

 .

From the first order conditions, utci = − βi
2gi

N∑
j=1

(
V tc
j (x)

)′
. If V tc

i (x) = atci x
2, the

t-cooperative strategy of Player i is

utci (s) = −βi
gi

N∑
j=1

atcj x(s) . (44)

Note that, if βi = β and gi = g, for all i ∈ {1, . . . , N}, then utcj = utck , for all j, k.

For the calculation of anci , the solution to (42), with initial condition x(t) = x,

for the strategy (44) is

x(s) = e
−
[(∑N

j=1

β2
j

gj

)
(
∑N

k=1 atc
k )+δ

]
(s−t)

x .
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By substituting in the value function, using (44) and proceeding as in the calculation

of the MPNE, we easily derive

atci =

mi +
β2
i

gi

 N∑
j=1

atcj

2
(∫ ∞

0

θi(τ)e
−2

[(∑N
j=1

β2
j

gj

)
(
∑N

k=1 atc
k )+δ

]
τ
dτ

)
.

In particular, in the case of constant discount rates ρi, coefficients atci satisfy the

following system of nonlinear algebraic equations:

atci

ρi + 2δ + 2

 N∑
j=1

β2
j

gj

( N∑
k=1

atck

) = mi +
β2
i

gi

 N∑
j=1

atcj

2

. (45)

In the case of equal discount rates (ρi = ρ), by taking the sum in i of all atci , we

obtain a second degree equation in Atc =

N∑
j=1

atcj . By substituting its solution in

(45), parameters atci can be computed. In the case of different discount rates, this

procedure does not work, but we can still find algebraic solutions if there are at

most three players with different discount rates. Note that we can solve equation

(45) by expressing atci as a function of Atc, i.e., atci = ψi(A
tc), where

ψi(A
tc) =

mi +
β2
i

gi
(Atc)

2

ρi + 2δ + 2
(∑N

j=1

β2
j

gj

)
Atc

.

Next, if we take

N∑
i=1

atci = Atc =

N∑
i=1

ψi(A
tc), we will obtain an algebraic equation

of order m + 1, where m is the number of different discount rates. As a result,

for m ≤ 3, we can obtain algebraic solutions. On the contrary, for m ≥ 4, the

t-cooperative solution has to be computed numerically, in general.

5.3. Agreeable dynamic bargaining solution

As in the t-cooperative solution, we have to solve (8) but, for V db
i (x) = adbi x

2,

weights are now given by

λdbi (x) =

(
ηi

adbi − anci

)
1

x2
.

By substituting in (8) and solving the first order conditions, we obtain

udbi (s) = −
βi
(
adbi − anci

)
ηigi

N∑
j=1

ηja
db
j

adbj − ancj
x(s) .
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By proceeding as in the previous cases, after some calculations we obtain that, in

the case of constant discount rates ρi, coefficients adbi satisfy the following system

of nonlinear equations:

adbi

ρi + 2δ + 2

 N∑
j=1

β2
j (a

db
j − ancj )

ηjgj

( N∑
k=1

ηka
db
k

adbk − anck

)
= mi +

β2
i

(
adbi − anci

)2
giη2i

 N∑
j=1

ηja
db
j

adbj − ancj

2

. (46)

In order to compute the solution, the equation system (46) has to be solved numer-

ically.

5.4. Time-consistent dynamic bargaining solution

According to the TCB solution, interior decision rules are obtained from (14). By

guessing V b
i (x) = abix

2, for threat linear decision rules u0,nci = α0,nc
i x, the equation

system (14) has linear solutions ubi = αb
ix giving rise to a quadratic value function,

in agreement with the hypothesis. Coefficients αb
i solve the equation system

N∑
j=1

ηja
b
j

gj

((
αb
j

)2 − (α0,nc
j

)2)
+ 2abj

∑N
k=1 βk

(
αb
k − α0,nc

k

)βi (47)

+
ηigiα

b
i

gi

((
αb
i

)2 − (α0,nc
i

)2)
+ 2abi

∑N
k=1 βk

(
αb
k − α0,nc

k

) ,
for i = 1, . . . , N , together with

abi =

(
mi +

β2
i

(
abi
)2

gi

)∫ ∞

0

θi(τe
−2(δ−

∑N
j=1 βkα

b
j)θ dτ . (48)

In particular, if discount rates are constant,

abi

ρi + 2δ − 2

N∑
j=1

βjα
b
j

 = mi +
β2
i

(
abi
)2

gi
.

It remains to compute the threat strategy α0,nc = (α0,nc
1 , . . . , α0,nc

N ). The follow-

ing proposition summarizes the equations that must be satisfied by candidates to

interior time-consistent dynamic bargaining solutions.

Proposition 4. In Problem (41)-(42), time-consistent bargaining solutions solve

the system of nonlinear equations (47)-(48) with threat strategies given by u0,nci =

α0,nc
i x, where

α0,nc
i = −βi

gi

(
mi + gi

(
αb
i

)2)∫ ∞

0

θi(s)e
2(

∑N
j=1 βjα

b
j−δ)s ds . (49)
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Proof. As in Proposition 3 we compute first a MPNE in a differential game played

along the time interval [t, t+ ϵ]. If ϕϵ,ncj (x, t) = αϵ,nc
j (t)x are the equilibrium strate-

gies for players j ̸= i, player i solves

max
{ui}

mix
2 + giu

2
i +

∂W ϵ
i

∂x

βiui +∑
j ̸=i

βjα
ϵ,nc
j (t)x− δx

 .

Therefore,
∂W ϵ

i

∂x
= −2gi

βi
αϵ,nc
i (t)x, so W ϵ

i (x, t) = − gi
βi
αϵ,nc
i (t)x2 + bϵ,nci (t) and,

therefore,

W 0
i (x, t) = − gi

βi
α0,nc
i (t)x2 + b0,nci (t) . (50)

Next, from Definition 6,

W ϵ
i (x, t) =

∫ t+ϵ

t

θi(s− t)
[
mi(x(s))

2 + gi (α
ϵ,nc
i (s))

2
(x(s))

2
]
ds

+

∫ ∞

t+ϵ

θi(s− t)
[
mi(x(s))

2 + gi
(
αb
i

)2
(x(s))

2
]
ds , (51)

with

ẋ(s) =

N∑
i=1

βiα
ϵ,nc
i (s)x(s)− δx(s) , x(t) = S , for s ∈ [t, t+ ϵ) , and (52)

ẋ(s) =

N∑
i=1

βiα
b
ix(s)− δx(s) , S(t+ ϵ) = St+ϵ , for s ≥ t+ ϵ , (53)

where xt+ϵ is the limit when s→ t+ ϵ of the solution to (52). By solving (53) and

substituting the value of x(s) for s ≥ t+ ϵ in (51), we obtain

W ϵ
i (x, t) =

∫ t+ϵ

t

θi(s− t)
[
mi(x(s))

2 + gi (α
ϵ,nc
i (s))

2
(x(s))

2
]
ds

+
(
mi + gi

(
αb
i

)2)(∫ ∞

t+ϵ

θi(s− t)e2(
∑N

j=1 βjα
b
j−δ)(s−t−ϵ) ds

)
(xt+ϵ)

2
. (54)

Next, by solving x(s) in (52), computing

xt+ϵ = lim
s→t+ϵ−

x(s) = xe
∫ t+ϵ
t (

∑N
j=1 βjα

ϵ,nc
j (τ)−δ) dτ ,

substituting in (54), and taking the limit ϵ→ 0, after several calculations we obtain

W 0
i (x, t) =

(
mi + gi

(
αb
i

)2)(∫ ∞

t

θi(s− t)e2(
∑N

j=1 βjα
b
j−δ)(s−t) ds

)
x2 . (55)

Finally, by identifying (50) and (55), we obtain that the threat strategy is given by

(49). □

Note that, unlike the case of linear-state differential games, the threat point in

the time-consistent dynamic bargaining solution for homogeneous linear-quadratic

differential games is not the MPNE.
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5.5. Dicussion

As in the case with a unique constant discount rate, the t-cooperative equilibrium

is time consistent as a cooperative solution (i.e., in the sense of Definition 2) if,

and only if, atci ≥ anci , for all i = 1, . . . , N . In a similar way, the time-consistent

dynamic bargaining solution is time-consistent as a cooperative solution if, and only

if, abi ≥ anci , for all i = 1, . . . , N . Since these inequalities do not depend on time and

the state of the system, time-consistency implies agreeability for the homogeneous

linear-quadratic differential game given by Problem (41)-(42). Unfortunately, in

order to test the time consistency and agreeability of the solutions, we must perform

numerical calculations for each particular problem.

In any case, for this differential game, we can look for linear decision rules for

all the solution concepts. If we consider more general linear-quadratic differential

games, as the one in Section 4.3, but with a quadratic damage cost, Di(S) = φiS
2,

linear (affine) strategies can exist (provided that the corresponding system of non-

linear equations has a solution) for the noncooperative MPNE and the t-cooperative

equilibrium. However, this will not be the case, in general, for the two dynamic bar-

gaining solutions. In the agreeable dynamic bargaining solution, weight functions

given by as in Proposition 1 will not be constant (as in the linear-state differential

games) nor a constant times a common function (as in the homogeneous linear-

quadratic game studied in the present section). On the contrary, they will have a

more complicated structure that will make much more difficult the search of solu-

tions. An inspection to equation (14) suggests that the time-consistent bargaining

solutions will be also nonlinear, in general.

6. Concluding remarks

In this paper we have studied noncooperative MPNE and three cooperative solu-

tions for linear-state and a class of homogeneous differential games with heteroge-

neous, possibly nonconstant, discount rates. We have seen that, for these classes

of differential games and the three cooperative solution concepts, time consistency

(Definition 2) and agreeability (Definition 3) are equivalent.

Concerning the t-cooperative equilibrium, it coincides with the standard cooper-

ative solution, obtained by maximizing the sum of payoffs of all players, for the case

of constant and equal discount rates. For more general discount rates, this solution

concept has the nice property that it can be easily computed for the two differential

game models studied in the paper. For the linear-state differential games solved

in Section 4, there is a unique constant equilibrium, and conditions for the time

consistency or agreeability can be easily checked. In the case of the homogeneous

differential game, we can look for linear equilibria, but the test of time consistency

has to be performed analytically.

In the two dynamic bargaining solutions studied in the paper, for the derivation

of constant strategies in linear-state differential games, and linear strategies in the

homogeneous differential game, we have to solve numerically a system of highly
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coupled nonlinear equations. As a result, the time consistency or agreeability of

the time-consistent dynamic bargaining solution has to be checked numerically.

The agreeable dynamic bargaining solution is time consistent and agreeable by

construction.
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Castañer, A., Maŕın-Solano, J. and Ribas, C. [2021] A time consistent dynamic bargain-
ing procedure in differential games with heterogeneous discounting, Mathematical
Methods of Operations Research 93, 555–584.
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