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1. Introduction

This paper deals the problem of dynamic individual rationality (DIR) in cooperative
differential games with asymmetric players. Players can be asymmetric in their util-
ity functions and/or their discount functions. We address the problem for constant
and nonconstant discount rates. Two notions of DIR have been widely studied in
the literature: time-consistency (Petrosyan and Zenkevich [1996], Petrosyan [1997])
and agreeability (Kaitala and Pohjola (1990)). Suppose that players can make an
agreement in order to coordinate their strategies in the future, but this agreement
is not binding. An agreement (or cooperative solution) is said to be time-consistent
if, at any future moment, along the optimal trajectory, all players find if optimal
to stick to their parts in the agreement. If this property is satisfied, not just along
the optimal trajectory, but for any trajectory, the cooperative solution is said to be
agreeable.

Consider a cooperative differential game with equal and constant discount rates
for all players. Pareto optimal solutions can be found by maximizing a weighted

*Departament de Matematica economica, financera i actuarial, Universitat de Barcelona, Avinguda
Diagonal 690, 08034 Barcelona, Spain.



January 24, 2022 15:39 WSPC/INSTRUCTION FILE
imarinlGTR2021 final

2 J. Marin-Solano

sum of the payoffs. Conditions for time-consistency and agreeability were studied,
for linear-state differential games, in Jgrgensen et al. [2003]; and for linear-quadratic
differential games, in Jorgensen et al. [2005]. In the case of TU cooperative differ-
ential games, if players maximize their joint payoffs, this sum will be non lower
than the sum of payoffs obtained under non cooperation. In that case, side pay-
ments schemes can be introduced to guarantee that, in any subgame starting along
the cooperative trajectory, all players will receive higher (nonlower) payoffs in the
cooperative solution than in the disagreement solution (see e.g. Jgrgensen and Zac-
cour [2001] for a 2-player game, Yeung and Petrosyan [2004] for payoff distribution
procedures in N-player differential games, or Petrosyan and Zaccour [2003] for the
introduction of allocation schemes via the Shapley value). For NTU cooperative
differential games, among all the Pareto optimal solutions, one could look for those
guaranteeing the stability of cooperation. This issue was addressed in Yeung and
Petrosyan [2005] (see also Petrosyan and Yeung [2014] and references therein). More
recently, the possibility of introducing nonconstant weights for players in the search
of time-consistent (agreeable) solutions was proposed in Marin-Solano [2014] (for
differential games) and Yeung and Petrosyan [2015] (in a discrete time setting).
In Castader et al. [2020] such nonconstant weights were obtained as the result of
repeated bargainings along time.

If players discount the future at different rates, or with nonconstant rates,
in the computation of the “optimal” decision rules, a different problem of time-
inconsistency arises: what is optimal for the coalition at time ¢ is not optimal at
time s, for s > t. We refer to Marin-Solano and Shevkoplyas [2011] for the study
of differential games with time-inconsistent preferences, and to de-Paz et al. [2013]
and Ekeland et al. [2013] for a detailed analysis of the case in which players have
different discount rates (in the former paper the problem with different discount
functions and nonconstant discount rates was also briefly addressed). The solution
concept proposed in those papers is time-consistent and subgame perfect according
to the definition in noncooperative differential games (see e.g. Dockner et al. [2000]
or Haurie et al. [2012]). Indeed, in the computation of the solution, each coalition
solves a sequential game, in which the coalition at different times is seen as a different
player. However, it is not Pareto optimal, in general. As a result, joint payoffs under
time-consistent cooperation can be lower than under noncooperation (Marin-Solano,
[2015]). A way to avoid this problem is to assign nonconstant (state-dependent)
weights to the players. As mentioned above, Castaner et al. [2020] proposed a way
to fix such nonconstant weights as the result of a dynamic bargaining procedure.
The corresponding solution, that makes use of memory (trigger) strategies, satis-
fies the property of DIR (i.e., it is time-consistent and agreeable in the language
of NTU cooperative differential games). Alternatively, for memoryless strategies,
a time-consistent dynamic bargaining procedure has been recently introduced in
Castaner et al. [2021]. However, this solution concept, that is time-consistent and
subgame perfect in the language of noncooperative differential games, linked to the
issue of credibility of the announced strategy, may not satisfy the property of DIR.
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In the present paper, all the previous issues are discussed for general differential
games with possibly nonconstant and/or different discount rates, by paying special
attention to two classes of differential games. First, linear-state differential games are
studied. These games admit constant strategies and linear value functions, which
allows us to develop a more detailed analysis on both the different cooperative
solution concepts and the issues related to DIR. Next, homogeneous linear-quadratic
differential games are considered.

The paper is structured as follows. Section 2 describes the general model and pro-
vides the basic definitions. Section 3 presents a review of two new solution concepts,
based on bargaining theory, recently proposed in the literature of NTU coopera-
tive differential games. Section 4 is devoted to the study of linear-state differential
games with general discount functions, by paying special attention to conditions on
time-consistency and agreeability of the different solutions. Homogeneous linear-
quadratic differential games are analyzed in Section 5. Section 6 concludes the

paper.

2. Preliminaries

Consider an N-player differential game played on the time interval [0, 00). Let €
X C R be the state variable. For each player ¢ € {1,...,N}, let u; € U; C R
be her control variable (each player has a scalar control), u = (uy,...,u,) the
corresponding vector of decision rules, L;(z,u) the instantaneous utility function,
and 6;(s) the discount function. The payoff functional of player ¢ at time ¢ is

Ji(Teur, .o, upst) = /too 0;(s —t)Li(x(s), u1(s), ..., un(s)) ds, with (1)

z(s) = fx(s),u1(s),...,un(s)), z(t) =z . (2)

We will assume that functions L;, f and 6; are, at least, continuously differentiable
in all their arguments. We will also assume that, along the admissible control tra-
jectories, equation (2) admits a unique solution and the integral in (1) converges.
The extension to the multidimensional state and control case is straightforward.

Note that Problem (1)-(2) is autonomous. In the present paper we will center our
attention in stationary solutions, so that equilibrium strategies and value functions
will not depend explicitly of time, but only on the state of the system.

First, we recall the definitions of time-consistency and subgame perfectness in
noncooperative differential games (see, e.g., Dockner et al. [2000] or Haurie et al.
[2012]), linked to the issue of credibility of the announced equilibrium strategies.

Definition 1. Let T'(z,0) denote a game played along [0,00), with initial state
xg € X, and let T'(x,t) be the corresponding subgame defined on the time interval
[t,00) with initial state x(t) =z € X.

(1) Let (¢1,¢2,...,¢n) be a Markovian solution for the game I'(xo,0), and denote
by x*(t) the unique state trajectory generated by the solution to the game. The



January 24, 2022 15:39 WSPC/INSTRUCTION FILE
imarinlGTR2021 final

4 J. Marin-Solano

solution is time consistent if, for each t € [0,00), the subgame I'(z*(t),t) admits
a Markovian solution (1, s, ..., ¥N) such that ¥;(y, s) = ¢i(y, s) holds for all
i€{l,...,N} and all (y,s) € X X [t,00).

(2) If, for each (xz,t) € X x [0,00), the subgame admits a Markovian solution
(Y1,%2,...,¢¥N) such that ¥;(y,s) = ¢i(y,s) holds for all i € {1,...,N} and
all (y, ) € X x[t, 00), the solution (¢1, ¢z, ..., PN) is said to be subgame perfect.

Next, we recall the definitions of time-consistent and agreeable cooperative so-
lutions. Let us denote by V;(z) the payoff of player ¢ under some cooperation or
agreement with all the other players. In a noncooperative setting, let W;(z) repre-
sent the corresponding payoffs of all players. In the present paper, W;(z) will denote
the payoffs in the Markov Perfect Nash Equilibria (MPNE).

Definition 2. Let 2°(7) be the trajectory along the cooperative solution. A cooper-
ative solution is time-consistent at (x0,0) if, at any position (z°(7),7) and for all
7 € [0,00), it holds that

Vi(ze(7)) > Wi(z(T)) forall i=1,...,n. (3)

If inequality (3) is satisfied, not just along the cooperative trajectory, but for all
possible deviations of it, then we have:

Definition 3. A cooperative solution is agreeable at (xo,0) if, for any feasible po-
sition (x(7),7), and for all T € [0,00), it holds that

Vi(z®(1)) > Wi(2(7)) forall i=1,...,n. (4)

In Definitions 2 and 3 it is costumary to take as value functions V;(z) the payoffs
of players obtained from joint maximization. If the players discount the future at the
same constant discount rate, this solution is time-consistent subgame perfect in the
sense of Definition 1 (but not, in general, time-consistent as a cooperative solution,
i.e., according to Definition 2). If discount rates are nonconstant and/or different, a
new solution concept, the t-cooperative equilibrium rule, has been proposed in the
last decade, that is time-consistent and subgame perfect in the sense of Definition
1. Next we present this solution concept for the general case of (possibly) unequal
and nonconstant weights. Following Marin-Solano (2014), in a cooperative setting
we can aggregate preferences as

N N )
J (2, u,t) = Z Xi(z) i (2, u, t) = Z )\Z(x)/ O(s —t)Li(x(s),u(s))ds . (5)
i=1 i=1 t
Coefficients A;(x¢) > 0 represent the weight of agent i at state x; and time ¢. In
this paper, since we are interested in stationary solutions, we assume that weights
do not depend explicitly on time ¢, and \;(z) are continuously differentiable.
If u*(s) = ¢(x(s)) is a continuously differentiable equilibrium rule for Prob-
lem (5) subject to (2), by denoting z; = z, the corresponding value function is
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N 9]
Viz) = Z)\i(x)Vi(x), where V;(z) :/t 0;(s —t)L;(x(s), p(x(s))) ds. For € > 0
and @ 21(2171,17. .. ,ﬂN), u; € U; C R, let
B u ifseft,t+e),
“4@‘{MM$ﬁfszt+e o

N
Let J(x,ue, t) = Z)\i(a?)Ji(x,ue,t), where
i=1

oo

t+e
(2, ue, t) = 0;(s — i(x(s),u)ds 0;(s — i(x(8), d(x(s sy .
Hout) ={ [0t = 0Liate) as+ [ o OLi(a(s),6(a() ds (1)
If we expand J(z,uc,t) in €, we obtain J(z, ue,t) = V(x) + P(z, ¢, @)e + o(e).

Definition 4. A decision rule u'‘(s) = ¢'“(x(s)) is a t-cooperative equilibrium
with nonconstant weights A\;(z), i = 1,..., N, if function P(x,¢,u) attains its
mazimum for @ = ¢'°(x). In the case with \y = --- = Ay we simply say that the
strategqy is a t-cooperative equilibrium.

In Theorem 1 in Marin-Solano (2014) (for the case of constant weights, see de-
Paz et al. (2013) and Ekeland et al. (2013)) it is proved that, under certain regularity
conditions, t-cooperative equilibrium can be obtained by solving

N
(@1, .-, O) € argmaxyy, 4. {Z/\i(ﬂﬁ) (Li(I,U)ﬂLV{(w)'f(x,U))} - (8)

i=1

3. Dynamic bargaining
3.1. The agreeable dynamic bargaining solution

In Castaner et al. (2020) a new cooperative solution concept for NTU differential
games, the agreeable dynamic bargaining solution, was proposed. Its extension to
general discount functions is straightforward. The idea is to work within a Nash bar-
gaining setting, but taking into account the possibility that players can renegotiate
agreements achieved at time ¢ at every future moment s > t (and, in particular,
immediately later). In case of disagreement, the threat point is to receive the non-
cooperative outcome given by a Markov Perfect Nash Equilibrium at perpetuity.
This threat point will be credible as long as, in case of disagreement, players will
not have the possibility to renegotiate in the future. From this perspective, memory
strategies are considered. Since in the trigger strategy (punitive mode of play) the
threat is an equilibrium, it becomes credible.
Let us consider the generalized Nash welfare function with strictly positive bar-

gaining powers 7ny,...,NN

N

H[Ji(x,cl,...,cN,t) — Wiz, )] . (9)

i=1
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Without loss of generality, we normalize bargaining powers so that Zfil n; = 1.
For ny =--- =nn = 1/N we recover the classical Nash bargaining solution.

For a decision rule (u1,...,un) = (¢1(x),...,¢n(x)) and a set of threat value
functions Wz, t) = (Wi(z,t),..., Wn(x,t)) satisfying J;(z, ¢1(x), ..., on(x),t) —
Wi(z,t) >0, for all i =1,..., N, let

N
M(x,t) = | | [Ji(z, p1(), ..., on(x), t) — Wi(z,t)]" . (10)
i=1
If we take the variations (6), let J;(x, uc, t) given as in (7). The corresponding Nash
product becomes

N
MWz, e, ) = [ i, e t) = Wi, O] =Tz, 1) + T (@, 6, @, e + o(e) , (1)

i=1

with
II 1) — I(x,t
I (2, ¢, 4, t) = lim (2, ue, t) ~ (@, t)
e—0Tt €
Definition 5. A strategy ¢%(z) = (¢{°(x),..., 9% (x)), with payments VI (z) =
(Vb (z, % (z)),..., VI (x, ¢ (x))), is said to be an agreeable dynamic bargaining
solution if
¢®(x,1) = arg max [T (<, o™, a)

where the threat point (Wyi(x),...,Wx(z)) in case of disagreement at time t, with
x(t) = =z, is given as follows: For s € [t,00), players apply strategies ¢ =

(7%, ..., PRF) such that
Wz(l’) :JZ(I,¢nC) Z Jz(l’, Eci,O'z’) s Vi,cri , = 1,...,N,
where 0;: X — U; C R is any possible admissible Markovian strategy for player i.

In Definition 5 we have omitted the temporal argument in the different expres-
sions. The reaon is that, in our autonomous problem, both the threat strategies and
the agreeable dynamic bargaining strategies are stationary, and the corresponding
value functions depend just on the state of the system. The following proposition
characterizes interior agreeable dynamic bargaining solutions.

Proposition 1. Assume that an agreeable dynamic bargaining solution exists sat-
isfying the constraints V% —W; > 0, for alli =1,..., N. Then it is the solution to
(8) with weight functions given by

_ i
@) = B ) W)

Proof. It is similar to the proof of Proposition 1 in Castaner et al. (2020) for the
case of constant discount rates. O

Note that, by construction, the agreeable dynamic bargaining solution is agree-
able and, therefore, time-consistent, as a cooperative solution.
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3.2. The time-consistent dynamic bargaining solution

Whereas the agreeable dynamic bargaining solution is time-consistent (and agree-
able) in the language of NTU cooperative differential games, it makes use of memory
strategies: in case of disagreement, cooperation will not be allowed forever. If, on
the contrary, new negotiations can take place in the future (something that is not
unusual in real life situations), the threat losses credibility. The time-consistent dy-
namic bargaining solution proposed in Castaner et al. (2021) addresses this issue,
by taking into account that, in case of disagreement, new negotiations can take
place at every future moment and, in particular, immediately later. As a result, the
actual threat is to act in a noncooperative way just during a very small period of
time. In this section we extend the results in Castafler et al. (2021) to the case of
general discount functions.

As in the previous section, let us consider the generalized Nash welfare function
(9) or (10) for a particular decision rule. By taking variations (6), then we obtain
(11) with J;(x, uc,t) given as in (7). The objective is, as in the agreeable dynamic
bargaining solution, to maximize the first order term I1; (z, ¢, @, t) for the new threat
point, in such a way that @* = ¢(x(t), t). However, the nature of the new threat point
implies that we can not proceed as in Proposition 1 to characterize the solution.

Let us assume that, for s € [t,t+¢€), the decision rule in case of non cooperation
is given by ¢<"¢(x(s), s) and, for s > t+e¢, players follow ¢°(z(s), s). More precisely,

Definition 6. Assume that, at time t, players take as given the future decision rule
#°(z(s), 8), for s >t +e. The threat point in case of disagreement during the time
interval time [t,t + €), with x(t) = x, is given as follows:

Wi(z,t) = Ji(z, oo™ (2, 1), t) > Ji(x, 077 (2, 1), 04(x,t),t), Vi,op, i=1,...,N,
where
e 0 X X[t,o) > U, CR,i=1,...,N, is given by

_ _ Joi(x(s),s) ift<s<t+e,

oi(w(s); ) = {¢g(ag(s),s) if s> t+e;

e g X x[tit+e) =>U;, CR,i=1,...,N, is any possible admissible feedback
law for player i for the problem with planning horizon [t,t + €); and

e 97" X x [t,o0) » U; C R, j = 1,...,N, is such that ¢7"(x(s),s) =
@5(x(s),s), for s > t+e.

Hence, the threat point is given by

t+e
We (e, 1) = / Bu(s — ) Li(a(s), " (2°(5), 5)) ds

[0 = DL, P () ) ds

“+e€
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for i € {1,...,N}. Let z¢(s) be the solution to z°(s) = f(z°(s), p="°(z(s))), with

z€(t) = x, for s € [t,t + €) and 2°(t) = z; Z(s) the solution to z(s) = f(Z(s),u),
with Z(t) = z, for s € [t,t +¢) and Z(t) = x; and @ (s) = f(zc(s), " (wc(s))) for
s > t + €, with the initial condition z.(t + €) derived by continuity. From (7) for

¢ = ¢° we obtain

Ji(x, ue, t) — WE(z,t)

t+e
_ / 0i(s — 1) [Li(3(s), 1) — L(a(s), 0°"(2<(s), 5))] ds

o0

. 0i(s — 1) [Li(ze(s), 0" (ze(5), 8)) — Li(2“(s), 6" (2(s), 5))] ds -
The first integral becomes [L;(x, @) — L;(z, ¢%"(x,t))] € + o(€). In addition, if the
discount rate is defined by p;(1) = —378 so that 6;(s) = exp( fo pi(T )
then 6;(s —t) = 0;(e) - 6;(s — t — €) and, after some calculations, the second inte-
gral simplifies to W [f(z,u) = f(z,¢""(x,t))] € + o(e) where, for z(t) = z,
Vi(z,t) = [0 Li(z(s), #%(z(s), s)) ds. By simplifying, the Nash welfare
functlon becomes

H (z,ue, t) — Wi (2, )] =T (2, 9% ¢ t)e +o(e) , where

=1

al by u
1t = [T | te ) = L6 + 252D (1(00) = (@) |02

i=1
Definition 7. Let

¢ o (x(s),s) ift <s<t+e,
Pi(=(s), 5) = {¢?<x<s>,s> s> t4e:

be the decision rule followed by player i, fori =1,..., N, in case of disagreement
during the time period [t,t+¢€). Let ¢°(x,t) = lim._,o+ ¢¢(x,t). We define the time-
consistent dynamic bargaining solution (TCB) as

¢b = arg I?l%?( I (z, ¢b, a,t), (13)

where T1y (x, ¢°, 4, t) is given by (12).

Note that, since there is no commitment and players can bargain again at any
possible future moment 7 > ¢, € can be arbitrarily small. Hence, the threat point
is given by ¢¥"¢(x,t) = lim_,o+ ¢*"¢(x,t), with ¢*"(x,t) given by Definition 6.
Since our problem is autonomous, in the limit € — 0T, strategies become stationary
and value functions do not depend on time. Hence, in the following, we will omit
the temporal argument in the expressions of the strategies and the value functions.
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If interior solutions to equation (13) exist, the first order optimality conditions
are given by

N
i 8[/1(33, ﬂ)
i:zl Li(w, i) — Li(w, ¢"n<(x)) + (V2 (2))' [f(z,0) — f(x, ¢0m(x))] ( 9,

# () 25—, (14

for j = 1,...,N. It is important to realize that the TCB solution obtained from
Definitions 7 and 6 is, by construction, time-consistent and subgame perfect in the
sense of Definition 1. On the contrary, time-consistency and agreeability according
to Definitions 2 and 3 is not guaranteed, in general.

4. A linear-state differential game

Consider the N-player differential game
[ee]
Ji(Teur, .o up;t) = / 0;(s —t) [hi(u1(8), ..., un(s)) —@i(s)] ds, with (15)
t

(s) = g(ua(s), .- un(s)) = 0x(s) , x(t) =, (16)

ie,in (1) and (2), Li(z,u1,...,un) = hi(u1, ... un) —p;x and f(z,uq,...,uy) =
g(ui,...,un)—ox, for i =1,..., N. Then we have a linear-state differential game.

In the case with constant discount rates, it is well-known that linear-state differ-
ential games have the property that open-loop Nash equilibria are Markov perfect.
The same property is preserved in the case with nonconstant discounting. Indeed,
in a linear-state differential game with symmetric players and nonconstant discount
rates, Karp [2017] showed that the limit equilibrium?® is unique, independent of
the state variable, and dominant, but there are many other differentiable state
dependent Markov Perfect equilibria. In this section we show that, for the four
solution concepts studied in the paper (MPNE, t¢-cooperative equilibrium, agree-
able Nash bargaining solution and time-consistent dynamic bargaining solution),
constant strategies exist, with corresponding linear value functions. In that case,
time-consistent cooperative solutions are also agreeable. Conditions for the time-
consistency (or agreeability) of the cooperative solutions are stated.

4.1. The general case

As in Section 3, we confine our interest to stationary solutions, as is standard in
autonomous differential games in infinite horizon.

2The limit equilibrium is the limit of the sequence of equilibria of finite horizon models, as the
planning horizon goes to infinity.
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Proposition 2. In the linear-state differential game (15)-(16), for the MPNE,
the t-cooperative solution, the agreeable dynamic bargaining solution, and the time-
consistent dynamic bargaining solution, constant decision rules exist. Along those

solutions, the corresponding value functions are linear in the state variable and are
such that V' (z) = a;x + b}, for J € {tc,db,b}, and W;(x) = a;x + b, with

a; = —<p,»/ 0;(1)e T dr .
0

Proof. It follows from the computation of the four solutions.

Markov Perfect Nash Equilibrium. Let u}¢ = ¢7°(z), j = 1,..., N, be a candidate
to noncooperative MPNE. Then, as in the standard case (see Marin-Solano and
Shevkoplyas [2011]), Player ¢ has to solve

max {hi(ui, ¢75) = iz + (Wi(@))' (g(ui, %) — 62) } .
From the first order optimality conditions, for all e =1,..., N,
Oh;(us, ¢75) » Og(ui, ¢75)
ou; Ou;
By guessing W (z) = a*x + b¢, (W;(z))’ = a** that implies that u?“ are constant.
The coefficients a'“ and b}'“ are derived by solving the value function. Note that

+ (Wi(z)) =0. (17)

Wi(z) = / 0:(s —t) [hi(ul®, ..., uRf) — pix(s)] ds, (18)
t
where
x(s) = g(ul,...,uf’) —ox(s) with z(t)=z. (19)
The solution to (19) is
ety o W) s
2(s) = ze + 8~ (1 e ) . (20)
By substituting (20) in (18) we obtain W;(x) = a“x + bP°, with
() = ~pi [ O(r)e " dr (21)
0

nc
uy,

pe —/OOO 0, (7) {hi(u’fﬁ...,u;{f) _ 2 5%) (1—657)} dr. (22

t-cooperative equilibrium. For the calculation of the the t-cooperative decision we
solve (8) for \; = 1:

N N
max {Z (hi(uy,...,un) — piz) + (Z (Vitc(iﬂ))/> (g(u1,...,un) — 533)} )

{u1,...,un} P
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hence
N N
8/11 ULyen- N) " / (’)g(ul UN)
e Ve AR -0 23
S Ohltncsst) 5 ey Bl gy
=1 =1
for j =1,...,N. By guessing V!*(x) = al°z + bl¢, the corresponding decision rules

are constant. The coefficients a!® and b® are derived as in the noncooperative case.
By substituting the upper indices {nc} by {tc} in (18), (19) and (20), we obtain
that al¢ is given by (21) and

. tc tc
bie = / 0;( [ (ube, ... ub) — piglu’s -, uy) ’5' o UN) (1- 6_67—):| dr . (24)

Agreeable dynamic bargaining solution. In this case, we have to compute the t-
cooperative equilibria for weights given as in Proposition 1. By using (8), solutions
to

{u1,..;un}

max {Z (AP (z (Z AP (z) (VP ()) ) (g(u) —5x)} (25)

satisfy
N
Ohi(uy, ..., un 1 0g(ug, ..., un)
db db b _
; PYLTED 5, ) 4 Z AP (2) (VA (x)) 5 0. (26)

By guessing V% (z) = a®z + bZ, from Proposition 1, weight functions are given by

db i
A () = (adt — ar)z + (b3 — bpe)
with a° and b)¢ given by (21) and (22), respectively.

It is clear that equation (26) have constant solutions (and hence the corre-
sponding value function will be linear in the state variable) if af® = a?¢. Otherwise,
decision rules will be typically nonconstant, and the corresponding Value functions
will be nonlinear, in contradiction with our hypothesis. Therefore, for a b given by
(21) we obtain a solution to (25) with linear value functions, whose coefﬁ(:lents bdb
are given by

(db db
b = / 0:( { (ud®, ... u) - pig (Ui, 5 - Uiy) (1- €6T):| dr . (27)

Time-consistent dynamic bargaining solution. We guess V*(z) = alx + 2. By de-

noting u® = (u?,...,uY%), from (14) we obtain

i Oh; (ub) ag(ub) B
Z hz Ub uo ”C) + a; ( (ub) — g(uo,nc)) ( 8,“5) +a; 8’[1,2 > =0, (28)

i=1

for j =1,..., N. This equation system does not depend on the state variable. Since,

. . . 0 0, .
in case of disagreement, threat strategies u®"¢ = (u;""", ..., uy"") are constant, its
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solutions are also constant strategies. As in the previous solutions, the corresponding
value function is linear, with a? given as in (21) and

0o . b tc
bg:/ 0i(7) [hi(u}{,...,u?\,)—%g(ul’é”’uN) (1—e)| dr. (29
0

O

Corollary 1. In the linear-state differential game (15)-(16),

(1) If a t-cooperative equilibrium is time consistent in the sense of Definition 2,
then it is also agreeable.

(2) If a time-consistent dynamic bargaining solution is time consistent in the sense
of Definition 2, then it is also agreeable.

Proof. It follows from the fact that V,/ (z) — V*¢(z) = b —b1¢, foralli = 1,..., N
and J € {tc,b}. O

For the calculation of the MPNE, we should solve the equation system (17), with
(Wi(x)) = al' = a; given by (21). The t-cooperative equilibrium can be computed
by solving (23) with (V“(z))" = a;. Agreeable dynamic bargaining strategies are
the solutions to (26) with (V% (x))’ = a; and weights

b — T
b — e
with ¢ given by (22). The calculation of the time-consistent dynamic bargaining
solution is more complicated because, before solving (28), we should compute first
the threat strategy u%™¢. We will do it in the example analyzed in Section 4.2.
In the case of constant discount rates, 0;(t) = e *i*,

Pi
a; = — .
pi+0
In addition, from (22), (24), (27) and (29), for J € {nc, te, db, b},
1 Vi
bl = — h; J JN i J J 30
[ i (u17 ) N) i +6g(ulﬂ qu) ( )

4.2. Application: An environmental model of pollution control

As an application, consider an environmental problem where N countries can agree
in their pollution strategies. If the emissions of country 4, E;(t), are proportional to
its production, the revenue function can be expressed as a function of the emissions,
say R;(E;) = v;log(aw E;), for 7, ai; > 0. If the damage function is a linear function
on the stock of the pollution S(t), then D;(S) = ¢;S, for ¢; > 0. Hence, the payoff
functionals are given by

Ji(S) = /t 0105 — 1) [ log (@i Eu(s)) — iS(s)] ds (31)
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As for the state dynamics, the evolution of the stock of pollution is governed by the
differential equation

N
S(s) = ZﬁiEi(S) —65(s) (32)

where B; > 0 is a positive transformation parameter of emissions into pollution
stock and ¢§ is the natural absorption rate of pollution. For the case of a unique
and constant discount rate, the time-consistency and agreeability of the standard
cooperative solution was studied in Jorgensen et al. [2003]. In our more general
setting, we need to compute the value of the parameters b/, for i = 1,..., N and
J € {nc,tc,db,b}, and check if bi¢ > b7 (for the agreeability of the t-cooperative
equilibrium) and b¢ > b2¢ (for the agreeability of the time-consistent dynamic bar-
gaining solution). Since the agreeable dynamic bargaining solution is time-consistent
and agreeable, b > b1¢, for all i.

In the following, we compute the solution to (31)-(32) for the diffferent solution
concepts.

4.2.1. Noncooperative MPNE

From (17), we can easily compute the emissions of each country under noncooper-
ation, that are given by

Ene — Vi
! (Pzﬂz fooo Qi(t)e—‘st dt ’

fori=1,...,N.

In particular, in the case of constant discount rates, 6;(t) = e #i*,
Yi(pi +9)

ibi
Note that emissions are increasing with the discount rate, i.e., more impatient coun-
tries pollute more, as expected. Concerning the payoffs, by substituting in (30) we
obtain that, in this case,

1 ayi(pi +0) 0 - v (pj +9)
b = — |vilog ( -
Pi pi+0 ; i

nc __
Ere =

wifi P

4.2.2. t-cooperative equilibrium
By using (23), the emissions of each player under t-cooperative behavior becomes
tc __ ,)/7,
RSN L (0 (He-dtdt
Bi Zj:l P fo i(t)e i

fori=1,...,N.
As in the case with constant and equal discount rates, we obtain the classical
result EI'* > Et°.
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If discount rates p; are constant,
EtC i

i S v a———
/BZZJ 1 P;+5

Unlike the noncooperative case, if vy = -+ = vy and f; = --- = Sy, emissions

coincide and do not depend on the discount rate of each particular country. There-
fore, in that case, it is beneficial for the society that all countries pollute the same,
independently of their differences in their discount rates.

Finally, in order to check the agreeability (or time-consistency) of the ¢-
cooperative decision rule, we should check if, for the values of the parameters of
a particular model, b¢ > b7¢, where bl¢ is obtained by substituting in (30),

N
pe — 1 i log < ;i ) i ;i
N Ny
Pi Biijl pyE pi+0

4.2.3. Agreeable dynamic bargaining solution

j 1Zk 1 pk-‘rts

By solving (26) for the constant weights A% = 5, /(b%® — b1*¢), we easily obtain
db _ Yini
i
(bdb bnc)ﬁz ZJ N bdeannr fO ] 6 ot dt
for ¢ = 1,...,N. Again, we obtain that emissions under the agreeable dynamic

bargaining procedure are lower than under noncooperation, B < En¢.
In the case of constant discount rates p;, emissions become
db _ Vil

i db nc ¥ini ’
(b3° — b )@Ej 1m

Unfortunately, we can not derive an explicit expression for coefficients b? in the value

function. Instead, we will have to solve numerically the highly nonlinear equation

system
1 O‘l’}/lni
b‘iﬂ’ = — |y log 7 L]
i (bl bnc)ﬁl Z] 1 (bdbbnjw
N
Vi
db N ’
TO = (b — b)Yy W

fori=1,...,N.

4.2.4. Time-consistent dynamic bargaining solution

According to the time-consistent dynamic bargaining procedure, decision rules are
obtained from (28), i.e.,

. X (33)
Vi (log Eb —log E?’"C> +a;f; (Ef — E?’"C) E;
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N
B Nia; B;
b 0,nc 0,nc v
j=1 ’}/j (10g Ej IOgE ) =+ Cl]ﬁ] ( E )
fori=1,...,N, where a; = —p;/(p; + 9).
Concerning the threat strategy, E.""°, we have:

Proposition 3. In Problem (31)-(32), time-consistent bargaining solutions solve
the system of nonlinear equations (33) with threat strategies given by

0,nc Vi
7 = . 34
¢1, QOZBZ IOOO 91'(8)6755 dS ( )

Proof. First note that, from Definition 6, we have to compute a MPNE in a differ-
ential game played along the time interval [t,t + ¢]. If $5"°(t) are the equilibrium
strategies for players j # ¢, player i solves

€

max < v; log (o, E;) — ;S + oW BiEi + Zﬁj S"(t) — 68

{E:} oS pary
oWy Vi e,nc
Therefore, L= —yi——e—, 80 WS(S,t ——ene S + by and, there-
95~ Vo™ () (5:5)= Bzaﬁ ) ©
fore,
W2(S,t) = — S 400" (t) (35)

¢O m:(t)

¥4

Next, from Definition 6,

t+e
Wi (S, 1) =/t 0i(s —t) [yilog (i B (s)) — ¢iS(s)] ds

oo

+ . 0i(s — t) [y: log (@ E} (5)) — ¢iS(s)] ds (36)

with

N
s) = Zﬁiﬁb?m(s) —6S5(s), Sit)=S8, for se€t,t+¢€), and (37)

Zmb ) —685(s), S(t+e) =Sy, for s>t+e, (38)

where Sy is the limit when s — t 4 € of the solution to (37). By solving (38) and
substituting the value of S(s) for s >t + € in (36),

t+e€
WE(S, 1) = / :(s — ) [y log (, E<"(s)) — :5(s)] ds-+

oo

#1001 at09) s |

t+e t+e

s N
0;(s—t) / e 0(s=2) Z ﬂjgb?(z) dz | ds
t+e j=1
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—iStte / 0i(s — 1)e 2t ds . (39)
t+e

Next, by solving S(s) in (37), computing

s—t+e—

t+e N
Sive= lim S(s) =S+ / e TN " 365 (1) dr
t =
substituting in (39), and taking the limit e — 0, after several calculations we obtain

W2(S,t) = — (gpz/ 0;()e 0" dT) S+ b?’"c ) (40)
0

Finally, by identifying (35) and (40), we obtain that the threat strategy is given by
(34). O

Remark 1. The threat strategy to be used for the calculation of the time-consistent
dynamic bargaining solution coincides, in this problem, with the standard MPNE.
This result is a consequence of the simple structure of the model. Indeed, a sim-
ilar result was also obtained in Castiier et al. [2021] in a simple nonrenewable
resource model with logarithmic utilities. However, for other power utilities, that
paper showed that MPNE are not the right threat point for this bargaining solution.
In deed, this is also the case for homogeneous linear-quadratic differential games,
as we show in Section 5.

Finally, once the strategies are determined by using numerical techniques, coef-
ficients b? are easily obtained from (29) or, for the case of constant discount rates,
from (30).

4.3. The case of quadratic revenues

It is customary, in enviromental models of pollution control, to consider

that revenues are described by second degree polynomials of the form
1

R,(E;) =F; (72- — 2Ei>. Calculations for the different solution concepts can be

replicated. For example, for the case of constant discount rates, it is easy to check

that emissions are given by

E?C:’Yif Lplﬁl )
pi+0
N "
Efcz’ylfﬂz J ’
= pj+9
N
B =, — @ (bdb_bnc)z Pinj

i = (b = b7<) (pj +0)
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and
nje;

N
i N i+0 _
(1 _ L) (Eg —E?’"C) (5 =) ﬁz; (1 ~ )pJ(E? —E?’nc) o

pito pj+o

with B¢ = Ene,

Coefficients b/, for J € {ne,tc,db,b}, are obtained from (30). As in the case
with logarithmic utilities, the calculation of the two dynamic bargaining solutions
has to be performed numerically.

5. An homogeneous linear-quadratic differential game

As a second example, we study an homogeneous linear-quadratic differential game.
Homogeneous linear-quadratic differential games are characterized by the lack of
linear terms in the objective functionals of all players. They have some well-known
properties that simplify their analysis: stationary MPNE are linear in the state
variable and value functions are quadratic. As we will see, these properties are
important in the search of manageable agreeable and time-consistent dynamic bar-
gaining solutions. Otherwise, the search of these solutions can become extremely
complicated, in general. For the case of equal and constant discount rates, condi-
tions for the sustainability of cooperation for this class of differential games were
studied in Jgrgensen et al. (2005).

In the present section, we study in detail the following simple homogeneous

game:
t
N
i(s) =) Bju; - dw, (42)
j=1
with g; # 0.

For the computation of the different solution concepts in Problem (41)-(42), we
proceed as in the previous section.

5.1. Noncooperative MPNE

From the first order optimality conditions of

N
max ¢ miz® + gia® + (Wi(z))' | Bui + Y B} (x) — 6
tusd J=L i

29
strategy of Player ¢ becomes

we obtain u}° = — . By guessing V*“(x) = az?, the noncooperative

_ PBiag©
=——z

Gi

(s) - (43)
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nc

For the calculation of a?¢ we solve, for s € [t,c0), the state equation (42) for the

strategy (43) and initial condition z(t) = x, that is given by

z(s) Ze_( ;Vlﬁjgaj +6>(s &

By substituting in the value function and using (43),

Wite) = ats® = [ 0i(s = ) [mio(s)? + gu(u2(9)7] ds =

2 nc ﬁfgaﬂ
o ) [ 5 )
Therefore,
2 ncy2 9] _ N BFape §)r
a;w: <m2+w> (/ 01'(7')6 ( i=1"g; +) d7'> .
Gi 0

nc

In particular, for the case of contant discount rates p;, coefficients a*¢ satisfy the

following system of algebraic Riccati equations:

/62

N 52

2 nc i nc
( ‘)" — 2a; Z—J_aj =0.
j_

m; — ar(p; + 20) +
—1 9

The above non-linear equation system is highly coupled and coefficients a}*¢ must
be determined numerically in order to check time-consistency and agreeability.

5.2. t-cooperative equilibrium
We have to solve (8) for \; =1, i.e.,
N

N N
max Z (mix2 + gix (Z Vt“ /> Z Bju; — oz
i=1 j=1

{'u.l,...,'u.N} i—1

N
From the first order conditions, u:® Z (Vic(z)). If Vi“(z) = alz?, the

t-cooperative strategy of Player i is

N
—& Z afx(s) . (44)
9 =

Note that, if ; = 8 and g; = g, for all i € {1,..., N}, then u}* = uf’, for all j, k.
For the calculation of a'¢, the solution to (42), with initial condition z(t) = =z,
for the strategy (44) is

o(e) = & (ET 3 ) (Eaet) o0



January 24, 2022 15:39 WSPC/INSTRUCTION FILE
imarinlGTR2021 final

Dynamic bargaining and time-consistency in cooperative differential games 19

By substituting in the value function, using (44) and proceeding as in the calculation
of the MPNE, we easily derive

N

2 2
al = | m; + Bj ZCL;‘C </Oo 9i(7)e_2[( = %)(Z’“N=l at’“c)Jré]T dT) )
; 0

K3 ]:1
In particular, in the case of constant discount rates p;, coefficients a!® satisfy the
following system of nonlinear algebraic equations:

N ﬂ2 N ﬁ2 N 2
al [ pi+20+2(> =2 (Z a§5> =m; + j > al] . (45)
) j=1

j=1 9 k=1
In the case of equal discount rates (p; = p), by taking the sum in ¢ of all af®, we
N

obtain a second degree equation in A" = Za?c. By substituting its solution in
j=1

(45), parameters a‘® can be computed. In the case of different discount rates, this

procedure does not work, but we can still find algebraic solutions if there are at

most three players with different discount rates. Note that we can solve equation

(45) by expressing a'® as a function of A, i.e., al® = 1;(A'°), where

2
m; + %’ (Atc)2

wi(Atc) = 2 .
pi+25+2(T0, 0) av

N N

Next, if we take Zaﬁc = Al = Zwi(Atc), we will obtain an algebraic equation
i=1 i=1

of order m + 1, where m is the number of different discount rates. As a result,

for m < 3, we can obtain algebraic solutions. On the contrary, for m > 4, the
t-cooperative solution has to be computed numerically, in general.

5.3. Agreeable dynamic bargaining solution

As in the t-cooperative solution, we have to solve (8) but, for V% (z) = af®2?,

weights are now given by
by _ Ni 1
)‘i (CL')— (adb—cﬂm)l’Q.

K2 (2

By substituting in (8) and solving the first order conditions, we obtain

el i) XN: i a(s)
ni9i af—ape

uf(s) =
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By proceeding as in the previous cases, after some calculations we obtain that, in
the case of constant discount rates p;, coefficients af’ satisfy the following system
of nonlinear equations:

N 2(,db nc N
32 (a, —a” ) n qdb
db k
a;” | pi +26+2 273 ]_ _ J 7&)_’“”6
j=1 nJg] k=1 k ak
2 [N db 2
2 .

= m, B ( '”«C) 77]61] (46)
i db

gﬂh = (lj — a;}c

In order to compute the solution, the equation system (46) has to be solved numer-
ically.

5.4. Time-consistent dynamic bargaining solution

According to the TCB solution, interior decision rules are obtained from (14). By

guessing V(z) = aba?, for threat linear decision rules u)"® = a2z, the equation

system (14) has linear solutions uf = alx giving rise to a quadratic value function,

in agreement with the hypothesis. Coefficients aé’ solve the equation system

N nya
Bi (47)
;gj<<a?>2—(°"c)>+2“ 3 B (o = ™)

Nigi b
g ((a)” = (o) )+2a 2 e (of — 0™)

fort=1,..., N, together with

al = (ml )/ 0 ( 2(0-200, o) g (48)

In particular, if discount rates are constant,

82 (a?
ab pi+25—225ja§- :mi—i-M
=1 9i
It remains to compute the threat strategy a®"¢ = (a)™,..., a% ~'). The follow-

ing proposition summarizes the equations that must be satisfied by candidates to
interior time-consistent dynamic bargaining solutions.

Proposition 4. In Problem (41)-(42), time-consistent bargaining solutions solve
0,nc

the system of nonlinear equations (47)-(48) with threat strategies given by u;,"" =

0,nc
;" "z, where

adme = — & (mﬂrgz ay) / 0;(s)e? (051 A5 =0)s g (49)
9i
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Proof. As in Proposition 3 we compute first a MPNE in a differential game played
along the time interval [t,t +¢]. If $5"“(2,t) = a"(t)x are the equilibrium strate-
gies for players j # ¢, player i solves

€

oW
max mix2 + giul2 + ~ | Biug + Z Bja?nc(t)x —ox

{u} Oox o
; 2 i _€,nc i _enc €,nc
Therefore, 8;/1/1 =— 69 a; ")z, so Wi(z,t)= fg—ai’ () + b"°(t)  and,
T i i
therefore,
0 _ i 0,nc 2 0,nc
Wiz, t) = —Z-a;"(t)z” + ;" (1) - (50)

7

Next, from Definition 6,
t+e
Wil = [ 0l =0) [miGe(9) + 0: (07°(5))" @()°] s
+/t°° i(s = 1) [mi(a(s))? + g: (a})” (a(s))?] ds (51)

—+€
with

N
z(s) = Zﬁiag’"c(s)x(s) —o0x(s), z(t)=S, for set,t+e€), and (52)

N
x(s) = Zﬁiagm(s) —ox(s), S(t+e) =Stpe, for s>t+e, (53)
i=1

where x4, is the limit when s — ¢ + € of the solution to (52). By solving (53) and
substituting the value of z(s) for s >t 4 € in (51), we obtain

Wit = [ 0 =) [mael6)? + 0000 ()] s

+<mi+gi (a§)2)( Gi(s—t)e2(2§'v1ﬂja?_5)(3_t_€)ds> (zere)? . (54)
t+e

Next, by solving z(s) in (52), computing

lim ;L'(S) = re tt+€(2;v:1 ﬂja?”c('r)—é) dr
s—t4e—

Ttte =

)

substituting in (54), and taking the limit e — 0, after several calculations we obtain

W(x,t) = (mi + 9 (a?)Q) (/oo 0:(s — t)eQ(Zf’:l Bjal—8)(s—t) ds) 2. (55)

Finally, by identifying (50) and (55), we obtain that the threat strategy is given by
(49). O

Note that, unlike the case of linear-state differential games, the threat point in
the time-consistent dynamic bargaining solution for homogeneous linear-quadratic
differential games is not the MPNE.
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5.5. Dicussion

As in the case with a unique constant discount rate, the ¢-cooperative equilibrium
is time consistent as a cooperative solution (i.e., in the sense of Definition 2) if,
and only if, a!® > a?¢, for all i = 1,...,N. In a similar way, the time-consistent
dynamic bargaining solution is time-consistent as a cooperative solution if, and only
if, a® > a?¢, for alli = 1,..., N. Since these inequalities do not depend on time and
the state of the system, time-consistency implies agreeability for the homogeneous
linear-quadratic differential game given by Problem (41)-(42). Unfortunately, in
order to test the time consistency and agreeability of the solutions, we must perform
numerical calculations for each particular problem.

In any case, for this differential game, we can look for linear decision rules for
all the solution concepts. If we consider more general linear-quadratic differential
games, as the one in Section 4.3, but with a quadratic damage cost, D;(S) = ¢;5?,
linear (affine) strategies can exist (provided that the corresponding system of non-
linear equations has a solution) for the noncooperative MPNE and the t-cooperative
equilibrium. However, this will not be the case, in general, for the two dynamic bar-
gaining solutions. In the agreeable dynamic bargaining solution, weight functions
given by as in Proposition 1 will not be constant (as in the linear-state differential
games) nor a constant times a common function (as in the homogeneous linear-
quadratic game studied in the present section). On the contrary, they will have a
more complicated structure that will make much more difficult the search of solu-
tions. An inspection to equation (14) suggests that the time-consistent bargaining
solutions will be also nonlinear, in general.

6. Concluding remarks

In this paper we have studied noncooperative MPNE and three cooperative solu-
tions for linear-state and a class of homogeneous differential games with heteroge-
neous, possibly nonconstant, discount rates. We have seen that, for these classes
of differential games and the three cooperative solution concepts, time consistency
(Definition 2) and agreeability (Definition 3) are equivalent.

Concerning the ¢t-cooperative equilibrium, it coincides with the standard cooper-
ative solution, obtained by maximizing the sum of payoffs of all players, for the case
of constant and equal discount rates. For more general discount rates, this solution
concept has the nice property that it can be easily computed for the two differential
game models studied in the paper. For the linear-state differential games solved
in Section 4, there is a unique constant equilibrium, and conditions for the time
consistency or agreeability can be easily checked. In the case of the homogeneous
differential game, we can look for linear equilibria, but the test of time consistency
has to be performed analytically.

In the two dynamic bargaining solutions studied in the paper, for the derivation
of constant strategies in linear-state differential games, and linear strategies in the
homogeneous differential game, we have to solve numerically a system of highly
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coupled nonlinear equations. As a result, the time consistency or agreeability of
the time-consistent dynamic bargaining solution has to be checked numerically.
The agreeable dynamic bargaining solution is time consistent and agreeable by
construction.

References

Castafier, A., Marin-Solano, J. and Ribas, C. [2020] An agreeable collusive equilibrium in
differential games with asymmetric players, Operations Research Letters 48, 4-8.

Castafier, A., Marin-Solano, J. and Ribas, C. [2021] A time consistent dynamic bargain-
ing procedure in differential games with heterogeneous discounting, Mathematical
Methods of Operations Research 93, 555-584.

de-Paz, A., Marin-Solano, J. and Navas, J. [2013] Time-consistent equilibria in commons
access resource games with asymmetric players under partial cooperation, Environ-
mental Modeling and Assessment 18, 171-184.

Dockner, E., Jgrgensen, S., Van Long, N. and Sorger, G. [2000] Differential games in
economics and management science, Cambridge University Press.

Ekeland, I., Long, Y. and Zhou, Q. [2013] A new class of problems in the calculus of
variations, Regular and Chaotic Dynamics 18, 552-584.

Haurie, A., Krawczyk, J.-B and Zaccour, G. [2012] Games and dynamic games, World
Scientific-Now Publisher Series in Business: Vol. 1

Jorgensen, S., Martin-Herrén, G. and Zaccour, G. [2003] Agreeability and time consistency
in linear-state differential games, Journal of Optimization Theory and Applications
119, 229-231.

Jorgensen, S., Martin-Herrdn, G. and Zaccour, G. [2005] Sustainability of cooperation
overtime in linear-quadratic differential games, International Game Theory Review
7, 395-406.

Jorgensen, S. and Zaccour, G. [2001] Time consistent side payments in a dynamic game of
downstream pollution, Journal of Economic Dynamics and Control 25,1973—-1987.

Kaitala, V. and Pohjola, M. [1990] Economic development and agreeable redistribution
in capitalism: Efficient game equilibria in a two-class neoclassical growth model,
International Economic Review 31, 421-437.

Karp, L. [2017] Provision of a public good with multiple dynasties, The Economic Journal
127, 2641-2664.

Marin-Solano, J. [2014] Time-consistent equilibria in a differential game model with time
inconsistent preferences and partial cooperation, in: J. Haunschmied, V. Veliov, S.
Wrzaczek (Eds.), Dynamic Games in Economics. Dynamic Modeling and Economet-
rics in Economics and Finance, vol. 16, Springer, 219-238.

Marin-Solano, J. [2015] Group inefficiency in a common property resource game with
asymmetric players, Fconomics Letters 136, 214-217.

Marin-Solano, J. and Shevkoplyas. E.-V. [2011] Non-constant discounting and differential
games with random horizon, Automatica 47, 2626-2638.

Petrosyan, L.-A. [1997] Agreeable solutions in differential games, International Journal of
Mathematics, Game Theory, and Algebra 7, 165-177.

Petrosyan, L.-A. and Yeung, D.-W.-K. [2014] A time-consistent solution formula for
bargaining problems in differential games, International Game Theory Review 16,
1450016.

Petrosyan, L.-A. and Zaccour, G. [2003] Time-consistent Shapley value allocation of pol-
lution cost reduction, Journal of Economic Dynamics and Control 27, 381-398.

Petrosyan, L.-A. and Zenkevich, N.-A. [1996] Game theory, World Scientific.



January 24, 2022 15:39 WSPC/INSTRUCTION FILE
imarinlGTR2021 final

24 J. Marin-Solano

Yeung, D.-W.-K. and Petrosyan, L.-A. [2004] Subgame consistent cooperative solutions in
stochastic differential games, Journal of Optimization Theory and Applications 120,
651-666.

Yeung, D.-W.-K. and Petrosyan, L.-A. [2005] Subgame consistent solution of a cooperative
stochastic differential game with nontransferable payoffs, Journal of Optimization
Theory and Applications 124, 701-724.

Yeung, D.-W.-K. and Petrosyan, L.-A. [2015] Subgame consistent cooperative solution for
NTU dynamic games via variable weights, Automatica 59, 84-89.



