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Abstract

L’objectiu d’aquest treball és descriure un mètode per calcular el valor de Shapley
en jocs amb cooperació restringida per un índex de cooperació mitjançant una funció
generatriu. Un cop descrit el mètode, estudiem la complexitat computacional del
càlcul de la funció generatriu en qüestió i presentem una implementació del mètode
i un exemple.

Abstract

Our goal in this paper is to describe a generating function method to compute the
Shapley value in games restricted by a cooperation index. Once we have described
the method, we study the computational complexity for computing the required
generating function and show an implementation of the method and an example.

2020 Mathematics Subject Classification. 91-04, 91-08, 91A12, 91A68



2 Introduction and preliminaries

Introduction and preliminaries

Game theory is a branch of mathematics that studies the decision-making of
some set of agents in situations where the outcome is affected by their choices. This
discipline is of interest due to the applications these “situations”, or games, have in
a wise range of topics, from economics and political science to computer science.

Broadly speaking, game theory is divided in the study of two different types of
games: non-cooperative and cooperative. This paper focuses on cooperative game
theory, in which the different agents, or players, reach binding agreements with each
other, which determine the game. Although it is not the only class of cooperative
games, this study specifically deals with the class of TU-games, short for transferable
utility games.

A TU-game is a pair (N, v) where N is what we call the set of players of the
game, and v is called the characteristic function of the game, which is a function
v : 2N → R, where 2N = {S : S ⊆ N}, such that v(∅) = 0. As long as no confusion
arises, we will usually identify such a game with its characteristic function. Being a
cooperative game, in a TU-game we call the sets S ⊆ N coalitions of players, and
the value v(S) of a coalition is its utility. Moreover, since this value is not related
to that of any other coalition, one can interpret v(S) as the benefit this group of
players can generate for and by themselves. This benefit can be thought as a certain
amount of a common currency (utility) that is to be divided among the members of
the coalition.

This division is not trivial, as different players can be of different importance to a
coalition. In terms of the characteristic function of a game, given a coalition S ⊆ N ,
the value v(S ∪ {i})− v(S) can vary for each i ∈ N . This term v(S ∪ {i})− v(S) is
called the marginal contribution of i to S, and serves as a starting point to discuss
how to “fairly” distribute utility among the players of the game.

In this context, given a set of players N = {1, 2, . . . , n}, we will refer to an
n-dimensional real vector as an allocation. For our purposes, the i-th component of
an allocation is the utility it allots to player i. As an extension of this idea, one can
consider mapping each characteristic function v : 2N → R to a specific allocation.
More formally, given GN , the class of characteristic functions of TU-games with
player set N , it is of interest to study maps ϕ : GN → Rn. We call such maps
allocation rules.
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One well-known allocation rule is the Shapley value, which we will denote by
Φ. For each player i ∈ N , the utility this player is allotted, analogously called the
Shapley value of i and denoted by Φi[v], is defined as follows:

Φi[v] = 1
n!

∑
S⊆Nr{i}

γs · (v(S ∪ {i})− v(S))

where for each S, s = |S| and γs = s!(n− s− 1)!.

In other words, the Shapley value of a player in v is the weighted sum of their
marginal contribution to all possible coalitions2, the weight being γs

n! , which is de-
pendent on the size of each coalition. Although we will not discuss this here, the
Shapley value can also be derived from a set of axioms, with the properties required
forcing the choice of these weights3. Our focus is instead on studying how to compute
Φi[v] for each player of a TU-game v.

For TU-games in general, one could enumerate all possible coalitions of players
and add up the weighted marginal contributions of each player. Other useful meth-
ods are not as general, as they require the characteristic function of the game to
have some structure. As an example that will motivate the contents of this paper,
we will show a method to compute the Shapley value in so-called weighted majority
games. These games are part of the larger subclass of the simple games, so we will
first define what these are.

A simple game is a TU-game (N, v) such that v(S) ∈ {0, 1} for all S ⊆ N

and, given two coalitions S, T ⊆ N such that S ⊇ T , then v(S) > v(T ). We call
this latter property monotonicity. Simple games are usually characterized by the
set of coalitions S ⊆ N for which v(S) = 1, called the set of winning coalitions of
v, and usually denoted by W(v) (or W, as long as there is no ambiguity regarding
the game). The set of coalitions S ⊆ N for which v(S) = 0 is called set of losing
coalitions.

2Note that if i ∈ S, then i’s marginal contribution to S is zero.
3A priori, other choices are possible. For instance, the sum of the marginal contributions of a

player weighted by 21−n is called the (normalized) Banzhaf power index, which can also be derived
from a set of axioms. In any case, the scope of this study is limited to the Shapley value.
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A weighted majority game is a simple game (N, v) for which there exists a list
of weights w1, . . . , wn ∈ N for the players and a quota q > 0 such that S ⊆ N is a
winning coalition of v if and only if w(S) =

∑
i∈S

wi > q. In general, we take

q >
1
2
∑
i∈N

wi + 1

Thus, there cannot be two disjoint coalitions S, T ⊆ N such that w(S) and w(T ) are
simultaneously greater than q. Equivalently, in this type of games there cannot be
two disjoint winning coalitions. We say a simple game with this property is proper.

The reason why a method limited to the class of weighted majority games is of
interest is that several real-life situations can be modeled using these games. As
a relevant example of a weighted majority game, we can take a parliament where
perfect party discipline is assumed, with the different parties acting as the players of
the game and the number of representatives affiliated to each party as their weights.
The quota is usually set to be the number of representatives required for a simple
majority, assuming only votes in favor or against some proposal are allowed. In this
overall scenario, the Shapley value of each player conveys, in a number from 0 to 14,
the power each party holds in parliament.

Now, in order to compute the Shapley value in these games, note that since
a simple game v must be monotonic, in particular, v(S ∪ {i}) > v(S) for all S.
Furthermore, since for each S, v(S) is either 0 or 1, a player i’s marginal contribution
to S, v(S ∪ {i}) − v(S), is also 0 or 1. We can disregard those S ⊆ N for which
v(S ∪ {i}) − v(S) = 0, as they will have no effect in the calculation. On the other
hand, those coalitions S with v(S ∪ {i}) − v(S) = 1 are the losing coalitions of v
for which S ∪ {i} is a winning coalition. We say a coalition with this property is a
swing for player i.

4One of the axioms that defines the Shapley value, called efficiency, states that the sum of the
Shapley value of all players of a game amounts to the value of the grand coalition, N , in this game,
i.e.

∑
i∈N

Φi[v] = v(N). Thus, in a weighted majority game,
∑
i∈N

Φi[v] = 1. Moreover, in such game,

the marginal contributions are always non-negative, so the Shapley value of each player must also
be non-negative.
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It follows that, if v is a simple game, we can compute the Shapley value of each
player i ∈ N as

Φi[v] = 1
n!

∑
S⊆Nr{i}

γs(v(S ∪ {i})− v(S)) = 1
n!

n−1∑
s=0

γs · dis

where dis is the number of swings for i that have size s. Furthermore, if v is a
weighted majority game, then S is a swing for i if and only if

q − wi 6 w(S) 6 q − 1

where w(S) =
∑
j∈S

wj . Indeed, this ensures w(S) < q, and thus that S is a losing

coalition, while w(S ∪ {i}) = w(S) + wi > q, and so S ∪ {i} is a winning coalition.
Hence, the number of swings for player i that have size s is

dis =
q−1∑

k=q−wi
Ais(k)

where for each s and k, Ais(k) is the number of coalitions S ⊆ N r {i} of size s such
that w(S) =

∑
j∈S

wj = k. In short, if v is a weighted majority game, the calculation

of the Shapley value of each i ∈ N is reduced to that of the numbers Ais(k). In order
to compute these terms, we introduce the concept of a generating function.

A generating function is the representation of an m-variable sequence

{s(n1, . . . , nm) : nj > 0, 1 6 j 6 m}

as a power series

f(x1, . . . , xm) =
∑
n1>0
· · ·

∑
nm>0

s(n1, . . . , nm) · xn1 · xn2 · · ·xnm

This representation is useful as it provides the whole sequence merely as a multi-
variate polynomial.
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For the sequence formed by the numbers Ais(k) in a weighted majority game,

{Ais(k) : 0 6 s 6 n− 1, 0 6 k 6
∑
j 6=i

wj = w(N)− wi}

its generating function can be computed as

∏
j 6=i

(1 + zxwj ) = 1 +
∑

∅6=S⊆Nr{i}
z|S|

∏
j∈S

xwj =

=
∑
S⊆N

z|S|xw(S) =

=
n−1∑
s=0

w(N)−wi∑
k=0

Ais(k) · zs · xk

Computing these polynomials is less demanding than listing all possible coali-
tions5, making the generating function method a powerful tool to compute the Shap-
ley value in weighted majority games. Moreover, note that the Shapley value of each
player is directly computed from the list of weights and the quota for a majority:
the explicit calculation of the winning coalitions of the game is not needed.

Unfortunately, despite these improvements on its calculation, the Shapley value
as an allocation rule has some limitations. Recall that the Shapley value of a player
is the weighted sum of their marginal contribution to all coalitions S, where the
weights only depend on the size of the coalition. Thus, besides their size, this sum
gives equal weight to each coalition, effectively assuming they are all equally likely
to form. Applied to parliament, this would suggest that all agreements between
parties are possible and equally likely, which is far from the case in general.

In reality, the relations between players can be complex. In an attempt to capture
this complexity, we use restricted cooperation models. Some such models use a graph
with the players of the games as vertices to convey some information on the relations.
For instance, such a graph can be used to indicate pairs of players that will never
cooperate. These graphs are called incompatibility graphs, and we say a pair of
players connected by an edge in such a graph are incompatible.

5More details on this method and its computational complexity can be found in [4].
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Given a restricted cooperation model, we can define its associated restricted
game, which will be a new TU-game the characteristic function of which will account
for the restrictions to cooperation imposed by the model. In particular, given a TU-
game (N, v) and an incompatibility graph g, the restricted game is (N, vg), with
vg : 2N → R defined by

vg(S) = max
P∈P (S, g)

∑
T∈P

v(T )

where P (S, g) is the set of all partitions of S into subsets that do not contain
incompatible players6, that is, that contain no pair of players connected in g.

Thus, the Shapley value in the restricted game results in an allocation that is
arguably more realistic, as it takes into account the restrictions to cooperation given
by the incompatibility graph g. As for computing it, although using enumeration is
still possible, this would require computing the restricted game first, which is not
trivial. Fortunately, if the original game v is a weighted majority game, a generat-
ing function method also exists for the Shapley value in a game with cooperation
restricted by an incompatibility graph. Similar to the general case, the procedure,
fully described in [1], does not require the explicit computation of the restricted
game, only the list of weights, the quota for a majority and the incompatibility
graph.

This brief introduction on how to compute the Shapley value under a specific
restricted cooperation model poses the following question: is it possible to use a
similar method for other models? At the same time, one might seek a more general
model. Albeit useful, an incompatibility graph is arguably too restrictive, as it
completely rejects cooperation between some players, thus eliminating much of the
nuances in relations between players in real-life situations. This latter issue is part of
the focus of [2], in which its authors introduce the cooperation index model, designed
to generalize other restricted cooperation models.

Thus, our goal in this paper is to develop a generating function method to
compute the Shapley value in TU-games restricted by a cooperation index. The
approach is similar to that of [1], in that the method does not require the explicit
computation of the restricted game. Furthermore, while the two generating function
methods for the Shapley value we have discussed apply only to weighted majority
games, the method we will describe here is more general.

6This definition is taken directly from [3]. See this paper for a detailed study on games restricted
by incompatibility graphs and allocation rules in such games.
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Next, Section 1 introduces the cooperation index model and the restricted game it
yields and describes the method in full detail. Section 2 discusses the computational
complexity of the method and the prior calculations its application might require.
Finally, Section 3 provides an implementation of the method using Mathematica

and a small example, and in Section 4 we give some final comments on the overall
process and related questions to be explored.
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1 Games restricted by a cooperation index

Let (N, v) be a TU-game. In order to develop a method for the calculation that
concerns us, we will first introduce the cooperation index concept and the restriction
of v it yields, as stated in [2]:

Definition 1. A cooperation index on N is a function p : 2N → [0, 1] such that
p({i}) = 1 ∀i ∈ N .

The restriction of (N, v) by p (henceforth, as long as no confusion arises, the
restricted game) is the TU-game (N, vp), where vp is defined for every S ⊆ N by

vp(S) = max
P∈P+(S, p)

∑
T∈P

v(T )p(T )

where P+(S, p) denotes the set of all partitions of S into subsets T1, . . . , Tk such
that p(Tj) > 0 ∀j ∈ {1, . . . , k}7.

Remark 1. By convenience, given a cooperation index p we will always assume
p(∅) = 1. Note that this does not affect the value of vp(∅).

Intuitively, for each S ⊆ N , vp(S) can be seen as the maximum value weighted
by p the members of S can collectively obtain, conditional on reaching agreements
only with other members of S in ways that ensure all (sub)coalitions formed have
positive cooperation index.

In this study we will describe a way to compute

Φi[vp] = 1
n!

∑
S⊆Nr{i}

γs (vp(S ∪ {i})− vp(S))

the Shapley value of each player i ∈ N in a restricted game8, where for each S,
s = |S| and γs = s!(n− s− 1)!.

7Definition 1 is taken directly from [2]. For the purposes of this study, in this definition we could
take the maximum over all partitions, including those with some coalition with null cooperation
index. In the cited paper, its authors discuss this alternative definition, and show it coincides with
the original one should v be a non-negative game, hence why it will ultimately work for us.

8In the aforementioned paper by Amer and Carreras, Theorem 4.1. states that given a game v,
this is the unique map Ψ : I(N) → Rn, where I(N) is the class of cooperation indices on N . In
other words, they provide an axiomatic description of the value, which we will not further discuss
here.
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Specifically, we will do so for simple proper games; thus, we will henceforth
assume that (N, v) is a TU-game such that:

• v is monotonic, that is, given two coalitions S, T ⊆ N such that S ⊇ T , we
have that v(S) > v(T ).

• v(S) ∈ {0, 1} for all S ⊆ N , and so v is a simple game.

• v is proper, that is, there are no two disjoint coalitions in the set of winning
coalitions of v, W = {S ⊆ N : v(S) = 1}.

Recall that, given i ∈ N ,

Φi[vp] = 1
n!

∑
S⊆Nr{i}

γs (vp(S ∪ {i})− vp(S))

where s = |S| for each S and γs = s!(n− s− 1)! for each s ∈ {0, . . . , n− 1}. Thus,
in order to compute Φi[vp] it is in our interest to determine when vp(S∪{i})−vp(S)
is non-zero; we devote the following section to this objective.

1.1 Marginal contributions in the restricted game

Previously, we stated that given a TU-game (N, v), for each i ∈ N and S ⊆ N

we call
v(S ∪ {i})− v(S)

the marginal contribution of player i to S in game v.

We claim that, since v is a non-negative game, i.e. v(S) > 0 ∀S, vp is monotonic.
This result appears in [2] as Proposition 3.4. To prove it, let S, T ⊆ N be such that
S ⊇ T and let Q ∈ P+(T, p) be a partition such that

vp(T ) =
∑
T ′∈P

v(T ′)p(T ′)

Now consider the partition Q′ =
⋃

j∈SrT
{j} ∪ Q of S. By construction, p({j}) = 1

for each j ∈ S r T , and so Q′ ∈ P+(S, p).



Marginal contributions in the restricted game 11

Furthermore, by the non-negativity of v,

vp(T ) =
∑
T ′∈Q

v(T ′)p(T ′) 6
∑
T ′∈Q

v(T ′)p(T ′) +
∑

j∈SrT
v({j}) =

=
∑
T ′∈Q′

v(T ′)p(T ′) 6 max
P∈P+(S, p)

∑
T ′∈P

v(T ′)p(T ′) = vp(S)

and the monotonicity of vp follows.

In particular, the marginal contribution of i to S in vp, vp(S ∪ {i}) − vp(S) is
always non-negative. Hence, we are actually studying when this term is positive.
Recall that when v is a simple game, v(S ∪ {i})− v(S) > 0 if and only if a coalition
S ⊆ Nr{i} is what we call a swing for player i, that is, S is losing in v while S∪{i}
is winning.

In the restricted game, the situation is somewhat more complex. The next result
shows how the expression for vp is reduced if v is a proper simple game, which will
simplify the subsequent treatment of the marginal contribution of a player i to a
coalition S ⊆ N in vp; in particular, that of its value when S is a swing for i in v.

Lemma 1. Given W = {S ⊆ N : v(S) = 1}, the set of winning coalitions of v, for
each S ⊆ N we have

vp(S) =


max

T∈W∩2S
p(T ) if S ∈ W

0 otherwise

Proof. By the monotonicity of v, if S 6∈ W, then there is no T ⊆ S such that
v(T ) > 0, and therefore it must be the case that vp(S) = 0. If, on the contrary,
S ∈ W, then for each partition P of S there is at most one T ⊆ S such that v(T ) = 1,
since we are assuming v is a proper game. Indeed, should there be two (or more)
different winning coalitions in a partition P of S, we would have, in particular, a
pair of disjoint coalitions in W.

Now, given S ∈ W, for each P ∈ P+(S, p) consider

vp(P, S) =
∑
T∈P

v(T )p(T )

We seek to maximize vp(P, S). It is clear that vp(P, S) = 0 if there are no winning
coalitions among the subsets in a partition P. Otherwise, vp(P, S) = p(T ) > 0,



12 Games restricted by a cooperation index

where T ∈ W is the only such coalition contained in P. It follows from here that if
S ∈ W, then vp(S) = max

T∈W∩2S
p(T ).

Remark 2. As the following example shows, v being proper is not a superfluous
hypothesis in the previous result.

Example 1. Let v be the 3-person game where all possible non-empty coalitions
are winning except for {2} and {3} and consider the cooperation index p on N =
{1, 2, 3} defined as

p(S) =

1 if |S| = 1
1/2 otherwise

Note that v is not proper: P1 = {1} and P2 = {2, 3} are disjoint winning coalitions
of this game. In fact, P ′ = {P1, P2} is a partition of N containing only sets with
positive cooperation index and therefore, starting from the initial characterization
of vp given in Definition 1,

vp(N) = max
P∈P+(N, p)

∑
T∈P

v(T )p(T ) >
∑
T∈P ′

v(T ) · p(T ) =

= v({1})p({1}) + v({2, 3})p({2, 3}) = 3/2 > 1 = max
T∈W∩2N

p(T )

In particular, N is such that vp(N) 6= max
T∈W∩2N

p(T ).

Remark 3. The previous example also shows that given a simple game v, in general,
vp is not a simple game.

From Lemma 1 follows that if S is a swing for i in v, since, in particular, S is a
losing coalition in v, we have vp(S) = 0, and so

vp(S ∪ {i})− vp(S) = vp(S ∪ {i})− 0 = vp(S ∪ {i})

In other words, a swing for i in the simple game can give rise to a situation for which
the marginal contribution of i to a coalition S in vp is positive, as long as vp(S∪{i})
is positive in the first place.
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On this latter point, Lemma 1 states a trivial necessary condition for vp(S) to
be positive, namely, that S has to be winning in v. But this is clearly not enough:
it could be the case that all winning coalitions contained in some W ∈ W have null
cooperation index and therefore

vp(W ) = max
T∈W∩2W

p(T ) = 0

Corollary 1. Given S ⊆ N , vp(S) > 0 if and only if there is some winning coalition
T ⊆ S with p(T ) > 0.

In general, given W ∈ W, the value of p on all subsets of W must be checked in
order to determine whether vp(W ) is positive or not; the same effort is required to
compute the exact value of the coalition.

Swings for player i in the simple game are not the only coalitions to which i can
have a positive marginal contribution in the restricted game, though. Below these
lines we properly characterize all instances in which i’s marginal contribution to a
coalition S ⊆ N in the restricted game is positive.

Lemma 2. Let S ⊆ N be a coalition not containing i, i.e. S ⊆ N r {i}. The
marginal contribution of i to S in vp is positive if and only if ∃T ⊆ S ∪{i} such that
T is winning in v and p(T ) > 0, and all coalitions T for which vp(S ∪ {i}) = p(T )
contain i.

Proof. In order to have vp(S∪{i})−vp(S) > 0, it must be the case that vp(S∪{i}) >
0. Otherwise the monotonicity of vp implies that vp(S) = 0, and so

vp(S ∪ {i})− vp(S) = 0− 0 = 0

As stated by Corollary 1, vp(S ∪ {i}) > 0 is equivalent to there being some not
necessarily unique winning coalition T with positive cooperation index contained
in S ∪ {i}. In particular, S ∪ {i} is winning in v and thus Lemma 1 guarantees
vp(S ∪ {i}) = p(T ) for some of these T , still not ensuring uniqueness. It remains to
be checked that all such T contain i.

This is trivial if S is losing, that is, if it is a swing for i in v. Note that a winning
coalition T ′ ⊂ S ∪{i} not containing i is a winning coalition contained in S. Should
such T ′ exist, the monotonicity of v would then imply that S is also winning, which
contradicts the assumption that S is a swing.
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If S is winning to begin with and we suppose there is some winning coalition
T ′ ⊆ S such that vp(S ∪ {i}) = p(T ′) then we claim that vp(S) = p(T ′). Since we
are assuming that S ∈ W, by Lemma 1 we have that vp(S) = max

T∈W∩2S
p(T ) > p(T ′).

Hence, if the claim does not hold, it would be implied that

vp(S) > p(T ′) = vp(S ∪ {i})

which contradicts the monotonicity of vp. It follows that vp(S ∪ {i}) = vp(S).

Conversely, if every winning coalition T ⊆ S ∪ {i} with p(T ) > 0 and such that
vp(S ∪ {i}) = p(T ) contains i, then there is no winning T ′ ⊆ S with p(T ′) > 0 such
that vp(S ∪ {i}) = p(T ′) > 0. In particular,

vp(S ∪ {i}) 6= max
T∈W∩2S

p(T ) = vp(S)

and the monotonicity of vp implies that vp(S ∪ {i}) > vp(S).

In summary, we have two situations in which the marginal contribution of a
player i to a coalition S in vp can be positive. We first saw that a swing for i in
the simple game, that is, a situation in which a coalition S is losing while S ∪ {i}
is winning, is one of these scenarios. Lemma 2 shows that, by the nature of the
restricted game, it can also be the case that a player’s marginal contribution to a
coalition S that is winning in the simple game is positive.

In each situation, for i to have a positive marginal contribution to S, this player
is required to be part of all subcoalitions of S ∪ {i} with cooperation index equal
to vp(S ∪ {i}), this coalition being winning in v. Unfortunately, in practice it can
be hard to verify whether a player satisfies this property relative to an arbitrary
coalition; for now, we will use the following trivial necessary condition:

Corollary 2. Given a coalition S ⊆ N r {i}, if vp(S ∪ {i})− vp(S) > 0, then there
is some winning coalition T ⊆ S ∪ {i} such that i ∈ T and p(T ) > 0. In other
words, S contains some set of players such that adding i to it results in a winning
subcoalition of S ∪ {i} whose cooperation index is positive.
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Aided by these results, we can write Φi[vp] as

Φi[vp] = 1
n!

∑
S⊆Nr{i}

γs · (vp(S ∪ {i} − vp(S)) =

= 1
n!

 ∑
S 6∈W: S∪{i}∈W

γsvp(S ∪ {i}) +
∑

S∈W: i 6∈S
γs(vp(S ∪ {i})− vp(S))

 =

= 1
n!


∑

S 6∈W: ∃R∪{i}∈W

R⊆S, p(R∪{i})>0

γsvp(S ∪ {i}) +
∑

S∈W: ∃R∪{i}∈W

i 6∈S,R⊆S, p(R∪{i})>0

γs(vp(S ∪ {i})− vp(S))

 =

= 1
n!


∑

S⊆Nr{i}: ∃R∪{i}∈W

R⊆S, p(R∪{i})>0

γsvp(S ∪ {i})−
∑

S∈W: ∃R∪{i}∈W

i 6∈S,R⊆S, p(R∪{i})>0

γsvp(S)


In the preceding equation, starting from the definition of player i’s Shapley value

in the restricted game, we have first restricted our work to those sets of coalitions
in which it is possible to have vp(S ∪ {i}) − vp(S) > 0. As previously discussed,
these correspond to cases where either (a) S is a losing coalition of v that becomes
winning when i is added to it, for which we know this player’s marginal contribution
to S in the restricted game is vp(S ∪ {i}), or (b) S is a winning coalition of v not
involving player i.

The next step further prunes both of these sets using Corollary 2. Namely,
we are restricting the summations to those S satisfying the necessary condition for
vp(S ∪{i})− vp(S) > 0 to occur given by this result. Hence, in the first summation,
accounting for coalitions satisfying (a), we are only adding over the set of losing
coalitions S ⊆ N r {i} for which there is some R ⊆ S such that R ∪ {i} is winning
and p(R∪{i}) > 0. Analogously, in the second summation, accounting for coalitions
satisfying (b), we add over the set of winning coalitions S ⊆ N r{i} for which there
is some R ⊆ S with the same properties as before.

Finally, we can merge the first summation with the positive part of the second
one, as they are collectively adding term γsvp(S ∪ {i}) over all S ⊆ N r {i} for
which there is some subcoalition R ⊆ S such that adding i to R results in a winning
coalition with positive cooperation index.
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Definition 2. For each i ∈ N , let

Φ+
i [vp] =

∑
S⊆Nr{i}: ∃R∪{i}∈W

R⊆S, p(R∪{i})>0

γsvp(S ∪ {i})

Φ−i [vp] =
∑

S∈W: ∃R∪{i}∈W

i 6∈S,R⊆S, p(R∪{i})>0

γsvp(S)

We will call these summations the positive and negative parts of Φi[vp], respectively.

To sum up, we can now compactly write Φi[vp] as

Φi[vp] = 1
n!
(
Φ+
i [vp]− Φ−i [vp]

)

1.2 The set of essential coalitions

Note that, in essence, the positive and negative parts of Φi[vp] are sums of vp(S)
(weighted by γs) for S in a certain subset of W. Recall that by Lemma 1, for each
such S, we have vp(S) = p(T ) for some winning T ⊆ S; hence, we are adding up
p(T ) for T in a certain subset of W.

As the latter subset, although it would be reasonable to use the smallest collection
of winning coalitions T for which there is some S ⊆ N such that vp(S) = p(T ),
that is, those winning coalitions with cooperation index equal to the value of some
coalition in the restricted game, this is not the collection we will use for this purpose.
For now, we introduce the collection we will actually use and its key property.

Definition 3. Let E (v, p) be the set of winning coalitions S of v with positive
cooperation index such that every proper winning subcoalition of S has a lower
cooperation index than S, that is,

E (v, p) = {S ∈ W+(p) : p(S) > p(R) ∀R ∈ W ∩ 2S , R 6= S}

where W+(p) = {W ∈ W : p(W ) > 0}.

We will call this collection set of essential coalitions of game v associated with
cooperation index p. As long as no confusion arises, we will simply call it the set of
essential coalitions and denote it by E .
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Lemma 3. For each T ⊆ N such that vp(T ) > 0 there is some essential coalition S
such that S ⊆ T and vp(T ) = p(S).

Proof. Given a coalition T ⊆ N such that vp(T ) > 0, let S ⊆ T be a winning
coalition such that vp(T ) = p(S) and |S| 6 |S′| for all other S′ ∈ W ∩ 2T for which
vp(T ) = p(S′). We claim that S is an essential coalition, that is, its cooperation
index is greater than that of any winning coalitions of v strictly contained in it.

Should this claim not hold, then there would be some winning R ( S with
p(R) > p(S) = vp(T ). In fact, since, in particular, R ⊆ T , and by Lemma 1,

p(S) = vp(T ) = max
R′∈W∩2T

p(R′) > p(R)

it follows that vp(T ) = p(R). But, since |R| < |S|, this contradicts the assumption
that there is no coalition S′ smaller than S such that vp(T ) = p(S′); we conclude
that S ∈ E .

Observe that given C ⊆ W such that for all T ⊆ N with vp(T ) > 0 there is
some C ∈ C for which C ⊆ T and vp(T ) = p(C), this collection C must contain all
essential coalitions, that is, E ⊆ C. This is directly implied by the definition of E :
any essential coalition S is, by construction, a winning coalition of v with positive
cooperation index, and so, by Lemma 1,

vp(S) = max
R∈W∩2S

p(R) > p(S) > 0

Again by construction of E , the only winning coalition R ⊆ S for which vp(S) = p(R)
is S itself, and so S ∈ C. In summary, we can use the property of E stated by
Lemma 3 as an alternative definition of the set of essential coalitions.

However, while Lemma 3 guarantees that if vp(T ) > 0 then there is some essential
coalition E ∈ E contained in T for which vp(T ) = p(E), such E need not be
unique. This is a consequence of Lemma 1 stating that for each winning coalition
T ⊆ N there is some winning coalition S ⊆ T for which vp(T ) = p(S), not ensuring
uniqueness either; as the following example shows, it can be the case that more than
one such S is an essential coalition.

Example 2. LetN = {1, 2, 3, 4} and v be the four player simple game with winning
coalitions

W = {{1, 2}, {2, 3}, {3, 4}} ∪ {S ⊆ N : |S| > 3}
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Consider the cooperation index p defined by

p(S) =



1 if |S| = 1
1/3 if |S| = 2
1/4 if |S| = 3
1/2 if S = N

It is easy to check that E = E (v, p) = {{1, 2}, {2, 3}, {3, 4}, N}. Recall that

E = E (v, p) = {S ∈ W+(p) : p(S) > p(R) ∀R ∈ W ∩ 2S , R 6= S}

The grand coalition of this game, N , has the highest cooperation index among the
winning coalitions, and no other matches its value, so N ∈ E . Coalitions of size 3
cannot be essential in this game, as they all contain at least one winning coalition
of size 2, which have greater cooperation index. Finally, each winning coalition of
size 2 trivially has strictly larger cooperation index than all winning coalitions it
contains. These two player coalitions are the minimal winning coalitions of v, that
is, those that contain no further winning coalitions. Having said this, we have that
for T = {2, 3, 4} both S1 = {2, 3} and S2 = {3, 4} are essential coalitions of this
game contained in T and

vp(T ) = p(S1) = p(S2) = 1/3

Thus, E is not necessarily the smallest collection of winning coalitions W of v
for which there is some S ⊆ N with vp(S) = p(W ). In other words, the previous
example shows that E may contain two coalitions with the same cooperation index.
However, in spite of E being a larger collection, we will favor its use over that of a
collection containing only one coalition W (x) ∈ E for each possible value x ∈ [0, 1]
the cooperation index p takes in E ; we can interpret the previous example as showing
that, given E , there may not be a unique way to construct such a collection.

In general, given the set of winning coalitions W of a game v and a cooperation
index p, computing the corresponding set of essential coalitions is hard. This is
partly caused by p being a rather general function on 2N : we are only requiring it to
return outputs in interval [0, 1] and for it to return exactly 1 for sets of one element.
Imposing more structure on p can ease the construction of E . This issue will be fully
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addressed later on in section 2. In the method below we will suppose the desired set
of essential coalitions is given. Not only that, we will require the essential coalitions
to be in a certain order.

Namely, given the set of essential coalitions E , let Θ(E ) be a permutation of the
elements of this set such that, as a list,

Θ(E ) = (E1, E2, . . . , Ek)

is ordered in non-increasing order of p, that is, if l < j, then p(El) > p(Ej). We will
call Θ(E ) a sorted list of essential coalitions, and denote it by Θ as long as no con-
fusion arises regarding the particular set of essential coalitions E being considered.

Note that the ordering of E given by Θ above is not necessarily unique. In
practice, for our purposes here and later in this section, since the upcoming results
hold for any sorted list of coalitions, we are indifferent as to which one is chosen.
Even so, for the sake of clarity and consistency, from now on let Θ be the sorted
list of coalitions in which, in case some coalitions have the same cooperation index,
these are sorted in non-decreasing order of size. Should the tie persist among some of
them, let these coalitions be in lexicographical order. To sum up, we are henceforth
assuming that

Θ = (E1, E2, . . . , Ek)

is a list of essential coalitions such that given two such coalitions El = {i1, . . . , i|El|}
and Et = {j1, . . . , j|Et|} with l < t and

i1 < i2 < · · · < i|El|

j1 < j2 < · · · < j|Et|

then, either

a) p(El) > p(Et),

b) p(El) = p(Et) and |El| < |Et|, or

c) p(El) = p(Et), |El| = |Et| and there is some m ∈ {1, . . . , |El|} such that ir = jr

for r < m and im < jm.

We will still call Θ a sorted list of essential coalitions.
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For the remainder of this section we will also consider a map µ defined for each
S ⊆ N with vp(S) > 0 by µ(S) = min{l ∈ K : El ⊆ S}9. The lemma below shows
a key property of this map; from this result, a necessary condition for a player’s
marginal contribution to a coalition S ⊆ N r {i} to be positive in terms of Θ
follows.

Lemma 4. Let v be a simple proper game with player N and p a cooperation index
on N . Given a sorted list of essential coalitions

Θ = Θ (E (v, p)) = (E1, . . . , Ek)

For all S ⊆ N such that vp(S) > 0 we have vp(S) = p(Eµ(S)).

Proof. Suppose the lemma is not true. Then, since Eµ(S) ⊆ S and vp(S) > 0 implies
that S is winning, by Lemma 1

p(Eµ(S)) 6 max
T∈W∩2S

p(T ) = vp(S)

and so vp(S) > p(Eµ(S)).

Now, let m ∈ {1, . . . , k} be such that the essential coalition Em is contained in
S and vp(S) = p(Em). By Lemma 3, m is well defined. Moreover, we have seen that
p(Em) > p(Eµ(S)). Thus, since Θ is a sorted list of essential coalitions, it must be
the case that m < µ(S). However, this contradicts the assumption that Eµ(S) is the
first coalition in Θ that is contained in S; we conclude that vp(S) = p(Eµ(S)).

Corollary 3. Let v be a simple proper game with player set N and p a cooperation
index on N . Given a coalition S ⊆ N r {i} and a sorted list of essential coalitions

Θ = Θ (E (v, p)) = (E1, . . . , Ek)

If vp(S ∪ {i}) − vp(S) > 0, then µ(S ∪ {i}) = min{l ∈ K : El ⊆ S ∪ {i}} is well
defined and i ∈ Eµ(S∪{i}).

9A map such as µ can be built for each sorted list of essential coalitions, and so a parametric
family of maps µΘ could be considered. However, we need not use this, as we have already set Θ
to be a particular list of essential coalitions.
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Proof. As seen in Lemma 2, if vp(S ∪ {i})− vp(S) > 0, then vp(S ∪ {i}) > 0. Thus,
µ(S ∪ {i}) is indeed well defined, and, by Lemma 4, vp(S ∪ {i}) = p(Eµ(S∪{i})).

And, since, by construction, Eµ(S∪{i}) ⊆ S ∪ {i}, if i 6∈ Em, then, by Lemma 2,
vp(S ∪ {i})− vp(S) = 0, and the corollary follows.

While still not sufficient, the necessary condition given in Corollary 3 is at least
as restrictive as the one given in Corollary 2. Indeed, given S ⊆ N r {i} such
that i ∈ Eµ(S∪{i}), where µ(S ∪ {i}) is well defined, then there is some coalition
R ⊆ S such that R∪{i} is winning in v and has positive cooperation index, namely,
Em r {i}. The converse statement is not true however, as the following example
shows.

Example 3. Consider again Example 2, that is, the game v with player set N =
{1, 2, 3, 4} and winning coalitions

W = {{1, 2}, {2, 3}, {3, 4}} ∪ {S ⊆ N : |S| > 3}

and the cooperation index p defined by

p(S) =



1 if |S| = 1
1/3 if |S| = 2
1/4 if |S| = 3
1/2 if S = N

We already saw that these inputs yield

E = {{1, 2}, {2, 3}, {3, 4}, N}

Note that the list of essential coalitions ({1, 2}, {2, 3}, {3, 4}, N) is not in non-
increasing order of p, sinceN is in last position while it has strictly larger cooperation
index than all other essential coalitions; in this example,

Θ = (N, {1, 2}, {2, 3}, {3, 4}) = (E1, E2, E3, E4)

is a sorted list of essential coalitions.
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Now, consider the coalition S = {1, 2}. For player 3, subcoalitionR = {2} is such
that R∪ {3} = {2, 3} is a winning coalition that is contained in S ∪ {3} = {1, 2, 3}
and p({2, 3}) = 1

3 > 0 implies that vp({1, 2, 3}) > 0. However,

µ({1, 2, 3}) = min{l ∈ K : El ⊆ {1, 2, 3}} = 2

and 3 6∈ E2 = {1, 2}.

Thus, we obtain

Φ+
i [vp]− Φ−i [vp] =

∑
S⊆Nr{i}:R∪{i}∈W

R⊆S, p(R∪{i})>0

γsvp(S ∪ {i})−
∑

S∈W:R∪{i}∈W

i 6∈S,R⊆S, p(R∪{i})>0

γsvp(S)

=
∑

S⊆Nr{i}: i∈Eµ(S∪{i})

γsvp(S ∪ {i})−
∑

S∈W: i∈Eµ(S∪{i})
i 6∈S

γsvp(S)

where µ(S ∪ {i}) = min{l ∈ K : El ⊆ S ∪ {i}}10.

Since the two resulting summations depend on the particular ordering of the
sorted list of essential coalitions Θ, we will denote them by

Φ+
i [vp, Θ] =

∑
S⊆Nr{i}: i∈Eµ(S∪{i})

γsvp(S ∪ {i})

Φ−i [vp, Θ] =
∑

S∈W: i∈Eµ(S∪{i})
i 6∈S

γsvp(S)

and call them the positive and negative parts of Φi[vp], respectively, associated with
Θ11. All in all, we have

Φi[vp] = 1
n!
(
Φ+
i [vp, Θ]− Φ−i [vp, Θ]

)

10There is an abuse of notation here, as in the summations above it is implied that µ(S ∪ {i}) is
well defined, i.e. vp(S ∪ {i}) > 0. Recall that if vp(S ∪ {i}) = 0, then, by the monotonicity of vp,
vp(S) = 0, so S would not contribute to any of the summations in the equation.

11Although we have previously set Θ to be a specific sorted list of essential coalitions, this notation
conveys that, while Φ+

i [vp] and Φ−i [vp] are inherent to the game, Φ+
i [vp, Θ] and Φ−i [vp, Θ] depend

on the actual choice of Θ.
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Without further ado now, we proceed to discuss how to add up the cooperation
indices of essential coalitions to obtain the positive and negative parts of Φi[vp]
associated with Θ. We will first focus on the positive part,

Φ+
i [vp, Θ] =

∑
S⊆Nr{i}: i∈Eµ(S∪{i})

γsvp(S ∪ {i})

This is a sum over coalitions of size between 0 and n − 1, and each of its terms
s ∈ {0, . . . , n − 1} is itself a sum adding up vp(S ∪ {i}) for those S of size s such
that i ∈ Eµ(S∪{i}), weighted by γs = s!(n− s− 1)!, that is,

Φ+
i [vp, Θ] =

n−1∑
s=0

γs
∑

S⊆Nr{i}: |S|=s, i∈Eµ(S∪{i})

vp(S ∪ {i})

Thus, our calculation has been reduced to properly adding the value of some coali-
tions in the restricted game. Recall that Lemma 4 shows that if vp(S ∪ {i}) > 0,
then vp(S ∪ {i}) = p(Eµ(S∪{i})), and so

∑
S⊆Nr{i}: |S|=s, i∈Eµ(S∪{i})

vp(S ∪ {i}) =
∑

S⊆Nr{i}: |S|=s, i∈Eµ(S∪{i})

p(Eµ(S∪{i}))

Note that, in practice, we are adding the cooperation index of essential coalitions
that contain i, and so

∑
S⊆Nr{i}: |S|=s, i∈Eµ(S∪{i})

p(Eµ(S∪{i})) =
∑
l∈K
i∈El

p(El)·|{S ⊆ N r {i} : µ(S ∪ {i}) = l and |S| = s}|

which proves the following result.
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Lemma 5. Let v be a simple proper game with player set N and p a cooperation
index on N . Given a sorted list of essential coalitions

Θ = Θ (E (v, p)) = (E1, . . . , Ek)

for each player i ∈ N , the positive part of their Shapley value in the restricted game
associated with Θ satisfies

Φ+
i [vp, Θ] =

n−1∑
s=0

γs
∑
l∈K
i∈El

p(El) ·
∣∣∣Di

s(l)
∣∣∣

where γs = s!(n− s− 1)!, K = {1, 2, . . . , k} and, for each l ∈ K,

Di
s(l) = {S ⊆ N r {i} : µ(S ∪ {i}) = l and |S| = s}

where for each T ⊆ N such that vp(T ) > 0, µ(T ) = min{l ∈ K : El ⊆ T}.

Thus, Di
s(l) represents the set of coalitions of size s that do not contain player

i for which El ⊆ S ∪ {i} while none of the essential coalitions E1, . . . , El−1 that
precede it in the sorted list Θ are subcoalitions of S ∪ {i}.

The procedure we will use to compute the negative part,

Φ−i [vp, Θ] =
∑

S∈W: i∈Eµ(S∪{i})
i 6∈S

γsvp(S)

is quite similar. Once again, we are performing a sum over subsets of N r {i},
which have cardinality s ∈ {0, . . . , n − 1}. Now, for each term s of the sum, the
weight γs = s!(n− s−1)! is to be multiplied by the sum of vp(S) over those winning
coalitions S ⊆ N r {i} of size s such that i ∈ Eµ(S∪{i}), that is,

Φ−i [vp, Θ] =
n−1∑
s=0

γs
∑

S∈W: |S|=s, i∈Eµ(S∪{i})
i 6∈S

vp(S)

We can safely disregard those winning coalitions for which vp(S) = 0, as they do
not contribute to the sum above. For those with vp(S) > 0, Lemma 4 ensures that
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vp(S) = p(Eµ(S)), where µ(S) = min{l ∈ K : El ⊆ S}. Note that as i 6∈ S for these
S, it must also be the case that i 6∈ Eµ(S), so, in essence, we are merely adding the
cooperation index of essential coalitions that do not contain i, and so

∑
S∈W: |S|=s, i∈Eµ(S∪{i})

i 6∈S

vp(S) =
∑

l∈K: i 6∈El

∑
S⊆Nr{i}: i∈Eµ(S∪{i})

and µ(S)=l

p(El)

Finally, for each l ∈ K such that i 6∈ El, the coalitions S ⊆ N r {i} for which
i ∈ Eµ(S∪{i}) while µ(S) = l are precisely those for which µ(S ∪ {i}) < µ(S).
It suffices to observe that, by construction, µ(S ∪ {i}) 6 µ(S) in any case, since
Eµ(S) ⊆ S ⊆ S ∪ {i}, and equality holds if and only if i 6∈ Eµ(S∪{i}), as this is
equivalent to Eµ(S∪{i}) ⊆ S. All in all, we have proven the following result.

Lemma 6. Let v be a simple proper game with player set N and p a cooperation
index on N . Given a sorted list of essential coalitions

Θ = Θ (E (v, p)) = (E1, . . . , Ek)

for each player i ∈ N , the negative part of their Shapley value in the restricted game
associated to Θ satisfies

Φ−i [vp, Θ] =
n−1∑
s=0

γs
∑
l∈K
i 6∈El

p(El) ·
∣∣∣{S ∈ Di

s(l) : µ(S ∪ {i}) < l}
∣∣∣

where γs = s!(n− s− 1)!, K = {1, 2, . . . , k}, for each l ∈ K,

Di
s(l) = {S ⊆ N r {i} : µ(S) = l and |S| = s}

and µ(S) = min{l ∈ K : El ⊆ S}.

Thus, Di
s(l) represents the set of coalitions of size s that do not contain player i

for which El ⊆ S while none of the essential coalitions E1, . . . , El−1 that precede it
in the sorted list Θ are subcoalitions of S.
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1.3 Generating functions for the Shapley value of the restricted
game

After the work done in the previous subsection, the calculation of each player’s
Shapley value in the restricted game has now been reduced to computing the cardi-
nality of some subsets of

{S ⊆ N r {i} : i ∈ Eµ(S∪{i}) and |S| = s}

where Θ = (E1, . . . , Ek) is a sorted list of essential coalitions and µ is the map

µ : {S ⊆ N : vp(S) > 0} → K

S 7→ min{l ∈ K : El ⊆ S}

with K = {1, 2, . . . , k}. Recall that, by construction,

p(E1) > p(E2) > · · · > p(Ek)

In this subsection, we will perform the required computation for each i ∈ N

using the generating function

∑
s1>0

∑
s2>0
· · ·

∑
sk>0

∑
s>0

Ais(s1, . . . , sk)

where Ais(s1, . . . , sk) is the number of coalitions S ⊆ N r {i} of size s such that
|S ∩ El| = sl for each l ∈ K.

Thus, it is in our interest to study the value of |S ∩ El| for each l ∈ K and S in
the sets that concern us.

For the positive part of the Shapley value Φi[vp], Lemma 5 states that

Φ+
i [vp, Θ] =

∑
S⊆Nr{i}: i∈Eµ(S∪{i})

γsvp(S ∪ {i})

can be written as

Φ+
i [vp, Θ] =

n−1∑
s=0

γs
∑
l∈K
i∈El

p(El) ·
∣∣∣Di

s(l)
∣∣∣

where for each l,

Di
s(l) = {S ⊆ N r {i} : µ(S ∪ {i}) = l and |S| = s}
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In plain words, given i and s, the elements of Di
s(l) are the coalitions S of size s

such that adding i to S results in a coalition S ∪{i} that contains essential coalition
El, while the essential coalitions E1, . . . , El−1, which have cooperation index greater
or equal than p(El), are not contained in S ∪ {i}. Note that in our computation we
are only interested in Di

s(l) for l ∈ K such that i ∈ El.

Take one such l and consider S ∈ Di
s(l). First of all, since it is required that

l = µ(S ∪ {i}) = min{l ∈ K : El ⊆ S ∪ {i}}

in particular, El ⊆ S∪{i}, and so it must be the case that S∩El = Elr{i}, that is,
|S ∩ El| = |El| − 1. For all other l′ ∈ K we must have |S ∩ El′ | 6 |S| = s; also recall
that 0 6 s 6 n−1, as S ⊆ N r{i}. For l′ < l, since it is required that El′ 6⊆ S∪{i},
we need |(S ∪ {i}) ∩ El′ | 6 |El′ | − 1 as well.

Letm < l be such that i ∈ Em. In this case, we cannot have |S ∩ Em| = |Em|−1;
this would imply Em ⊆ S∪{i}, which, since m < l, contradicts the assumption that
El is the first essential coalition in the sorted list Θ contained in S ∪ {i}. In short,
if m < l and i ∈ Em, there must be at least one player in Em not belonging to S
other than i themselves, that is, we must have 0 6 |S ∩ Em| 6 min{s, |Em| − 2}.

As for those t < l for which i 6∈ Et, we have |S ∩ Et| = |(S ∪ {i}) ∩ Et|, and
so requiring 0 6 |S ∩ Et| 6 min{s, |Et| − 1} suffices. Finally, for those j > l, the
construction of Di

s(l) imposes no conditions on the relation between S ∈ Di
s(l) and

Ej , regardless of whether i is in Ej or not. Thus, since i 6∈ S for j ∈ K such
that j > l, all that can be said is 0 6 |S ∩ Ej | 6 min{s, |Ej |} if i 6∈ Ej and
0 6 |S ∩ Ej | 6 min{s, |Ej | − 1} if i ∈ Ej .

All in all, we have seen that for l ∈ K such that i ∈ El,

∣∣∣Di
s(l)

∣∣∣ =
∑
m<l
i∈Em

min{s, |Em|−2}∑
sm=0

∑
t<l
i 6∈Et

min{s, |Et|−1}∑
st=0

∑
j>l
i 6∈Ej

min{s, |Ej |}∑
sj=0

∑
j′>l
i∈Ej′

min{s, |Ej′ |−1}∑
sj′=0

Ais(s1, . . . , sk)∣∣sl=|El|−1

where Ais(s1, . . . , sk) is the number of coalitions S ⊆ N r {i} of size s such that
|S ∩ El′ | = sl′ for each l′ ∈ K. Note that, given s, by construction, if there is
some l′ ∈ K such that sl′ > s, then Ais(s1, . . . , sl′ , . . . , sk) = 0; otherwise it would
be implied that |S ∩ El′ | = sl′ > s = |S|. Therefore, the overall calculation is
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unchanged if we replace the minima from the upper bounds of the summations
above with the terms different than s. We can also merge the summations over
j > l, since if i ∈ Ej′ for j′ > l, there is no coalition not containing i for which∣∣S ∩ Ej′ ∣∣ =

∣∣Ej′ ∣∣, that is, Ais(s1, . . . ,
∣∣Ej′∣∣ , . . . , sk) = 0 as well in this scenario.

Thus, following from Lemma 5, we have proven that the proposition below char-
acterizes the computation of Φ+

i [vp, Θ].

Proposition 1. Let v be a simple proper game with player setN and p a cooperation
index on N . Given a sorted list of essential coalitions

Θ = Θ (E (v, p)) = (E1, . . . , Ek)

for each player i ∈ N , the positive part of their Shapley value in the restricted game
associated with Θ can be computed as

Φ+
i [vp, Θ] =

n−1∑
s=0

γs
∑
l∈K
i∈El

p(El) · dis(l)

where γs = s!(n− s− 1)!, K = {1, 2, . . . , k} and for each l ∈ K for which i ∈ El,

dis(l) =
∑
m<l
i∈Em

|Em|−2∑
sm=0

∑
t<l
i 6∈Et

|Et|−1∑
st=0

∑
j>l

|Ej |∑
sj=0

Ais(s1, . . . , sk)∣∣sl=|El|−1

and Ais(s1, . . . , sk) is the number of coalitions S ⊆ N r {i} of size s such that
|S ∩ El′ | = sl′ for each l′ ∈ K.

At the end of this section we will describe how to compute the termsAis(s1, . . . , sk).
Before that, we will show a result analogous to Proposition 1 for the negative part
of the Shapley value associated with Θ.
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Recall that by Lemma 6,

Φ−i [vp, Θ] =
∑

S∈W: i∈Eµ(S∪{i})
i 6∈S

γsvp(S)

can be written as

Φ−i [vp, Θ] =
n−1∑
s=0

γs
∑
l∈K
i 6∈El

p(El) ·
∣∣∣{S ∈ Di

s(l) : µ(S ∪ {i}) < l}
∣∣∣

where for each l,

Di
s(l) = {S ⊆ N r {i} : µ(S) = l and |S| = s}

and for each T ⊆ N such that vp(T ) > 0, µ(T ) = min{l ∈ K : El ⊆ T}.

The elements of Di
s(l) are the coalitions S of size s that contain the essential

coalition El, while the essential coalitions E1, . . . , El−1, which have cooperation
index greater or equal than p(El), are not contained in S. Note that in our compu-
tation we are only interested in Di

s(l) for l ∈ K such that i 6∈ El. For these l, our
goal is to count how many coalitions S ∈ Di

s(l) are such that the first coalition in
the list Θ that is a subcoalition of S ∪ {i} is positioned before El. In other words,
we seek to compute the number

d̃is =
∣∣∣{S ∈ Di

s(l) : µ(S ∪ {i}) < l}
∣∣∣

that appears in the previous expression for Φ−i [vp, Θ].

To do so, we will first study what values |S ∩ El′ | can take for each l′ ∈ K where
S ∈ Di

s(l) for some l ∈ K such that i 6∈ El. The procedure will be similar to the one
used when discussing the positive part. Now it is required that

l = µ(S) = min{l ∈ K : El ⊆ S}

In particular, El ⊆ S, so it must be the case that |S ∩ El| = |El|. Again, for all
other l′ ∈ K, we must have |S ∩ El′ | 6 |S| = s and 0 6 s 6 n− 1, and if l′ < l, we
have |S ∩ El′ | 6 |El′ | − 1 as well, since it is required that El′ 6⊆ S.
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Thus, for t < l such that i 6∈ Et, 0 6 |S ∩ Et| 6 min{s, |Et| − 1}. For j > l, the
construction of Di

s(l) imposes no conditions on the relation between S ∈ Di
s(l) and

Ej in any case. Hence, once more, all we can say is that 0 6 |S ∩ Ej | 6 min{s, |Ej |}
if i 6∈ Ej and 0 6 |S ∩ Ej | 6 min{s, |Ej | − 1} if i ∈ Ej . As, in particular, we are
assuming S ⊆ N r {i}, if l′ ∈ K is such that i ∈ El′ it can never be the case that
El′ ⊆ S. Hence, by merely requiring S ∈ Di

s(l), no non-trivial restrictions on the
value |S ∩ El′ | arise either.

This changes when we impose S ∈ Di
s(l) to be such that

l > µ(S ∪ {i}) = min{l′ ∈ K : El′ ⊆ S ∪ {i}}

We will now discuss what values |S ∩ El′ | can take for l′ < l such that i ∈ El′ condi-
tional on µ(S∪{i}) < l. In such case we would have

∣∣∣S ∩ Eµ(S∪{i})

∣∣∣ =
∣∣∣Eµ(S∪{i})

∣∣∣−1,
as player i is, by construction, the only player in Eµ(S∪{i}) not in S.

It is also implied that for each u < µ(S ∪ {i}) for which i ∈ Eu there must
be at least one more player besides i that is in Eu but not in S, that is, we need
0 6 |S ∩ Eu| 6 min{s, |Eu| − 2}. As for those r ∈ K for which µ(S ∪ {i}) < r < l

and i ∈ Er, no further restrictions on |S ∩ Er| have been introduced, and so, as
i 6∈ S, the best bounds we can give for |S ∩ Er| are 0 6 |S ∩ Er| 6 min{s, |Er| − 1}.

However, we do not know beforehand what µ(S ∪ {i}) will be for an arbitrary
S ∈ Di

s(l). Given such a coalition S for which µ(S ∪ {i}) < l, we have already
discussed the bounds for |S ∩ Em′ | for all other m′ < l. Thus, in order to compute

d̃is(l) =
∣∣∣{S ∈ Di

s(l) : µ(S ∪ {i}) < l}
∣∣∣

as desired, we will add over all m < l such that i ∈ Em and, for each such m, count
how many coalitions S are such that µ(S ∪ {i}) = m.

Finally, as we will once again use the terms Ais(s1, . . . , sk), which count how
many coalitions S ⊆ N r {i} of size s are such that sl′ = |S ∩ El′ | for each l′ ∈ K,
the same arguments used when discussing the positive part allow us to safely discard
the minima we used in the current discussion and replace them with the terms that
do not depend on s. Merging the conditions for j > l to 0 6 |S ∩ Ej | 6 Ej as well,
following from Lemma 6 we obtain the following result.
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Proposition 2. Let v be a simple proper game with player setN and p a cooperation
index on N . Given a sorted list of essential coalitions

Θ = Θ (E (v, p)) = (E1, . . . , Ek)

for each player i ∈ N , the negative part of their Shapley value in the restricted game
associated with Θ can be computed as

Φ−i [vp] =
n−1∑
s=0

γs
∑
l∈K
i 6∈El

p(El) · d̃is(l)

where γs = s!(n− s− 1)!, K = {1, 2, . . . , k} and for each l ∈ K for which i 6∈ El,

d̃is(l) =
∑
m<l
i∈Em

∑
u<m
i∈Eu

|Eu|−2∑
su=0

∑
m<r<l
i∈Er

|Er|−1∑
sr=0

∑
t<l
i 6∈Et

|Et|−1∑
st=0

∑
j>l

|Ej |∑
sj=0

Ais(s1, . . . , sk)∣∣sl=|El|, sm=|Em|−1

and Ais(s1, . . . , sk) is the number of coalitions S ⊆ N r {i} of size s such that
|S ∩ El′ | = sl′ for each l′ ∈ K.

In subsection 1.2 we showed that the Shapley value of player i the restricted
game, Φi[vp], can be computed as

Φi[vp] = 1
n!
(
Φ+
i [vp, Θ]− Φ−i [vp, Θ]

)
In this subsection we have solved the computation of Φ+

i [vp, Θ] and Φ−i [vp, Θ] in
terms of the numbers Ais(s1, . . . , sk). To conclude, the following result shows how
to compute the generating function of the terms Ais(s1, . . . , sk).

Lemma 7. The generating function for the terms Ais(s1, . . . , sk) is given by

SSi(x1, . . . , xk, z) =
∏
j 6=i

1 + z
∏
l∈K
j∈El

xl


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Proof. Note that the function

SS(x1, . . . , xk, z) =
n∏
j=1

1 + z
∏
l∈K
j∈El

xl

 =

= 1 +
∑

∅6=S⊆N
z|S|

∏
j∈S

∏
l∈K
j∈El

xl =
∑
S⊆N

z|S|
∏
l∈K

x
|S∩El|
l =

=
|E1|∑
s1=0
· · ·
|Ek|∑
sk=0

n∑
s=0

As(s1, . . . , sk)zsxs11 · · ·x
sk
k

is the generating function for As(s1, . . . , sk), where each of these terms corre-
sponds to the number of coalitions S ⊆ N of size s such that |S ∩ El| = sl for
each l ∈ K. The terms Ais(s1, . . . , sk) are obtained by omitting the i-th factor of
SS(x1, . . . , xk, z).
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2 Computing the set of essential coalitions

With the method now fully described, before implementing it, we will discuss
its input parametres. These are the number of players n, the cooperation index p,
and the set of essential coalitions of the original game v associated with p, E (v, p).
Recall that this latter set is defined by

E (v, p) = {S ∈ W+(p) : p(S) > p(R) ∀R ∈ W ∩ 2S , R 6= S}

where W+(p) denotes the winning coalitions of v with positive cooperation index.

We will always assume n and p are given, as is the set of winning coalitions of the
simple proper game v, W. In the previous section, it was also assumed that E (v, p)
was given. However, this set can be built from p and W. One possible approach for
this is to use dynamic programming; for instance, one might follow these steps:

1) Let C = (W1, W2, . . . , Wm) be the list of winning coalitions with positive coop-
eration index, ordered so that p(Wi) > p(Wj) for all i < j. In case of a tie, sort
the coalitions in non-decreasing order of size; should the tie persist among some
coalitions, order them lexicographically.

2) For each i ∈ {1, . . . , m}, remove from C all Wj with j > i such that Wi ( Wj .
By step 1), besides containing Wi, these Wj are winning coalitions with p(Wj) 6
p(Wi) and hence cannot be in the set of essential coalitions.

This process ends with C = (C1, . . . , Ck) being a sorted list of essential coalitions
as described in subsection 1.2, that is,

p(C1) > p(C2) > · · · > p(Ck)

While the method presented here is not difficult to implement, it is computa-
tionally costly. For a start, even though we are only studying p restricted to W,
even in a proper game the number of winning coalitions is in O(2n). At worst, all
winning coalitions have positive cooperation index, and so |W+(p)| is in O(2n) as
well. On the other hand, as suggested at the end of subsection 1.2, some complexity
arises from the fact that a cooperation index p on N is effectively a 2n-dimensional
vector with n+ 1 components equal to 1 (those associated with the singletons plus
the empty set), while the 2n − n − 1 that remain can take any real value ranging
from 0 to 1. The number of initially unknown components of p is therefore also in
O(2n).
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With such a function, in order to compute E (v, p) we are forced to explore the
cooperation indices of the winning coalitions to exhaustion. In the method described
above, in step 2) for each Wi in list C we check whether Wi is a subset of Wj for all
j ∈ {i+ 1, . . . , m}. Hence, we perform m− i such tests for each i ∈ {1, . . . , m}, i.e.
a total of

m∑
i=1

(m − i) in the worst case scenario. The latter sum is equal to that of

the first m − 1 natural numbers, which is in O(m2). All in all, since m = |W+(p)|
is in O(2n), we have that step 2) alone requires checking if one set is a subset of
another a number of times in O(4n).

We conclude our discussion on the computation of E (v, p) with a comment by
Amer and Carreras on the structure, or lack thereof, of the cooperation index p.
When introducing the restricted cooperation model given by the cooperation index
in [2], the authors state that since “no conditions are demanded to [the cooperation
index], the scope of the model is maximized”, in the sense that it “encompasses”
other models of restriction to cooperation. In other words, in order to allow it
to generalize other models, the cooperation index is designed to have a limited
structure.

Next, we focus on the effect the set of essential coalitions has on the complexity
of the generating function method described in section 1. In order to study this,
recall that given a sorted list of essential coalitions Θ = (E1, . . . , Ek), for each i ∈ N
computing the Shapley value of i in the restricted game requires the calculation of
the function

SSi(x1, . . . , xk, z) =
∏
j 6=i

1 + z
∏
l∈K
j∈El

xl


where K = {1, 2, . . . , k}. We showed how to compute these functions in Lemma 7;
it is not difficult to determine the time complexity for these computations.

Lemma 8. Let v be a simple proper game with n players and p a cooperation index
on N = {1, . . . , n}. Let Θ = (E1, . . . , Ek) be a sorted list of essential winning
coalitions of v associated with p. Then,

(i) The number c of non-zero terms of

SS(x1, . . . , xk, z) =
∏
j∈N

1 + z
∏
l∈K
j∈El

xl


satisfies

n+ 1 6 c 6 min
{

2n, (n+ 1)
k∏
l=1

(|El|+ 1)
}
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Proof. The lower bound for c is obtained when the only essential coalition
is the grand coalition of the game, N . Indeed, in such case the generating
function we are studying is reduced to (1 + zx1)n, which has n+ 1 terms. To
study its upper bounds, consider SS(x1, . . . , xk, z) as

SS(x1, . . . , xk, z) =
|E1|∑
s1=0
· · ·
|Ek|∑
sk=0

n∑
s=0

As(s1, . . . , sk)

where As(s1, . . . , sk) is the number of coalitions S ⊆ N of size s such that
|S ∩ El| = sl for eack l ∈ K. This function is a polynomial of degree |El| in xl

for each l ∈ K and degree n in z; therefore, c is at most (n+ 1)
k∏
l=1

(|El|+ 1).

On the other hand, at worst each of the terms of SS(x1, . . . , xk, z) is equal
to 1, meaning no two coalitions S, S′ ⊆ N of the same size are such that
|S ∩ El| = |S′ ∩ El| for all l ∈ K. In this case, SS(x1, . . . , xk, z) has 2n

non-zero terms, one for each possible coalition, and the result follows.

(ii) For each i ∈ N , to expand the polynomial

SSi(x1, . . . , xk, z) =
∏
j 6=i

1 + z
∏
l∈K
j∈El

xl


an O(nC) time is required, where

C = min{2n, (n+ 1)
k∏
l=1

(|El|+ 1)}

Proof. For i ∈ N , let ci be the number of non-zero terms of SSi(x1, . . . , xk, z).
In Lemma 7 we argued that

SS(x1, . . . , xk, z) = SSi(x1, . . . , xk, z) ·

1 + z
∏
l∈K
i∈El

xl


so ci is at most c, the number of non-zero terms of SS(x1, . . . , xk, z).
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Thus, by the first part of this lemma, ci 6 C, where

C = min{2n, (n+ 1)
k∏
l=1

(|El|+ 1)}

Finally, SSi(x1, . . . , xk, z) can be computed as follows.

SSi(x1, . . . , xk, z)← 1
for j ∈ {1, . . . , n}, j 6= i do

SSi(x1, . . . , xk, z)← SSi(x1, . . . , xk, z) + SSi(x1, . . . , xk, z) · z
∏
l∈K
j∈El

xl

end for

The line in the loop is computed in O(C) time; at worst, it performs C addi-
tions, one for each non-zero term of SSi(x1, . . . , xk, z). Therefore, since this
calculation is executed n− 1 times, the full procedure takes an O(nC) time to
be completed.

In a manner analogous to what Propositions 13 and 14 achieve in [1], we have
used the function SS(x1, . . . , xk, z) in our discussion on the complexity of com-
puting the generating functions SSi(x1, . . . , xk, z); the number of non-zero terms
these functions have are bounded by that of the former function. Broadly speaking,
in practice, the lower the number c of non-zero terms SS(x1, . . . , xk, z) has in a
particular case, the faster the method will run. In this sense, the size of Θ has a
direct influence on c. Namely, the upper bound (n + 1)

∏
l∈K

(|El|+ 1) given for c

increases with the amount of essential coalitions, as for each additional coalition in
Θ, a new variable is added to SS(x1, . . . , xk, z).

Thus far, in this section we have seen that 1) the limited structure of the coop-
eration index p makes the computation of the set of essential coalitions a difficult
endeavor and 2) the larger the size of the set of essential coalitions is, the more
time consuming the calculation of the generating function described in Lemma 7
becomes. In order to address both issues at once, in the remainder of this section
we will discuss the lower bounds of the set of essential coalitions, i.e. we will look
for collections L ⊆ W such that L ⊆ E (v, p).

At the cost of some of the generality of the cooperation index model, we will see
that one can guarantee equality for certain bounds, which will ease the calculation
of E (v, p) with respect to the general case. Moreover, we will see that the conditions
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we will impose on p are reasonable within a particular interpretation of what this
function represents.

For a first rather naive bound, recall Example 2, and note it suggests that every
minimal winning coalition of v is an essential coalition. This will actually hold for
all minimal winning coalitions with non-zero cooperation index. Recall that

E = E (v, p) = {S ∈ W+(p) : p(S) > p(R) ∀R ∈ W ∩ 2S , R 6= S}

and
M = {W ∈ W : S 6∈ W ∀S (W}

is the set of minimal winning coalitions of v.

No winning coalition of v contained in a minimal winning coalitionM can exceed
its cooperation index since, by definition, there cannot be any winning coalition
contained in M . Therefore, merely requiring p(M) > 0 ensures M ∈ E . In short,
we haveM∩W+(p) ⊆ E indeed.

In general, the bound this collection gives can be improved, namely, by the collec-
tion of minimal sets in the collection of winning coalitions with positive cooperation
index, which we will denote by

M+(p) = {W ∈ W+(p) : S 6∈ W+(p) ∀S (W}

Note that, in particular, the minimal winning coalitions of v contain no coalition
from W+(p), and therefore all minimal winning coalitions with positive cooperation
index are also minimal in W+(p), that is,M∩W+(p) ⊆M+(p). However, equality
need not hold, as Example 4 will later show. For now, we still have to show that
M+(p) provides a lower bound for the set of essential coalitions, E . But indeed,
those winning coalitions W with positive cooperation index that contain no other
coalitions with these properties in particular satisfy p(W ) > p(R) for all winning
R ( W , and so M+(p) ⊆ E . The following result gives a sufficient condition for
equality to hold.

Lemma 9. If p is monotonically non-increasing in W+(p), that is, given a pair
S1, S2 ∈ W+(p), having S1 ⊆ S2 implies p(S1) > p(S2), then E =M+(p).

Proof. Let p be a cooperation index satisfying the property stated by the lemma.
Since M+(p) ⊆ E regardless, it will suffice to show that E ⊆ M+(p) in this case.
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Suppose, on the contrary, that there is some S ∈ E that is not a minimal set
in W+(p). Recall that, in particular, S ∈ W+(p), and therefore at least one of
its proper subsets is minimal in the collection of winning coalitions with positive
cooperation index; let M be one such coalition. Since S ∈ E , that is, all winning
coalitions T ( S are such that p(S) > p(T ). In particular, p(S) > p(M), which
contradicts our assumption that p is monotonically non-increasing in W+(p).

Corollary 4. If p is monotonically non-increasing, then E =M+(p).

While finding minimal sets in a large collection of sets is not as computationally
demanding a calculation as the construction of E is in the general case, it can be
proven that equalityM+(p) =M can happen. This is useful as the latter collection
is sometimes given as defining a simple game. We can also characterize when such
equality occurs.

Lemma 10. EqualityM =M+(p) holds if and only if all minimal winning coali-
tions of v have positive cooperation index, i.e. M⊆W+(p).

Proof. All coalitions inM+(p) have positive cooperation index, so if equality holds
we have

M⊆M+(p) ⊆ W+(p)

Conversely, in order to prove inclusionM ⊆M+(p), since we already saw prior to
Lemma 9 thatM∩W+(p) ⊆M+(p), all minimal winning coalitions having positive
cooperation index yields

M =M∩W+(p) ⊆M+(p)

It only remains to be checked that ifM ⊆ W+(p), then all minimal sets in W+(p)
are actually minimal winning coalitions of v, that is, M+(p) ⊆ M. Recall that
M ∈ M+(p) if and only if M is winning, p(M) > 0 and no proper subcoalition of
M fulfills both properties at the same time. Our goal is to see that for suchM there
is no winning coalition T (M .

On the contrary, suppose such a coalition T exists. Then, there would be some
minimal winning coalition R contained in T . But, since we are assuming all minimal
winning coalitions have positive cooperation index, we would have a winning R (M

with p(R) > 0. This contradicts the assumption that M ∈ M+(p); we conclude M
is indeed a minimal winning coalition of v.
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Corollary 5. If p is positive and monotonically non-increasing, then E =M.

Proof. If p is monotonically non-increasing, by Corollary 4, we have E = M+(p).
By Lemma 10, if p is positive this latter set is precisely M, the set of minimal
winning coalitions of v, and the result follows.

Corollary 6. IfM⊆W+(p), thenM∩W+(p) =M+(p).

Proof. By Lemma 10, should all minimal winning coalitions of v have positive co-
operation index, thenM =M+(p). UsingM⊆W+(p) again, we obtain

M+(p) =M =M∩W+(p)

In general, however, collectionsM andM+(p) are non-comparable with respect
to inclusion, as the following example shows.

Example 4. Let N = {1, 2, 3, 4} and v be the simple game with winning coalitions

W = {S ⊆ N : |S| > 2 and 1 ∈ S} ∪ {{2, 3, 4}}

also known as the 4-player majority game with a strong player. It can be checked
that the minimal winning coalitions of this game are those of size 2 that involve
player 1, along with {2, 3, 4}, that is

M = {{1, 2}, {1, 3}, {1, 4}, {2, 3, 4}}

Now consider the cooperation index p on N defined by

p(S) =

0 if |S| = 2 and 4 6∈ S

|S|−1 otherwise

With this p the winning coalitions of v with positive cooperation index are

W+(p) = {{1, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, N}

and
M∩W+(p) = {{1, 4}, {2, 3, 4}}
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However, the minimal sets in W+(p) are

M+(p) = {{1, 4}, {1, 2, 3}, {2, 3, 4}}

yielding M∩W+(p) ( M+(p) and that neither M+(p) contains all coalitions in
M nor does the opposite happen. Moreover, note that p is trivially monotonically
non-increasing in W+(p). Hence, by Lemma 9, E (v, p) =M+(p) in this example.

All in all, we have seen that

M∩W+(p) ⊆M+(p) ⊆ E (v, p) ⊆ W+(p) ⊆ W

Corollary 6 provides a sufficient condition for the first inclusion to be an equality
and Example 4 shows a case in which it is strict. As for the second inclusion, we
have proven it can be an equality, with Lemma 9 and Corollary 4 now providing
sufficient conditions for this to occur. Moreover, as shown in Lemma 10, M+(p)
andM are equal under certain circumstances, with Example 4 showing this is not
the case in general. It can also be the case that E (v, p) = W+(p); in fact, as an
anologous counterpart of Lemma 9, the next result provides a sufficient condition
for this to hold.

Corollary 7. If p is strictly monotonically non-decreasing in W+(p), that is, given
a pair S1, S2 ∈ W+(p), having S1 ⊆ S2 implies p(S1) < p(S2) , then E =W+(p). If
p is also positive, then E =W.

Note that in many results in this section, p being non-increasing has been a
key requirement in order to achieve the desired bounds. A cooperation index with
this property can be interpreted as assessing the likelihood that each member of a
coalition individually reaches an agreement with all other members. In this sense, a
three player coalition {1, 2, 3} must have at most the same cooperation index as the
two players coalitions it contains; for instance, for player 1 to reach an agreement
with 2 and 3, this player must cooperate with 2 and 3 separately. Similarly, a four
player coalition must have at most the same cooperation index as the three players
coalitions it contains, and so on.

Checking whether p is non-increasing is not easy, but a function p with such
property can be easily constructed. For instance, this can be achieved by making p
dependent solely on the size of each coalition. We already used this technique in Ex-
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ample 4; in the following example we introduce a parametric family of monotonically
non-increasing positive cooperation indices.

Example 5. Given an arbitrary n-player simple proper game, v, for each α > 1
consider the cooperation index pα : 2N → [0, 1] defined by

pα(S) = α1−|S| ∀S ⊆ N = {1, . . . , n}

We claim that pα is well defined and monotonically non-increasing. It is clear that
pα({i}) = 1 ∀i ∈ N and pα(S) > 0 for all S ⊆ N ; furthermore, given an arbitrary
non-empty coalition T ⊆ N contained in S, |S| > |T | implies that

0 < pα(S) = α1−|S| = α1−|T |+|T |−|S| 6 α1−|T | = pα(T )

which proves both the monotonicity of pα and the fact that pα(S) ∈ [0, 1] for all
S ⊆ N .

All in all, no matter what coalitions are winning in v, by Corollary 5, the set
of essential coalitions E (v, pα), is guaranteed to coincide with the set of minimal
winning coalitions of v.

To conclude this section, we provide two examples of games restricted by a
positive cooperation index that is non-monotonic, but in which the set of essential
coalitions matches one of the bounds.

Example 6. Let N = {1, 2, 3} and consider the simple game v with minimal
winning coalitions M = {{1, 2}, {1, 3}} (equivalently, W = {{1, 2}, {1, 3}, N})
and the cooperation index p defined by

p(S) =


1 if |S| = 1
1/3 if |S| = 2
2/3 if S = N

Despite N not being a minimal winning coalition, we have vp(N) = p(N) = 2/3 >

p(W ) for all other W ∈ W, and so N ∈ E (v, p). Therefore this is an example of a
game where E (v, p) =W.
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Example 7. Let N, v and p be as in the previous example and consider the coop-
eration index p̃ defined as

p̃(S) =


3/4 if S = {1, 3}

p(S) otherwise

As was the case with p, p̃(N) > p̃({1, 2}), so not only are p̃ and p not monotonically
non-increasing, we also have a minimal winning coalition with positive cooperation
index, but (strictly) lower cooperation index than one of its supersets. In particular,
their restrictions on W+(p) are also not monotonically non-increasing. Despite all
this, p̃({1, 3}) > p̃(N) is enough to ensure N 6∈ E (v, p̃) and, in turn, E (v, p̃) =M.
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3 An implementation and an example

Now that we have glossed over the potential prior calculations to be performed
before computing the Shapley value of a simple proper game v restricted by a coop-
eration index p, we proceed to provide an implementation of the method described
in section 1. The implementation that follows uses Mathematica. We will use a five
player game as an example to see what results the code yields and compare them to
the Shapley values in the non-restricted game.

Namely, we will let v be the five player weighted majority game where a player
has a weight of 3 (henceforth, player 1) while all other players have a weight of 1.
We will use the quota for an absolute majority, q = 4.

In[1]:= w = {3, 1, 1, 1, 1}

n = Length[w]

q = 4

Recall that in such a game the winning coalitions are those S such that w(S) =∑
i∈S

wi > q. Thus, in this game, the minimal winning coalitions are the two player

coalitions that involve player 1, along with the coalition involving all players but
player 1; all other winning coalitions contain some superfluous player. Alternatively,
we can compute the winning coalitions using the following code:

In[2]:= W = Select[Subsets[Range[n]], Plus @@ w[[#]] ≥≥≥ q &]

Out[2]= {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 2, 3}, {1, 2, 4},

{1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {1, 2, 3, 4},

{1, 2, 3, 5}, {1, 2, 4, 5}, {1, 3, 4, 5}, {2, 3, 4, 5},

{1, 2, 3, 4, 5}}

Consider now a cooperation index p defined on the resulting set of winning coali-
tions W. In order to let p be as general as possible, we will set it to a vector with
Length[W] components, and set each p[[i]] to a random value between 0 and 1,
to be interpreted as the cooperation index of W[[i]].

In[3]:= p = Table[RandomReal[],{i, Length[W]}]

Out[3]= {0.930139, 0.642749, 0.82492, 0.438921, 0.917439, 0.376106,

0.0983529, 0.399605, 0.768252, 0.434036, 0.907991, 0.196418,

0.363942, 0.539378, 0.639526, 0.670222}

Now, given the set of winning coalitions W and the cooperation index p defined on W,



44 An implementation and an example

the function EssentialWp[W, p] computes the set of essential winning coalitions of
the original game associated with cooperation index p, using the algorithm described
at the start of section 2.

In[4]:= EssentialWp[W_List, p_List] :=

Module[{M, E, pE},

M = SortBy[Select[Range[Length[W]], p[[#]] > 0 &],

{1 - p[[#]] &, Length[W[[#]]] &}];

E = Table[W[[i]], {i, M}]; pE = Table[p[[i]], {i, M}];

M = Length[M];

For[l = 1, l ≤≤≤ M, l++,

For[j = l + 1, j ≤≤≤ M, j++,

If[SubsetQ[E[[j]], E[[l]]], pE = Delete[pE, j];

E = Delete[E, j--]; M--]]]; {E, pE}]

We will use variables Theta and pTheta to store the resulting sorted list of essential
coalitions Θ(E (v, p)) and the vector containing the value of the cooperation index
in its elements, respectively.

In[5]:= Timing[{Theta, pTheta} = EssentialWp[W, p]]

Out[5]= {0.000639, {{{1, 2}, {1, 4}, {1, 3, 5}, {1, 3}, {2, 3, 4, 5},

{1, 5}}, {0.930139, 0.82492, 0.768252, 0.642749, 0.639526,

0.438921}}}

Recall that in section 2 we showed that this procedure takes an O(4n) time. However,
in this specific example of a five player game, it was completed in less than 10−3

seconds. This suggests that, while complex, the set of essential coalitions can be
computed in a reasonable amount of time for games with a larger amount of players.

Without further ado, the following function computes the Shapley value in the
restricted game.

In[6]:= ShValInd[n_Integer, E_List, p_List] :=

Module[{g, sl, sum, in, Kact, Klow, Kactlow, coefi, slaux, sm,

vN = p[[1]] * n!, k = Length[E], K}, K = Range[k];

Kact = Table[Select[K, MemberQ[E[[#]], i] &], {i, n}];

Table[g = Product[1 + z * Product[Indexed[x, l],

{l, Kact[[j]]}], {j, Complement[Range[n], {i}]}];

Klow = {}; Kactlow = {}; sum = 0;
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Do[in = MemberQ[Kact[[i]], l];

sl = Coefficient[g, Indexed[x, l],

Length[E[[l]]] - Boole[in]];

If[in,

Do[coefi = CoefficientList[sl, Indexed[x, m]];

sl = Apply[Plus, coefi[[Range[Min[Length[E[[m]]] - 1,

Length[coefi]]]]]], {m, Kactlow}];

Kactlow = Union[Kactlow, {l}], slaux = sl; sl = 0;

Do[sm = Coefficient[slaux, Indexed[x, m],

Length[E[[m]]] - 1];

Do[coefi = CoefficientList[sm, Indexed[x, u]];

sm = Apply[Plus, coefi[[Range[Min[Length[E[[u]]]

- Boole[u < m], Length[coefi]]]]]],

{u, DeleteCases[Kactlow, m]}];

sl = sl + sm, {m, Kactlow}]];

Do[coefi = CoefficientList[sl, Indexed[x, t]];

sl = Apply[Plus, coefi[[Range[Min[Length[E[[t]]],

Length[coefi]]]]]], {t, Complement[Klow, Kactlow]}];

Do[sl = Apply[Plus, CoefficientList[sl, Indexed[x, j]]],

{j, l + 1, k}];

Klow = Union[Klow, {l}];

sum = sum - Power[-1, Boole[in]] * sl * p[[l]], {l, k}];

N[Sum[Coefficient[sum, z, s] s! * (n - s - 1)!,

{s, 0, n - 1}] / vN, 10], {i, n}]]

Note that the resulting calculation is actually the normalized Shapley value of the
restricted game. One of the axioms that define the Shapley value states that for an
n-player game with characteristic function v,

n∑
i=1

Φi[v] = v(N)

This property is called the efficiency axiom.

In the restricted game we are studying,

n∑
i=1

Φi[vp] = vp(N) = max
T∈W∩2N

p(T )
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Since we are given a sorted list of essential coalitions, Θ, we know the winning
coalition of v with greatest cooperation index is E1, and so vp(N) = p(E1). Albeit
p(E1) can be any real positive value smaller than 1, regardless of the game v, the
cooperation index p and the sorted list of essential coalitions Θ,

Φ̃[vp] =
(
Φ̃1[vp], . . . , Φ̃n[vp]

)
= 1
p(E1) (Φ1[vp], . . . , Φn[vp])

is a vector with components adding up to 1. Using this normalization of the Shapley
value will allow us to directly compare the results yielded by the function for different
cooperation indices.

Finally, we compute Φ̃[vp]:

In[7]:= Timing[SSIndRd = ShValInd[n, Theta, pTheta]]

Out[7]= {0.007377, {0.595979, 0.15869, 0.0807314, 0.10213, 0.0624699}}

For comparison purposes, we also compute the Shapley value of the original game
using the function ShPowerPlus described in [4], also displayed below.

In[8]:= ShG[w_List] := Times @@ (1 + z * x^w)

ShPowerPlus[w_List, q_Integer] :=

Module[{n = Length[w], delw, sw, g, coefi, gg},

Table[delw = Delete[w, i]; sw = Apply[Plus, delw] + 1;

g = ShG[delw]; coefi = CoefficientList[g, x];

gg = Apply[Plus, coefi[[Range[Max[1, q - w[[i]] + 1],

Min[q, sw]]]]];

N[Sum[Coefficient[gg, z, s] s! * (n - s - 1)!,

{s, 0, n - 1}], 10], {i, n}] / n!]

Timing[SS = ShPowerPlus[w, q]]

Out[8]= {0.000578, {0.6000000000, 0.1000000000, 0.1000000000, 0.1000000000,

0.1000000000}}

The results are summarized in the following table:

Player Φ[v] Φ̃[vp]

1 0.6000 0.5960

2 0.1000 0.1587

3 0.1000 0.0807

4 0.1000 0.1021

5 0.1000 0.0625
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First of all, note that the computation of the Shapley value in the restricted game
was completed in O(10−2) seconds, while that of the value in the original game took
O(10−3) seconds.

As for the values themselves, in the original game players 2 through 5 have the
same Shapley value, while that of player 1 is larger, since this player appears in all
winning coalitions except {2, 3, 4, 5}. Compared to these, players 1, 3 and 5 all
have lower values in the restricted game. This can be explained by the sorted list of
essential coalitions in this case being

Θ = ({1, 2}, {1, 4}, {1, 3, 5}, {1, 3}, {2, 3, 4, 5}, {1, 5})

and their respective cooperation indices forming the list

pΘ = (0.930139, 0.82492, 0.768252, 0.642749, 0.639526, 0.438921)

All the coalitions in Θ are minimal winning coalitions of the original game except
for {1, 3, 5}. Furthermore, {1, 3} and {1, 5} have lower cooperation index than
{1, 2} and {1, 4}. In fact,

p({1, 2}) > p({1, 4}) > p({1, 3}) > p({1, 5})

and we end up having

Φ̃2[vp] > Φ̃4[vp] > Φ̃3[vp] > Φ̃5[vp]

As for player 1, the cooperation indices of the winning coalitions they appear in
are such that Φ̃1[vp] is also lower than the Shapley value of this player in the original
game.
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4 Concluding remarks

We conclude this study with a few comments on what has been achieved. To
begin with, it must be noted that the method we developed in Section 1 applies to
simple proper games. This is relevant as other generating function methods used
to compute the Shapley value, such as those described in [1] and [4], only apply
to weighted majority games. Moreover, the scope could be extended to all simple
games by slightly modifying Definition 1.

There, given a TU-game v and a cooperation index p, we defined the character-
istic function vp of v restricted by p by

vp(S) = max
P∈P+(S, p)

∑
T∈P

v(T )p(T )

where P+(S, p) is the set of all partitions of S into subsets with positive cooperation
index. In Lemma 1 we showed that this definition is reduced to

vp(S) =


max

T∈W∩2S
p(T ) if S ∈ W

0 otherwise

provided that v is a simple proper game. Should we take this lemma as the definition
of vp for all simple games, our method would apply to this class. Equivalently,
replacing the sum in the original definition of vp by a maximum effectively makes
Lemma 1 valid for all simple games.

A similar comment appears in [1] regarding the definition of a game restricted
by an incompatibility graph. There, given a TU-game (N, v) and an incompatibility
graph g on N , the restricted game is defined as in [3], that is, a TU-game (N, vg)
with

vg(S) = max
P∈P (S, g)

∑
T∈P

v(T )

where P (S, g) is the set of all partitions of S into subsets that contain no pair of
players connected in g. In [1], its authors argue that this definition is “appropriate
for general cooperative games, but possibly is not the best choice for simple games”.
They then propose an alternative definition analogous to the one discussed above
these lines.
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On the other hand, some aspects related to the set of essential coalitions, E (v, p),
could be studied in more detail. For instance, continuing from Section 2, some other
structure could be imposed on p in order to study the resulting set of essential
coalitions for cases in which p is not merely a random function. One could also
study the maximum amount of players, n, for which the calculation of E (v, p) as
implemented in Section 3 is completed in a reasonable time. We saw that the
method described there is relatively fast for a game with a small number of players,
but further examples of larger games could be tested.

Finally, for the program to work as intended the list of essential coalitions must
be sorted in non-increasing order of p. As such an order is not unique, in Subsection
1.2 we set on a particular order, which is used in the code in Section 3. However, it
is unclear if the program would run faster with another valid order, or whether such
an order depends on the specific set of essential coalitions being considered.
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