
Digital Object Identifier (DOI) https://doi.org/10.1007/s00220-021-04146-3
Commun. Math. Phys. Communications in

Mathematical
Physics

Remarks on Stationary and Uniformly-rotating Vortex
Sheets: Rigidity Results

Javier Gómez-Serrano1,2 , Jaemin Park3, Jia Shi4, Yao Yao3

1 Department ofMathematics, Brown University, Kassar House, 151 Thayer St., Providence, RI 02912, USA.
E-mail: javier_gomez_serrano@brown.edu

2 Departament de Matemàtiques i Informàtica, Universitat de Barcelona, Gran Via de les Corts Catalanes,
585, 08007 Barcelona, Spain. E-mail: jgomezserrano@ub.edu

3 School of Mathematics, Georgia Tech, 686 Cherry Street, Atlanta, GA 30332, USA.
E-mail: jpark776@gatech.edu; yaoyao@math.gatech.edu

4 Department of Mathematics, Princeton University, 409 Fine Hall, Washington Rd, Princeton, NJ 08544,
USA. E-mail: jiashi@math.princeton.edu

Received: 24 December 2020 / Accepted: 11 June 2021
© The Author(s) 2021

Abstract: In this paper, we show that the only solution of the vortex sheet equation,
either stationary or uniformly rotating with negative angular velocity �, such that it
has positive vorticity and is concentrated in a finite disjoint union of smooth curves
with finite length is the trivial one: constant vorticity amplitude supported on a union of
nested, concentric circles. The proof follows a desingularization argument and a calculus
of variations flavor.

1. Introduction

A vortex sheet is a weak solution of the 2D Euler equations:

vt + v · ∇v = −∇ p, ∇ · v = 0, (1.1)

whose vorticity ω = curl(v) is a delta function supported on a curve or a finite number
of curves �i = zi (α, t), i.e.

ω(x, t) =
∑

i

�i (α, t)δ(x − zi (α, t)). (1.2)

Here �i (α, t) is the vorticity strength on �i with respect to the parametrization zi , and
the above equation is understood in the sense that

∫

R2
ϕ(x)dω(x, t) =

∑

i

∫
ϕ(zi (α, t))�i (α, t)dα

for all test functions ϕ(x) ∈ C∞
0 (R2).

The motivation of the study of the equation (1.1) with vortex sheet initial data comes
from the fact that influidswith small viscosity, flows separate from rigidwalls and corners
[24,32]. To model it, one may think of a solution to (1.1) with one incompressible fluid
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where the velocity changes sign in a discontinuous (tangential) way across a streamline
z. This discontinuity induces vorticity in z.

The equations of motion of �i and zi can be derived by means of the Birkhoff–Rott
operator [7,21,24,35], namely:

BR(z,�)(x, t) = 1

2π
PV

∫
(x − z(β, t))⊥

|x − z(β, t)|2 �(β, t)dβ, (1.3)

yielding

∂t zi (α, t) =
∑

j

BR(z j ,�i )(zi (α, t)) + ci (α, t)∂αzi (α, t) (1.4)

∂t�i (α, t) = ∂α(ci (α, t)�i (α, t)), (1.5)

where the term ci (α, t) accounts for the reparametrization freedom of the curves. See
the paper [19] by Izosimov–Khesin where they propose geodesic, group-theoretic, and
Hamiltonian frameworks for their description.

The main goal of this paper is to establish radial symmetry properties of stationary/
uniformly-rotating vortex sheets to (1.1). To do so, we first define what we mean by a
stationary vortex sheet. Assume the initial dataω0 of (1.2) is supported on a finite number
of curves parametrized by zi (α), with strength�i (α) (with respect to the parametrization
zi ) respectively. If there exists some reparametrization choice ci (α) such that the right
hand sides of (1.4)–(1.5) are both identically zero for every i , it gives that ω(·, t) is
invariant in time, and we say ω(·, t) = ω0 is a stationary vortex sheet.

For any x ∈ R
2 and � ∈ R, let R�t x denote the rotation of x counter-clockwise by

angle �t about the origin. We say ω(x, t) = ω0(R�t x) is a uniformly-rotating vortex
sheet with angular velocity � if ω0 is stationary in the rotating frame with angular
velocity �. (Note that in the special case � = 0, the uniformly-rotating sheet is in fact
stationary.) In Lemma 2.1, we will derive the equations satisfied by a stationary/rotating
vortex sheet.

It is easy to see that if the zi ’s are concentric circles with constant �i (with respect to
the constant-speed parametrization) for every i , the solution is stationary, and it is also
uniformly-rotatingwith any� ∈ R.Wewould like to understand the reverse implication,
namely:

Question 1. Under what conditions must a stationary/uniformly-rotating vortex sheet be
radially symmetric?

This type of rigidity question has been very lately understood for different equations
and different settings such as in the papers byKoch–Nadirashvili–Sverak [20] forNavier-
Stokes, Hamel–Nadirashvili [16–18] for the 2DEuler equation on a strip, punctured disk
or the full plane,Gómez-Serrano–Park–Shi–Yao [14] for the 2DEuler andmodifiedSQG
in the full plane and Constantin–Drivas–Ginsberg [8] for the 2D and 3D Euler, as well
as the 2D Boussinesq and the 3D Magnetohydrostatic (MHS) equations.

The next theorem is the main result of the paper, solving it for the vortex sheet
equations:

Theorem 1.1. Let ω(x, t) = ω0(R�t x) be a stationary/uniformly-rotating vortex sheet
with angular velocity �. Assume that ω0 is concentrated on �, which is a finite union of
smooth curves, and ω0 has positive vorticity strength on �. (See (H1)–(H3) in Sect. 2
for the precise regularity and positivity assumptions.)
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If� ≤ 0,� must be a union of concentric circles, andω0 must have constant strength
along each circle (with respect to the constant-speed parametrization). In addition, if
� < 0, all circles must be centered at the origin.

Remark 1.2. Note that for any uniformly-rotating solution with � < 0, our theorem
yields that ω0 must be concentrated on concentric circles centered at the origin, with
constant strength on each circle. Such ω0 is actually stationary. As a result, there are no
uniformly rotating solutions with negative angular velocity that are non-stationary.

We nowgo first over the history of the equations (1.4)–(1.5), focusing later on the case
of steady solutions. The study of those solutions is important due to the ill-posedness
of the vortex sheet equation, thus they represent (unstable) structures for which there is
global existence.

1.1. Brief history of the dynamical problem. The existence of solutions to (1.4)–(1.5)
has been widely studied. The seminal paper of Delort [9] proved global existence of
weak solutions of (1.1) for an initial velocity in L2

loc and a vorticity a positive Radon
measure. Majda [23] provided a simpler proof. See also the works by Schochet [33,34]
and Evans–Muller [13]. All of them use the hypothesis that the vorticity has a definite
sign.

If the vorticity does not have a sign, Lopes Filho–Nussenzveig Lopes–Xin proved
existence in [22], in the casewhere the system enjoys reflection symmetry. For the setting
in which the curve zi is not closed and represented as a graph, Sulem–Sulem–Bardos–
Frisch [35] proved local existence in the case of analytic initial data.

The first sign of singularities with analytic initial data goes back toMoore [26], where
he demonstrated that the curvature may blow up in finite time. Ebin [11] showed ill-
posedness in Sobolev spaces when γ has a distinguished sign, and Duchon–Robert [10]
proved global existence for a class of initial data in the unbounded setting. Caflisch–
Orellana [6] also showed global existence for a class of initial data, as well as ill-
posedness in Hs for s > 3

2 and simplified the analysis of Moore [5]. We also mention
here the work of Wu [38], in which she proved the existence of solutions to (1.4)–(1.5)
in spaces which are less regular than Hs . Székelyhidi [36] (resp. Mengual–Székelyhidi
[25]) constructed infinitely many admissible weak solutions to (1.1) for vortex sheet
initial data with (resp. without necessarily) a distinguished sign.

1.2. Stationary and rotating solutions. Relative equilibria are an important family of
solutions of fluid equations since their structures persist for long times. This is specially
important when the equations of motion are ill-posed. In the particular case of (1.4)–
(1.5), our knowledge is very small and only very few explicit cases are known: the circle
and the straight line (with constant γ ), which are stationary, and the segment of length
2a and density

γ (x) = �
√
a2 − x2, x ∈ [−a, a], (1.6)

which is a rotating solution with angular velocity � [2]. Protas–Sakajo [31] generalized
this solution and proved the existence of several others made out of segments rotating
about a common center of rotation with endpoints at the vertices of a regular polygon
by solving a Riemann–Hilbert problem, even finding some of them analytically.

In the paper [15] we prove the existence of a family of vortex sheet rotating solutions
with non-constant vorticity density supported on a non-radial curve, bifurcating from
the circle with constant density.
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Numerically, some solutions have been computed before. O’Neil [27,28] used point
vortices to approximate the vortex sheet and compute uniformly rotating solutions and
Elling [12] constructed numerically self-similar vortex sheets forming cusps. O’Neil
[29,30] also found numerically steady solutionswhich are combinations of point vortices
and vortex sheets.

1.3. Structure of the proof. The proof is inspired by our recent rigidity result in the
paper [14] on stationary and rotating solutions of the 2D Euler equations both in the
smooth and vortex patch settings. To prove it, we constructed an appropriate functional
and showed, on one hand, that any stationary solution had to be a critical point, and on
the other, for any curve which is not a circle there existed a vector field along which the
first variation was non-zero. This vector field is defined in terms of an elliptic equation
in the interior of the patch. In the case of the vortex sheet, this is not possible anymore.
Instead, we desingularize the problem by considering patches of thickness ∼ ε which
are tubular neighborhoods of the sheet. The drawback is that we lose the property that
any stationary solution has to be a critical point if ε > 0 and very careful, quantitative
estimates need to be done to show that indeed the first variation of a stationary solution
tends to 0 as ε → 0. This setup is also reminiscent of the numerical work by Baker–
Shelley [1], where they approximate the motion of a vortex sheet by a vortex patch of
very small width. In [3], Benedetto–Pulvirenti proved the stability (for short time) of
vortex sheet solutions with respect to solutions to 2D Euler with a thin strip of vorticity
around a curve. See also the work by Caflisch–Lombardo–Sammartino [4] for more
stability results with a different desingularization.

1.4. Organization of the paper. In Sect. 2 the equations for the stationary/rotating vortex
sheet are derived, and in Sect. 3 we perform the desingularization procedure. Section 4
is devoted to construct the aforementioned divergence free vector-field along which the
first variation is non-zero. Finally in Sect. 5 we conclude the quantitative estimates and
prove the symmetry result from Theorem 1.1.

1.5. Notations. For a bounded domain D ⊂ R
2, we denote |D| by its area (i.e. its

Lebesgue measure). For x ∈ R
2 and r > 0, denote by B(x, r) or Br (x) the open ball

centered at x with radius r .
Through Sects 3–5 of this paper, we will desingularize the vortex sheet into a vortex

layer with width ∼ ε, and obtain various quantitative estimates. In all these estimates,
we say a term f is O(g(ε)) if | f | ≤ Cg(ε) for some constant C independent of ε.

For a domain U ⊂ R
2, in the boundary integral

∫
∂U f · ndσ , n denotes the outer

normal of the domain U .

2. Equations for a Stationary/Rotating Vortex Sheet

Let ω(·, t) = ω0(R�t ) be a stationary/rotating vortex sheet solution to the incompress-
ible 2DEuler equation, whereω0 ∈ M(R2)∩H−1(R2) is a Radonmeasure. Here� = 0
corresponds to a stationary solution, and � �= 0 corresponds to a rotating solution. As-
sume ω0 is concentrated on �, which is a finite disjoint union of curves. Throughout this
paper we assume � satisfies the following:
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Γ1, . . . ,Γn

Γn+1, . . . ,Γn+m

s
n v+v−

sn

v+ v−

Fig. 1. Illustration of the closed curves �1, . . . , �n and the open curves �n+1, . . . , �n+m , and the definitions
of n, s, v+ and v−

(H1) Each connected component of � is smooth and with finite length, and it is either
a simple closed curve (denote them by�1, . . . , �n), or a non-self-intersecting curve with
two endpoints (denote them by �n+1, . . . , �n+m). Here we require n +m ≥ 1, but allow
either n or m to be 0.

Let us denote
d� := min

k �=i
dist(�i , �k), (2.1)

which is strictly positive since we assume the curves {�i }n+mi=1 are disjoint. For i =
1, . . . , n + m, denote by Li the length of �i . Let zi : Si → �i denote a constant-speed
parameterization of �i (in counter-clockwise direction if �i is a closed curve), where
the parameter domain Si is given by

Si :=
{

R/Z for i = 1, . . . , n,

[0, 1] for i = n + 1, . . . , n + m.

Note that this gives |z′i | ≡ Li , and the arc-chord constant

F� := max
i=1,...,n+m

sup
α �=β∈Si

|α − β|
|zi (α) − zi (β)| (2.2)

is finite, since � is non-self-intersecting. Let s : � → R
2 be the unit tangential vector

on �, given by s(zi (α)) := z′i (α)

|z′i (α)| = z′i (α)

Li
, and n : � → R

2 be the unit normal vector,

given by n = s⊥. See Fig. 1 for an illustration.
For i = 1, . . . , n + m, let us denote by γi (α) the vorticity strength at zi (α) with

respect to the arclength parametrization, which is related to �i (α) by

γi (α) = �i (α)

|z′i (α)| for α ∈ Si . (2.3)

Throughout this paperwewill beworkingwithγi , insteadof�i .We impose the following
regularity and positivity assumptions on γi :
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(H2) Assume that γi ∈ C2(Si ) for i = 1, . . . , n and γi ∈ Cb(Si ) ∩C1(S◦
i ) for some

b ∈ (0, 1) for i = n + 1, . . . , n + m.1

(H3) For i = 1, . . . , n, assume γi > 0 in Si . And for i = n + 1, . . . , n + m, assume
γi > 0 in S◦

i , and γi (0) = γi (1) = 0.
Note that for a closed curve, (H3) implies that γi is uniformly positive; whereas

for an open curve, γi is positive in the interior of Si but vanishes at its endpoints.
This is because any stationary/rotating vortex sheet with continuous γi must have it
vanishing at the two endpoints of any open curve: if not, one can easily check that
|BR(zi (α)) · n(zi (α))| → ∞ as α approaches the endpoint, thus such a vortex sheet
cannot be stationary in the rotating frame.

With the above notations of zi and γi , the Birkhoff–Rott integral (1.3) along the sheet
can now be expressed as

BR(zi (α)) =
n+m∑

k=1

BRk(zi (α)) :=
n+m∑

k=1

PV
∫

Sk
K2(zi (α) − zk(α

′)) γk(α
′)|z′k(α′)| dα′,

(2.4)
with the kernel K2 given by

K2(x) := (2π)−1∇⊥ log |x | = x⊥

2π |x |2 , (2.5)

and the principal value in (2.4) is only needed for the integral with k = i .
Let v : R

2 → R
2 be the velocity field generated by ω0, given by v := ∇⊥(ω0 ∗ N ).

Note that v ∈ C∞(R2 \ �), but v is discontinuous across �. Let v+, v− : � → R
2

denote the two limits of v on the two sides of � (with v+ being the limit on the side that
n points into—see Fig. 1 for an illustration), and [v] := v− − v+ the jump in v across
the sheets. [v] is related to the vortex-sheet strength γ as follows (see [24, Eq. (9.8)] for
a derivation): [v] · n = 0, and

[v] × n = [v] · s = γ.

In addition, the Birkhoff–Rott integral (2.4) is the the average of v+ and v−, namely

BR(zi (α)) = 1

2
(v+(zi (α)) + v−(zi (α))) for all α ∈ Si , i = 1, . . . , n + m.

In the following lemma, we derive the equation that the Birkhoff–Rott integral satis-
fies for a stationary/rotating vortex sheet.

Lemma 2.1. Assumeω(·, t) = ω0(R�t x) is a stationary/uniformly-rotating vortex sheet
with angular velocity� ∈ R, andω0 is concentrated on∪n+m

i=1 �i , with zi and γi defined as
above. Then the Birkhoff–Rott integral BR (2.4) and the strength γi satisfy the following
two equations:

(BR − �x⊥) · n = v+ · n = v− · n = 0 on �, (2.6)

and

(BR(zi (α))−�z⊥i (α))·s(zi (α)) γi (α) =
{
Ci on Si for i = 1, . . . , n,

0 on Si for i = n + 1, . . . , n + m.
(2.7)

1 For an open curve i = n + 1, . . . , n + m, note that (H2) does not require γi to be C1 up to the boundary
of Si , and its derivative is allowed to blow up at the endpoints. This is motivated by the fact that in the explicit
uniformly-rotating solution (1.6), its strength γ is Hölder continuous in [−a, a] and smooth in the interior,
but its derivative blows up at the endpoints.
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In particular, the above two equations imply that BR(zi (α)) − �z⊥i (α) ≡ 0 for i =
n + 1, . . . , n + m.

Proof. By definition of the stationary/uniformly-rotating solutions, ω0 is a stationary
vortex sheet in the rotating frame with angular velocity �. In this rotating frame, an
extra velocity −�z⊥i should be added to the right hand side of (1.4). Therefore the
evolution equations (1.4)–(1.5) become the following in the rotating frame (where we
also use (2.4)):

∂t zi (α, t) = BR(zi (α, t)) − �z⊥i (α, t) + ci (α, t)∂αzi (α, t) (2.8)

∂t�i (α, t) = ∂α(ci (α, t)�i (α, t)), (2.9)

where the term ci (α, t) accounts for the reparametrization freedom of the curves. Since
ω0 is stationary in the rotating frame, zi (·, t) parametrizes the same curve as zi (·, 0).
Therefore ∂t zi (α, t) is tangent to the curve �i , and multiplying n(zi (α, t)) to (2.8) gives

0 = ∂t zi (α, t) · n(zi (α, t)) = (BR(zi (α, t)) − �z⊥i (α, t)) · n(zi (α, t)), (2.10)

where we use that n(zi (α, t)) · ∂αzi (α, t) = 0. This proves (2.6).
Now we prove (2.7). Towards this end, let us choose

ci (α, t) := − (BR(zi (α, t)) − �z⊥i (α, t)) · s(zi (α, t))

|∂αzi (α, t)| ,

so that multiplying s(zi (α, t)) to (2.8) gives ∂t zi (α, t) · s(zi (α, t)) = 0, and combining it
with (2.10) gives ∂t zi (α, t) = 0. In other words, with such choice of ci , the parametriza-
tion zi (α, t) remains fixed in time. Since ω0 is stationary in the rotating frame, we know
that with a fixed parametrization zi (α, t) = zi (α, 0), the strength �i (α, t) must also
remain invariant in time. Thus (2.9) becomes

ci (α, t)�i (α, t) ≡ Ci .

Plugging the definition of ci into the equation above and using the fact that zi is invariant
in t , we have

(BR(zi (α)) − �z⊥i (α)) · s(zi (α))�i (α)

|∂αzi (α)| ≡ −Ci for all α ∈ Si ,

and finally the relationship between γi and �i in (2.3) yields (2.7) for i = 1, . . . , n.
And for the open curves i = n + 1, . . . , n + m, note that we do not have any

reparametrization freedom at the two endpoints α = 0, 1, therefore the endpoint ve-
locity BR(zi (0, t)) − �z⊥i (0, t) must be 0 to ensure that ω0 is stationary in the rotating
frame. This immediately leads to Ci = 0 for i = n + 1, . . . , n + m, finishing the proof
of (2.7). ��
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Γi = Rε
i(·, 0)

n

s
Rε

i(α, η)εγi(α)

zi(α)

Dε
i

Rε
i(·,−1)

Dε
j

Γj = Rε
j(·, 0)

n

zj(α)

εγj(α) Rε
j(·,−1)Rε

j(α, η)
s

Fig. 2. Illustration of the definitions of Rε
i and Dε

i for a closed curve (left) and an open curve (right)

3. Approximation by a Thin Vortex Layer

Our aim in this section is to desingularize the vortex sheet ω0. Namely, for 0 < ε � 1,
we will construct a vorticity ωε ∈ L∞(R2) ∩ L1(R2) that only takes values 0 and ε−1,
and is supported in an O(ε) neighborhood of �, such that ωε weakly converges to ω0
as ε → 0+.

For each i = 1, . . . , n+m, we will describe a neighborhood of�i using the following
change of coordinates: let Rε

i : Si × R → R
2 be given by

Rε
i (α, η) := zi (α) + εγi (α)n(zi (α))η, (3.1)

and let

Dε
i := {

Rε
i (α, η) : α ∈ S◦

i , η ∈ (−1, 0)
}
.

Note that each Dε
i is a connected open set, and for all ε > 0 sufficiently small, the

sets (Dε
i )

n+m
i=1 are disjoint. For i = 1, . . . , n, the domains Dε

i are doubly-connected with
smooth boundary, and its inner boundary coincides with �i ; see the left of Fig. 2 for an
illustration. And for i = n +1, . . . , n +m, the domains Dε

i are simply-connected, and its
boundary is smooth except at most two points; see the right of Fig. 2 for an illustration.

In addition, for ε > 0 that is sufficiently small, one can check that Rε
i : S◦

i ×
(−1, 0) → Dε

i is a diffeomorphism. Since γi ∈ C1(Si ) and zi ∈ C2(Si ), we only need
to show Rε

i : S◦
i × (−1, 0) → Dε

i is injective. Below we prove this fact in a stronger
quantitative version, which will be used later.

Lemma 3.1. For any i = 1, . . . , n + m, assume �i and γi satisfy (H1)–(H2). Then the
map Rε

i : S◦
i × (−1, 0) → Dε

i given by (3.1) is injective. In addition, there exist some
c0, ε0 > 0 depending on ‖zi‖C2(Si ), ‖γi‖L∞(Si ) and F� , such that for all ε ∈ (0, ε0) we
have

|Rε
i (α

′, η′) − Rε
i (α, η)| ≥ c0

(|α′ − α| + ε|γi (α)η − γi (α
′)η′|), (3.2)

for all α, α′ ∈ S◦
i , η, η′ ∈ (−1, 0).2

Proof. To begin with, note that (3.2) immediately implies that Rε
i : S◦

i × (−1, 0) → Dε
i

is injective, where we used the positivity assumption γi > 0 in S◦
i in (H2). Thus it

suffices to prove (3.2). Throughout the proof, we fix any i ∈ {1, . . . , n + m}, and we

2 In fact, (3.2) also holds (with a slightly smaller ε0 and c0) for η, η′ ∈ (−2, 2), even though such Rε
i may

not belong to Dε
i . We will use this fact later in the proof of Lemma 3.5.
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will omit the subscript i for notational simplicity. Using the definition (3.1), let us break
Rε(α′, η′) − Rε(α, η) into

Rε(α′, η′) − Rε(α, η) = z(α′) − z(α)︸ ︷︷ ︸
=:T1

+ ε
(
γ (α′)η′ − γ (α)η

)
n(z(α′))

︸ ︷︷ ︸
=:T2

+ εγ (α)η
(
n(z(α′)) − n(z(α))

)
︸ ︷︷ ︸

=:T3

. (3.3)

For T1 and T3, we have

∣∣T1 − z′(α′)(α′ − α)
∣∣ ≤‖z‖C2(S)|α − α′|2,

|T3| ≤ εγ (α)‖z‖C2(S)|α − α′|. (3.4)

Also, using that z′(α′) = Ls(z(α′)) is perpendicular to n(z(α′)), we have

|z′(α′)(α′ − α) + T2| = ∣∣L(α′ − α)s(z(α′)) + ε
(
γ (α′)η′ − γ (α)η

)
n(z(α′))

∣∣

≥ 1

2
L|α′ − α| + 1

2
ε
∣∣γ (α′)η′ − γ (α)η

∣∣ ,

where we use that
√
x2 + y2 ≥ 1

2 (|x | + |y|). Combining this with (3.4) gives

|T1 + T2 + T3| ≥ |α − α′|
(
L

2
−‖z‖C2(S)

(|α − α′| + εγ (α)
))

+
1

2
ε|γ (α′)η′ − γ (α)η|,

thus

|Rε(α′, η′) − Rε(α, η)| ≥ L

4
|α − α′| + 1

2
ε|γ (α′)η′ − γ (α)η| (3.5)

for all 0 < ε < L(8‖z‖C2‖γ ‖L∞)−1 and |α − α′| ≤ L
8‖z‖C2

.

For |α − α′| > L
8‖z‖C2

, recall that the definition of F� in (2.2) gives |z(α′) − z(α)| ≥
F−1

� |α′ − α|. Thus a crude estimate gives

|Rε(α′, η′)−Rε(α, η)| ≥ |z(α′)−z(α)|−2ε‖γ ‖L∞(S) ≥ 1

2F�

|α′−α|+ε|γ (α′)η′−γ (α)η|
(3.6)

for 0 < ε < L(64F�‖z‖C2‖γ ‖L∞)−1. (Note that for such ε we have 4ε‖γ ‖L∞ ≤
1

2F�
|α′ − α| due to our assumption that |α − α′| > L

8‖z‖C2
).

Finally, combining (3.5) and (3.6), it follows that (3.2) holds for c0 = min{ L4 , 1
2F�

, 1
2 }

and ε0 = min{L(8‖z‖C2‖γ ‖L∞)−1, L(64F�‖z‖C2‖γ ‖L∞)−1}. This finishes the proof.
��

In the next lemmawe compute the partial derivatives and Jacobian of Rε
i (α, η), which

will be useful later.
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Lemma 3.2. For any i = 1, . . . , n + m, let zi be a constant-speed parameterization of
the curve �i (with length Li ), and let Rε

i be given by (3.1). Then its partial derivatives
are

∂αR
ε
i (α, η) = z′i (α) + ε

(
γ ′
i (α)

z′i (α)⊥

Li
η + γi (α)

z′′i (α)⊥

Li
η

)
,

∂ηR
ε
i (α, η) = εγi (α)

z′i (α)⊥

Li
.

(3.7)

Moreover, its Jacobian is given by

det(∇α,ηR
ε
i ) = εLiγi (α) − ε2Liγ

2
i (α)κi (α)η, (3.8)

where κi (α) denotes the signed curvature of �i at zi (α).

Proof. Since zi is the constant-speed parameterization of �i (which has length Li ), we
have |z′i | ≡ Li and n(zi (α)) = z′i (α)⊥/Li . Taking the α and η partial derivatives of
(3.1) directly yields (3.7).

Putting the two partial derivatives into columns of a 2× 2 matrix and computing the
determinant, we have

det(∇α,ηR
ε
i ) = εγi (α)

|z′i (α)|2
Li

+ ε2γ 2
i (α)

z′′i (α)⊥ · z′i (α)

L2
i

η

= εLiγi (α) − ε2Liγ
2
i (α)κi (α)η,

where in the second equality we used that z′′i (α) = κi (α)n(zi (α))L2
i (recall that zi has

constant speed Li ). This finishes the proof. ��
Remark 3.3. We point out that for each i = 1, . . . , n +m, the determinant formula (3.8)
immediately gives the following approximation of |Dε

i |, which will be helpful in the
proofs later:

|Dε
i |

ε
= 1

ε

∫

Dε
i

1dx = 1

ε

∫

Si

∫ 0

−1
det(∇α,ηR

ε
i (α, η)) dηdα = Li

∫

Si
γi (α)dα + O(ε),

(3.9)

where the O(ε) error term has its absolute value bounded byCε, withC only depending
on ‖zi‖C2(Si ) and ‖γi‖L∞(Si ).

Finally, let Dε := ∪n+m
i=1 D

ε
i , and ωε : R

2 → R is defined as

ωε(x) := ε−11Dε (x) = ε−1
n+m∑

i=1

1Dε
i
(x),

and let
vε = ∇⊥(ωε ∗ N ) (3.10)

be the velocity field generated by ωε .
In the next lemma we aim to obtain some fine estimate of vε in the thin vortex layer

Dε . Our goal is to show that along each cross section of the thin layer (i.e. fix i and α,
and let η vary in [−1, 0]), the function η �→ vε(Rε

i (α, η)) is almost a linear function in
η, with the endpoint values (at η = −1 and 0) being almost v−(zi (α)) and v+(zi (α))

respectively.
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Γi
zi(α)

n(zi(α))

v+(zi(α))

v−(zi(α))

Rε
i(α, η) gi(α, η)

Dε
i

Fig. 3. Illustration of the definition of gi (α, ·) (the orange arrows)

Lemma 3.4. For i = 1, . . . , n + m, assume �i and γi satisfy (H1)–(H3). Let

gi (α, η) := BR(zi (α)) −
(
η +

1

2

)
[v](zi (α)) for α ∈ Si ,

and note that gi (α, 0) = v+(zi (α)) and gi (α,−1) = v−(zi (α)) (see Fig. 3 for an
illustration of gi (α, η)). Then for all sufficiently small ε > 0, for all i = 1, . . . , n + m
we have

|vε(Rε
i (α, η)) − gi (α, η)| ≤ Cεb| log ε| for all α ∈ Si , η ∈ [−1, 0], (3.11)

where b ∈ (0, 1) is as in (H2), and C depends on b, maxi ‖zi‖C2(Si ), maxi ‖γi‖Cb(Si ),
d� and F� .

Proof. Let i be any fixed index in 1, . . . , n +m. We begin with breaking vε into contri-
butions from different components {Dε

k }n+mk=1 , namely

vε(x) =
n+m∑

k=1

vε
k(x) :=

n+m∑

k=1

ε−1
∫

Dε
i

K2(x − y)dy,

where thekernel K2 is givenby (2.5). Similarly,we canbreak BR(zi (α)) into BR(zi (α)) =
n+m∑

k=1

BRk(zi (α)), where BRk is the contribution from the k-th integral in (2.4), and note

that the PV symbol is only needed for k = i .

• Estimates for k �= i terms. For any k �= i , we aim to show that

|vε
k(R

ε
i (α, η)) − BRk(zi (α))| ≤ Cε, (3.12)

where C depends on d�,maxk ‖zk‖C2 and maxk ‖γk‖L∞ . Applying a change of vari-
able y = Rε

k (α
′, η′), we can rewrite vε

k as

vε
k(R

ε
i (α, η)) = ε−1

∫

Dε
k

K2(R
ε
i (α, η) − y) dy

=
∫

Sk

∫ 0

−1
K2(R

ε
i (α, η) − Rε

k (α
′, η′))

︸ ︷︷ ︸
=:T1

ε−1 det(∇α′,η′ Rε
k (α

′, η′))
︸ ︷︷ ︸

=:T2

dη′dα′.

(3.13)
Using the facts that Rε

i (α, η) − Rε
k (α

′, η′) = zi (α) − zk(α′) + O(ε) as well as
|zi (α) − zk(α′)| ≥ d� > 0 (recall that d� is as given in (2.1)), for all sufficiently
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small ε > 0 we have T1 = K2(zi (α) − zk(α′)) + O(ε). For T2, the explicit formula
(3.8) for the determinant gives T2 = Lkγk(α

′)+ O(ε). Plugging these into the above
integral yields

vε
k(R

ε
i (α, η)) =

∫

Sk
K2(zi (α) − zk(α

′))Lkγk(α
′) dα′ + O(ε) = BRk(zi (α)) + O(ε),

finishing the proof of (3.12).
• Estimates for the k = i term. It will be more involved to control the k = i term, and
our goal is to show that

∣∣∣∣v
ε
i (R

ε
i (α, η)) − BRi (zi (α)) +

(
η +

1

2

)
[v](zi (α))

∣∣∣∣ ≤ Cεb| log ε|. (3.14)

To begin with, we again rewrite vε
i as in (3.13) with k = i , and plug in the formula

(3.8) for the determinant. This leads to

vε
i (R

ε
i (α, η)) =

∫

Sk

∫ 0

−1
K2(R

ε
i (α, η) − Rε

i (α
′, η′))

(
Liγi (α

′)

−εLiγ
2
i (α′)κi (α′)η′) dη′dα′

=: I1 + I2,

where I1, I2 are the contributions from the two terms in the last parenthesis respec-
tively. Let us control I2 first, and we claim that

|I2| ≤ Cε| log ε|. (3.15)

Using (3.2) of Lemma 3.1 and the fact that |K2(x)| ≤ |x |−1, we can bound I2 as

|I2| =
∣∣∣∣
∫

Sk

∫ 0

−1
K2(R

ε
i (α, η) − Rε

i (α
′, η′)) εLiγ

2
i (α′)κi (α′)η′ dη′dα′

∣∣∣∣

≤ Cε

∫

Sk

∫ 0

−1

γi (α
′)

|α′ − α| + ε|γi (α′)η′ − γi (α)η| dη′dα′

≤ Cε

∫

Sk

∫ ‖γi‖∞

−‖γi‖∞

1

|α′ − α| + ε|θ ′| dθ ′dα′ (θ ′ := γi (α
′)η′ − γi (α)η)

≤ Cε

∫ 1/ε

−1/ε

∫ ‖γi‖∞

−‖γi‖∞

1

|β ′| + |θ ′| dθ ′dβ ′ (β ′ := ε−1(α′ − α))

≤ Cε| log ε| (3.16)

where C depends on ‖zi‖C2 and ‖γi‖L∞ .

In the rest of the proof we focus on estimating I1 =
∫

Sk

∫ 0

−1
K2(R

ε
i (α, η) − Rε

i (α
′, η′))

Liγi (α
′) dη′dα′. For t ∈ [0, 1], let us define
f (α, α′, η, η′; t) := Rε

i (α, η − tη′) − Rε
i (α

′, η′ − tη′),

J (t) :=
∫

Sk

∫ 0

−1
K2( f (α, α′, η, η′; t))Liγi (α

′) dη′dα′. (3.17)
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Note that in the definition of f , the argument η − tη′ of Rε
i belongs to [−1, 1], instead

of [−1, 0] as in the original definition of (3.1). Here Rε
i (α, η − tη′) is defined as in the

formula (3.1), even though it might not belong to Dε
i . Clearly, J (0) = I1. Themotivation

for us to define such f and J (t) is that at t = 1, we have

J (1) =
∫

Sk

∫ 0

−1
K2(R

ε
i (α, η−η′)−zi (α

′))Liγi (α
′) dη′dα′=

∫ 0

−1
vi (Rε

i (α, η−η′)) dη′,

(3.18)
where vi is the velocity field generated by the sheet �i . Recall that vi has a jump across
�i , where we denote its limits on two sides by v±

i . Using Lemma 3.5, which we will
prove momentarily, we have

vi (Rε
i (α, η − η′)) =

{
v+i (zi (α)) + O(εb| log ε|) if η − η′ ∈ (0, 2),
v−
i (zi (α)) + O(εb| log ε|) if η − η′ ∈ (−2, 0).

(3.19)

We can then split the integration domain on the right hand side of (3.18) into η′ ∈ (−1, η)

and η′ ∈ (η, 0), and use (3.19) to approximate the integrand in each interval. This gives

J (1) = (η + 1)v+i (zi (α)) − ηv−
i (zi (α)) + O(εb| log ε|)

= BRi (zi (α)) −
(
η +

1

2

)
[v](zi (α)) + O(εb| log ε|), (3.20)

where in the last step we used that [v](zi (α)) = [vi ](zi (α)), since all other vk with k �= i
are continuous across �i .
Finally, it remains to control |J (0) − J (1)|. Note that by (3.2), we have

f (α, α′, η, η′; t) ≥ c0
(|α − α′| + ε|γi (α′)η′ − γi (α)η|).

In addition, we have
∣∣∣∣
∂

∂t
f (α, α′, η, η′; t)

∣∣∣∣ = ∣∣ε
(
γi (α)n(zi (α)) − γi (α

′)n(zi (α
′))

)
η′∣∣ ≤ Cε|α − α′|b,

where the last inequality follows from (H2) and the fact that n(zi (α)) ∈ C1(Si ). There-
fore, for any t ∈ (0, 1), taking the t derivative of (3.17) and using that |∇K2(x)| ≤ |x |−2,
we have

|J ′(t)| ≤ C
∫

Sk

∫ 0

−1

ε|α − α′|bγi (α′)
(|α − α′| + ε|γi (α′)η′ − γi (α)η|)2

dη′dα′

≤ Cε

∫

Sk

∫ 0

−1

γi (α
′)

|α − α′|1−b (|α − α′| + ε|γi (α′)η′ − γi (α)η|)dη′dα′

≤ Cεb
∫ 1/ε

−1/ε

∫ ‖γi‖∞

−‖γi‖∞

1

|β ′|1−b(|β ′| + |θ ′|) dθ ′dβ ′

(θ ′ := γi (α
′)η′ − γi (α)η, β ′ := ε−1(α′ − α))

≤ Cεb
∫ 1/ε

−1/ε
|β ′|b−1 log

(
1 +

‖γi‖L∞

|β ′|
)
dβ ′

≤ Cεb,
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where C depends on b, ‖γi‖Cb(Si ), ‖zi‖C2(Si ) and F� . This leads to

|J (1) − I1| = |J (1) − J (0)| ≤ Cεb| log ε|.
Finally, combining this with (3.20) and (3.15) yields (3.14), finishing the proof of the
k = i case. We can then conclude the proof by taking the sum of this estimate with all
the k �= i estimates in (3.12). ��

The following lemma proves (3.19). Let vi be the velocity field generated by the
sheet �i , which is smooth in R

2 \ �i , and has a discontinuity across �i . It is known that
vi converges to v

±
i respectively on the two sides of �i [24]. However, we were unable to

find a quantitative convergence rate (in terms of the distance from the point to �i ) in the
literature, especially under the assumption that γi is only in Cb(Si ) for the open curves.
Below we prove such an estimate.

Lemma 3.5. For i = 1, . . . , n +m, let vi be the velocity field generated by the sheet �i ,
given by

vi (x) :=
∫

Si
K2(x − zi (α

′)) γi (α
′)|z′i (α′)| dα′ for x ∈ R

2 \ �i .

Then there exist constants C, ε0 > 0 depending on on b (as in (H2)), ‖zi‖C2(Si ),‖γi‖Cb(Si ) and F� , such that for all ε ∈ (0, ε0) and η ∈ (−2, 2) we have

∣∣vi (Rε
i (α, η)) − v+i (zi (α))

∣∣ ≤ Cεb| log ε| if η ∈ (0, 2), (3.21)
∣∣vi (Rε

i (α, η)) − v−
i (zi (α))

∣∣ ≤ Cεb| log ε| if η ∈ (−2, 0), (3.22)

where

v+i = BRi (zi (α)) +
n(zi (α))⊥γi (α)

2
, v−

i = BRi (zi (α)) − n(zi (α))⊥γi (α)

2
,

and BRi is the contribution from the i-th integral in (2.4).

Proof. We will show (3.21) only since (3.22) can be treated in the same way. From the
definition of Rε

i in (3.1), we have

vi (Rε
i (α, η)) = Li

2π

∫

Si

(
zi (α) − zi (α′)

)⊥
γi (α

′)
|zi (α) − zi (α′) + εηn(zi (α))γi (α)|2 dα′

+
Li

2π

∫

Si

εηn(zi (α))⊥γi (α)γi (α
′)

|zi (α) − zi (α′) + εηn(zi (α))γi (α)|2 dα′

=: A1 + A2.

We claim that for all ε > 0 sufficiently small and η ∈ [0, 2), we have
|A1 − BRi (z(α))| ≤ Cεb| log ε|, (3.23)

∣∣∣∣A2 − n(z(α))⊥γ (α)

2

∣∣∣∣ ≤ Cεb, (3.24)
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and note that these two claims immediately yield (3.21). From now on, let us fix i ∈
{1, . . . , n + m} and omit it in the notation for simplicity. Throughout this proof, let us
denote

y(α, α′) := z(α) − z(α′) and c(α) := εηn(z(α))γ (α),

so that

A1 = L

2π

∫

S

y⊥(α, α′)γ (α′)
|y(α, α′) + c(α)|2 dα′, A2 = L

2π

∫

S

c⊥(α)γ (α′)
|y(α, α′) + c(α)|2 dα′.

Note that
F−1

� |α − α′| ≤ |y(α, α′)| ≤ ‖z‖C1 |α − α′|. (3.25)

For the closed curves with i = 1, . . . , n, since z has period 1, we can always set
α − α′ ∈ [− 1

2 ,
1
2 ) in this proof.

Applying (3.2) (with η′ = 0), we have

|y(α, α′) + c(α)|2 ≥ c0(|α − α′|2 + ε2η2γ 2(α)) = c0(|α − α′|2 + |c(α)|2). (3.26)

Since z′(α) = Ls(z(α)), let us define

ỹ(α, α′) := Ls(z(α))(α − α′),

which is a close approximation of y in the sense that

|y(α, α′) − ỹ(α, α′)| ≤ ‖z‖C2(α − α′)2. (3.27)

Using s(z(α)) ⊥ n(z(α)), we have

|ỹ(α, α′) + c(α)|2 = L2|α − α′|2 + ε2η2γ 2(α) = L2|α − α′|2 + |c(α)|2. (3.28)

Fromnowon, for notational simplicity,we compress thedependenceofy(α, α′), ỹ(α, α′),
c(α) on α and α′ in the rest of the proof.

• Estimate (3.23). Note that BRi (z(α)) can also be written using the above notations
as

BRi (z(α)) = L

2π
PV

∫

S

y⊥

|y|2 γ (α′)dα,

thus A1 − BRi (z(α)) can be written as follows:

A1 − BRi (z(α)) = L

2π
PV

∫

S

(
y⊥

|y + c|2 − y⊥

|y|2
)

︸ ︷︷ ︸
=:f(y,c)

γ (α′)dα′

= L

2π

∫

S
f(y, c)(γ (α′) − γ (α))dα′ + Lγ (α)

2π
PV

∫

S
f(y, c)dα′

=: A11 + A12.

A direct computation gives

f(y, c) = − y⊥

|y|2
2y · c + |c|2

|y + c|2 . (3.29)



J. Gómez-Serrano, J. Park, J. Shi, Y. Yao

Since y · c = (y − ỹ) · c ≤ C |α − α′|2|c|, (where we use ỹ ⊥ n(z(α)) and (3.27)),
combining this with (3.25) and (3.26) gives a crude bound

|f(y, c)| � |α − α′|2|c| + |c|2
|α − α′|(|α − α′|2 + |c|2) .

Plugging this into A11 and using the Hölder continuity of γ , we have

|A11| �
∫

S

|α − α′|2|c| + |c|2
|α − α′|(|α − α′|2 + |c|2) |α − α′|bdα′

�
∫

|θ |<|c|
(|θ |1+b|c|−1 + |θ |b−1)dθ +

∫

|c|≤|θ |≤1
(|c||θ |b−1

+ |c|2|θ |b−3)dθ (θ := α′ − α)

� |c|b ≤ Cεb,

where the last step follows from the fact that |c| ≤ 2ε‖γ ‖∞. Now let us turn to A12,
which requires a more delicate estimate of f(y, c). Let us break A12 as

A12 = Lγ (α)

2π

∫

S
(f(y, c) − f(ỹ, c))dα′ + Lγ (α)

2π
PV

∫

S
f(ỹ, c)dα′ =: B1 + B2.

For B1, let us take the gradient of f(y, c) (as in (3.29)) in the first variable. An
elementary computation yields that

|∇xf(x, c)| ≤ C |x|−2 min
{
1,

|c|
|x|

}
(3.30)

as long as x satisfies
|x + c|2 ≥ c0(|x|2 + |c|2). (3.31)

We point out that x = ξy + (1 − ξ)ỹ indeed satisfies (3.31) for all ξ ∈ [0, 1]: to see
this, in the proof of Lemma 3.1, if we replace T1 in (3.3) by ξy + (1 − ξ)ỹ, one can
easily check the proof still goes through for ξ ∈ [0, 1]. In addition, for any ξ ∈ [0, 1]
we also have

|ξy + (1 − ξ)ỹ| ≥ c0|α − α′|. (3.32)

Thus the gradient estimate (3.30) together with (3.27) and (3.32) yields

| f (y, c) − f (ỹ, c)| � min{1, |c||α − α′|−1} � min{1, ε|α − α′|−1},
and plugging this into B1 gives

|B1| � ε +
∫

ε<|α−α′|<1
ε|α − α′|−1dα′ � ε| log ε|.

As for B2, using the definition of ỹ, the identity (3.28) and the fact that ỹ · c = 0, we
have

B2 = Lγ (α)

2π
PV

∫

S
− ỹ⊥

|ỹ|2
|c|2

|ỹ + c|2 dα′

= Lγ (α)|c|2n(z(α))

2πL
PV

∫

S

α′ − α

|α′ − α|2(L2|α′ − α|2 + |c|2)dα′.

For the closed curves i = 1, . . . , n, we immediately have B2 = 0 since α − α′ ∈
[− 1

2 ,
1
2 ), and the integrand is an odd function of α′ − α.
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For the open curves i = n + 1, . . . , n + m, the above integral becomes

B2 = Lγ (α)|c|2n(z(α))

2πL
PV

∫ 1−α

−α

θ

|θ |2(L2|θ |2 + |c|2)dθ (θ := α′ − α)

= Lγ (α)|c|2n(z(α))

2πL

∫ 1−α

α

θ

θ2(L2θ2 + |c|2)dθ,

where in the second inequalitywe used that the integral in [−α, α] gives zero contribution
to the principal value, since the integrand is odd.

Next we discuss two cases. If α > |c|, we bound the integrand byCθ−3, which gives

|B2| ≤ Cγ (α)|c|2α−2 ≤ C |c|2αb−2 ≤ C |c|b ≤ Cεb.

where the second inequality follows from the assumption γ (0) = 0 for an open curve
in (H3), as well as the Hölder continuity of γ . And if 0 < α ≤ |c|, the integrand can be
bounded above by θ−1|c|−2, which immediately leads to

|B2| ≤ Cγ (α)| logα| ≤ C |c|b| log |c|| ≤ Cεb| log ε|.
In both caseswe have |B2| ≤ Cεb| log ε|, and combining itwith the B1 and A11 estimates
gives (3.23).

• Estimate (3.24). We break A2 into

A2 = Lc⊥

2π

∫

S

γ (α′) − γ (α)

|y + c|2 dα′ + Lc⊥γ (α)

2π

∫

S

(
1

|y + c|2 − 1

|ỹ + c|2
)
dα′

+
Lc⊥γ (α)

2π

∫

S

1

|ỹ + c|2 dα′

=: A21 + A22 + A23.

For A21, (3.26) and the Hölder continuity of γ immediately lead to

|A21| ≤ C |c|
∫

S

|α − α′|b
|α − α′|2 + |c|2 dα′ ≤ |c|b ≤ Cεb. (3.33)

For A22, its integrand can be controlled as

∣∣∣∣
1

|y + c|2 − 1

|ỹ + c|2
∣∣∣∣ ≤ |y − ỹ|(|y + c| + |ỹ + c|)

|y + c|2|ỹ + c|2 ≤ C |α − α′|2
(|α − α′|2 + |c|2)3/2 ,

where the last step follows from (3.26), (3.27) and (3.28). This allows us to control
A22 as

|A22| ≤ C |c|
∫ 1

−1

θ2

(θ2 + |c|2)3/2 dθ ≤ C |c| ∣∣ log |c|∣∣ ≤ Cε| log ε|. (3.34)

Finally, for the A23 term, (3.28) gives
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A23 = Lc⊥γ (α)

2π

∫

S

1

L2|α′ − α|2 + |c|2 dα′ = n⊥(α)γ (α)

2π

∫

I

1

θ2 + 1
dθ

(set θ := L(α′ − α)

|c| ),

where the integration interval I=(− L
2|c| ,

L
2|c| ) for i=1, . . . , n, and I = (− Lα

|c| ,
L(1−α)

|c| )

for i = n + 1, . . . , n + m, and in the last equality we also used that c⊥
|c| = n⊥. For

i = 1, . . . , n, one can easily check that
∣∣∣∣
∫

I

1

θ2 + 1
dθ − π

∣∣∣∣ = 2
∫ ∞

L
2|c|

1

θ2 + 1
dθ ≤ C |c| ≤ Cε,

which immediately leads to
∣∣∣∣A23 − n(z(α))⊥γ (α)

2

∣∣∣∣ =
∣∣∣∣
n⊥(α)γ (α)

2π

(∫

I

1

θ2 + 1
dθ − π

)∣∣∣∣ ≤ Cε

for i = 1, . . . , n. Next we turn to the open curves i = n + 1, . . . , n + m, and let us
assume α ∈ [0, 1

2 ] without loss of generality. In this case we have
∣∣∣∣
∫

I

1

θ2 + 1
dθ − π

∣∣∣∣ =
∫ − Lα

|c|

−∞
1

θ2 + 1
dθ +

∫ ∞
L(1−α)

|c|

1

θ2 + 1
dθ ≤ min

{
C

|c|
α

,
π

2

}
+ Cε.

where we used 1 − α > 1
2 to control the second integral by Cε. Using the above

inequality as well as the fact that γ (α) ≤ Cαb due to (H3), we have
∣∣∣∣A23 − n(z(α))⊥γ (α)

2

∣∣∣∣ = γ (α)

2π

∣∣∣∣
∫

I

1

θ2 + 1
dθ − π

∣∣∣∣ ≤ Cαb min

{ |c|
α

, 1

}
+ Cε

≤ C(|c|b + ε) ≤ Cεb

for i = n + 1, . . . , n + m. Finally, combining the A23 estimates together with (3.33)
and (3.34) yields (3.24). ��

4. Constructing a Divergence-Free Perturbation

In this section, we aim to construct a divergence-free velocity field uε : Dε → R
2, such

that −uε tends to make each Dε
i “more symmetric”. Let uε : Dε → R

2 be given by

uε := x + ∇ pε in Dε, (4.1)

where the function pε : Dε → R is chosen such that

∇ · uε = 0 in Dε, (4.2)

and on each connected component l of ∂Dε , uε satisfies
∫

l
uε · n dσ = 0, (4.3)
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where n is the unit normal of l pointing outwards of Dε . Note that ∂Dε has a total of
2n + m connected components: Dε

i is doubly-connected for i = 1, . . . , n (denote its
outer and inner boundaries by ∂Dε

i,out and ∂Dε
i,in; note that ∂Dε

i,in coincides with �i ),
whereas it is simply-connected for i = n + 1, . . . , n +m (denote its boundary by ∂Dε

i ).
Next we show that there indeed exists a function pε so that uε satisfies (4.2)–(4.3).

Clearly, (4.2) requires that pε satisfies

�pε = −2 in Dε . (4.4)

Once (4.2) is satisfied, the divergence theorem yields that uε satisfies (4.3) for each
l = ∂Dε

i for i = n + 1, . . . , n + m.
Next let us set the boundary conditions as

pε |∂Dε
i

= 0 for i = n + 1, . . . , n + m. (4.5)

For i = 1, . . . , n, let

pε =
{
0 on ∂Dε

i,out
cε
i on ∂Dε

i,in = �i
for i = 1, . . . , n, (4.6)

where cε
i > 0 is the unique constant such that

∫

∂Ui

∇ pε · ndσ = −2|Ui | for i = 1, . . . , n, (4.7)

where Ui is the domain enclosed by ∂Dε
i,in = �i (thus Ui is independent of ε), and n is

the outer normal of Ui (thus the inner normal of Dε
i ). The existence of c

ε
i is guaranteed

by [14, Lemma 2.5]. One can then check that
∫
∂Ui

uε ·ndσ = 0. Applying the divergence
theorem in Dε

i then gives us that
∫
∂Dε

i,out
uε · ndσ = 0 as well, thus uε satisfies (4.3) for

i = 1, . . . , n.
In [14]we proved a rearrangement inequality for such pε in a similar spirit of Talenti’s

rearrangement inequality for elliptic equations [37], which we state below.

Lemma 4.1 [14, Proposition 2.6]. The function pε : Dε → R defined in (4.4)–(4.7)
satisfies the following in each Dε

i for i = 1, . . . , n + m:

sup
Dε
i

pε ≤ |Dε
i |

2π
, (4.8)

and ∫

Dε
i

pε(x)dx ≤ |Dε
i |2

4π
. (4.9)

Moreover, each inequality above achieves equality if and only Dε
i is either a disk or an

annulus.

Note that the inequalities (4.8)–(4.9) hold for any domain with C1,α boundary. Even
though the inequalities are strict when Dε

i is non-radial, they are not strong enough to rule
out non-radial vortex sheets, as we need quantitative versions of strict inequalities that
are still valid in the ε → 0+ limit. As we will see in the proof of Proposition 5.2, the key
step is to show that if some�i is either not a circle or does not have a constant γi , then the
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following quantitative version of (4.9) holds: ε−2
(

|Dε
i |2

4π − ∫
Dε
i
pε(x)dx

)
≥ c0 > 0,

where c0 is independent of ε.
In order to upgrade (4.9) into a quantitative version, we need to obtain some fine

estimates for pε that take into account the shape of the thin domains Dε
i . For i =

n + 1, . . . , n + m, since pε = 0 on ∂Dε
i , and the domain Dε

i is a thin simply-connected
domain with width ε � 1, intuitively one would expect that |pε | ≤ Cε2. The next
proposition shows that this crude estimate is indeed true, and its proof is postponed to
Sect. 4.1.

Proposition 4.2. For any i = n+1, . . . , n+m, let pε : Dε
i → R be given by (4.4)–(4.5).

Then there exist ε1 and C only depending on ‖zi‖C2(Si ), ‖γi‖L∞(Si ) and F� , such that

|pε | ≤ Cε2 in Dε
i

for all ε ∈ (0, ε1).

For i = 1, . . . , n, the estimate is more involved, since pε takes different values cε
i

and 0 on the inner and outer boundaries of Dε
i . Heuristically speaking, since Dε

i is a
doubly-connected thin tubular domain with width ∼ ε, we would expect that pε

i (in α, η

coordinate) changes almost linearly from 0 to cε
i as η goes from −1 (outer boundary)

to 0 (inner boundary). Next we will show that the error between pε(Rε
i (α, η)) and the

linear-in-η function cε
i (1 + η) is indeed controlled by O(ε2). We will also obtain fine

estimates of the gradient of the function cε
i (1 + η), as well as the boundary value cε

i .
Again, its proof is postponed to Sect. 4.1.

Proposition 4.3. For any i = 1, . . . , n, let pε : Dε
i → R and cε

i ∈ R be given by (4.4)
and (4.6)–(4.7). For such pε , let us define p̃ε ,qε : Dε

i �→ R as follows:

p̃ε(Rε
i (α, η)) := cε

i (1 + η) for α ∈ Si , η ∈ [0,−1],
qε := pε − p̃ε in Dε

i . (4.10)

Also let

βi := 2|Ui |
Li

∫
Si

γ −1
i (α)dα

. (4.11)

Then there exist ε1 and C only depending on ‖zi‖C3(Si ), ‖γi‖C2(Si ) and F� , such that
for all ε ∈ (0, ε1) we have the following:

{
|qε | ≤ Cε2 in Dε

i ,

qε = 0 on ∂Dε
i ,

(4.12)

∣∣∣∣
cε
i

ε
− βi

∣∣∣∣ ≤ Cε, (4.13)
∣∣∣∣∇ p̃ε(Rε

i (α, η)) − βi

γi (α)
n(zi (α))

∣∣∣∣ ≤ Cε for α ∈ Si , η ∈ [0,−1]. (4.14)
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4.1. Proof of the quantitative lemmas for pε . In this subsectionwe aim to prove Proposi-
tions 4.2 and 4.3 .We start with a technical lemma on estimating the solution of Poisson’s
equation (with zero boundary condition) in the domain Dε

i .

Lemma 4.4. For any i = 1, . . . , n + m, assume �i and γi satisfy (H1)–(H3). Let vε ∈
C2(Dε

i ) ∩ C(Dε
i ) solve the Poisson’s equation with zero boundary condition:

{
�vε = −1 in Dε

i ,

vε = 0 on ∂Dε
i .

(4.15)

Then there exist positive constants ε0 = C(‖zi‖C2(Si ), ‖γi‖L∞(Si ), F�) and C1,C2 =
C(‖γi‖L∞(Si )), such that for all ε ∈ (0, ε0) we have

0 ≤ vε ≤ C1ε
2 in Dε

i (4.16)

and
‖∇vε‖L∞(�i ) ≤ C2ε for i = 1, . . . , n. (4.17)

Proof. Throughout the proof, let i ∈ {1, . . . , n +m} be fixed. For notational simplicity,
in the rest of the proof we omit the subscript i in Rε

i , D
ε
i , Si , zi and γi .

Step 1.We start with a simple geometric result that Dε is “flat” in a small neighbor-
hood of any interior z(α). For any α ∈ S◦, let V ε(α) := Dε ∩ B6ε‖γ ‖∞(z(α)), where
‖ · ‖∞ denotes ‖ · ‖L∞(S). We will show that any y ∈ V ε(α) satisfies

∣∣(z(α) − y) · n(z(α))
∣∣ ≤ 2ε‖γ ‖∞ (4.18)

for all sufficiently small ε > 0 (to be quantified in (4.23)). See Fig. 4a for an illustration.
Since y ∈ V ε(α) ⊂ Dε , there exist β ∈ S and η ∈ (−1, 0) such that y = Rε(β, η) =

z(β) + εγ (β)n(z(β))η. It follows that
∣∣(z(α) − y) · n(z(α))

∣∣ ≤ |(z(α) − z(β)) · n(z(α))| + ε‖γ ‖∞
≤‖z′′‖∞(α − β)2 + ε‖γ ‖∞,

(4.19)

where in the second inequality we used

|(z(α) − z(β)) − z′(α)(α − β)| ≤ ‖z′′‖∞(α − β)2 (4.20)

and z′(α) · n(z(α)) = 0. To bound α − β on the right hand side of (4.19), the fact that
y ∈ B6ε‖γ ‖∞(z(α)) gives

6ε‖γ ‖∞ ≥ |z(α) − y| ≥ |z(α) − z(β)| − εγ (β), (4.21)

which implies |z(α) − z(β)| ≤ 7ε‖γ ‖∞. Since the arc-chord constant F� given in (2.2)
is finite, this implies

|α − β| ≤ 7F�‖γ ‖∞ε. (4.22)

Plugging this into the right hand side of (4.19), we know (4.18) holds for all

0 < ε ≤ (49‖z′′‖∞F2
�‖γ ‖∞)−1. (4.23)

Step 2. Next we prove (4.16). Note that vε is superharmonic in Dε and vanishes on
the boundary, thus it follows from the maximum principle that vε ≥ 0 in Dε . Denote
M := maxx∈Dε vε(x), and pick x0 = R(α0, η0) ∈ Dε such that vε(x0) = M . Note that



J. Gómez-Serrano, J. Park, J. Shi, Y. Yao

z(α)
n(z(α))

V ε(α)
Dε

y = R(β, η)

2ε‖γ‖∞

6ε‖γ‖∞

Γ
z(α0)

n(z(α0))

V ε(α0)

∂V ε
1 (α0)

∂V ε
2 (α0)

z(β)

)b()a(

Fig. 4. a In Step 1, V ε(α) (the yellow set) must lie between the two dashed lines for small ε. b In Step 2,
∂V ε(α0) is decomposed into ∂V ε

1 (α0) (in dark green) and ∂V ε
2 (α0) (in purple)

α0 ∈ S◦. Without loss of generality, we can assume that z(α0) = (0, 0) and s(z(α0)) =
e1 := (1, 0), so that n(z(α0)) = (0, 1) and x0 = (0, εγ (α0)η0). Let us consider a barrier
function b1 : R

2 �→ R given by

b1(x1, x2) = x22 − x21
2

.

Clearly �b1 = 1, so vε + b1 is harmonic in Dε . It then follows from the maximum
principle that maxV ε (α0)

(vε +b1) is achieved at some boundary point x̃0 ∈ ∂V ε(α0). Let
us break ∂V ε(α0) into ∂V ε

1 (α0) ∪ ∂V ε
2 (α0) (see Fig. 4b for an illustration), given by

∂V ε
1 (α0) := ∂Dε ∩ B6ε‖γ ‖∞(z(α0)), ∂V ε

2 (α0) := Dε ∩ ∂B6ε‖γ ‖∞(z(α0)). (4.24)

We claim that x̃0 ∈ ∂V ε
1 (α0). To see this, note that any y = (y1, y2) ∈ ∂V ε

2 (α0)

satisfies |y| = 6ε‖γ ‖∞ and |y2| ≤ 2ε‖γ ‖∞, where the latter follows from (4.18) and our
assumptions that s(z(α0)) = e1 and z(α0) = (0, 0). This implies that |y1| ≥ 4ε‖γ ‖∞ >

|y2|, thus b1(y) < 0. Using that vε(x0) = M ≥ vε(y) and b1(x0) = b1(0, εγ (α0)η0) ≥
0, we have (vε + b1)(y) < (vε + b1)(x0). This shows that maxV ε (α0)

(vε + b1) cannot be
achieved on ∂V ε

2 (α0), finishing the proof of the claim.
Since x̃0 ∈ ∂V ε

1 (α0) ⊂ ∂Dε , the boundary condition in (4.15) yields that vε(x̃0) = 0.
Thus

M + b1(x0) = vε(x0) + b1(x0) ≤ vε(x̃0) + b1(x̃0) = b1(x̃0).

Using b1(x0) = b1(0, εγ (α0)η0) ≥ 0, the above inequality becomes

M ≤ b1(x̃0) ≤ |x̃0|2 ≤ 36‖γ ‖2∞ε2, (4.25)

where the second inequality follows from the definition of b1. This proves (4.16) for
C1 = 36‖γ ‖2∞.

Step 3. It remains to prove (4.17). First note that for i ∈ {1, . . . , n}, the assumptions
(H1)–(H3) yield that Dε

i has C2 boundary, therefore vε ∈ C2(Dε
i ) ∩ C1(Dε

i ). Let us
fix i ∈ {1, . . . , n} and any α ∈ S, and we aim to show that |∇vε(z(α))| ≤ C2ε. Again,
without loss of generality we can assume that z(α) = (0, 0) and s(z(α)) = e1. Let us
consider a new barrier function b2 : R

2 → R

b2(x1, x2) := x22 + 4ε‖γ ‖∞x2 − x21
2

, (4.26)
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which satisfies b2(0, 0) = 0, and one can easily check that its zero level set has horizontal
tangent at (0, 0) (thus tangent to ∂Dε at z(α)).

Again, let us decompose ∂V ε(α) as ∂V ε
1 (α) ∪ ∂V ε

2 (α) as in (4.24) (except that α0
now becomes α). We claim that for all sufficiently small ε > 0, the new barrier function
b2 satisfies

�b2 = 1 in V ε(α), (4.27)

b2 ≤ 0 on ∂V ε
1 , (4.28)

b2 ≤ −ε2 on ∂V ε
2 . (4.29)

Let us assume for a moment that (4.27)–(4.29) are true. Then it follows that

vε + C2b2 ≤ 0 in V ε(α), (4.30)

where C2 := max {1,C1} and C1 is as in (4.16) (in the end of step 2 we have C1 =
36‖γ ‖2∞). To show (4.30), note that vε + C2b2 is subharmonic in V ε(α) due to (4.27)
and the definition of C2, thus its maximum is attained on its boundary. The boundary
conditions in (4.15) and (4.28) yield that vε + C2b2 ≤ 0 on ∂V ε

1 (α); whereas (4.16),
(4.29) and the definition of C2 yield that vε +C2b2 ≤ 0 on ∂V ε

2 (α). Thus vε +C2b2 ≤ 0
on ∂V ε

1 (α) ∪ ∂V ε
2 (α), implying (4.30).

However, vε + C2b2 is actually zero at z(α) ∈ ∂V ε(α), therefore Hopf’s Lemma
implies that ∇ (vε + C2b2) (z(α)) · n(z(α)) > 0, where n(z(α)) is the outer normal of
∂Dε at z(α). Hence

|∇vε(z(α))| = −∇vε(z(α)) · n(z(α)) < C2∇b2(z(α)) · n(z(α)) = 4C2‖γ ‖∞ε,

(4.31)

where the first equality follows from the fact that vε is superharmonic in Dε and constant
on ∂Dε , and the second equality is a direct computation of ∇b2. Thus (4.31) proves
(4.17).

To complete the proof, we only need to prove (4.27)–(4.29) for small ε > 0. Note that
(4.27) follows immediately from computing the Laplacian of b2. For (4.28), let us pick
y ∈ ∂V ε

1 (α), and we aim to show that b2(y) ≤ 0. Note that y = Rε(β, 0) or Rε(β,−1)
for some β ∈ S. We first deal with the first case.

Let us denote y = (y1, y2). Rewriting (4.20) into two inequalities for the two com-
ponents, and using that z(α) = (0, 0) and z′(α) = Le1 (L is the length of the curve �i ),
we have

|0 − y1 − L(α − β)| ≤ ‖z′′‖∞(α − β)2 (4.32)

|y2| = |0 − y2| ≤ ‖z′′‖∞(α − β)2. (4.33)

Also, (4.22) gives |α −β| ≤ 7F�‖γ ‖∞ε. Applying it to (4.32), for all ε > 0 sufficiently
small we have that

|y1| ≥ L

2
|α − β|. (4.34)

Plugging (4.34) and (4.33) into b2(y) = − 1
2 y

2
1 + y22 + 4ε‖γ ‖∞y2, we have

b2(y) ≤ − L2

8
(α − β)2 + ‖z′′‖2∞(α − β)4 + 4ε‖γ ‖∞‖z′′‖∞(α − β)2

≤
(

− L2

8
+ Cε2 + Cε

)
(α − β)2 ≤ 0,
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for all ε > 0 sufficiently small, where the second inequality follows from (4.22). This
finishes the proof of (4.28) for the case y = Rε(β, 0).

Before we deal with the case y = Rε(β,−1), let us prove (4.29) first. For any y =
(y1, y2) ∈ ∂V ε

2 (α), (4.18) gives |y2| ≤ 2ε‖γ ‖∞. Combining this with |y| = 6ε‖γ ‖∞
yields |y1| ≥ √

32ε‖γ ‖∞. Thus

b2(y) ≤ (2ε‖γ ‖∞)2 + 4ε‖γ ‖∞(2ε‖γ ‖∞) − (
√
32ε‖γ ‖∞)2

2
≤ −4ε2‖γ ‖2∞.

Finally we turn to the proof of (4.28) for the case y = Rε(β,−1). Note that the
curve {Rε(β,−1) : β ∈ S}∩ B6ε‖γ ‖∞(z(α)) lies in the interior of the region bounded by
�∩ B6ε‖γ ‖∞(z(α)) on the top, ∂B6ε‖γ ‖∞(z(α)) on the sides, and y2 = −2ε‖γ ‖∞ on the
bottom. (The last one follows from (4.18) and our assumption that s(z(α)) = e1). We
have already shown b2 ≤ 0 on�∩B6ε‖γ ‖∞(z(α)) and the lateral boundaries, and it is easy
to check that b2 ≤ 0 on y2 = −2ε‖γ ‖∞. Since the set {b2 ≤ 0} is simply-connected, it
implies that b2 ≤ 0 in the interior of this region, finishing the proof. ��

Note that (4.16) of Lemma 4.4 immediately implies Proposition 4.2. (The only dif-
ference is that �vε = −1 in Lemma 4.4 whereas �pε = −2 in Proposition 4.2, so the
constant C in Proposition 4.2 is twice of that in (4.16)). The lemma also implies the
following corollary, which will be helpful in the proof of Proposition 4.3.

Corollary 4.5. For any i = 1, . . . , n +m, assume �i and γi satisfy (H1)–(H3). Assume
vε ∈ C2(Dε

i ) ∩ C(Dε
i ) satisfies that

{
|�vε | ≤ C0 in Dε

i ,

vε = 0 on ∂Dε
i ,

for some constant C0 > 0. Then for the same constants ε0,C1,C2 as in Lemma 4.4, the
following holds for all ε ∈ (0, ε0):

|vε | ≤ C0C1ε
2 in Dε

i , (4.35)

and if vε ∈ C2(Dε
i ) ∩ C1(Dε

i ), we have

‖∇vε‖L∞(�i ) ≤ C0C2ε for i = 1, . . . , n. (4.36)

Proof. Let ṽ be a solution to
{

�ṽ = −C0 in Dε
i ,

ṽ = 0 on ∂Dε
i .

It is clear that vε + ṽ is super-harmonic and vε − ṽ is sub-harmonic in Dε
i , and they both

vanish on the boundary. Thus the maximum principle implies that

−ṽ ≤ vε ≤ ṽ in Dε
i . (4.37)

Applying (4.16) ofLemma4.4 to ṽ
C0

,weobtain 0 ≤ ṽ ≤ C0C1ε
2 inDε

i for all ε ∈ (0, ε0),
leading to (4.35). Furthermore, (4.37) and the fact that vε and v both have zero boundary
condition imply that

|∇vε | ≤ |∇ṽ| on ∂Dε
i .
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We then apply (4.17) of Lemma 4.4 to ṽ
C0

and obtain ‖∇vε‖L∞(�i ) ≤ C0C2ε, which
proves (4.36). ��

Now we are ready to prove Proposition 4.3.

Proof of Proposition 4.3. Throughout the proof, let i ∈ {1, . . . , n} be fixed. For nota-
tional simplicity, in the rest of the proof we omit the subscript i from all terms.

We claim that
∣∣∣∣∇ p̃ε(Rε(α, η)) − cε

εγ (α)
n(z(α))

∣∣∣∣ ≤ Cε for all α ∈ S, η ∈ [0,−1], (4.38)

‖�qε‖L∞(Dε ) ≤ C (4.39)

for some constant C > 0 only depending on ‖zi‖C3(Si ), ‖γi‖C2(Si ) and F� . Assuming
these are true, let us explain how they lead to (4.12)–(4.14). By (4.6) and (4.10), pε and
p̃ε have the same boundary condition, thus qε = 0 on ∂Dε . This and (4.39) allow us to
apply Corollary 4.5 to qε to obtain the estimate (4.35), implying (4.12).

Due to (4.36) of Corollary 4.5, we also have

‖∇qε‖L∞(�) ≤ Cε. (4.40)

Using (4.7) and pε = p̃ε + qε , we have

−2|U | =
∫

∂U
∇ p̃ε · ndσ +

∫

∂U
∇qε · ndσ

= −cεL

ε

∫

S
γ −1(α)dα + O(ε),

where the second equality follows from (4.38) for η = 0, n(z(α)) = −n(z(α)) and
dσ = Ldα, as well as (4.40). Rearranging the terms and using the definition of β in
(4.11) yields (4.13).

Finally, note that (4.13) and (4.38) directly lead to (4.14), where we are using the fact
that γi is uniformly positive for i = 1, . . . , n, due to (H3).

The rest of the proof is devoted to proving the claims (4.38) and (4.39). For (4.38),
we compute the gradient of p̃ε . Differentiating (4.10) with respect to α and η, we obtain

(∇α,ηR
ε(α, η))t∇ p̃(Rε(α, η)) =

(
0
cε

)
, (4.41)

where (∇α,ηRε)t denotes the transpose of the Jacobian matrix of Rε . Since ∇α,ηRε =
(∂αRε, ∂ηRε), using the formula for inverses of 2 × 2 matrices, we have

((∇α,ηR
ε
)t)−1 = 1

J (α, η)

(−(∂ηR
ε)⊥, (∂αR

ε)⊥
)
. (4.42)

where J (α, η) := det(∇α,ηRε). Multiplying the inverse matrix on both sides of (4.41),
we have

∇ p̃ε(Rε(α, η)) = 1

J

(−(∂ηR
ε)⊥, (∂αR

ε)⊥
) (

0
cε

)
= cε

J
(∂αR

ε)⊥. (4.43)



J. Gómez-Serrano, J. Park, J. Shi, Y. Yao

Recall that Lemma 3.2 gives (∂αRε)⊥ = z′(α)⊥ + O(ε) = Ln(z(α)) + O(ε), and
J = εLγ + O(ε2). Plugging these into (4.43) gives

∇ p̃ε(R(α, η)) = cε

ε

(
n(z(α))

γ
+ O(ε)

)
. (4.44)

Note that it follows from (4.8) that cε ≤ |Dε |
2π , where |Dε | ≤ Cε due to (3.9). These

imply
cε

ε
≤ C, (4.45)

and applying it to (4.44) yields (4.38).
To prove (4.39), since qε = pε − p̃ε and �pε = −2 in Dε , it suffices to show that

∣∣� p̃ε
∣∣ ≤ C in Dε, (4.46)

and we will begin with an explicit computation of ∂x1x1 p̃
ε and ∂x2x2 p̃

ε . Let us denote
Rε =: (R1, R2). For notational simplicity, in the rest of the proof we will use subscripts
on Rε , R1, R2 and J to denote their partial derivative, e.g. R1

α := ∂αR1.
From (4.43), it follows that

∂x1 p̃
ε(Rε(α, η)) = −cε

J
R2

α.

Differentiating in α and η, we get

∇ (
∂x1 p̃

ε
)
(Rε(α, η)) =

((∇α,ηR
ε
)t)−1 ∇α,η

(
−cε

J
R2

α

)

= cε

J

(
R2

η −R2
α

−R1
η R1

α

)(
Jα
J 2
R2

α − 1
J R

2
αα

Jη
J 2
R2

α − 1
J R

2
αη

)
,

thus

∂x1x1 p̃
ε(R(α, η)) = cε

J

(
Jα
J 2

R2
ηR

2
α − 1

J
R2

ηR
2
αα − Jη

J 2
(R2

α)2 +
1

J
R2

αR
2
αη

)
.

Likewise, ∂x2x2 p̃(R(α, η)) takes the same expression except every R2 is changed into
R1. Adding them together gives

� p̃ε(R(α, η)) = cε

J

(
Jα
J 2

Rε
η · Rε

α − 1

J
Rε

η · Rε
αα − Jη

J 2
Rε

α · Rε
α +

1

J
Rε

α · Rε
αη

)
.

(4.47)
Using the explicit formulae of Rα, Rη and J inLemma3.2,we directly obtain |Rε

α|, |Rε
αα|

≤ C ; |Rε
η|, |Rε

αη|, |Jα| ≤ Cε; |Jη| ≤ Cε2; and J−1 ≤ Cε−1 when ε is sufficiently
small, where C depends on ‖zi‖C3(Si ) and ‖γi‖C2(Si ). As a result, all the four terms in
the parenthesis of (4.47) are bounded by some constant C independent of ε. Finally,
(4.45) yields cε

J ≤ C as well, thus |� p̃ε | ≤ C , and this proves the second claim (4.39).
��
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5. Proof of the Symmetry Result

In this section we prove that a stationary vortex sheet with positive vorticity must be
radially symmetric up to a translation, and a rotating vortex sheet with positive vorticity
and angular velocity � < 0 must be radially symmetric. The key idea of the proof is to
define the integral

I ε :=
∫

Dε

ε−1uε · ∇
(

ωε ∗ N − �

2
|x |2

)
dx

=
∫

Dε

ε−1(x + ∇ pε) · ∇
(

ωε ∗ N − �

2
|x |2

)
dx,

(5.1)

and compute it in two different ways. The motivation of the definition is as follows.
As discussed in [14, Sect. 2.1], I ε can be thought of as a first variation of an “energy
functional”

E[ωε] :=
∫

1

2
ωε(ωε ∗ N ) − �

2
ωε |x |2 dx

when we perturb ωε by a divergence free vector uε in Dε . (This functional E only serves
as our motivation, and will not appear in the proof.) On the one hand, using that ω0 is
stationary in the rotating frame with angular velocity � and ωε is a close approximation
of ω0, we will show in Proposition 5.1 that I ε is of order O(ε| log ε|), thus goes to zero
as ε → 0. On the other hand, using the particular uε that we constructed in Sect. 4,
we will prove in Proposition 5.2 that if � = 0, I ε is strictly positive independently of
ε unless all the vortex sheets are nested circles with constant density; and also prove a
similar result in Corollary 5.3 for � < 0.

Proposition 5.1. Assume ω(·, t) = ω0(R�t ·) is a stationary/uniformly-rotating vortex
sheet with angular velocity � ∈ R, where ω0 satisfies (H1)–(H3). Then there exists
some C > 0 only depending on b (as in (H2)), maxi ‖zi‖C3(Si ), maxi≤n ‖γi‖C2(Si ),
maxi>n ‖γi‖Cb(Si ), d� and F� , such that |I ε | < Cεb| log ε| for all sufficiently small
ε > 0.

Proof. Let us decompose I ε =: ∑n+m
i=1 I ε

i , where I
ε
i := ∫

Dε
i
ε−1(x +∇ pε) ·∇(ωε ∗N −

�
2 |x |2)dx .

We start with showing that |I ε
i | ≤ Cεb| log ε| for i = n + 1, . . . , n + m. For such i ,

pε = 0 on ∂Dε
i , thus the divergence theorem (and the fact that ωε = ε−1 in Dε

i ) gives

I ε
i =

∫

Dε
i

ε−1x · ∇
(

ωε ∗ N − �

2
|x |2

)
dx

︸ ︷︷ ︸
=:T ε

i

−
∫

Dε
i

ε−1(ε−1 − 2�)pε(x)dx .

Using the estimate |pε | ≤ Cε2 in Proposition 4.2 and the fact that |Dε
i | ≤ Cε from (3.9),

we easily bound the second integral by Cε. To control the first integral T ε
i , we rewrite

it using the change of variables x = Rε
i (α, η) and the definition vε := ∇⊥(ωε ∗ N ) in

(3.10): (also note that on the right hand side we group ε−1 with the determinant)

T ε
i =

∫

Si

∫ 0

−1
Rε
i (α, η)·

(
−(vε)⊥(Rε

i (α, η))−�Rε
i (α, η)

)

︸ ︷︷ ︸
=:J ε

i

ε−1 det(∇α,ηR
ε
i (α, η))

︸ ︷︷ ︸
=:K ε

i

dηdα,
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and recall that the exact expression of the determinant was given in (3.8). Let us take a
closer look at the integrand, which is a product of 3 terms. Clearly, the definition of Rε

i
gives Rε

i (α, η) = zi (α) + O(ε). As for the middle term J ε
i , Lemma 3.4 yields

J ε
i (α, η) = −BR⊥(zi (α)) +

(
η +

1

2

)
[v]⊥(zi (α)) − �zi (α) + O(εb| log ε|). (5.2)

Using the fact that BR(zi (α)) = �z⊥i (α) for i = n + 1, . . . , n +m (which follows from
(2.6) and (2.7)), it becomes

J ε
i (α, η) =

(
η +

1

2

)
[v]⊥(zi (α)) + O(εb| log ε|). (5.3)

Also it follows from(3.8) that K ε
i (α, η) = Liγi (α)+O(ε).Plugging these three estimates

into the above integral gives

T ε
i =

∫

Si

∫ 0

−1
zi (α) ·

(
η +

1

2

)
[v]⊥(zi (α))Liγi (α)dηdα + O(εb| log ε|) = O(εb| log ε|),

where the last step follows from the fact that
∫ 0
−1(η + 1

2 )dη = 0. This finishes the proof
that |I ε

i | ≤ Cεb| log ε| for i = n +1, . . . , n +m, where C depends on b, maxi ‖zi‖C2(Si ),
maxi ‖γi‖Cb(Si ), d� and F� .

In the rest of the proof we aim to show |I ε
i | ≤ Cεb| log ε| for i = 1, . . . , n, which

is slightly more involved. Recall that in Proposition 4.3 we defined p̃ε and qε in Dε
i for

i = 1, . . . , n, where they satisfy pε = p̃ε + qε in Dε
i , and qε = 0 on ∂Dε

i . This allows
us to apply the divergence theorem (to the qε term only) and decompose I ε

i as

I ε
i =

∫

Dε
i

ε−1(x + ∇ p̃ε) · ∇
(

ωε ∗ N − �

2
|x |2

)
dx

−
∫

Dε
i

ε−1(ε−1 − 2�)qε(x)dx =: I ε
i,1 + I ε

i,2.

We can easily show that I ε
i,2 = O(ε): (4.12) of Proposition 4.3 gives |qε | ≤ Cε2, and

combining it with |Dε
i | ≤ Cε in (3.9) immediately yields the desired estimate.

Next we turn to I ε
i,1. Again, the change of variables x = Rε

i (α, η) and the definition

vε := ∇⊥(ωε ∗ N ) gives

I ε
i,1 =

∫

Si

∫ 0

−1

(
Rε
i (α, η) + ∇ p̃ε(Rε

i (α, η))
) ·

(
−(vε)⊥(Rε

i (α, η)) − �Rε
i (α, η)

)

︸ ︷︷ ︸
=:J ε

i

ε−1 det(∇α,ηR
ε
i (α, η))

︸ ︷︷ ︸
=:K ε

i

dηdα.

For the three terms in the product of the integrand, we will approximate the first term
using the definition of Rε

i and (4.14) of Proposition 4.3:

Rε
i (α, η) + ∇ p̃ε(Rε

i (α, η)) = zi (α) +
βi

γi (α)
n(zi (α)) + O(ε),
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where βi := 2|Ui |
Li

∫
Si

γ −1
i (α)dα

is given by (4.11). Lemma 3.4 allows us to approximate the

middle term J ε
i as (5.2), however (5.3) no longer holds since for i = 1, . . . , n we do

not have BR(zi (α)) = �z⊥i (α). As for K ε
i , we again use (3.8) to approximate it by

K ε
i (α, η) = Liγi (α) + O(ε). Plugging these three estimates into the integrand of I ε

i,1
gives

I ε
i,1 =

∫

Si

(
zi (α) +

βi

γi (α)
n(zi (α))

)
·
(

−BR⊥(zi (α)) − �zi (α)
)
Liγi (α)dα

+O(εb| log ε|),

where we again use the fact that the (η + 1
2 ) term gives zero contribution since

∫ 0
−1(η +

1
2 )dη = 0. Next we will show the integral on the right hand side is in fact 0. Since ω is
a rotating solution with angular velocity �, the conditions (2.6) and (2.7) yield that

−BR⊥(zi (α)) − �zi (α) = Ciγ
−1
i (α)n(zi (α)),

for some constant Ci . Plugging this into the above integral gives

I ε
i,1 = Ci Li

∫

Si

(
zi (α) · n(zi (α)) +

βi

γi (α)

)
dα + O(εb| log ε|)

= Ci Li

(∫

Si
zi (α) · n(zi (α))dα +

2|Ui |
Li

)
+ O(εb| log ε|),

where the second step follows from the definition of βi in (4.11). Let us compute the
integral on the right hand side by changing to arclength parametrization and applying
the divergence theorem:

∫

Si
zi (α) · n(zi (α))dα = − 1

Li

∫

∂Ui

x · ndσ = −2|Ui |
Li

,

which yields I ε
i,1 = O(εb| log ε|), and finishes the proof that |I ε

i | ≤ Cεb| log ε| for
i = 1, . . . , n, where C depends on b, ‖zi‖C3(Si ), ‖γi‖C2(Si ), d� and F� .

Finally, summing the I ε
i estimates for i = 1, . . . , n + m gives |I ε | ≤ Cεb| log ε| for

all sufficiently small ε > 0, thus we can conclude. ��
Now we will use a different way to compute I ε . Let us first define a new integral Ĩ ε

that is the same as I ε except with � set to zero:

Ĩ ε :=
∫

Dε

ε−1(x + ∇ pε) · ∇ (
ωε ∗ N )

dx . (5.4)

Next we will prove that Ĩ ε is strictly positive independently of ε unless all the vortex
sheets are nested circles with constant density. As we will see in the proof, the key step
is to show that if some �i is either not a circle or does not have a constant γi , then the
estimates on pε in Propositions 4.2–4.3 lead to the following quantitative version of

(4.9): ε−2
(

|Dε
i |2

4π − ∫
Dε
i
pε(x)dx

)
≥ c0 > 0, where c0 is independent of ε.
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Proposition 5.2. Let Ĩ ε be defined as in (5.4). Assume that �i and γi satisfy (H1)–(H3)
for i = 1, . . . , n + m. Then we have Ĩ ε ≥ 0 for all sufficiently small ε > 0.

In addition, if � is not a union of nested circles with constant γi ’s on each connected
component, there exists some c0 > 0 independent of ε, such that Ĩ ε > c0 > 0 for all
sufficiently small ε > 0.

Proof. We start by decomposing Ĩ ε as

Ĩ ε =
∫

Dε

ε−1x · ∇(ωε ∗ N )dx +
∫

Dε

ε−1∇ pε · ∇(ωε ∗ N )dx =: I ε
1 + I ε

2 .

I ε
1 can be easily computed as

I ε
1 = 1

2πε2

∫

Dε

∫

Dε

x · (x − y)

|x − y|2 dxdy = |Dε |2
4πε2

= 1

4πε2

(
n+m∑

i=1

|Dε
i |

)2

(5.5)

where the second equality is obtained by exchanging x with y and taking the average
with the original integral. As for I ε

2 , we have

I ε
2 = 1

ε

∫

∂Dε

pε∇(ωε ∗ N ) · ndσ − 1

ε

∫

Dε

pεωεdx

= −1

ε

n∑

i=1

cε
i

∫

∂Ui

∇(ωε ∗ N ) · ndσ − 1

ε2

∫

Dε

pεdx

≥ − 1

ε2

n∑

i=1

n+m∑

j=1

|Dε
i |

2π

∫

Ui

1Dε
j
dx − 1

ε2

n+m∑

i=1

∫

Dε
i

pεdx,

(5.6)

where the first equality follows from the divergence theorem, the second equality follows
from the boundary conditions (4.5) and (4.6) for pε (as well as the fact that ∂Ui and
∂Dε

i have opposite outer normals), and the last inequality follows from the divergence

theorem as well as the inequality cε
i ≤ supDε

i
p ≤ |Dε

i |
2π due to (4.8).

Let us denote j ≺ i if i ∈ {1, . . . , n} , j ∈ {1, . . . , n + m}, j �= i and � j lies in the
interior of the domain enclosed by �i (that is, � j ⊂ Ui ). If not, we denote j ⊀ i . Note
that for sufficiently small ε > 0, we have

∫

Ui

1Dε
j
dx =

{
|Dε

j | if j ≺ i,

0 otherwise.
(5.7)

Applying this to (5.6) yields

I ε
2 ≥ − 1

2πε2

n+m∑

i, j=1

1 j≺i |Dε
i ||Dε

j | − 1

ε2

n+m∑

i=1

∫

Dε
i

pε
i dx

= − 1

4πε2

n+m∑

i, j=1

(1 j≺i + 1i≺ j ) |Dε
i ||Dε

j | − 1

ε2

n+m∑

i=1

∫

Dε
i

pε
i dx

(5.8)

where in the first step we used that the i = n +1, . . . , n +m terms have zero contribution
in the first sum, due to the definition of j ≺ i .
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Adding (5.5) and (5.8) together, we obtain

Ĩ ε ≥
n+m∑

i=1

1

ε2

(
|Dε

i |2
4π

−
∫

Dε
i

pε
i dx

)

︸ ︷︷ ︸
=:Aε

i

+
n+m∑

i, j=1

1

ε2

(
1i �= j − (

1 j≺i + 1i≺ j
)) |Dε

i ||Dε
j |

4π︸ ︷︷ ︸
=:Bε

i, j

,

(5.9)
From (4.9), it follows that Aε

i ≥ 0 for all i = 1, . . . , n + m, with equality achieved if
and only if each Dε

i is a disk or an annulus. Note that Bε
i, j ≥ 0 as well for all i and j ,

since for any i �= j , at most one of i ≺ j and j ≺ i can hold. Putting these together
yields that Ĩ ε ≥ 0 for any sufficiently small ε > 0.

In the rest of the proof, we assume � is not a union of nested circles with constant
γi ’s on each connected component. Therefore at least one of the following 3 cases must
be true. In each case we aim to show that Ĩε ≥ c0 > 0, where c0 is independent of ε for
all sufficiently small ε > 0.

Case 1. There exists some open curve �i that is not a loop. In this case Dε
i is simply-

connected, and pε = 0 on ∂Dε
i by (4.5). Applying Proposition 4.2 to pε in Dε

i , we have
supDε

i
pε ≤ Cε2, where C is independent of ε. This leads to

∫
Dε
i
pεdx ≤ Cε3, since

|Dε
i | = O(ε) by (3.9). As a result, for the index i we have

Aε
i = |Dε

i |2
4πε2

− ε−2
∫

Dε
i

pε
i dx ≥ L2

i

4π

(∫

Si
γi (α)dα

)2

− Cε,

whereweagainused (3.9) in the second inequality.This gives that Aε
i ≥ L2

i
8π (

∫
Si

γi (α)dα)2

> 0 for all sufficiently small ε > 0.
Case 2. There exists some closed curve �i that is either not a circle, or γi is not a

constant. In this case we aim to show that Aε
i ≥ c0 > 0, and this will be done by finding

good approximations (independent of ε) for both terms in Aε
i . For the first term

|Dε
i |2

4πε2
,

using (3.9) we again have

|Dε
i |2

4πε2
≥ L2

i

4π

(∫

Si
γi (α)dα

)2

− Cε =: Ji − Cε, (5.10)

where Ji > 0 is independent of ε. For the second term ε−2
∫
Dε
i
pε
i dx , rewriting the

integral using the change of variables x = Rε
i (a, η) gives

ε−2
∫

Dε
i

pε
i dx =

∫

Si

∫ 0

−1

pε(Rε
i (α, η))

ε

det(∇α,ηRε
i )

ε
dηdα.

Recall that in Proposition 4.3 we defined p̃ε(Rε
i (α, η)) := cε

i (1 + η) and qε such that
pε − p̃ε = qε . By (4.12) and (4.13), for all α ∈ Si and η ∈ (−1, 0) we have

∣∣∣∣
pε(Rε

i (α, η))

ε
− βi (1 + η)

∣∣∣∣ ≤
∣∣∣∣
pε(Rε

i (α, η))

ε
− cε

i

ε
(1 + η)

∣∣∣∣ +
∣∣∣∣
cε
i

ε
− βi

∣∣∣∣ ≤ Cε,
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where βi := 2|Ui |
Li

∫
Si

γ −1
i (α)dα

is defined in (4.11). Combining this with the expression of

the determinant in (3.8), we have

ε−2
∫

Dε
i

pε
i dx =

∫

Si

∫ 0

−1
(βi (1 + η) + O(ε))(Liγi (α) + O(ε))dηdα

≤ |Ui |∫
Si

γ −1
i (α)dα

∫

Si
γi (α)dα + Cε =: Ki + Cε,

where Ki is independent of ε. Putting this together with (5.10) yields the following:

Aε
i ≥ Ji − Ki − Cε

= L2
i

4π

∫
Si

γi (α)dα
∫
Si

γ −1
i (α)dα

(∫

Si
γ −1
i (α)dα

∫

Si
γi (α)dα − 4π |Ui |

L2
i

)
− Cε.

(5.11)

Let us take a closer look at the two terms inside the parenthesis. For the first term,
Cauchy-Schwarz inequality gives

∫

Si
γ −1
i (α)dα

∫

Si
γi (α)dα ≥ 1,

with equality achieved if andonly ifγi is a constant. For the second term, the isoperimetric
inequality yields

4π |Ui |
L2
i

≤ 1,

(recall that Li = |∂Ui |),with equality achieved if andonlyUi is a disk.By the assumption
of Case 2, at least one of the inequalities must be strict, thus the parenthesis on the right
hand side of (5.11) is strictly positive (and independent of ε). Therefore there exists
some constant c0 > 0 such that Ĩ ε ≥ Aε

i ≥ c0 for all sufficiently small ε.
Case 3. There exist i �= j such that i ⊀ j and j ⊀ i . Then it is clear that for such

i, j , Bε
i, j in (5.9) is given by Bε

i, j = |Dε
i ||Dε

j |
4πε2

. Hence (3.9) gives

Bε
i, j ≥ Li L j

( ∫

Si
γi (α)dα

)( ∫

S j
γ j (α)dα

)
− Cε,

which yields Ĩ ε ≥ 1
2 Li L j (

∫
Si

γi dα)(
∫
S j

γ j dα) > 0 for all sufficiently small ε > 0.
This finishes our discussion on all 3 cases. To conclude, since � is not a union of

nested circles with constant γi ’s on each connected component, at least one of the 3
cases must hold, and all of them lead to Ĩ ε ≥ c0 > 0. ��

The above proposition immediately leads to the following corollary for the � < 0
case.

Corollary 5.3. Assume that �i and γi satisfy (H1)–(H3) for i = 1, . . . , n + m. Let I ε

be defined as in (5.1), and assume � < 0. Then we have I ε ≥ 0 for all sufficiently small
ε > 0. In addition, if � is not a union of concentric circles all centered at the origin
with constant γi ’s, there exists some c0 > 0 independent of ε, such that I ε > c0 > 0 for
all sufficiently small ε > 0.
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Proof. Let us decompose I ε as follows (recall the definition of Ĩ ε in (5.4))

I ε = Ĩ ε + (−�)

(
ε−1

∫

Dε

(|x |2 + ∇ pε · x)dx
)

=: Ĩ ε + (−�)︸ ︷︷ ︸
>0

J ε . (5.12)

Recall that Proposition 5.2 gives Ĩε ≥ c0 > 0 as long as� is not a union of nested circles
with constant γi ’s. By [14, Lemma 2.11], we have

∫

Dε
i

(|x |2 + ∇ pε · x)dx ≥ 0 for any i = 1, . . . , n + m,

thus J ε ≥ 0. Putting them together, and using the fact that� < 0, we know I ε ≥ c0 > 0
if � is not a union of nested circles with constant γi ’s.

To finish the proof, we only need to focus on the case that the �i ’s are nested circles
with constant γi ’s, but not all of them are centered at the origin. Assume that there exists
k ∈ {1, . . . , n} such that �k is a circle with radius rk centered at xk �= 0. Since γk is a
constant, Dε

k is an annulus given by B(xk, rk + εγk) \ B(xk, rk). The symmetry of Dε
k

about xk immediately leads to pε |Dε
k

= − 1
2 |x − xk |2 + 1

2 (rk + εγk)
2. An elementary

computation gives

ε−1
∫

Dε
k

(|x |2 + ∇ pε · x)dx = ε−1
∫

Dε
k

|x |2 − (x − xk) · xdx = ε−1|xk |2|Dε
k |

≥ 2πrkγk |xk |2 > 0,

where in the second-to-last step we used that |Dε
k | = 2πεrkγk + πε2γ 2

k . Setting c0 :=
2πrkγk |xk |2 gives I ε ≥ c0 > 0, thus we can conclude. ��

Now we are ready to prove Theorem 1.1. Note that for � < 0, the symmetry result
immediately follows from Proposition 5.1 and Corollary 5.3. For � = 0, Proposi-
tion 5.1–5.2 already imply that a stationary vortex sheet with positive strength must be
a union of nested circles with constant strength on each of them. To finish the proof, we
only need to show that these nested circles must be concentric.

Proof of Theorem 1.1. For a uniformly-rotating vortex sheet with � < 0, the symmetry
result for � < 0 is a direct consequence of Proposition 5.1 and Corollary 5.3. Next we
focus on the stationary (i.e. � = 0) case.

Combining Propsitions 5.1–5.2, we obtain that � is a union of nested circles, and γi
is constant on �i for all i = 1 . . . , n. It remains to show that all �i ’s are concentric.
Let us denote by vi the contribution to the velocity field by �i . Since �i is a circle with
constant strength γi , a quick application of the divergence theorem yields that vi ≡ 0 in

the open disk enclosed by �i , whereas vi (x) = γi Li (x − x0i )
⊥

2π |x − x0i |2
in the open set outside

�i , where x0i is the center of the circle �i .
Without loss of generality, let us reorder the indices such that �i is nested inside � j

for i < j . Towards a contradiction, let k > 1 be such that �k is the first circle that
is not concentric with �1. From the above discussion, we know that vi = 0 on �k for
i = k + 1, . . . , n (since �k is nested inside �i ), whereas for i = 1, . . . , k − 1 we have

vi = γi Li (x − x01 )
⊥

2π |x − x01 |2
on �k , since all these �i ’s have the same center x01 and are nested
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inside �k . Summing them up (and also using the fact that �k contributes zero normal
velocity on itself, since it is a circle with constant strength), we have

BR(x) · n =
n∑

i=1

vi (x) · n =
(
k−1∑

i=1

γi Li

)
(x − x01 )

⊥ · n
2π |x − x01 |2

on �k,

where the right hand side is not a zero function since �k has a different center from
x01 . This causes a contradiction with the fact that ω = ω0 is stationary. As a result, all
�1, . . . , �n must be concentric circles, finishing the proof. ��
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