Contents lists available at [ScienceDirect](http://www.ScienceDirect.com/)

Annals of Pure and Applied Logic

www.elsevier.com/locate/apal

A consistency result on long cardinal sequences \overline{X}

Juan Carlos Martínez ^a*,*∗, Lajos Soukup ^b

^a *Facultat de Matemàtiques i Informàtica, Universitat de Barcelona, Gran Via 585, 08007 Barcelona, Spain* ^b *Alfréd Rényi Institute of Mathematics, Eötvös Loránd Research Network, Budapest, V. Reáltanoda u. 13-15, H-1053, Hungary*

A R T I C L E I N F O A B S T R A C T

Article history: Received 15 January 2020 Received in revised form 3 July 2021 Accepted 3 July 2021 Available online 9 July 2021

MSC: 54A25 06E05 54G12 03E35

Keywords: Locally compact scattered space Superatomic Boolean algebra Cardinal sequence

1. Introduction

If *X* is a locally compact, scattered Hausdorff (in short: LCS) space and α is an ordinal, we let $I_{\alpha}(X)$ denote the *α*th Cantor-Bendixson level of *X*. The cardinal sequence of *X*, *CS*(*X*), is the sequence of the cardinalities of the infinite Cantor-Bendixson levels of *X*, i.e.

$$
{\rm CS}(X)=\langle |I_\alpha(X)|:\alpha<{\rm ht}^{\text{-}}(X)\rangle,
$$

where $\text{ht}^-(X)$, the *reduced height* of X, is the minimal ordinal β such that $I_\beta(X)$ is finite. The *height* of *X*, denoted by $\text{ht}(X)$, is defined as the minimal ordinal *β* such that $I_\beta(X) = \emptyset$. Clearly $\text{ht}(X) \leq \text{ht}(X) \leq$ $ht^-(X) + 1.$

* Corresponding author.

<https://doi.org/10.1016/j.apal.2021.103017>

For any regular cardinal κ and ordinal $\eta < \kappa^{++}$ it is consistent that 2^{κ} is as large as you wish, and every function $f : \eta \longrightarrow [\kappa, 2^{\kappa}] \cap Card$ with $f(\alpha) = \kappa$ for $cf(\alpha) < \kappa$ is the cardinal sequence of some locally compact scattered space.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (<http://creativecommons.org/licenses/by/4.0/>).

 $*$ The first author was supported by the Spanish Ministry of Education DGI grant MTM2017-86777-P (Spanish Ministry of Science and Innovation (SMSI)) and by the Catalan DURSI grant 2017SGR270. The second author was supported by NKFIH grants nos. K113047 and K129211.

E-mail addresses: jcmartinez@ub.edu (J.C. Martínez), soukup@renyi.hu (L. Soukup).

^{0168-0072/©} 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license [\(http://creativecommons.org/licenses/by/4.0/\)](http://creativecommons.org/licenses/by/4.0/).

If α is an ordinal, let $\mathcal{C}(\alpha)$ denote the class of all cardinal sequences of LCS spaces of reduced height α and put

$$
\mathcal{C}_{\lambda}(\alpha) = \{ s \in \mathcal{C}(\alpha) : s(0) = \lambda \wedge \forall \beta < \alpha \ s(\beta) \geq \lambda \}.
$$

Let $\langle \kappa \rangle_{\alpha}$ denote the constant *κ*-valued sequence of length α .

In [\[4\]](#page-18-0) it was shown that the class $\mathcal{C}(\alpha)$ is described if the classes $\mathcal{C}_{\kappa}(\beta)$ are characterized for every infinite cardinal κ and ordinal $\beta \leq \alpha$. Then, under GCH, a full description of the classes $\mathcal{C}_{\kappa}(\alpha)$ for infinite cardinals *κ* and ordinals $\alpha < \omega_2$ was given.

The situation becomes, however, more complicated for $\alpha \geq \omega_2$. In [\[9\]](#page-18-0) we gave a consistent full characterization of $\mathcal{C}_{\kappa}(\alpha)$ for any uncountable regular cardinals κ and ordinals $\alpha < \kappa^{++}$ under GCH.

If *GCH* fails, much less is known on $\mathcal{C}_{\kappa}(\alpha)$ even for $\alpha < \kappa^{++}$.

In [\[11](#page-18-0)] it was proved that $\langle \omega \rangle_{\omega_1} \hat{} \langle \omega_2 \rangle \in C_{\omega}(\omega_1 + 1)$ is consistent.

In [[5\]](#page-18-0) a similar result was proved for uncountable cardinals instead of *ω*: if *κ* is a regular cardinal with $\kappa^{<\kappa} = \kappa > \omega$ and $2^{\kappa} = \kappa^+$, then in some cardinality preserving generic extension of the ground model we have

$$
\langle \kappa \rangle_{\kappa^+} \widehat{} \langle \kappa^{++} \rangle \in \mathcal{C}(\kappa^+ + 1).
$$

In [\[10](#page-18-0)] we proved that if κ and λ are regular cardinals with $\kappa \leq \lambda$, $\kappa^{<\kappa} = \kappa$, $2^{\kappa} = \kappa^+$, and $\delta < \kappa^{++}$ with $cf(\delta) = \kappa^+$, then in some cardinality preserving generic extension of the ground model we have

$$
\langle\kappa\rangle_\delta^\frown\langle\lambda\rangle\in\mathcal{C}(\delta+1).
$$

In this paper we will prove a much stronger result than the above mentioned one.

Theorem 1.1. Assume that κ and λ are regular cardinals, $\kappa^{++} \leq \lambda$, $\kappa^{<\kappa} = \kappa$, $2^{\kappa} = \kappa^{+}$, $\lambda^{\kappa^{+}} = \lambda$ and $\delta < \kappa^{++}$. Then, in some cardinality preserving generic extension of the ground model, we have $2^{\kappa} = \lambda$ and

$$
\{f \in {}^{\delta}([\kappa, \lambda] \cap Card) : f(\alpha) = \kappa \text{ whenever } cf(\alpha) < \kappa\} \subset \mathcal{C}_{\kappa}(\delta).
$$

Definition 1.2. Let C be a family of sequences of cardinals. We say that an LCS space *X* is *universal for* C iff $CS(X) \in \mathcal{C}$ and for each *s* ∈ \mathcal{C} there is an open subspace $Z \subset X$ with $CS(Z) = s$.

Remark. The assumption $\delta \leq \kappa^{++}$ is essential in the construction as we will explain in a Remark on page [8](#page-7-0).

So, we do not know whether Theorem 1.1 can be generalized to $\delta = \kappa^{++}$. In fact, if κ is a specific uncountable cardinal, the problem whether it is relatively consistent with ZFC that $\langle \kappa \rangle_{\kappa^{++}} \in C(\kappa^{++})$ is a long-standing open question. Nevertheless, by a well-known result of Baumgartner and Shelah, it is known that it is relatively consistent with ZFC that $\langle \omega \rangle_{\omega_2} \in C(\omega_2)$ (see [[2\]](#page-18-0)).

Instead of Theorem 1.1 we prove the following stronger result:

Theorem 1.3. Assume that κ and λ are regular cardinals, $\kappa^{++} \leq \lambda$, $\kappa^{<\kappa} = \kappa$, $2^{\kappa} = \kappa^{+}$, $\lambda^{\kappa^{+}} = \lambda$ and $\delta < \kappa^{++}$. Then, in some cardinal preserving generic extension, we have $2^{\kappa} = \lambda$ and there is an LCS space *X which is universal for*

$$
\mathcal{C} = \{ f \in \delta \big([\kappa, \lambda] \cap Card \big) : f(\alpha) = \kappa \text{ whenever } cf(\alpha) < \kappa \}.
$$

Definition 1.4. Let *κ* < *λ* be cardinals, *δ* be an ordinal, and *A* ⊂ *δ*. An LCS space *X* of height *δ* is called $(\kappa, \lambda, \delta, A)$ *-good* iff there is an open subspace $Y \subset X$ such that

- $(CS(Y) = \langle \kappa \rangle_{\delta},$
- (2) $I_{\mathcal{C}}(Y) = I_{\mathcal{C}}(X)$, and so $|I_{\mathcal{C}}(X)| = \kappa$, for $\zeta \in \delta \setminus A$,
- (3) $|I_{\zeta}(X)| = \lambda$ for $\zeta \in A$,
- (4) for $\zeta \in A$ the set $Z_{\zeta} = I_{\leq \zeta}(Y) \cup I_{\zeta}(X)$ is an open subspace of X such that (a) $I_{\xi}(Z_{\zeta}) = I_{\xi}(Y)$ for $\xi < \zeta$, (b) $I_{\mathcal{C}}(Z_{\mathcal{C}}) = I_{\mathcal{C}}(X)$.

Theorem [1.3](#page-1-0) follows immediately from Koszmider's Theorem, Theorem 1.6 and Proposition 1.7 below. The following result of Koszmider can be obtained by putting together [[7,](#page-18-0) Fact 32 and Theorem 33]:

Definition 1.5 *(See [\[6,7\]](#page-18-0)*). Assume that $\kappa < \lambda$ are infinite cardinals. We say that a function $\mathcal{F}: [\lambda]^2 \longrightarrow \kappa^+$ is a κ^+ -*strongly unbounded function on* λ iff for every ordinal $\vartheta < \kappa^+$ and for every family $\mathcal{A} \subset [\lambda]^{<\kappa}$ of pairwise disjoint sets with $|\mathcal{A}| = \kappa^+$, there are different $a, b \in \mathcal{A}$ such that $\mathcal{F}{\{\alpha, \beta\}} > \vartheta$ for every $\alpha \in a$ and *β* ∈ *b*.

Koszmider's Theorem. If κ, λ are infinite cardinals such that $\kappa^{++} \leq \lambda$, $\kappa^{<\kappa} = \kappa$, $2^{\kappa} = \kappa^+$ and $\lambda^{\kappa^+} = \lambda$, then in some cardinal preserving generic extension $\kappa^{<\kappa} = \kappa$, $\lambda^{\kappa} = \lambda$ and there is a κ^+ -strongly unbounded *function on* λ *.*

For an ordinal $\delta < \kappa^{++}$ let

$$
\mathcal{L}_{\kappa}^{\delta} = \left\{ \alpha < \delta : \text{cf}(\alpha) \in \{\kappa, \kappa^+\} \right\}.
$$

Theorem 1.6. If $\kappa < \lambda$ are regular cardinals with $\kappa^{\leq \kappa} = \kappa$, $\lambda^{\kappa} = \lambda$, and there is a κ^+ -strongly unbounded function on λ , then for each $\delta < \kappa^{++}$ there is a κ -complete κ^+ -c.c poset P of cardinality λ such that in $V^{\mathcal{P}}$ *we have* $2^{\kappa} = \lambda$ *and there is a* $(\kappa, \lambda, \delta, \mathcal{L}_{\kappa}^{\delta})$ -good *space.*

We will prove Theorem 1.6 in Section [2.](#page-3-0)

Proposition 1.7. If $\kappa < \lambda$ are regular cardinals and $\delta < \kappa^{++}$, then a $(\kappa, \lambda, \delta, \mathcal{L}_{\kappa}^{\delta})$ -good space is universal for

$$
\mathcal{C} = \{ f \in \delta\big([\kappa, \lambda] \cap Card \big) : f(\alpha) = \kappa \text{ whenever } cf(\alpha) < \kappa \}.
$$

Proof. Let *X* be a $(\kappa, \lambda, \delta, \mathcal{L}_{\kappa}^{\delta})$ -good space. Fix $f \in \mathcal{C}$. For $\zeta \in \mathcal{L}_{\kappa}^{\delta}$ pick $T_{\zeta} \in [I_{\zeta}(X)]^{f(\zeta)}$, and let

$$
Z = Y \cup \bigcup \{T_{\zeta} : \zeta \in \mathcal{L}_{\kappa}^{\delta}\}.
$$

Since $I_{\leq \zeta}(Y) \cup T_{\zeta}$ is an open subspace of *X* for $\zeta \in \mathcal{L}_{\kappa}^{\delta}$, for every $\alpha < \delta$ we have

$$
I_{\alpha}(Z) = I_{\alpha}(Y) \cup \bigcup \{ I_{\alpha}(I_{< \zeta}(Y) \cup T_{\zeta}) : \zeta \in \mathcal{L}_{\kappa}^{\delta} \}.
$$

Since

$$
I_{\alpha}(I_{\leq \zeta}(Y) \cup T_{\zeta}) = \begin{cases} I_{\alpha}(Y) & \text{if } \alpha < \zeta, \\ T_{\zeta} & \text{if } \alpha = \zeta, \\ \emptyset & \text{if } \zeta < \alpha, \end{cases}
$$

we have

$$
I_{\alpha}(Z) = \begin{cases} I_{\alpha}(Y) & \text{if } \alpha \notin \mathcal{L}_{\kappa}^{\delta}, \\ I_{\alpha}(Y) \cup T_{\alpha} & \text{if } \alpha \in \mathcal{L}_{\kappa}^{\delta}.\end{cases}
$$

Since $|I_{\alpha}(Y)| = \kappa$ and $|I_{\alpha}(Y) \cup T_{\alpha}| = \kappa + f(\alpha) = f(\alpha)$, we have $CS(Z) = f$, which was to be proved. \Box

2. Proof of Theorem [1.6](#page-2-0)

2.1. Graded posets

In [\[5](#page-18-0)], [\[8](#page-18-0)], [[11\]](#page-18-0) and in many other papers, the existence of an LCS space is proved in such a way that instead of constructing the space directly, a certain "graded poset" is produced which guaranteed the existence of the wanted LCS-space. From these results, Bagaria, [\[1\]](#page-18-0), extracted the notion of *s*-posets and established the formal connection between graded posets and LCS-spaces. For technical reasons, we will use a reformulation of Bagaria's result introduced in [[12\]](#page-18-0).

If \preceq is an arbitrary partial order on a set *X* then define the topology τ_{\preceq} on *X* generated by the family $\{U_{\preceq}(x), X \setminus U_{\preceq}(x) : x \in X\}$ as a subbase, where $U_{\preceq}(x) = \{y \in X : y \preceq x\}.$

In what follows, if *i* is a partial function from $[X]^2$ to *X* where *X* is the domain of some poset, for every ${s, t} \in [X]^2 \setminus \text{dom}(i)$ we will write $i\{s, t\} = under$. So, we will write $i: [X]^2 \longrightarrow X \cup {under}$ in order to represent a partial function *i* from $[X]^2$ to X.

Proposition 2.1 ([[12](#page-18-0), Proposition 2.1]). Assume that $\langle X, \preceq \rangle$ is a poset, $\{X_\alpha : \alpha < \delta\}$ is a partition of X and $i:$ $[X]^2 \longrightarrow X \cup \{under\}$ *is a function satisfying* (a) – (c) *below:*

(a) *if* $x \in X_\alpha$, $y \in X_\beta$ and $x \preceq y$ then *either* $x = y$ *or* $\alpha < \beta$, (b) $\forall \{x, y\} \in [X]^2 \ (\forall z \in X \ (z \preceq x \land z \preceq y) \ iff \ z \preceq i\{x, y\} \),$ (c) *if* $x \in X_\alpha$ *and* $\beta < \alpha$ *then the set* $\{y \in X_\beta : y \leq x\}$ *is infinite.*

Then $\mathcal{X} = \langle X, \tau \preceq \rangle$ *is an LCS space with* $I_\alpha(\mathcal{X}) = X_\alpha$ *for* $\alpha < \delta$ *.*

Definition 2.2. Let $\kappa < \lambda$ be cardinals, δ be an ordinal, and $A \subset \delta$. Assume that $\langle X, \preceq \rangle$ is a poset, ${X_\alpha : \alpha < \delta}$ is a partition of *X* and $i: [X]^2 \longrightarrow X \cup \{undef\}$ is a function satisfying conditions (a)–(c) from Proposition 2.1.

We say that poset $\langle X, \preceq \rangle$ is $(\kappa, \lambda, \delta, A)$ *-good* iff there is a set $Y \subset X$ such that:

- (d) if $x_0 \preceq x_1$, then either $x_0 = x_1$ or $x_0 \in Y$;
- (e) $X_{\zeta} \in [Y]^{\kappa}$ for $\zeta \in \delta \setminus A$;
- (f) $|X_\zeta| = \lambda$ and $|X_\zeta \cap Y| = \kappa$ for $\zeta \in A$.

Proposition 2.3. Let $\kappa < \lambda$ be cardinals, δ be an ordinal, and $A \subset \delta$. If $\langle X, \preceq \rangle$ is a $(\kappa, \lambda, \delta, A)$ -good poset, *then* $\mathcal{X} = \langle X, \tau_{\preceq} \rangle$ *is a* $(\kappa, \lambda, \delta, A)$ *-good space.*

Proof. By Proposition 2.1, $\mathcal{X} = \langle X, \tau \preceq \rangle$ is an LCS space with $I_{\alpha}(\mathcal{X}) = X_{\alpha}$ for $\alpha < \delta$.

By (d), the subspace *Y* is open, and so $I_\zeta(Y) = I_\zeta(X) \cap Y$. Thus $|I_\zeta(Y)| = \kappa$ by (e) and (f). So $CS(Y) = \langle \kappa \rangle_{\delta}$, i.e. [1.4\(](#page-2-0)1) holds.

If $\zeta \in \delta \setminus A$, then $I_{\zeta}(X) \subset Y$ by (e), so $I_{\zeta}(X) = I_{\zeta}(Y)$. Thus [1.4\(](#page-2-0)2) holds. Moreover $I_{\zeta}(Y) = I_{\zeta}(X) \cap Y$. $1.4(3)$ $1.4(3)$ follows from (f).

Also, for $\zeta \in A$ (a) and (d) imply that $U_{\preceq}(s) \subset Z_{\zeta}$ for $s \in Z_{\zeta}$, and so Z_{ζ} is an open subspace of \mathcal{X} . Hence $I_{\xi}(Z_{\zeta}) = I_{\xi}(X) \cap Z_{\zeta} = X_{\xi} \cap Z_{\zeta}$. Thus $I_{\xi}(Z_{\zeta}) = I_{\xi}(Y)$ for $\xi < \zeta$, and $I_{\zeta}(Z_{\zeta}) = X_{\zeta}$. So [1.4](#page-2-0)(4) also holds.

Thus $\mathcal X$ is a $(\kappa, \lambda, \delta, A)$ -good space. \Box

So, instead of Theorem [1.6](#page-2-0), it is enough to prove Theorem 2.4 below.

Theorem 2.4. If $\kappa < \lambda$ are regular cardinals with $\kappa^{\leq \kappa} = \kappa$, $\lambda^{\kappa} = \lambda$, and there is a κ^+ -strongly unbounded function on λ , then for each $\delta < \kappa^{++}$ there is a κ -complete κ^+ -c.c poset P of cardinality λ such that in $V^{\mathcal{P}}$ *we have* $2^{\kappa} = \lambda$ *and there is a* $(\kappa, \lambda, \delta, \mathcal{L}_{\kappa}^{\delta})$ -good poset.

So, assume that κ , λ and δ satisfy the hypothesis of Theorem 2.4. In order to construct the required poset P , first we need to recall some notion from [\[8](#page-18-0), Section 1].

2.2. Orbits

If $\alpha \leq \beta$ are ordinals let

$$
[\alpha, \beta) = {\gamma : \alpha \leq \gamma < \beta}.
$$

We say that *I* is an *ordinal interval* iff there are ordinals α and β with $I = [\alpha, \beta)$. Write $I^- = \alpha$ and $I^+ = \beta$.

If $I = [\alpha, \beta)$ is an ordinal interval let $E(I) = {\varepsilon_v^I : \nu < \text{cf}(\beta)}$ be a cofinal closed subset of *I* having order type cf(β) with $\alpha = \varepsilon_0^I$ and put

$$
\mathcal{E}(I) = \{ [\varepsilon_{\nu}^I, \varepsilon_{\nu+1}^I) : \nu < \text{cf } \beta \}
$$

provided β is a limit ordinal, and let $E(I) = {\alpha, \beta'}$ and put

$$
\mathcal{E}(I) = \{[\alpha, \beta'), \{\beta'\}\}\
$$

provided $\beta = \beta' + 1$ is a successor ordinal.

Define $\{\mathcal{I}_n : n < \omega\}$ as follows:

$$
\mathcal{I}_0 = \{ [0, \delta) \} \text{ and } \mathcal{I}_{n+1} = \bigcup \{ \mathcal{E}(I) : I \in \mathcal{I}_n \}.
$$

Put $\mathbb{I} = \bigcup \{ \mathcal{I}_n : n < \omega \}.$

Note that I is a *cofinal tree of intervals* in the sense defined in [[8\]](#page-18-0). So, the following conditions are satisfied:

- (i) For every $I, J \in \mathbb{I}, I \subset J$ or $J \subset I$ or $I \cap J = \emptyset$.
- (ii) If *I*, *J* are different elements of \mathbb{I} with $I \subset J$ and J^+ is a limit ordinal, then $I^+ < J^+$.
- (iii) \mathcal{I}_n partitions $[0, \delta)$ for each $n < \omega$.
- (iv) \mathcal{I}_{n+1} refines \mathcal{I}_n for each $n < \omega$.
- (v) For every $\alpha < \delta$ there is an $I \in \mathbb{I}$ such that $I^{-} = \alpha$.

Then, for each $\alpha < \delta$ we define

$$
n(\alpha) = \min\{n : \exists I \in \mathcal{I}_n \text{ with } I^- = \alpha\},\
$$

and for each $\alpha < \delta$ and $n < \omega$ we pick

 $I(\alpha, n) \in \mathcal{I}_n$ such that $\alpha \in I(\alpha, n)$.

Proposition 2.5. Assume that $\zeta < \delta$ is a limit ordinal. Then, there is an interval

$$
J(\zeta) \in \mathcal{I}_{n(\zeta)-1} \cup \mathcal{I}_{n(\zeta)}
$$

such that ζ *is a limit point of* $E(J(\zeta))$. *If* $cf(\zeta) = \kappa^+$ *, then* $J(\zeta) \in \mathcal{I}_{n(\zeta)}$ and $J(\zeta)^+ = \zeta$ *.*

Proof. If there is an $I \in \mathcal{I}_{n(\zeta)}$ with $I^+ = \zeta$ then $J(\zeta) = I$. If there is no such *I*, then ζ is a limit point of $E(I(\zeta, n(\zeta) - 1)),$ so $J(\zeta) = I(\zeta, n(\zeta) - 1).$

Assume now that $cf(\zeta) = \kappa^+$. Then $\zeta \in E(I(\zeta, n(\zeta) - 1))$, but $|E(I(\zeta, n(\zeta) - 1)) \cap \zeta| \leq \kappa$, so ζ can not be a limit point of $E(I(\zeta, n(\zeta) - 1))$. Therefore, it has a predecessor ξ in $E(I(\zeta, n(\zeta) - 1))$, i.e. $[\xi, \zeta) \in \mathcal{I}_{n(\zeta)}$, and so $J(\zeta) = [\xi, \zeta)$ and $J(\zeta) \in \mathcal{I}_{n(\zeta)}$. \Box

If $cf(J(\zeta)^+) \in {\kappa, \kappa^+}$, we denote by ${\{\epsilon_\nu^{\zeta} : \nu < cf(J(\zeta)^+)\}}$ the increasing enumeration of $E(J(\zeta))$, i.e. $\epsilon_{\nu}^{\zeta} = \epsilon_{\nu}^{J(\zeta)}$ for $\nu < \text{cf}(J(\zeta)^+)$.

Now if $\zeta < \delta$, we define the *basic orbit* of ζ (with respect to I) as

$$
o(\zeta) = \bigcup \{ (E(I(\zeta, m)) \cap \zeta) : m < n(\zeta) \}.
$$

We refer the reader to [\[8](#page-18-0), Section 1] for some fundamental facts and examples on basic orbits. In particular, we have that $\alpha \in o(\beta)$ implies $o(\alpha) \subset o(\beta)$.

If $\zeta \in \mathcal{L}_{\kappa}^{\delta}$, we define the *extended orbit* of ζ by

$$
\overline{\mathrm{o}}(\zeta) = \mathrm{o}(\zeta) \cup (\mathrm{E}(J(\zeta)) \cap \zeta).
$$

Observe that if $J(\zeta) \in \mathcal{I}_{n(\zeta)-1}$ then $\overline{o}(\zeta) = o(\zeta)$.

The underlying set of our poset will consist of blocks. The following set B below serves as the index set of our blocks:

$$
\mathbb{B} = \{S\} \cup \mathcal{L}_{\kappa}^{\delta}.
$$

Let

$$
B_S = \delta \times \kappa
$$

and

$$
B_{\zeta} = \{\zeta\} \times [\kappa, \lambda)
$$

for $\zeta \in \mathcal{L}_{\kappa}^{\delta}$.

The underlying set of our poset will be

$$
X = \bigcup \{ B_T : T \in \mathbb{B} \}.
$$

To obtain a $(\kappa, \lambda, \delta, \mathcal{L}_{\kappa}^{\delta})$ -good poset we take $Y = B_S$ and

$$
X_{\zeta} = \begin{cases} {\{\zeta\} \times \kappa & \text{if } \zeta \in \delta \setminus \mathcal{L}_{\kappa}^{\delta},} \\ {\{\zeta\} \times \lambda & \text{if } \zeta \in \mathcal{L}_{\kappa}^{\delta}.} \end{cases}
$$

Define the functions $\pi : X \longrightarrow \delta$ and $\rho : X \longrightarrow \lambda$ by the formulas

$$
\pi(\langle \alpha, \nu \rangle) = \alpha \text{ and } \rho(\langle \alpha, \nu \rangle) = \nu.
$$

Define

$$
\pi_B: X \longrightarrow \mathbb{B}
$$
 by the formula $x \in B_{\pi_B(x)}$.

Finally we define the *orbits* of the elements of *X* as follows:

$$
o^*(x) = \begin{cases} o(\pi(x)) & \text{for } x \in B_S, \\ \overline{o}(\pi(x)) & \text{for } x \in X \setminus B_S. \end{cases}
$$

Observe that $o^*(x) \in [\pi(x)]^{\leq \kappa^+}$ and

$$
|\mathbf{o}^*(x)| \le \kappa \text{ unless } x \in B_{\xi} \text{ with } cf(\xi) = \kappa^+.
$$

To simplify our notation, we will write $o(x) = o(\pi(x))$ and $\overline{o}(x) = \overline{o}(\pi(x))$.

2.3. Forcing construction

Let $\Lambda \in \mathbb{I}$ and $\{x, y\} \in [X]^2$. We say that Λ *separates x from y* if

$$
\Lambda^- < \pi(x) < \Lambda^+ < \pi(y).
$$

Let $\mathcal{F}: \left[\lambda \right]^2 \longrightarrow \kappa^+$ be a κ^+ -strongly unbounded function. Define

$$
f: [X]^2 \longrightarrow [\delta]^{\leq \kappa}
$$

as follows:

$$
f\{x,y\} = \begin{cases} o(x) \cup \{\epsilon_{\zeta}^{\pi(x)} : \zeta < \mathcal{F}\{\rho(x),\rho(y)\}\} & \text{if } \pi_B(x) = \pi_B(y) \neq S, \\ o^*(x) \cap o^*(y) & \text{otherwise.} \end{cases}
$$

Observe that

$$
|f\{x,y\}| \leq \kappa
$$

for all $\{x, y\} \in [X]^2$.

Definition 2.6. We define the poset $P = \langle P, \le \rangle$ as follows: $\langle A, \preceq, i \rangle \in P$ iff the following conditions hold:

 $(P1)$ $A \in [X]^{<\kappa};$ (P2) \preceq is a partial order on *A* such that $x \preceq y$ implies $x = y$ or $\pi(x) < \pi(y)$; (P3) if $x \leq y$ and $\pi_B(x) \neq S$, then $x = y$; (P4) i : $[A]^2 \longrightarrow A \cup \{\text{under}\}\$ such that for each $\{x, y\} \in [A]^2$ we have

$$
\forall a \in A([a \le x \land a \le y] \text{ iff } a \le i\{x, y\});
$$

(P5) for each $\{x, y\} \in [A]^2$ if *x* and *y* are \preceq -incomparable but \preceq -compatible, then

$$
\pi(\mathrm{i}\{x,y\})\in\mathrm{f}\{x,y\};
$$

(P6) If $\{x, y\} \in [A]^2$ with $x \prec y$, and $\Lambda \in \mathbb{I}$ separates *x* from *y*, then there is $z \in A$ such that $x \prec z \prec y$ and $\pi(z) = \Lambda^+$.

The ordering on *P* is the extension: $\langle A, \preceq, i \rangle \leq \langle A', \preceq', i' \rangle$ iff $A' \subset A$, $\preceq' = \preceq \cap (A' \times A')$, and $i' \subset i$.

Remark. Property (P5) will be used to prove that P satisfies the κ^+ -chain condition. For this, we will use in an essential way that $\delta < \kappa^{++}$ and $f : [X]^2 \to [\delta]^{\leq \kappa}$. Then, if $R = \langle r_\nu : \nu < \kappa^+ \rangle$ is a subset of *P* of size κ^+ with $r_{\nu} = \langle A_{\nu}, \preceq_{\nu}, i_{\nu} \rangle$ for $\nu < \kappa^{+}$, by using the assumption that $\kappa^{<\kappa} = \kappa$, we can assume that $\{A_{\nu} : \nu < \kappa^{+}\}$ forms a Δ -system with kernel A_{Δ} and that the conditions r_{ν} ($\nu < \kappa^+$) are pairwise isomorphic. Note that if $\kappa^+ < \delta < \kappa^{++}$, we can not assume that A_Δ is an initial segment of each A_ν for $\nu < \kappa^+$. However, since $|f\{x,y\}| \leq \kappa$ for all $\{x,y\} \in [X]^2$, we can assume by (P5) that if $x, y \in A_{\Delta}$ with $x \neq y$ and $\nu < \mu < \kappa^+$, we have that $i_{\nu}\{x, y\} = i_{\mu}\{x, y\}$. Then, by using the fact that F is a κ^+ -strongly unbounded function, we will be able to find two different conditions r_ν and r_μ in R that are compatible in P. To show that r_ν and *r*_μ are compatible, we will be able to define the infimum of pairs of elements $\{x, y\}$ where $x \in A$ ^{*ν*} $\setminus A$ ^{*μ*} and $y \in A_\mu \setminus A_\nu$ by using the properties of trees of intervals and orbits (specially Proposition [2.5\)](#page-5-0). Note that if $\delta = \kappa^{++}$, we can not define the notion of a basic orbit of an element $\zeta < \delta$ on a tree of intervals $\{\mathcal{I}_n : n < \omega\}$ where $\mathcal{I}_0 = \{ [0, \delta) \}$ in such a way that $|o(\zeta)| \leq \kappa$.

For $p \in P$ write $p = \langle A_p, \preceq_p, i_p \rangle$.

To complete the proof of Theorem [2.4](#page-4-0) we will use the following lemmas which will be proved later:

Lemma 2.7. P *is κ-complete.*

Lemma 2.8. P *satisfies the* κ^+ -c.c.

Lemma 2.9.

(a) *For* all $x \in X$ *, the set*

$$
D_x = \{q \in P : x \in A_q\}
$$

is dense in P*.*

(b) If $x \in X$, $\alpha < \pi(x)$ and $\zeta < \kappa$, then the set

$$
E_{x,\alpha,\zeta} = \{ q \in P : x \in A_q \land \exists b \in A_q \cap (\{\alpha\} \times (\kappa \setminus \zeta)) \ b \preceq_q x \}
$$

is dense in P

Since $\lambda^{<\kappa} = \lambda$, the cardinality of *P* is λ . Thus, Lemma 2.7 and Lemma 2.8 above guarantee that forcing with *P* preserves cardinals and $2^k = \lambda$ in the generic extension.

Let $G \subset P$ be a generic filter. Put $A = \bigcup \{A_p : p \in G\}$, $i = \bigcup \{i_p : p \in G\}$ and $\preceq = \bigcup \{\preceq_p : p \in G\}$. Then $A = X$ by Lemma 2.9(a).

We claim that $\langle X, \preceq \rangle$ is a $(\kappa, \lambda, \delta, \mathcal{L}_{\kappa}^{\delta})$ -poset.

Recall that we put $X_{\zeta} = {\zeta} \times \kappa$ for $\zeta \in \delta \setminus \mathcal{L}_{\kappa}^{\delta}$ and $X_{\zeta} = {\zeta} \times \lambda$ for $\zeta \in \mathcal{L}_{\kappa}^{\delta}$. Then the poset $\langle X, \preceq \rangle$, the partition $\{X_\zeta : \zeta < \delta\}$, the function *i* and $Y = \delta \times \kappa$ clearly satisfy conditions [2.1\(](#page-3-0)a,b) and [2.2](#page-3-0)(d,e,f) by the definition of the poset P .

Finally condition $2.1(c)$ $2.1(c)$ holds by Lemma $2.9(b)$ $2.9(b)$.

So to complete the proof of Theorem [2.4](#page-4-0) we need to prove Lemmas [2.7,](#page-7-0) [2.8](#page-7-0) and [2.9](#page-7-0).

Since κ is regular, Lemma [2.7](#page-7-0) clearly holds.

Proof of Lemma [2.9](#page-7-0). (a) Let $p \in P$ be arbitrary. We can assume that $x \notin A_p$.

Let $A_q = A_p \cup \{x\}$, $\preceq_q = \preceq_p \cup \{\langle x, x \rangle\}$, and define $i' \supset i$ such that $i'\{a, x\} = \text{under} f$ for $a \in A_p$. Then $q = \langle A_q, \preceq_q, i_q \rangle \in D_x$ and $q \leq p$.

(b) Let $p \in P$ be arbitrary. By (a) we can assume that $x \in A_n$. Write $\beta = \pi(x)$.

Let *m* be the natural number such that $I(\alpha, m) = I(\beta, m)$ and $I(\alpha, m + 1) \neq I(\beta, m + 1)$. We put $I_k = I(\alpha, k)$ for $k \ge m + 1$. Let $K = {\alpha} \cup \{I_k^+ : m + 1 \le k < n(\alpha)\}.$

For each $\gamma \in K$ pick $b_{\gamma} \in (\{\gamma\} \times (\kappa \setminus \zeta)) \setminus A_p$. So $\pi(b_{\gamma}) = \gamma$. Let $A_q = A_p \cup \{b_\gamma : \gamma \in K\},\$

 $\preceq_q = \preceq_p \cup \{ \langle b_\gamma, b_{\gamma'} \rangle : \gamma, \gamma' \in K, \gamma \leq \gamma' \} \cup \{ \langle b_\gamma, z \rangle : \gamma \in K, z \in A_p, x \preceq_p z \}.$

We let $i_q\{y, z\} = i_p\{y, z\}$ if $\{y, z\} \in [A_p]^2$, $i_q\{b_\gamma, b_{\gamma'}\} = b_\gamma$ if $\gamma, \gamma' \in K$ with $\gamma < \gamma'$, $i_q\{b_\gamma, z\} = b_\gamma$ if $\gamma \in K$ and $x \leq_p z$, and $i_q\{b_\gamma, z\} = under$ otherwise.

Let $q = \langle A_q, \preceq_q, i_q \rangle$. Next we check that $q \in P$. Clearly $(P1)$ *,* $(P2)$ *,* $(P3)$ and $(P5)$ hold for *q*. $(P4)$ also holds because if $y \in A_p$ and $\gamma \in K$ then either $b_\gamma \preceq_q y$ or they are \preceq_q -incompatible.

To check (P6) assume that $b_{\gamma} \prec_q y$ and Λ separates b_{γ} from *y*. If $\Lambda^+ < \beta$, then $z = b_{\Lambda^+}$ meets the requirements of (P6). If $Λ^+ = β$, we have $b_γ \prec_q x \prec_q y$ and $π(x) = β$, and so we are done. And if $Λ^+ > β$, we apply condition (P6) for *p*, and so there is $z \in A_p$ such that $x \prec_p z \prec_p y$ and $\pi(z) = \Lambda^+$, and hence *b*^γ \prec ^{*q*} z \prec ^{*q*} *y*.

By the construction, $q \leq p$.

Finally $q \in E_{x,\alpha,\zeta}$ because $b_{\alpha} \in A_q \cap (\{\alpha\} \times (\kappa \setminus \zeta))$ and $b_{\alpha} \preceq_q x$. \Box

The rest of the paper is devoted to the proof of Lemma [2.8](#page-7-0).

Proof of Lemma [2.8](#page-7-0). Assume that $\langle r_{\nu} : \nu \langle \kappa^+ \rangle \subset P$ with $r_{\nu} \neq r_{\mu}$ for $\nu \langle \mu \langle \kappa^+ \rangle$.

In the first part of the proof, till Claim [2.16](#page-11-0), we will find $\nu < \mu < \kappa^+$ such that r_ν and r_μ are twins in a strong sense, and r_{ν} and r_{μ} form a *good pair* (see Definition [2.15\)](#page-11-0). Then, in the second part of the proof, we will show that if $\{r_{\nu}, r_{\mu}\}\$ is a good pair, then r_{ν} and r_{μ} are compatible in \mathcal{P} .

Write $r_{\nu} = \langle A_{\nu}, \preceq_{\nu}, i_{\nu} \rangle$ and $A_{\nu} = \{x_{\nu,i} : i < \sigma_{\nu}\}.$

Since we are assuming that $\kappa^{<\kappa} = \kappa$, by thinning out $\langle r_{\nu} : \nu < \kappa^+ \rangle$ by means of standard combinatorial arguments, we can assume the following:

- (A) $\sigma_{\nu} = \sigma$ for each $\nu < \kappa^{+}$.
- (B) $\{A_{\nu} : \nu < \kappa^+\}$ forms a Δ -system with kernel A_{Δ} .

(C) For each $\nu < \mu < \kappa^+$ there is an isomorphism $h_{\nu,\mu} : \langle A_\nu, \preceq_\nu, i_\nu \rangle \longrightarrow \langle A_\mu, \preceq_\mu, i_\mu \rangle$ such that for every $i, j < \sigma$ the following holds:

- (a) $h_{\nu,\mu} \upharpoonright A_{\Delta} = \text{id},$ (b) $h_{\nu,\mu}(x_{\nu,i}) = x_{\mu,i}$, (c) $\pi_B(x_{\nu,i}) = \pi_B(x_{\nu,j})$ iff $\pi_B(x_{\mu,i}) = \pi_B(x_{\mu,j}),$ (d) $\pi_B(x_{\nu,i}) = S$ iff $\pi_B(x_{\mu,i}) = S$, (e) if $\{x_{\nu,i}, x_{\nu,j}\}\in [A_{\Delta}]^2$ then $x_{\nu,i}=x_{\mu,i}, x_{\nu,j}=x_{\mu,j}$ and $i_{\nu}\{x_{\nu,i}, x_{\nu,j}\}=i_{\mu}\{x_{\mu,i}, x_{\mu,j}\},$ (f) $\pi(x_{\nu,i}) \in o(x_{\nu,j})$ iff $\pi(x_{\mu,i}) \in o(x_{\mu,j}),$ (g) $\pi(x_{\nu,i}) \in \overline{\mathfrak{O}}(x_{\nu,j})$ iff $\pi(x_{\mu,i}) \in \overline{\mathfrak{O}}(x_{\mu,j}),$
- (h) $π(x_{ν,i}) ∈ σ[*](x_{ν,j})$ iff $π(x_{µ,i}) ∈ σ[*](x_{µ,j})$,

(i) $\pi(x_{\nu,k}) \in \{x_{\nu,i}, x_{\nu,j}\}$ iff $\pi(x_{\mu,k}) \in \{x_{\mu,i}, x_{\mu,j}\}.$ (j) cf($\pi(x_{\nu,i})$) = κ^+ iff cf($\pi(x_{\nu,i})$) = κ^+ .

Note that in order to obtain (C)(e) we use condition (P5) and the fact that $|f\{x, y\}| \leq \kappa$ for all $x \neq y$. Also, we may assume the following:

(D) There is a partition $\sigma = K \cup^* F \cup^* D \cup^* M$ such that for each $\nu < \mu < \kappa^+$: (a) $\forall i \in K \ x_{\nu,i} \in A_{\Delta} \text{ and so } x_{\nu,i} = x_{\mu,i}. \ A_{\Delta} = \{x_{\nu,i} : i \in K\}.$ (b) $\forall i \in F \ x_{\nu,i} \neq x_{\mu,i}$ but $\pi_B(x_{\nu,i}) = \pi_B(x_{\mu,i}) \neq S$. $(c) \forall i \in D$ $x_{\nu,i} \notin A_{\Delta}, \pi_B(x_{\nu,i}) = S$ and $\pi(x_{\nu,i}) \neq \pi(x_{\mu,i}).$ (d) $\forall i \in M$ $\pi_B(x_{\nu,i}) \neq S$ and $\pi(x_{\nu,i}) \neq \pi(x_{\mu,i}).$ (E) If $\pi(x_{\nu,i}) = \pi(x_{\nu,j})$ then $\{i,j\} \in [K \cup F]^2 \cup [D \cup M]^2$.

By [\[3,](#page-18-0) Corollary 17.5], if $\sigma < \kappa = \kappa^{<\kappa}$ then the following partition relation holds:

$$
\kappa^+ \longrightarrow (\kappa^+, (\omega)_{\sigma})^2.
$$

(i.e. given any function $c : [\kappa^+]^2 \longrightarrow 1 + \rho$ either there is a set $A \in [\kappa^+]^{\kappa^+}$ such that $c''[A]^2 = \{0\}$, or for some $\xi < \sigma$ there is a set $B \in [\kappa^+]^\omega$ such that $c''[B]^2 = \{1 + \xi\}.$

Hence we can assume:

(F) $\pi(x_{\nu,i}) \leq \pi(x_{\nu,i})$ for each $i \in \sigma$ and $\nu < \mu < \kappa^+$.

For $i \in \sigma$ let

$$
\delta_i = \begin{cases} \pi(x_{\nu,i}) & \text{if } i \in K \cup F, \\ \sup\{\pi(x_{\nu,i}): \nu < \kappa^+\} & \text{if } i \in D \cup M. \end{cases}
$$

Claim 2.10. (a) If $i \in D \cup M$, then the sequence $\langle \pi(x_{\nu,i}): \nu \langle \kappa^+ \rangle$ is strictly increasing, $cf(\delta_i) = \kappa^+$ and $sup(J(\delta_i)) = \delta_i$ *. Moreover for every* $\nu < \kappa^+$ *we have* $\pi(x_{\nu,i}) < \delta_i$ *. (b) If* $\{i, j\} \in [M]^2$ *and* $x_{\nu,i} \leq_{\nu} x_{\nu,j}$ *, then* $x_{\nu,i} = x_{\nu,j}$ *.*

Proof. If $i \in D \cup M$, then (F) and (D)(c-d) imply that the sequence $\{\pi(x_{\nu,i}): \nu < \kappa^+\}$ is strictly increasing. Hence $cf(\delta_i) = \kappa^+$ and $\pi(x_{\nu,i}) < \delta_i$ for $i \in D \cup M$.

Thus Proposition [2.5](#page-5-0) implies $\sup(J(\delta_i)) = \delta_i$. So (a) holds. $(D)(d)$ and condition (P3) imply (b). \Box

We put

$$
Z_0 = \{\delta_i : i \in \sigma\}.
$$

Since $\pi''A_{\Delta} = \{\delta_i : i \in K\}$ we have $\pi''A_{\Delta} \subset Z_0$. Then, we define *Z* as the closure of Z_0 with respect to I:

$$
Z = Z_0 \cup \{I^+ : I \in \mathbb{I}, I \cap Z_0 \neq \emptyset\}.
$$

Observe that

 $|Z| < \kappa$.

 (G) $\pi(x_{\nu,i}) \notin o^*(x_{\nu,k})$ for $x_{\nu,k} \in B_S \cap A_\Delta$ and $i \in D \cup M$.

Our aim is to prove that there are $\nu < \mu < \kappa^+$ such that the forcing conditions r_ν and r_μ are compatible. However, since we are dealing with infinite forcing conditions, we will need to add new elements to $A_\nu \cup A_\mu$ in order to be able to define the infimum of pairs of elements $\{x, y\}$ where $x \in A_\nu \setminus A_\mu$ and $y \in A_\mu \setminus A_\nu$. The following definitions will be useful to provide the room we need to insert the required new elements.

Let

$$
\sigma_1 = \{ i \in \sigma \setminus K : cf(\delta_i) = \kappa \}
$$

and

$$
\sigma_2 = \{ i \in \sigma \setminus K : cf(\delta_i) = \kappa^+ \}.
$$

Assume that $i \in \sigma_1 \cup \sigma_2$. Let

$$
\xi_i = \min\{\zeta \in \mathrm{cf}(\delta_i) : \epsilon_{\zeta}^{J(\delta_i)} > \sup(\delta_i \cap Z)\}.
$$

Since $|Z| < \kappa \leq cf(\delta_i)$, the ordinal ξ_i is defined and $\delta_i > \epsilon_{\xi_i}^{J(\delta_i)}$. Then, if $i \in \sigma_1$ we put

$$
\underline{\gamma}(\delta_i) = \epsilon_{\xi_i}^{J(\delta_i)} \text{ and } \gamma(\delta_i) = \delta_i,
$$

and if $i \in \sigma_2$ we put

$$
\underline{\gamma}(\delta_i) = \epsilon_{\xi_i}^{J(\delta_i)} \text{ and } \gamma(\delta_i) = \epsilon_{\xi_i + \kappa}^{J(\delta_i)}.
$$

For $i \in \sigma_2$, since $\gamma(\delta_i) < \delta_i$ and $\delta_i = \lim \{ \pi(x_{\nu,i}) : \nu < \kappa^+ \}$ by Claim [2.10](#page-9-0)(a) for all $i \in D \cup M$, we can assume that

(H) $\pi(x_i, i) \in J(\delta_i) \setminus \gamma(\delta_i)$, and so $\pi(x_i, i) \notin Z$, for all $i \in D \cup M$.

We will use the following fundamental facts.

Claim 2.11. *If* $x_{\nu,i} \leq_{\nu} x_{\nu,i}$ *then* $\delta_i \leq \delta_i$ *.*

Proof. $x_{\nu,i} \leq_{\nu} x_{\nu,j}$ implies $\pi(x_{\nu,i}) \leq \pi(x_{\nu,j})$ by (P2). \Box

Claim 2.12. Assume $i, j \in \sigma$. If $x_{\nu,i} \leq_{\nu} x_{\nu,j}$ then either $\delta_i = \delta_j$ or there is $a \in A_{\Delta} \cap B_S$ with $x_{\nu,i} \leq_{\nu} a \leq_{\nu} x_{\nu,j}$.

Proof. Assume that $i, j \notin K$ and $\delta_i \neq \delta_j$. By Claim 2.11, we have $\delta_i < \delta_j$. Since $i \in F \cup M$ and $x_{\nu,i} \preceq_{\nu} x_{\nu,j}$ imply $x_{\nu,i} = x_{\nu,j}$ and so $\delta_i = \delta_j$, we have that $i \in D$, and so $\pi(x_{\nu,i}) < \delta_i$, $cf(\delta_i) = \kappa^+$ and $J(\delta_i)^+ = \delta_i$ by Proposition [2.5](#page-5-0).

Since $\delta_i < \delta_j$, we have $\delta_i < \gamma(\delta_j) < \pi(x_{\nu,j})$ by (H), and so $J(\delta_i)$ separates $x_{\nu,i}$ from $x_{\nu,j}$. By (P6), we infer that there is an $a = x_{\nu,k} \in A_{\nu}$ such that $\pi(a) = \delta_i$ and $x_{\nu,i} \preceq_{\nu} a \preceq_{\nu} x_{\nu,j}$.

Since $x_{\nu,k} \neq x_{\nu,j}$, we have $x_{\nu,k} \in B_S$, and so $k \in K \cup D$. But as $\pi(x_{\nu,k}) = \delta_i \in Z$ we obtain $k \notin D$ by (H), and so $k \in K$, which implies $a = x_{\nu,k} \in A_{\Delta} \cap B_S$. \Box

Claim 2.13. If $x_{\nu,i} \in A_{\Delta} \cap B_{S}$ and $x_{\nu,j} \in A_{\nu}$ are compatible but incomparable in r_{ν} , then $x_{\nu,k}$ $i_{\nu}\{x_{\nu,i}, x_{\nu,j}\}\in A_{\Delta}\cap B_{S}.$

Proof. First, (P2) implies $x_{\nu,k} \in B_S$.

Since $\pi(x_{\nu,k}) = \pi(i_{\nu} \{x_{\nu,i}, x_{\nu,j}\}) \in f\{x_{\nu,i}, x_{\nu,j}\} = o^*(x_{\nu,i}) \cap o^*(x_{\nu,j}) \subset o^*(x_{\nu,i})$ by (P5), and $x_{\nu,i} \in$ $A_{\Delta} \cap B_{S}$, we have $k \notin D \cup M$ by (G). Thus $k \in K$, and so $x_{\nu,k} \in A_{\Delta}$. Hence $x_{\nu,k} = i_{\nu} \{x_{\nu,i}, x_{\nu,j}\}$ ∈ $A_{\Delta} \cap B_S$. \Box

Claim 2.14. Assume that $x_{\nu,i}$ and $x_{\nu,j}$ are compatible but incomparable in r_{ν} . Let $x_{\nu,k} = i_{\nu} \{x_{\nu,i}, x_{\nu,j}\}$. Then $\text{either } x_{\nu,k} \in A_{\Delta} \text{ or } \delta_i = \delta_j = \delta_k.$

Proof. If $\delta_k \neq \delta_i$, we infer that there is $b \in A_{\Delta} \cap B_S$ with $x_{\nu,k} \preceq_{\nu} b \preceq_{\nu} x_{\nu,i}$ by Claim [2.12](#page-10-0). So $x_{\nu,k} = i_{\nu} \{b, x_{\nu,j}\}$ and thus $x_{\nu,k} \in A_{\Delta}$ by using Claim 2.13.

Similarly, $\delta_k \neq \delta_j$ implies $x_{\nu,k} \in A_\Delta$. \Box

Definition 2.15. $\{r_{\nu}, r_{\mu}\}\$ is a *good pair* iff the following holds:

(a) for all $i \in F$ with $cf(\delta_i) = \kappa^+$ we have

$$
f\{x_{\nu,i}, x_{\mu,i}\} \supset \overline{o}(\delta_i) \cap \gamma(\delta_i), \tag{\blacktriangledown}
$$

(b) for all $\{i, j\} \in [F]^2$ with $\delta_i = \delta_j$ and $cf(\delta_i) = \kappa^+$ we have

$$
f\{x_{\nu,i}, x_{\mu,j}\} \supset \overline{o}(\delta_i) \cap \gamma(\delta_i). \tag{4}
$$

Claim 2.16. *There are* $\nu < \mu < \kappa^+$ *such that the pair* $\{r_\nu, r_\mu\}$ *is good.*

Proof. Let

$$
\vartheta = \sup\{\xi_{\ell} + \kappa : \ell \in \sigma_2 \cap F\}.
$$

Since F is a κ^+ -strongly unbounded function on λ we can find $\nu < \mu < \kappa^+$ such that for all $i \in F$ we have

$$
\mathcal{F}\{\rho(x_{\nu,i}),\rho(x_{\mu,i})\} \ge \vartheta
$$

and for all $\{i, j\} \in [F]^2$ with $\delta_i = \delta_j$ and cf $\delta_i = \kappa^+$ we have

$$
\mathcal{F}\{\rho(x_{\nu,i}),\rho(x_{\mu,j})\}\geq \vartheta.
$$

Hence, $\{r_{\nu}, r_{\mu}\}\$ is good. \Box

To finish the proof of Lemma [2.8](#page-7-0) we will show that

If
$$
\{r_{\nu}, r_{\mu}\}
$$
 is a good pair, then r_{ν} and r_{μ} are compatible. (†)

So, assume that $\{r_\nu, r_\mu\}$ is a good pair. Write $\delta_{x_{\nu,i}} = \delta_{x_{\mu,i}} = \delta_i$. If $s = x_{\nu,i}$ write $s \in K$ iff $i \in K$. Define $s \in F$, $s \in M$, $s \in D$ similarly.

In order to amalgamate conditions r_ν and r_μ , we will use a refinement of the notion of amalgamation given in [\[8](#page-18-0), Definition 2.4].

Let $A' = \{x_{\nu,i} : i \in F \cup D \cup M\}$. For $x \in (A_{\nu} \setminus A_{\mu}) \cup (A_{\mu} \setminus A_{\nu})$ define the *twin* x' of x in a natural way: $x' = h_{\nu,\mu}(x)$ for $x \in A_{\nu} \setminus A_{\mu}$, and $x' = h_{\nu,\mu}^{-1}(x)$ for $x \in A_{\mu} \setminus A_{\nu}$.

Let rk : $\langle A', \preceq_{\nu} | A' \rangle \longrightarrow \theta$ be an order-preserving injective function for some ordinal $\theta < \kappa$, and for $x \in A'$ let

$$
\beta_x = \epsilon_{\underline{\gamma}(\delta_x) + \mathrm{rk}(x)}^{\delta_x}.
$$

Since $cf(\gamma(\delta_x)) = \kappa$ and $|A'| < \kappa$ we have

$$
\beta_x \in (\overline{\mathsf{o}}(\delta_x) \cap [\underline{\gamma}(\delta_x), \gamma(\delta_x))) \setminus \sup \{ \beta_z : \text{rk}(z) < \text{rk}(x) \}.
$$

For $x \in A'$ let

$$
y_x = \langle \beta_x, 0 \rangle \,,
$$

and put

$$
Y = \{y_x : x \in A'\}.
$$

So, for every $x \in A'$, $y_x \in B_S$ with $\pi(y_x) < \pi(x)$.

Define the functions $g: Y \longrightarrow A_{\nu}$ and $\bar{g}: Y \longrightarrow A_{\mu}$ as follows:

$$
g(y_x) = x
$$
 and $\bar{g}(y_x) = x'$,

where x' is the "twin" of x in A_μ .

Now, we are ready to start to define the common extension $r = \langle A, \leq, i \rangle$ of r_{ν} and r_{μ} . First, we define the universe *A* as

$$
A = A_{\nu} \cup A_{\mu} \cup Y.
$$

Clearly, *A* satisfies (P1). Now, our purpose is to define \preceq . Extend the definition of *g* as follows: $g : A \longrightarrow A_{\nu}$ is a function,

$$
g(x) = \begin{cases} x & \text{if } x \in A_{\nu}, \\ x' & \text{if } x \in A_{\mu} \setminus A_{\nu}, \\ s & \text{if } x = y_s \text{ for some } s \in A'. \end{cases}
$$

We introduce two relations on $A_p \cup A_q \cup Y$ as follows:

$$
\preceq^{R1} = \{ \langle y, x \rangle \in Y \times A : g(y) \preceq_{\nu} g(x) \},
$$

$$
\preceq^{R2} = \{ \langle x, z \rangle \in A \times A : \exists a \in A_{\Delta} g(x) \preceq_{\nu} a \preceq_{\nu} g(z) \}.
$$

Then, we put

$$
\preceq = \preceq_{\nu} \cup \preceq_{\mu} \cup \preceq^{R1} \cup \preceq^{R2} .
$$

The following claim is well-known and straightforward.

Claim 2.17. $\leq_{\nu,\mu}=\leq \upharpoonright (A_{\nu}\cup A_{\mu})$ *is the partial order on* $A_{\nu}\cup A_{\mu}$ *generated by* $\leq_{\nu}\cup \leq_{\mu}$ *.*

The following straightforward claim will be used several times in our arguments.

Claim 2.18. *If* $x \leq z$ *then* $g(x) \leq_{\nu} g(z)$ *.*

Sublemma 2.19. \preceq *is a partial order on* $A_{\nu} \cup A_{\mu} \cup Y$.

Proof. We should check that \leq_{ν} is transitive, because it is trivially reflexive and antisymmetric. So let $s \le t \le u$. We should show that $s \le u$. Since $x \preceq z$ implies $g(x) \preceq_{\nu} g(z)$, we have $g(s) \preceq_{\nu} g(t) \preceq_{\nu} g(u)$ and so

$$
g(s) \preceq_{\nu} g(u). \tag{\star}
$$

If $\langle s, u \rangle \in (Y \times A) \cup (A_{\nu} \times A_{\nu}) \cup (A_{\mu} \times A_{\mu})$, then (\star) implies $s \preceq^{R_1} u$ or $s \preceq_{\nu} u$ or $s \preceq_{\mu} u$, which implies $s \preceq u$ by (\bigstar) .

So we can assume that $s \in A_\nu$ (the case $s \in A_\mu$ is similar), and so $u \in Y$ or $u \in A_\mu$.

Case 1. $u \in A_\mu$.

If $t \in A_{\nu} \cup A_{\mu}$, then $s \preceq_{\nu,\mu} t \preceq_{\nu,\mu} u$, and so $s \preceq_{\nu,\mu} u$ by Claim 2.17. So $s \preceq u$.

Assume that $t \in Y$. Then $s \preceq^{R2} t$, and so there is $a \in A_{\Delta}$ such that $g(s) \preceq_{\nu} a \preceq_{\nu} g(t)$. Since $t \preceq u$ implies $g(t) \leq_{\nu} g(u)$, we have $g(s) \leq_{\nu} a \leq_{\nu} g(u)$, and so $s \leq^{R2} u$. Thus $s \leq u$.

Case 2. $u \in Y$.

If $t \in Y$, then $s \preceq^{R2} t$, and so there is $a \in A_{\Delta}$ such that $g(s) \preceq_{\nu} a \preceq_{\nu} g(t)$. Since $t \preceq u$ implies $g(t) \preceq_{\nu} g(u)$, we have $g(s) \leq_{\nu} a \leq_{\nu} g(u)$, and so $s \leq R^2 u$. Thus $s \leq u$.

Assume that $t \in A_{\nu} \cup A_{\mu}$. Then $t \leq^{R_2} u$, and so there is $a \in A_{\Delta}$ such that $g(t) \leq_{\nu} a \leq_{\nu} g(u)$. Then $g(s) \leq_{\nu} a \leq_{\nu} g(u)$, and so $s \leq^{R2} u$. Thus $s \leq u$. \Box

So, by the previous Sublemma 2.19 and by the construction, $(P2)$ and $(P3)$ hold for \preceq . Next define the function $i : [A]^2 \longrightarrow A \cup \{ \text{under} \}$ as follows:

i ⊃ i*^ν* ∪i*μ,*

and for $\{s,t\} \in [A]^2 \setminus ([A_\nu]^2 \cup [A_\mu]^2)$ such that s and t are \preceq -compatible, put $i\{s,t\} = i\{s,y_s\} = i\{t,y_s\} = y_s$ if $s \in A'$ and $t = s'$, and otherwise consider the element

$$
v = \mathrm{i}_{\nu} \{g(s), g(t)\},\
$$

and let

$$
i\{s,t\} = \begin{cases} v & \text{if } v \in A_{\Delta}, \\ y_v & \text{if } v \notin A_{\Delta}. \end{cases}
$$

Let

$$
i\{s,t\} = under
$$

if *s* and *t* are not \preceq -compatible.

If *s* and *t* are compatible, then so are $g(s)$ and $g(t)$ because $x \leq y$ implies $g(x) \leq_{\nu} g(y)$ by Claim [2.18](#page-13-0). Moreover $i_{\nu}\{s,t\} = i_{\mu}\{s,t\}$ for $\{s,t\} \in [A_{\Delta}]^2$ by condition (C)(e), so the definition above is meaningful, and gives a function i.

Claim 2.20. *If* $v \in A_{\Delta}$ *and* $s \in A$ *, then* $\pi(v) \in o^*(g(s))$ *iff* $\pi(v) \in o^*(s)$ *.*

Proof. If $s \in A_{\nu} \cup A_{\mu}$ then $g(s) = s$ or $g(s) = s'$, and so $\pi(v) \in o^*(g(s))$ iff $\pi(v) \in o^*(s)$ by (C)(b) and $(C)(h)$.

Consider now the case $s = y_x \in Y$. Then $\pi(s) \in E(J(\delta_x)) \cap [\gamma(\delta_x), \gamma(\delta_x))$, and so

$$
o^*(s) = o(\pi(s)) = \bigcup \{ E(I) : I \in \mathbb{I}, I^- < \pi(s) < I^+ \} \cap \pi(s) = \bigcup \{ E(I) : I \in \mathbb{I}, J(\delta_x) \subset I \} \cap \pi(s).
$$

We distinguish the following two cases.

Case 1. $\pi(x) < \delta_x$.

If $x \in B_S$ then $\gamma(\delta_x) < \pi(x) < \delta_x$ by (H), and so

$$
o^*(x) \cap \pi(s) = o(\pi(x)) \cap \pi(s) = \bigcup \{ E(I) : J(\delta_x) \subset I \} \cap \pi(s) = o^*(s).
$$

If $x \notin B_S$ then $x \in M$ and $\gamma(\delta_x) < \pi(x) < \delta_x$ by (H), and so

$$
o^*(x) \cap \pi(s) = \overline{o}(\pi(x)) \cap \pi(s) = (\bigcup \{E(I) : J(\delta_x) \subset I\} \cup E(J(\pi(x)))) \cap \pi(s) = \bigcup \{E(I) : J(\delta_x) \subset I\} \cap \pi(s) = o^*(s).
$$

Case 2. $\pi(x) = \delta_x$.

Then $x \in F$ and so

$$
o^*(x) = \overline{o}(\pi(x)) = o(x) \cup (E(J(\delta_x)) \cap \delta_x) = (\bigcup \{E(I) : I^- < \pi(x) < I^+\} \cup E(J(\delta_x))) \cap \pi(x) = \bigcup \{E(I) : J(\delta_x) \subset I\} \cap \pi(x),
$$

so $o^*(s) = o^*(x) \cap \pi(s)$.

So in both cases $o^*(s) = o^*(x) \cap \pi(s)$. Also, note that as $v \in A_\Delta$, we have that $\pi(v) \notin (\underline{\gamma}(\delta_x), \delta_x)$, and hence if *v* ∈ o^{*}(*g*(*s*)) then $\pi(v) < \pi(s)$. So, $\pi(v) \in o^*(x) = o^*(g(s))$ iff $\pi(v) \in o^*(s)$. \Box

Claim 2.21. *If* $\{s,t\} \in [A]^2$, $v \in A_\Delta$ *and* $\pi(v) \in f\{g(s), g(t)\}$ *then* $\pi(v) \in f\{s,t\}$ *.*

Proof. We should distinguish two cases.

Case 1. $f\{q(s), q(t)\} = o^*(q(s)) \cap o^*(q(t)).$

As $\pi(v) \in f\{g(s), g(t)\}\)$, we have $\pi(v) \in o^*(g(s)) \cap o^*(g(t))$. Since $\pi(v) \in o^*(g(s))$ implies $\pi(v) \in o^*(s)$ and $\pi(v) \in o^*(g(t))$ implies $\pi(v) \in o^*(t)$ by Claim 2.20, we have $\pi(v) \in o^*(s) \cap o^*(t) = f\{s,t\}.$

Case 2. $f\{g(s), g(t)\} = o(g(s)) \cup \{\epsilon_{\zeta}^{\pi(g(s))} : \zeta \leq F\{\rho(g(s)), \rho(g(t))\}\}.$

So $\pi_B(g(s)) = \pi_B(g(t)) \neq S$ and $cf(\pi(g(s))) = \kappa^+$. We can assume that $s \in A_{\nu} \setminus A_{\mu}$ and $t \in A_{\mu} \setminus A_{\nu}$. If $g(s) \in M$, then $g(t) \in M$ by (E). Then as $[\gamma(\delta_{g(s)})$, $J(\delta_{g(s)})^+] \cap \pi''A_{\Delta} = \emptyset$, we infer that $\pi(v) \in$ $o(g(s)) = o(g(t))$, and thus $\pi(v) \in o(s) \cap o(t) \subset f\{s,t\}$. Now assume that $g(s), g(t) \in F$. So $s, t \in F$, and $\delta' = \delta_{q(s)} = \delta_{q(t)}$ has cofinality κ^+ . So,

$$
\pi(v) \in f\{g(s), g(t)\} = o(\delta') \cup \left\{\epsilon_{\zeta}^{\delta'} : \zeta < F\{\rho(g(s)), \rho(g(t))\}\right\}.\tag{4}
$$

Since $\pi''A_{\Delta} \cap (\gamma(\delta'), \delta') = \emptyset$, (Δ) implies

$$
\pi(v) \in \overline{\mathrm{o}}(\delta') \cap \gamma(\delta').
$$

But, by $({\blacktriangle})$

$$
\overline{\mathrm{o}}(\delta') \cap \gamma(\delta') \subset \mathrm{f}\{s,t\},\,
$$

and so $\pi(v) \in f\{s, t\}$. \Box

Sublemma 2.22. $\langle A, \preceq, i \rangle$ *satisfies* $(P4)$ *and* $(P5)$ *.*

Proof. Let $\{s,t\} \in [A]^2$ be a pair of \preceq -incomparable and \preceq -compatible elements. We distinguish the following cases.

Case 1. $\{s,t\} \in [A_{\nu}]^2$. (The case $\{s,t\} \in [A_{\mu}]^2$ is similar)

Since $\leq_\nu \subset \leq$, we have $i_\nu\{s,t\} \leq s,t$, so to check (P4) we should show that $x \leq s,t$ implies $x \leq i_\nu\{s,t\}$. We can assume that $x \notin A_{\nu}$.

If $x \in Y$, then $x \preceq^{R_1} s$ and $x \preceq^{R_1} t$, i.e. $g(x) \preceq_{\nu} g(s)$, $g(t)$ and so $g(x) \preceq_{\nu} i_{\nu} \{g(s), g(t)\} = i_{\nu} \{s, t\}$ $g(i_{\nu}\{s,t\})$, and so $x \leq^{R1} i_{\nu}\{s,t\}$. Thus $x \leq i_{\nu}\{s,t\}$.

If $x \in A_{\mu} \setminus A_{\nu}$, then $x \preceq^{R_2} s$ and $x \preceq^{R_2} t$, i.e. $g(x) \preceq_{\nu} a \preceq_{\nu} g(s)$ and $g(x) \preceq_{\nu} b \preceq_{\nu} g(t)$ for some $a, b \in A_{\Delta}$. Then $c = i_{\nu} \{a, b\} \in A_{\Delta}$, and so $g(x) \preceq_{\nu} c \preceq_{\nu} i_{\nu} \{g(s), g(t)\} = i_{\nu} \{s, t\} = g(i_{\nu} \{s, t\})$, and so $x \leq^{R2} i_{\nu} \{s, t\}.$ Thus $x \leq i_{\nu} \{s, t\}.$

Finally (P5) holds in Case 1 because r_ν satisfies (P5).

Case 2. $\{s, t\} \notin [A_{\nu}]^2 \cup [A_{\mu}]^2$.

To check (P4) we should prove that $i\{s,t\}$ is the greatest common lower bound of *s* and *t* in $\langle A, \preceq \rangle$. Assume first that *s* and *t* are not twins. Note that by Claim [2.18](#page-13-0), $g(s)$ and $g(t)$ are \preceq_{ν} -compatible. Write $v = i_{\nu} \{g(s), g(t)\}.$

Case 2.1. $v \in A_{\Delta}$, and so $i\{s, t\} = v$.

Since $v = g(v) \leq_{\nu} g(s)$ and $v \in A_{\Delta}$, we have $v \leq^{R_2} s$. Similarly $v \leq^{R_2} t$. Thus v is a common lower bound of *s* and *t*.

To check that *v* is the greatest lower bound of *s*, *t* in $\langle A, \preceq \rangle$ let $w \in A$, $w \preceq s$, *t*. Then $g(w) \preceq_{\nu} g(s)$, $g(t)$. Thus $g(w) \leq_{\nu} i_{\nu} \{g(s), g(t)\} = v.$

Since $v \in A_{\Delta}$, $g(w) \preceq_{\nu} v$ implies $w \preceq^{R2} v$. Thus $w \preceq v$. Thus (P4) holds.

To check (P5) observe that $g(s)$ and $g(t)$ are incomparable in A_{ν} . Indeed, $g(s) \leq_{\nu} g(t)$ implies $v = g(s) \in$ A_{Δ} and so $g(s) \leq_{\nu} g(t)$ implies $s \leq^{R2} t$, which contradicts our assumption that *s* and *t* are \leq -incomparable. Thus, by applying (P5) in r_{ν} ,

$$
\pi(v) \in f\{g(s), g(t)\}.
$$

Thus $\pi(v) \in f\{s,t\}$ by Claim [2.21](#page-14-0), and so (P5) holds.

Case 2.2. $v \notin A_{\Delta}$, and so $i\{s,t\} = y_v$.

First, we show that $\delta_v = \delta_{g(s)} = \delta_{g(t)}$. Note that if $g(s)$ and $g(t)$ are \preceq_{ν} -comparable, then $v = g(s)$ or $v = g(t)$, and we have that $\delta_{g(s)} = \delta_{g(t)}$, because otherwise we would infer from Claim [2.12](#page-10-0) that *s,t* are \prec -comparable, which is impossible.

Now assume that $g(s)$ and $g(t)$ are \preceq_{ν} -incomparable.

If $\delta_v < \delta_{g(s)}$, then there is $a \in A_\Delta \cap B_S$ with $v \preceq_\nu a \preceq_\nu g(s)$ by Claim [2.12](#page-10-0). Thus $v = i_\nu \{a, g(t)\}\$ and so $v \in A_{\Delta}$ by Claim [2.13](#page-11-0), which is impossible. Thus $\delta_v = \delta_{g(s)}$, and similarly $\delta_v = \delta_{g(t)}$. Hence

$$
\delta_{g(s)} = \delta_{g(t)} = \delta_v.
$$

And we have

$$
\pi(y_v) \in E(J(\delta_v)) \cap [\underline{\gamma}(\delta_v), \gamma(\delta_v)).
$$

Then, if $s, t \in F$ and $cf(\delta_v) = \kappa^+$, by condition (\blacktriangle), we deduce that $E(J(\delta_v)) \cap \gamma(\delta_v) \subset f\{s, t\}$, and so as $\pi(y_v) < \gamma(\delta_v)$, we have $\pi(y_v) \in f\{s, t\}$. Otherwise,

$$
E(J(\delta_v)) \cap \min(\pi(s), \pi(t)) \subset f\{s, t\}.
$$

Then as $v = i_r\{g(s), g(t)\}\$, we have $\pi(v) < \pi(g(s))$, $\pi(g(t))$, hence $\pi(y_v) < \pi(s)$, $\pi(t)$ and thus $\pi(y_v) \in \{s, t\}$. Thus (P5) holds.

To check (P4) first we show that $y_v \preceq s,t$. Indeed $g(v) \preceq_{\nu} g(s)$ implies $y_v \preceq^{R_1} s$. We obtain $y_v \preceq^{R_1} t$ similarly.

Let $w \preceq s, t$.

Assume first that $\delta_{q(w)} < \delta_v$. Since $w \preceq s, t$ we have $g(w) \preceq_{\nu} g(s), g(t)$ by Claim [2.18](#page-13-0) and hence $g(w) \leq_{\nu} i_{\nu} \{g(s), g(t)\} = v.$ By Claim [2.12](#page-10-0) there is $a \in A_{\Delta}$ such that $g(w) \leq_{\nu} a \leq_{\nu} v.$ Thus $w \leq^{R2} y_{v}.$ Assume now that $\delta_{g(w)} = \delta_v$.

Then, we have that $w \in Y$. To check this fact, assume on the contrary that $w \in A_{\nu} \cup A_{\mu}$. So, we have $\delta_w = \delta_{g(w)} = \delta_v = \delta_{g(s)} = \delta_{g(t)}$. Note that if $s \in Y$, then $\pi(s) \in [\gamma(\delta_w), \gamma(\delta_w))$, which contradicts the assumption that $w \preceq s$. So $s \notin Y$, and analogously $t \notin Y$.

Assume that $w \in A_\nu$. If $s \in A_\mu$, as $w \leq s$ there is $b \in A_\Delta$ such that $w \leq b \leq s$, which is impossible because $\pi(w) > \gamma(\delta_w) = \gamma(\delta_s)$ and $[\gamma(\delta_s), J(\delta_s)^+) \cap \pi'' A_\Delta = \emptyset$. Thus $s \notin A_\mu$. And by means of a parallel argument, we can show that $t \notin A_\mu$. So $s, t \in A_\nu$, which was excluded. Analogously, $w \in A_\mu$ implies $s, t \in A_\mu$.

Therefore, $w = y_z$ for some $z \in A'$. Then $z \preceq_{\nu} g(s)$ and $z \preceq_{\nu} g(t)$, and so $z \preceq_{\nu} i_{\nu} \{g(s), g(t)\} = v$. Thus $y_z \preceq^{R1} y_v$.

Now, assume that *s* and *t* are twins. So $t = s'$ and $i\{s, s'\} = y_s$. If $s \in F$ and $cf(\pi(s)) = \kappa^+$, we have that $\pi(y_s) \in \overline{o}(\delta_s) \cap \gamma(\delta_s) \subset f\{s, s'\}$ by (\blacktriangledown) . Otherwise, $\pi(y_s) \in o^*(\pi(s)) \cap o^*(\pi(s')) = f\{s, s'\}$. Thus $(P5)$ holds. To check (P4), it is clear that $y_s \prec s, s'$. So, assume that $w \prec s, s'$. If $w = y_u \in Y$, then as $w \prec s$ we infer that $u \leq s$, and thus $w \leq y_s$. Now, suppose that $w \in A_\nu \cup A_\mu$. Then, there is $b \in A_\Delta$ such that either $w \leq b \leq s$ or $w \leq b \leq s'$. In both cases, we have $w \leq y_s$.

So we proved Sublemma [2.22.](#page-15-0) \Box

Sublemma 2.23. $\langle A, \preceq, i \rangle$ *satisfies* $(P6)$ *.*

Proof. Assume that $\{s,t\} \in [A]^2$, $s \preceq t$ and Λ separates *s* from *t*, i.e.,

$$
\Lambda^- < \pi(s) < \Lambda^+ < \pi(t).
$$

We should find $v \in A$ such that $s \preceq v \preceq t$ and $\pi(v) = \Lambda^+$. Note that since $s \leq t$, we have $\delta_{g(s)} \leq \delta_{g(t)}$ by Claim [2.11](#page-10-0). We can assume that ${s, t} \notin [A_{\nu}]^2 \cup [A_{\mu}]^2$ because r_{ν} and r_{μ} satisfy (P6). We distinguish the following cases.

Case 1. $\delta_{q(s)} < \delta_{q(t)}$.

As $g(s) \leq_{\nu} g(t)$, there is $a \in A_{\Delta} \cap B_{S}$ with $g(s) \leq_{\nu} a \leq_{\nu} g(t)$ by Claim [2.12](#page-10-0).

Case 1.1. $\pi(a) \in \Lambda$.

Thus Λ separates *a* from $g(t)$.

Applying (P6) in r_{ν} for *a* and $g(t)$ and Λ we obtain $b \in A_{\nu}$ such that $a \preceq_{\nu} b \preceq_{\nu} g(t)$ and $\pi(b) = \Lambda^{+}$. Note that as $\pi(a) \in \Lambda$, $a \in A_{\Delta}$ and $\pi(b) = \Lambda^{+}$, we have that $\pi(b) \in Z$. Thus $b \in A_{\Delta}$ by (H). Thus $g(s) \leq_{\nu} b \leq_{\nu} g(t)$ implies $s \leq R^2 b \leq R^2 t$, and so $s \leq b \leq t$.

Case 1.2. $\pi(a) \notin \Lambda$.

If $\Lambda^+ = \pi(a)$, then we are done because $g(s) \leq_{\nu} a \leq_{\nu} g(t)$ implies $s \leq a \leq t$. So we can assume that $\Lambda^+ < \pi(a)$. Since r_{ν} and r_{μ} satisfy (*P*6) and Λ separates *s* from *a*, we can assume that $s \notin A_{\nu} \cup A_{\mu}$.

Hence $s = y_{g(s)}$ and Λ separates $g(s)$ from *a* because $\pi(s) \in J(\delta_{g(s)}) \subset \Lambda$. (If $\Lambda \subsetneq J(\delta_{g(s)})$, then $\Lambda^{-} < \pi(s) < \Lambda^{+}$ is not possible.)

Thus there is $b \in A_{\nu}$ such that $g(s) \preceq_{\nu} b \preceq_{\nu} a$ and $\pi(b) = \Lambda^{+}$. Since $\delta_{g(s)} \in Z_0$, we have $\pi(b) \in Z$, and so $b \in A_\Delta$ by (H). Thus $s = y_{g(s)} \preceq^{R_1} b \preceq^{R_2} t$, and so $s \preceq b \preceq t$.

Case 2. $\delta_{g(s)} = \delta_{g(t)}$.

We will see that this case is not possible.

Case 2.1. $s \in A_{\nu}$.

Note that if $t \in A_\mu$, then since $s \preceq t$ there is $b \in A_\Delta$ such that $s \preceq b \preceq t$, which is impossible because $\pi(s) > \gamma(\delta_s)$ and $[\gamma(\delta_s), J(\delta_s)^+) \cap \pi'' A_{\Delta} = \emptyset$. Thus $t \notin A_{\mu}$.

Since $s \in A_{\nu}$, $s \preceq t$ and $\delta_s = \delta_{g(t)}$ we have $t \notin Y$, and so $t \in A_{\nu}$, which was excluded.

By means of a similar argument, we can show that $s \in A_\mu$ is also impossible.

Case 2.2. $s = y_{g(s)}$.

Then $\pi(s) \in E(J(\delta_{q(s)}))$ and so $\Lambda^- < \pi(s) < \Lambda^+$ implies $J(\delta_{q(s)}) \subset \Lambda$. But then $\pi(t) \leq \Lambda^+$, so Λ can not separate *s* from *t*.

Thus (P6) holds.

So we proved Sublemma 2.23. \Box

Thus we proved that *r* is a common extension of r_{ν} and r_{μ} . This completes the proof of Lemma [2.8](#page-7-0), i.e. P satisfies κ^+ -c.c. \Box

Acknowledgement

The authors gratefully thank to the referee for checking all the technical details, for constructive comments and recommendations which helped to improve the quality of the paper.

References

- [1] J. Bagaria, [Locally-generic](http://refhub.elsevier.com/S0168-0072(21)00075-0/bibB5CA4406A7E0B4F20A0FFA5FFDD8F0A2s1) Boolean algebras and cardinal sequences, Algebra Univers. 47 (3) (2002) 283–302.
- [2] J.E. [Baumgartner,](http://refhub.elsevier.com/S0168-0072(21)00075-0/bib9A231C14A3416B1055B8FFB960151AEEs1) S. Shelah, Remarks on superatomic Boolean algebras, Ann. Pure Appl. Log. 33 (2) (1987) 109–129.
- [3] P. Erdős, A. Hajnal, A. Mátá, R. Rado, [Combinatorial](http://refhub.elsevier.com/S0168-0072(21)00075-0/bib11FB8BDD0007C6B06F9D38D524C74B6Es1) Set Theory: Partition Relations for Cardinals, Studies in Logic and the Foundations of Mathematics, vol. 106, [North-Holland](http://refhub.elsevier.com/S0168-0072(21)00075-0/bib11FB8BDD0007C6B06F9D38D524C74B6Es1) Publishing Co., Amsterdam, 1984.
- [4] I. Juhász, L. Soukup, W. Weiss, Cardinal [sequences](http://refhub.elsevier.com/S0168-0072(21)00075-0/bib81A193EF5FB03C12F68BDE75719BD17Cs1) of length *< ω*² under GCH, Fundam. Math. 189 (1) (2006) 35–52.
- [5] P. Koepke, J.C. Martínez, [Superatomic](http://refhub.elsevier.com/S0168-0072(21)00075-0/bibDD480F25B31EC27223FEE2C6EDCACB3Cs1) Boolean algebras constructed from morasses, J. Symb. Log. 60 (3) (1995) 940–951.
- [6] P. Koszmider, [Semimorasses](http://refhub.elsevier.com/S0168-0072(21)00075-0/bib320A517BD46D7CD8FBC2B5671872A996s1) and nonreflection at singular cardinals, Ann. Pure Appl. Log. 72 (1) (1995) 1–23.
- [7] P. [Koszmider,](http://refhub.elsevier.com/S0168-0072(21)00075-0/bibD42F72D0753CB41BCB2D67EDD3F0A5FEs1) Universal matrices and strongly unbounded functions, Math. Res. Lett. 9 (4) (2002) 549–566.
- [8] J.C. Martínez, A forcing [construction](http://refhub.elsevier.com/S0168-0072(21)00075-0/bib69691C7BDCC3CE6D5D8A1361F22D04ACs1) of thin-tall Boolean algebras, Fundam. Math. 159 (2) (1999) 99–113.
- [9] J.C. Martinez, L. Soukup, Cardinal sequences of LCS spaces under GCH, Ann. Pure Appl. Log. 161 (9) (2010) [1180–1193.](http://refhub.elsevier.com/S0168-0072(21)00075-0/bib5DB8C2F5881FF5A19875FE5529B9A987s1)
- [10] J.C. Martinez, L. Soukup, [Superatomic](http://refhub.elsevier.com/S0168-0072(21)00075-0/bib1021376B5573BC90760C3D7C93DCCC4Ds1) Boolean algebras constructed from strongly unbounded functions, Math. Log. Q. 57 (5) (2011) [456–469.](http://refhub.elsevier.com/S0168-0072(21)00075-0/bib1021376B5573BC90760C3D7C93DCCC4Ds1)
- [11] J. Roitman, A very thin thick [superatomic](http://refhub.elsevier.com/S0168-0072(21)00075-0/bibCDA522D4353B166CC2DEE84673307B4Es1) Boolean algebra, Algebra Univers. 21 (2–3) (1985) 137–142.
- [12] L. Soukup, A lifting theorem on forcing LCS spaces, in: More Sets, Graphs and [Numbers,](http://refhub.elsevier.com/S0168-0072(21)00075-0/bib5DBC98DCC983A70728BD082D1A47546Es1) in: Bolyai Soc. Math. Stud., vol. 15, Springer, Berlin, 2006, [pp. 341–358.](http://refhub.elsevier.com/S0168-0072(21)00075-0/bib5DBC98DCC983A70728BD082D1A47546Es1)