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1. Introduction

If X is a locally compact, scattered Hausdorff (in short: LCS) space and « is an ordinal, we let I, (X)
denote the ath Cantor-Bendixson level of X. The cardinal sequence of X, C'S(X), is the sequence of the
cardinalities of the infinite Cantor-Bendixson levels of X, i.e.

CS(X) = (Ha(X)| : a < ht" (X)),

where ht(X), the reduced height of X, is the minimal ordinal 5 such that I3(X) is finite. The height of
X, denoted by ht(X), is defined as the minimal ordinal # such that Ig(X) = (. Clearly ht (X) < ht(X) <
ht(X) + 1.
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If v is an ordinal, let C(«) denote the class of all cardinal sequences of LCS spaces of reduced height o
and put

Cr(a) ={seC(a):s(0) = AAVE < as(B) > A}

Let (k), denote the constant s-valued sequence of length o.

In [4] it was shown that the class C(«) is described if the classes C, () are characterized for every infinite
cardinal x and ordinal 3 < a. Then, under GCH, a full description of the classes C,;(«) for infinite cardinals
% and ordinals o < wo was given.

The situation becomes, however, more complicated for oo > ws. In [9] we gave a consistent full character-
ization of Cy(a) for any uncountable regular cardinals s and ordinals o < ™+ under GCH.

If GCH fails, much less is known on C, () even for a < 1.

In [11] it was proved that (w), ~(w2) € Cy(w1 + 1) is consistent.

In [5] a similar result was proved for uncountable cardinals instead of w: if  is a regular cardinal with

<

k<" = k > w and 2* = kT, then in some cardinality preserving generic extension of the ground model we

have
K)o+ (Y eC(st +1).

In [10] we proved that if x and X are regular cardinals with Kk <\, k<% =k, 2 = kT, and § < k™1 with
cf(8) = kT, then in some cardinality preserving generic extension of the ground model we have

(k)s (A) €C(0+1).
In this paper we will prove a much stronger result than the above mentioned one.

Theorem 1.1. Assume that k and X\ are regqular cardinals, k™ < X\, k<F = K, 28 = g™, M= X and
§ < kTT. Then, in some cardinality preserving generic extension of the ground model, we have 2% = X and

{f €%([x,\] N Card) : f(a) = Kk whenever cf(a) < k} C Ce(d).

Definition 1.2. Let C be a family of sequences of cardinals. We say that an LCS space X is universal for C
iff CS(X) € C and for each s € C there is an open subspace Z C X with CS(Z) = s.

Remark. The assumption § < x*7 is essential in the construction as we will explain in a Remark on page
8.

So, we do not know whether Theorem 1.1 can be generalized to § = xTT. In fact, if x is a specific
uncountable cardinal, the problem whether it is relatively consistent with ZFC that (k).++ € C(k*T) is a
long-standing open question. Nevertheless, by a well-known result of Baumgartner and Shelah, it is known
that it is relatively consistent with ZFC that (w),,, € C(ws) (see [2]).

Instead of Theorem 1.1 we prove the following stronger result:

Theorem 1.3. Assume that k and X\ are regqular cardinals, k™ < X\, k<F = K, 28 = g7, M= X and

§ < ktt. Then, in some cardinal preserving generic extension, we have 2% = X and there is an LCS space
X which is universal for

C={fe 5([H,A] N Card) : f(o) = K whenever cf(a) < K}.
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Definition 1.4. Let k < A be cardinals, § be an ordinal, and A C §. An LCS space X of height ¢ is called
(K, A, 8, A)-good iff there is an open subspace Y C X such that

(1) OS(¥) = (w);,
(2) Ie(Y) =1¢(X), and so | I (X)| = &, for ( € 6\ A,
(3) |Te(X)| = A for ¢ € A,

(4) fi

(X
or ¢ € A the set Z; =I.¢(Y)UI:(X) is an open subspace of X such that
Iﬁ( )—Ig( )fOI"£<C,

I

Theorem 1.3 follows immediately from Koszmider’s Theorem, Theorem 1.6 and Proposition 1.7 below.
The following result of Koszmider can be obtained by putting together [7, Fact 32 and Theorem 33]:

Definition 1.5 (See [6,7]). Assume that £ < X are infinite cardinals. We say that a function F : [\]? — s+
is a kT -strongly unbounded function on X iff for every ordinal ¥ < xk* and for every family A C [A]<" of
pairwise disjoint sets with |A| = kT, there are different a,b € A such that F{a, 3} > 9 for every a € a and
B eb.

Koszmider’s Theorem. If s, A are infinite cardinals such that k7T < X\, k<% = K, 2¢ = k1 and pra A,
then in some cardinal preserving generic extension k<% = k, \* = X and there is a k1 -strongly unbounded
function on A.

For an ordinal 6 < x*7 let
={a<é:cf(a) € {k,kT}}.

Theorem 1.6. If x < X\ are regular cardinals with k<% = k, \* = X\, and there is a k™ -strongly unbounded
function on X, then for each § < k™1 there is a k-complete k-c.c poset P of cardinality X such that in V¥
we have 2% = X and there is a (k, \, 8, L2)-good space.

We will prove Theorem 1.6 in Section 2.
Proposition 1.7. If K < A are regular cardinals and § < k1, then a (k, ), 8, £2)-good space is universal for
C={fe 6([/{,)\] N Card) : f(o) = K whenever cf(a) < K}.
Proof. Let X be a (k, ), d, £3)-good space. Fix f € C. For ¢ € L3 pick T, € [IC(X)]f(C), and let
Z =y U| J{Tc: ¢eLl}.
Since I.¢(Y) UT; is an open subspace of X for ¢ € L% for every o < § we have
L(2) = L(Y) U J{la(Qec (V) UT) s C € L7},

Since

L(Y) ifa<d
Lo(Icc(Y)UT:) = ¢ Tt if a = ¢,
1] if ( < a,
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we have

L(2) I, (Y) if a ¢ L9,
T L) UT, ifae Ll

Since |I,(Y)| =k and |1, (V) UT,| =k + f(a) = f(a), we have CS(Z) = f, which was to be proved. O
2. Proof of Theorem 1.6
2.1. Graded posets

In [5], [8], [11] and in many other papers, the existence of an LCS space is proved in such a way that instead
of constructing the space directly, a certain “graded poset” is produced which guaranteed the existence of
the wanted LCS-space. From these results, Bagaria, [1], extracted the notion of s-posets and established the
formal connection between graded posets and LCS-spaces. For technical reasons, we will use a reformulation
of Bagaria’s result introduced in [12].

If < is an arbitrary partial order on a set X then define the topology 7< on X generated by the family
{Ux(x),X \Ux(z) : z € X} as a subbase, where Ux(z) ={y € X : y < z}.

In what follows, if i is a partial function from [X]? to X where X is the domain of some poset, for every
{s,t} € [X]?\ dom(i) we will write i{s,t} = undef. So, we will write i : [X]2 — X U{undef} in order to
represent a partial function i from [X]? to X.

Proposition 2.1 ([12, Proposition 2.1]). Assume that (X, =) is a poset, {X, : o < 8} is a partition of X
and 1 : [X]2 — X U{undef} is a function satisfying (a)-(c) below:

(a) ifx € Xy, y € Xp and x < y then either x =y or a < f3,
(b) Y{z,y} € [X}Q (VzeX (z=2zAz=y) iff z <i{z,y} ),
(c) ifx € Xo and B < « then the set {y € Xg:y = x} is infinite.

Then X = (X, 1<) is an LCS space with 1,(X) = X, for o <.

Definition 2.2. Let £ < A be cardinals, 6 be an ordinal, and A C 4. Assume that (X, =) is a poset,
{X, : a < &} is a partition of X and i : [Xf — X U {undef} is a function satisfying conditions (a)—(c)
from Proposition 2.1.

We say that poset (X, <) is (k, A, 0, A)-good iff there is a set Y C X such that:

(d) if ¢ =< x4, then either xg = 1 or g € Y;
(e) Xc € [Y]" for ¢ €0\ 4
(f) |X¢l=Aand | XcNY| =k for ( € A.

Proposition 2.3. Let k < A be cardinals, § be an ordinal, and A C 4. If (X, =X) is a (k, A, d, A)-good poset,
then X = (X, 7<) is a (k, A\, d, A)-good space.

Proof. By Proposition 2.1, X = (X, 7<) is an LCS space with I,(X) = X, for a < 4.
By (d), the subspace Y is open, and so I¢(Y) = I(X) NY. Thus |I(Y)] = & by (e) and (f). So
CS(Y) = (r);, i.e. 1.4(1) holds.
If €\ A, then I.(X) CY by (e), so Ic(X) =I1.(Y). Thus 1.4(2) holds. Moreover I (Y) =I.(X)NY.
1.4(3) follows from (f).
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Also, for ¢ € A (a) and (d) imply that U<(s) C Z; for s € Z;, and so Z; is an open subspace of X.
Hence I&(ZC) = I{(X) NZ:=XeNZe.

Thus It (Z;) = 1(Y) for € < ¢, and I.(Z;) = X¢. So 1.4(4) also holds.

Thus X is a (k, A, d, A)-good space. O

So, instead of Theorem 1.6, it is enough to prove Theorem 2.4 below.

Theorem 2.4. If K < X\ are regular cardinals with k<% = k, \¥ = X\, and there is a kT -strongly unbounded
function on X, then for each § < k¥ there is a k-complete Kk -c.c poset P of cardinality \ such that in V7
we have 2% = X and there is a (k, \, 8, L2)-good poset.

So, assume that k, A and § satisfy the hypothesis of Theorem 2.4. In order to construct the required
poset P, first we need to recall some notion from [8, Section 1.

2.2. Orbits
If a < B are ordinals let

[, ) ={v:a <y < B}

We say that I is an ordinal interval iff there are ordinals o and 3 with I = [a, 8). Write [~ = cand [T = 3.
If I = [, B) is an ordinal interval let E(I) = {ef : v < cf()} be a cofinal closed subset of I having order
type cf(B) with a = ! and put

E(I) = {[5£,5£+1) cv <cff}
provided § is a limit ordinal, and let E(I) = {«a, 8’} and put
5(1) = {[a7 6/)7 {6/}}

provided 3 = 3’ + 1 is a successor ordinal.
Define {Z, : n < w} as follows:

I ={[0,6)} and T,y = (| J{EI) : T € Z,}.
Put I = {Z, : n <w}.

Note that T is a cofinal tree of intervals in the sense defined in [8]. So, the following conditions are
satisfied:

(i) Forevery I,Jel,ICcJorJCITorINnJ=40.
(i) If I, J are different elements of I with I C J and J% is a limit ordinal, then IT < J+.
(iii) Z, partitions [0,d) for each n < w.
(iv) Z, 41 refines Z,, for each n < w.
(v) For every a < 0 there is an I € T such that I~ = a.

Then, for each a < § we define
n(o) =min{n: 3l € Z,, with I~ = a},

and for each @ < 0 and n < w we pick
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I(a,n) € Z,, such that o € I(a, n).
Proposition 2.5. Assume that { < § is a limit ordinal. Then, there is an interval

J(C) € Zn(e)-1 Y n()

such that ¢ is a limit point of E(J(()).
If cf(¢) = K, then J({) € Ly(¢) and J({)T =¢.

Proof. If there is an I € Z,(¢) with I'™ = ¢ then J(¢) = I. If there is no such I, then ¢ is a limit point of
B(I(C,n(¢) — 1)), 50 J(Q) = 1(¢,n(¢) — 1).

Assume now that cf({) = k*. Then ¢ € E(I(¢,n(¢) — 1)), but |E(I(¢,n(¢) — 1)) N¢| < &, so ¢ can not
be a limit point of E(I(¢,n(¢) — 1)). Therefore, it has a predecessor £ in E(I((,n(¢) — 1)), i.e. [£,() € Zy(0),
and so J(¢) = [£,¢) and J(C) € T,,¢)- O

If cf(J(¢)T) € {k,x}, we denote by {e§ : v < cf(J(¢)*)} the increasing enumeration of E(J(()), i.e.
€ = er© for v < cf(J(O)H).
Now if ¢ < §, we define the basic orbit of { (with respect to I) as

o(¢) = [JUEM¢, m)n¢) : m < n(Q)}.

We refer the reader to [8, Section 1] for some fundamental facts and examples on basic orbits. In particular,
we have that a € o(f) implies o(a) C o(5).
If ¢ € £2, we define the extended orbit of ¢ by

() = o(Q) U (E(J(¢)) NC).

Observe that if J(() € Z,,(¢c)—1 then 5(¢) = o(().
The underlying set of our poset will consist of blocks. The following set B below serves as the index set
of our blocks:

B={S}uL.
Let
Bs=0xk
and
Be={¢} x [r, )
for ¢ € L£2.

The underlying set of our poset will be
X =|J{Br: T eB}.
To obtain a (x, A, d, £ )-good poset we take Y = Bg and

G xR ifCed\ Ly,
STl XA ifcers.
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Define the functions 7 : X — § and p : X — X by the formulas
m({o,v)) = @ and p({a, v)) = v.
Define
mp: X — B by the formula x € B (4.

Finally we define the orbits of the elements of X as follows:

X { o(n(z)) for xz € Bg,
o(m(z)) forxze X\ Bg.

Observe that o*(z) € [r(z)]~" and
|0"(x)| < & unless © € Be with cf(€) = xT.
To simplify our notation, we will write o(x) = o(w(z)) and o(x) = o(m(z)).
2.8. Forcing construction
Let A €T and {z,y} € [X]2. We say that A separates x from y if
A < w(z) < AT < 7(y).

Let F : [A] ? kT bea kt-strongly unbounded function.
Define

f:[x]° — [0]°

as follows:

o(w) U{el™ ¢ < Flp(),p(y)}}  if np(x) = 7(y) # S,
f{z,y} = and cf (m(x)) = kT

o' (z)No"(y) otherwise.

)

Observe that

[z, y} < r

for all {z,y} € [X]Q.

Definition 2.6. We define the poset P = (P, <) as follows: (4, <,4) € P iff the following conditions hold:

(P1) ;

(P2) <is a partial order on A such that z <y implies x = y or m(x) < 7(y);
(P3) if x R y and wp(x) # 5, then z = y;

(P4) i: [A]Q — AU {undef} such that for each {z,y} € [A]2 we have

Ae [X]™
=

Va€ A(fla 2z ANa 2 y|iff a < i{z,y});
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(P5) for each {z,y} € [A]Q if x and y are <-incomparable but <-compatible, then

m(i{z,y}) € f{z,y};

(P6) If {x,y} € [A]? with z < y, and A € I separates = from y, then there is z € A such that z < z < y
and 7w(z) = AT.

The ordering on P is the extension: (A, <,i) < (A, <", 1} if A’ C A, <'==<nN(A" x A"), and i’ C i.

Remark. Property (P5) will be used to prove that P satisfies the xT-chain condition. For this, we will use in
an essential way that § < x** and f: [X]? — [0]=%. Then, if R = (r, : v < kT) is a subset of P of size x*
with r, = (A,, <,,1,) for v < kT, by using the assumption that k<" = x, we can assume that {4, : v < kT}
forms a A-system with kernel A, and that the conditions 7, (v < k™) are pairwise isomorphic. Note that
if kT < § < kT, we can not assume that A, is an initial segment of each A, for ¥ < ™. However, since
|f{z,y}| < & for all {z,y} € [X]?, we can assume by (P5) that if x,y € A, with x # y and v < p < k™,
we have that i, {x,y} = i,{z,y}. Then, by using the fact that F is a x'-strongly unbounded function, we
will be able to find two different conditions 7, and 7, in R that are compatible in P. To show that r, and
., are compatible, we will be able to define the infimum of pairs of elements {x,y} where € A, \ A, and
y € A, \ A, by using the properties of trees of intervals and orbits (specially Proposition 2.5). Note that if
§ = kT, we can not define the notion of a basic orbit of an element ¢ < § on a tree of intervals {Z,, : n < w}
where Zy = {[0,9)} in such a way that |o(¢)| < k.

For p € P write p = (A, =5, 1p).
To complete the proof of Theorem 2.4 we will use the following lemmas which will be proved later:

Lemma 2.7. P is k-complete.
Lemma 2.8. P satisfies the k™ -c.c.

Lemma 2.9.

(a) Forallxz € X, the set
D,={qeP:xe A}

is dense in P.
(b) Ifx € X, a < 7(z) and { < k, then the set

Eioac={qeP:zc A, NnTFbec AN ({a} x (k\()) b=, x}
is dense in P

Since A<% = ), the cardinality of P is A\. Thus, Lemma 2.7 and Lemma 2.8 above guarantee that forcing
with P preserves cardinals and 2 = X in the generic extension.

Let G C P be a generic filter. Put A = J{A, : p € G}, i =J{ip : p € G} and == J{=p: p € G}. Then
A = X by Lemma 2.9(a).

We claim that (X, <) is a (k, A, 6, £ )-poset.

Recall that we put X = {¢} x s for ¢ € 6\ £ and X = {¢} x A for ¢ € £. Then the poset (X, <), the
partition {X¢ : ( < d}, the function ¢ and Y = § x  clearly satisfy conditions 2.1(a,b) and 2.2(d,e,f) by the
definition of the poset P.
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Finally condition 2.1(c) holds by Lemma 2.9(b).
So to complete the proof of Theorem 2.4 we need to prove Lemmas 2.7, 2.8 and 2.9.
Since k is regular, Lemma 2.7 clearly holds.

Proof of Lemma 2.9. (a) Let p € P be arbitrary. We can assume that z ¢ A,,.

Let Ay = A, U {z}, 24==, U{(z, )}, and define i D i such that i'{a,2} = undef for a € A,. Then

= (A, <q,1q> € D, and ¢ <p

(b) Let p € P be arbitrary. By (a) we can assume that x € A,. Write § = 7(z).

Let m be the natural number such that I(a,m) = I(8,m) and I(a,m + 1) # I(8,m + 1). We put
Iy =I(a,k) for k>m+1. Let K = {a}U{[;, :m+1<k<n(a)}

For each v € K pick b, € ({7} x (£ \ () \ Ap. So 7(b,) = 7.

Let Ay = A, U{b,:v€ K},

<¢==p U{{by,by) 17, v € K,y <~ }IU{(by,2) :vE K,z € Ajp,x <, 2}

We let ig{y, 2} = ip{y, 2} if {y,2} € [Ap]gv ig{by, by} = by if 7,7 € K with v <7/, ig{by, 2} = by if y € K
and = <, z, and ig{b, 2} = undef otherwise.

Let ¢ = (Aq, =¢,1q). Next we check that ¢ € P. Clearly (P1), (P2), (P3) and (P5) hold for ¢. (P4) also
holds because if y € A, and v € K then either b, <, y or they are <,-incompatible.

To check (P6) assume that b, <, y and A separates b, from y. If AT < j, then z = by+ meets the
requirements of (P6). If AT = 8, we have b, <, z <, y and 7(z) = 3, and so we are done. And if At > f3,
we apply condition (P6) for p, and so there is z € A, such that <, z <, y and 7(z) = A", and hence
by <4 2 <4y

By the construction, ¢ < p.

Finally ¢ € E, o ¢ because by € Ag N ({a} x (k\()) and by <4 z. O

The rest of the paper is devoted to the proof of Lemma 2.8.

Proof of Lemma 2.8. Assume that (r, : v < k™) C P with r, #r, for v < p < r™.

In the first part of the proof, till Claim 2.16, we will find v < p < s such that 7, and r, are twins in
a strong sense, and r, and r, form a good pair (see Definition 2.15). Then, in the second part of the proof,
we will show that if {r,,r,} is a good pair, then r, and r, are compatible in P.

Write r, = (4,,=<,,i,) and A, ={z,; 1 i < o, }.

Since we are assuming that x<* = k, by thinning out (r, : ¥ < ™) by means of standard combinatorial
arguments, we can assume the following:

(A) o, =0 for each v < k™.
(B) {A, : v < kT} forms a A-system with kernel A,.
(C) For each v < u < kT there is an isomorphism hyy (A, 20,10) — (A, =, i) such that for every
i,j < o the following holds:
(a) hy, | Ay =id,
(b vu(fw) Lpis
(¢) mp(x,i) = mp(wy;) HE TE(TL:) = TB(T)5),
(d) mp(z,,;) =S iff WB(m,“) =3,
(e) if {zy, 20} € [AA] then z,; = x4, xy; =z, ; and i, {2y, 20 ;} =i {Tu: 20 ;},
(1) 7(w0s) € 0(21,s) i 7(2p5) € 0(py),
(8) m(@y,i) €0(wy,;) iMf 7(p) € O(2p,y),
(h) m(zy,) €0 (20 ;) iff T(2p0) € 0" (T),
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(i) m(zy ) € H{ays, ;) iff m(ay k) € oz}
(j) cf(m(zy,)) = w1 iff cf(m(2p,)) = KT

Note that in order to obtain (C)(e) we use condition (P5) and the fact that | {{z,y}| < k for all x # y.
Also, we may assume the following:

(D) There is a partition 0 = K U* F' U* D U* M such that for each v < p < 7
(a) Vie K x,; € Ay and 50 x,,; = x5 Ay ={xp; 1€ K},
(b) VieF Ty,i 7é Tyi but WB(xu,i) = WB(Z‘#’Z') 7é S.
(c) VieDuwx,; ¢ Ar, mp(xy;) = S and 7(z,,;) # 7(zp,).
(d) Vie M np(z,,;) # S and w(x,;) # m(x,:).
(E) If w(2,;) = 7(x,,) then {i,j} € [K UF]* U [DUM]".

By [3, Corollary 17.5], if ¢ < k = k<" then the following partition relation holds:

KT — (57, (W)e)%

Pha

(i.e. given any function c : [/{“]2 — 1+ p either there is a set A € [x1]" such that ¢/[A]> = {0}, or for

some £ < o there is a set B € [xT]” such that ¢/[B]* = {1+ £}.)
Hence we can assume:

(F) m(xy,i) < () for each i € o and v < p < K.
For i € o let

5 m(zy,;) ifie KUF,
t sup{m(z,,;):v <k} ifie DUM.

Claim 2.10. (a) If i € DU M, then the sequence (m(z,;) : v < k) is strictly increasing, cf(8;) = * and

sup(J(8;)) = 0;. Moreover for every v < k* we have m(x, ;) < J;.
(b) If {i,j} € [M)? and z,; <, x0.j, then z,; =z, ;.

Proof. If i € DUM, then (F) and (D)(c-d) imply that the sequence {m(z, ;) : v < £} is strictly increasing.
Hence cf(6;) = k™ and 7(z, ;) < 6; for i € DU M.

Thus Proposition 2.5 implies sup(J(d;)) = d;. So (a) holds.

(D)(d) and condition (P3) imply (b). O

We put

Zy={d;:i €0}
Since 1" Ay = {6; : i € K} we have 7"/ Ay C Zy. Then, we define Z as the closure of Z, with respect to I:
Z=2Zo0{I*:Tel,1nZ# 0}

Observe that

|Z] < k.
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By Claim 2.10(a), the sequence (7(z,;) : v < k™) is strictly increasing for i € DU M. Since |Z| < &, and
|o*(x,,,k)| <k for z, ), € Bg N A,, we can assume that

(G) m(x,:) ¢ 0 (z,x) for ¥, € BsN A, and i € DU M.

Our aim is to prove that there are v < p < k™ such that the forcing conditions r, and r,, are compatible.
However, since we are dealing with infinite forcing conditions, we will need to add new elements to A, U A,
in order to be able to define the infimum of pairs of elements {z,y} where z € A, \ A, and y € 4, \ A,.
The following definitions will be useful to provide the room we need to insert the required new elements.

Let

o1 ={i€ec\K:cf(d)=r}
and
oy={ico\K:cf()=r"}.
Assume that ¢ € o1 U 0g. Let
& = min{¢ € cf(d;) : 62(5,;) > sup(6; N Z)}.

J(8:)

Since |Z] < k < cf(d;), the ordinal &; is defined and d; > €,

Then, if i € o1 we put
7(8) = /) and y(5) = 5,
and if i € o9 we put

1(8) = ¢ and 1(5) = %1,

For i € o9, since v(8;) < ; and &; = lim{n(z,;) : v < K1} by Claim 2.10(a) for all i € D U M, we can
assume that

(H) m(zy;) € J(0;) \ v(:), and so 7(x, ;) ¢ Z, for all i € DU M.
We will use the following fundamental facts.

Claim 2.11. If z,; =, . ; then §; < 9;.

Proof. z,; <, =, ; implies m(z, ;) < w(z, ;) by (P2). O
Claim 2.12. Assumei,j € 0. Ifx, ; =, x,; then either 6; = 0; or there isa € A\NBg withx,; =, a =, Ty ;.

Proof. Assume that ¢,j ¢ K and §; # ¢;. By Claim 2.11, we have 6; < J;. Since i € FUM and x,; <, Z,;
imply z,; = x,; and so §; = d;, we have that i € D, and so w(z,;) < &;, cf(d;) =™ and J(§;)T = 6; by
Proposition 2.5.

Since 0; < §;, we have ¢; < v(0;) < m(x,,;) by (H), and so J(4;) separates z,; from z, ;. By (P6), we
infer that there is an a = z, 1, € A, such that 7(a) = ¢; and z,; =, a <, z,, ;.

Since x,.; # x,,;, we have x,,;, € Bg, and so k € KU D. But as m(z,,) = §; € Z we obtain k ¢ D by
(H), and so k € K, which impliesa =z, € AxNBs. O
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Claim 2.13. If z,; € Ay N Bg and z,; € A, are compatible but incomparable in r,, then x,j; =
i,,{a?l,)i,$l,)j} € A, N Bg.
Proof. First, (P2) implies z, € Bg.

Since m(z, 1) = 7(iy {Tvi, 70 ;}) € fH{zui, 2,5} = 0 (v,:) N0 (2,;) C 0 (z,,) by (P5), and z,,; €
A, N Bg, we have k ¢ DUM by (G). Thus k € K, and so x,;, € Ax.

Hence z, 1, = i,{®yi,2,;} € AxNBs. O

Claim 2.14. Assume that z,; and x,; are compatible but incomparable in r,. Let x, ), = i,,{azl,’i,a:l,’j}. Then
either x, 1, € Ay or 0; = 0 = Oy

Proof. If 6, # 0;, we infer that there is b € A,NBg with z,,; <, b <, z,; by Claim 2.12. So z, ), = i,{b, z, ;}
and thus z, ; € A, by using Claim 2.13.
Similarly, 0, # 0; implies z, 1, € Ax. O

Definition 2.15. {r,,7,} is a good pair
iff the following holds:

(a) for all i € F with ¢f(d;) = k* we have
f{av,i, i} D 0(:) Ny(6i), (v)
(b) for all {i,j} € [F}2 with §; = §; and cf(8;) = k+ we have
t{zyi, 2} D 0(6:) Ny(6:). (A)
Claim 2.16. There are v < p < k* such that the pair {r,,r,} is good.
Proof. Let
Y=sup{{&+kK:LE€0aNF}.

Since F is a kT-strongly unbounded function on A we can find v < u < kT such that
for all ¢ € F we have

Flo(ui), plzpi)} =2 0
and for all {i,j} € [F]2 with ¢; = ¢; and cf §; = kT we have
FAp(n), o)} 2 0.
Hence, {r,,r,} is good. O
To finish the proof of Lemma 2.8 we will show that
If {r,,r,} is a good pair, then r, and r, are compatible. (1)
So, assume that {r,,7,} is a good pair.

Write 0z, , = 0z, , = 0;.
If s =x,; write s € K iff i € K. Define s € F', s € M, s € D similarly.
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In order to amalgamate conditions r, and r,, we will use a refinement of the notion of amalgamation
given in [8, Definition 2.4].

Let A ={z,;:i€ FUDUM]}. For x € (A, \ A,) U (A, \ A,) define the twin 2’ of = in a natural way:
&' = hy(z) for x € A, \ Ay, and o’ = h, ) (z) for z € A, \ A,

Let rk : (A, <, A’Y — 6 be an order-preserving injective function for some ordinal < k, and for
x e A let

Be = €16 rk(a)-
Since cf(y(dy)) = k and |A’| < k we have
Ba € (6(d2) N [1(02),7(d2))) \ sup{B. : rk(2) < rk(z)}.
For x € A’ let
Yo = (B, 0),
and put
Y ={y,:xe A}

So, for every x € A', y, € Bg with 7(y,) < w(x).
Define the functions g : Y — A, and g: Y — A, as follows:

9(y=) = x and g(y,) = 2,

where ' is the “twin” of z in A,,.
Now, we are ready to start to define the common extension r = (A4, <,1) of r, and r,. First, we define
the universe A as

A=A, UA,UY.

Clearly, A satisfies (P1). Now, our purpose is to define <.
Extend the definition of g as follows: g : A — A, is a function,

r ifxeA,,
g)=9 2" ifzeA,\ A,

s if x =y, for some s € A'.

We introduce two relations on A, U A, UY as follows:

<Rl = {(y,z) €Y x A:g(y) 2, g(x)},
<R2 — f(z2)eAx A:Tae Ay glx) <, a =, g(2)}
Then, we put
S=2, U=, U=sfu s, o0

The following claim is well-known and straightforward.
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Claim 2.17. <, ,==[ (A, U A,)) is the partial order on A, U A, generated by =, U =,,.
The following straightforward claim will be used several times in our arguments.

Claim 2.18. If x < z then g(z) =<, g(z).

Sublemma 2.19. = is a partial order on A, UA,UY .

Proof. We should check that =<, is transitive, because it is trivially reflexive and antisymmetric.
So let s <t < u. We should show that s < u.
Since z < z implies g(x) =, g(z), we have g(s) <, g(t) <, g(u) and so

9(s) = g(u). (%)

If (s,u) € (Y x A)U (A4, x A,)U (A, x 4,), then () implies s <! v or s <, u or s <, u, which implies
s =< u by ().

So we can assume that s € A, (the case s € A, is similar), and sou €Y oru € A,,.
Case 1. uc A,.

Ifte AJUA,, thens <, ,t=,, u,and so s <, , u by Claim 2.17. So s < u.
Assume that t € Y. Then s <f2 ¢ and so there is a € A, such that g(s) <, a =<, g(t). Since t < u
implies g(t) <, g(u), we have g(s) <, a <, g(u), and so s <72 u. Thus s < u.

Case 2. ucY.

Ift € Y, then s=<f%t and so there is a € A, such that g(s) <, a <, g(t). Since t < u implies g(¢) <, g(u),
we have g(s) <, a <, g(u), and so s<%2u. Thus s < u.

Assume that t € A, U A,. Then t=%2y, and so there is a € A, such that g(t) <, a <, g(u). Then
g(s) =, a =, g(u), and so s=2u. Thus s <u. O

So, by the previous Sublemma 2.19 and by the construction, (P2) and (P3) hold for <.
Next define the function i: [A] >4 AU {undef} as follows:

1D 1, Uiy,

and for {s,t} € [A] 2\( [AV]2U[A#]2) such that s and ¢ are <-compatible, put i{s,t} = i{s,ys} = i{t,ys} = ys

if se A’ and t = ', and otherwise consider the element

v=1i,{g(s),9(t)},
and let
v ifveAa,
i{s,t} =
Yy ifvé A,

Let

i{s,t} = undef
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if s and ¢ are not <-compatible.

If s and t are compatible, then so are ¢g(s) and g(t) because z < y implies g(z) <, ¢g(y) by Claim 2.18.
Moreover i,{s,t} = i,{s,t} for {s,t} € [AAP by condition (C)(e), so the definition above is meaningful,
and gives a function i.

Claim 2.20. If v € A, and s € A, then w(v) € 0" (g(s)) iff 7(v) € 0" (s).
Proof. If s € A, U A, then g(s) = s or g(s) = s', and so 7(v) € 0" (g(s)) iff 7(v) € o (s) by (C)(b) and

(C)(h).
Consider now the case s =y, € Y. Then 7(s) € E(J(d2)) N [¥(dz),7(dz)), and so

*

o (s) =o(n(s)) = {E(I) : T € L, I~ <x(s) <I"}n(s) = | J{E(I) : T € 1,.0(6,) C I} Nm(s).

We distinguish the following two cases.
Case 1. 7(x) < §,.

If # € Bg then v(8,) < 7(z) < 8, by (H), and so

o"(z) N7(s) = o(r = JiEW) ) C I} Nw(s) =0 (s).

It # ¢ Bg then = € M and 4(6,) < 7(z) < &, by (H), and so

o' (z) N7(s) = o(n( = (UJ(E) : J(6:) C IYUE(I(n(x))) N 7(s) =
JtE@) Yy Iynm(s) =0 (s).

Case 2. 7(z) = §,.

Then z € F and so

o (z) =o(n(x)) = o(z) U (E(J (5, U{E I” <mw(z) <IT}UE(J(0,))) Nr(z) =
UtED) yc I} Nw(x),
500" (5) = o' (z) N7 (s).
So in both cases 0”(s) = 0" (z) N (s). Also, note that as v € A,, we have that 7(v) ¢ (y(0;),d5), and
hence if v € 0" (g(s)) then 7(v) < 7(s). So, 7(v) € 0" (z) = 0" (g(s)) iff 7(v) €0'(s). O
Claim 2.21. If {s,t} € [A]z, v € Ay and w(v) € £{g(s),g(t)} then w(v) € f{s,t}.
Proof. We should distinguish two cases.

Case 1. f{g(s), (1)} = 0" (g(s)) N 0" (g(t))-

As m(v) € f{g(s),g(t)}, we have w(v) € 0*(g(s)) No*(g(t)). Since w(v) € o' (g(s)) implies 7(v) € 0" (s)
and 7(v) € o (g(t)) implies 7(v) € o (¢) by Claim 2.20, we have 7(v) € 0*(s) N o*(t) = f{s,t}.

Case 2. f{g(s), g(t)} = o(g(s)) U {l ") - ¢ < F{p(g(s)), p(g(1))}}.
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So m(g(s)) = mr(9(t)) # S and cf(w(g(s))) = k*. We can assume that s € A, \ A, and t € A, \ 4,.
If g(s) € M, then g(t) € M by (E). Then as [y(d4(s)), J(dg(s))T) N 7" Ay = 0, we infer that 7w(v) €
o(g(s)) = o(g(t)), and thus w(v) € o(s) No(t) C f{s,t}. Now assume that g(s),g(t) € F. So s,t € F, and
8" = 04(s) = 0g(1) has cofinality x*. So,

m(v) € f{g(s), g(1)} = o(") U {e : ¢ < Fiplg(s)), pg(t))}}- (2)

Since 7 A, N (v(5),8) = 0, (») implies
m(v) €0(8") Ny (d).
But, by (A)
(") N(d") C £{s, t},
and so w(v) € f{s,t}. O
Sublemma 2.22. (A, <,i) satisfies (P4) and (P5).

Proof. Let {s,t} € [A]2 be a pair of <-incomparable and =<-compatible elements. We distinguish the
following cases.

Case 1. {s,t} € [AV]Q. (The case {s,t} € [A,L]Q is similar)

Since <, C=, we have i, {s,t} < s,t, so to check (P4) we should show that z < s,¢ implies < i,{s,t}.
We can assume that « ¢ A,.

If # € Y, then z <Fl s and z <P ¢ ie. g(x) <, g(s),9(t) and so g(z) =, i,{g(s),9(t)} = i, {s,t} =
g(i,{s,t}), and so x <1 i,{s,t}. Thus = <i,{s,t}.

If 2 € A, \ A, then z <72 s and 2 <2 ¢ ie. g(z) <, a <, g(s) and g(z) <, b <, g(t) for some
a,b € Ap. Then ¢ = i,{a,b} € A, and so g(x) <, ¢ =, i,{g(s),9(t)} = i.{s,t} = g(i.{s,t}), and so
x <F2i {5t} Thus z <i,{s,t}.

Finally (P5) holds in Case 1 because r, satisfies (P5).

2

Case 2. {s,t} ¢ [A,]" U [4,]".

To check (P4) we should prove that i{s,t} is the greatest common lower bound of s and ¢ in (A, <).
Assume first that s and ¢ are not twins. Note that by Claim 2.18, g(s) and g(t) are <,-compatible. Write

v = lu{g(s)?g(t)}
Case 2.1. v € A,, and so i{s,t} = v.

Since v = g(v) =, g(s) and v € A,, we have v <72 5. Similarly v <f2 ¢. Thus v is a common lower
bound of s and t.

To check that v is the greatest lower bound of s,¢ in (A, <) let w € A, w < s,¢. Then g(w) <, g(s), g(t).
Thus g(w) =y 1{g(s), 9(t)} = v.

Since v € A,, g(w) <, v implies w <% v. Thus w < v. Thus (P4) holds.

To check (P5) observe that g(s) and g(t) are incomparable in A,. Indeed, g(s) <, g(¢) implies v = g(s) €

A, and so g(s) <, g(t) implies s <%2 ¢, which contradicts our assumption that s and ¢ are <-incomparable.
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Thus, by applying (P5) in r,,

m(v) € H{g(s), 9(t)}.
Thus 7(v) € f{s,t} by Claim 2.21, and so (P5) holds.
Case 2.2. v ¢ A,, and so i{s,t} = y,.

First, we show that 6, = d4(5) = dg(+). Note that if g(s) and g(t) are <,-comparable, then v = g(s) or
v = g(t), and we have that d,(5) = d4(;), because otherwise we would infer from Claim 2.12 that s,t are
<-comparable, which is impossible.

Now assume that g(s) and g(t) are <,-incomparable.

If 0, < d4(s), then there is a € Ay N Bg with v <, a <, g(s) by Claim 2.12. Thus v = i,{a, g(t)} and so

v € A, by Claim 2.13, which is impossible. Thus 4, = 9 and similarly d, = d,(;). Hence

g(s)»
Og(s) = Og(t) = Ou-

And we have

m(yv) € E(J(d0)) N [1(6),7(00))-

Then, if s,t € F and c¢f(d,) = ™, by condition (A), we deduce that E(J(d,)) Nv(d,) C f{s,t}, and so as
T(yy) < ¥(dy), we have 7(y,) € f{s,t}. Otherwise,

E(J(6,)) Nmin(w(s), w(t)) C £{s,t}.

Then as v = i,{g(s), g(t)}, we have w(v) < 7(g(s)),7(g(t)), hence w(y,) < 7(s), 7 (¢) and thus 7(y,) € {{s,t}.

Thus (P5) holds.

To check (P4) first we show that y, =< s,t. Indeed g(v) <, g(s) implies y, <F! 5. We obtain y, <?! ¢
similarly.

Let w < s,t.

Assume first that d4¢,) < d,. Since w =< s,t we have g(w) =<, g(s),g(t) by Claim 2.18 and hence
g(w) =, 1,{g(s),g(t)} = v. By Claim 2.12 there is a € A, such that g(w) <, a <, v. Thus w <2 y,.

Assume now that dy(,,) = dy-

Then, we have that w € Y. To check this fact, assume on the contrary that w € A, U A,. So, we have
dw = Og(w) = Oy = Og(s) = Og(t)- Note that if s € Y, then n(s) € [y(dw),7(dw)), which contradicts the
assumption that w <s. So s ¢ Y, and analogously ¢ ¢ Y.

Assume that w € A,. If s € A, as w = s thereis b € A, such that w < b < s, which is impossible because
m(w) > y(6y) = v(ds) and [y(ds), J(6s)T) N 7" Ay = 0. Thus s ¢ A,. And by means of a parallel argument,
we can show that ¢t ¢ A,. So s,t € A,, which was excluded. Analogously, w € A, implies s,t € A,,.

Therefore, w = y, for some z € A’. Then z <, ¢g(s) and z =<, g(¢), and so z <, i,{g(s), g(¢t)} = v. Thus
y- =y,

Now, assume that s and ¢ are twins. So t = s’ and i{s, s’} = ys. If s € F and cf(7(s)) = k*, we have
that 7(ys) € 0(0s) Ny(ds) C f{s,s'} by (¥). Otherwise, 7(ys) € 0*(w(s)) No*(w(s")) = f{s,s'}. Thus (P5)
holds. To check (P4), it is clear that ys < s,s’. So, assume that w < s,s". lf w =y, € Y, then as w < s we
infer that v < s, and thus w = y,. Now, suppose that w € A, U A,. Then, there is b € A, such that either
w=b=sorw=b=s" In both cases, we have w < ys.

So we proved Sublemma 2.22. O
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Sublemma 2.23. (A, <,i) satisfies (P6).
Proof. Assume that {s,t} € [A]z, s =t and A separates s from ¢, i.e.,
A™ <7(s) < AT < 7(2).

We should find v € A such that s < v < ¢ and m(v) = AT,

Note that since s < ¢, we have d4(5) < dg(;) by Claim 2.11.

We can assume that {s,t} ¢ [Al,]2 U [A,L]2 because r,, and r, satisfy (P6).
We distinguish the following cases.

Case 1. (59(8) < 6g(t)~
As g(s) <, g(t), there is a € Ay N Bg with ¢(s) <, a =, g(t) by Claim 2.12.
Case 1.1. 7(a) € A.

Thus A separates a from g(t).

Applying (P6) in 7, for a and g(t) and A we obtain b € A, such that a <, b <, g(t) and m(b) = AT.
Note that as 7(a) € A,a € A, and 7(b) = AT, we have that 7(b) € Z. Thus b € A, by (H).

Thus g(s) <, b =<, g(t) implies s <2 b <72 ¢ andso s <b =< t.

Case 1.2. 7(a) ¢ A.

If AT = 7(a), then we are done because g(s) <, a <, g(t) implies s < a < t.

So we can assume that A" < 7(a).

Since 7, and 7, satisfy (P6) and A separates s from a, we can assume that s ¢ A, U A,,.

Hence s = y,(5) and A separates g(s) from a because 7(s) € J(d45)) C A. (If A C J(dg(s)), then
A~ < 7(s) < AT is not possible.)

Thus there is b € A, such that g(s) <, b <, a and 7(b) = A™T.

Since d,4(5) € Zo, we have 7(b) € Z, and so b € A, by (H).

Thus s = Yg(s) <Blp<R2¢ andsos<b=t

Case 2. (59(5) = 6g(t)~
We will see that this case is not possible.
Case 2.1. s € A,.

Note that if ¢ € A,,, then since s < ¢ there is b € A, such that s < b < ¢, which is impossible because
m(s) > v(ds) and [y(ds), J(0s)T) N7 Ay = 0. Thus t ¢ A,,.

Since s € Ay, s Xt and §s = 64y we have t ¢ Y, and so t € A,, which was excluded.

By means of a similar argument, we can show that s € A, is also impossible.

Case 2.2. s = y ()

Then 7(s) € E(J(0y4(s))) and so A~ < m(s) < AT implies J(dy(5)) C A. But then m(t) < AT, so A can
not separate s from t¢.

Thus (P6) holds.

So we proved Sublemma 2.23. O
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Thus we proved that r is a common extension of r, and 7.
This completes the proof of Lemma 2.8, i.e. P satisfies k*-c.c. O
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