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For any regular cardinal κ and ordinal η < κ++ it is consistent that 2κ is as large as 
you wish, and every function f : η −→ [κ, 2κ] ∩ Card with f(α) = κ for cf(α) < κ
is the cardinal sequence of some locally compact scattered space.
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1. Introduction

If X is a locally compact, scattered Hausdorff (in short: LCS) space and α is an ordinal, we let Iα(X)
denote the αth Cantor-Bendixson level of X. The cardinal sequence of X, CS(X), is the sequence of the 
cardinalities of the infinite Cantor-Bendixson levels of X, i.e.

CS(X) = 〈|Iα(X)| : α < ht-(X)〉,

where ht-(X), the reduced height of X, is the minimal ordinal β such that Iβ(X) is finite. The height of 
X, denoted by ht(X), is defined as the minimal ordinal β such that Iβ(X) = ∅. Clearly ht-(X) ≤ ht(X) ≤
ht-(X) + 1.
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If α is an ordinal, let C(α) denote the class of all cardinal sequences of LCS spaces of reduced height α
and put

Cλ(α) = {s ∈ C(α) : s(0) = λ ∧ ∀β < α s(β) ≥ λ}.

Let 〈κ〉α denote the constant κ-valued sequence of length α.
In [4] it was shown that the class C(α) is described if the classes Cκ(β) are characterized for every infinite 

cardinal κ and ordinal β ≤ α. Then, under GCH, a full description of the classes Cκ(α) for infinite cardinals 
κ and ordinals α < ω2 was given.

The situation becomes, however, more complicated for α ≥ ω2. In [9] we gave a consistent full character-
ization of Cκ(α) for any uncountable regular cardinals κ and ordinals α < κ++ under GCH.

If GCH fails, much less is known on Cκ(α) even for α < κ++.
In [11] it was proved that 〈ω〉ω1

�〈ω2〉 ∈ Cω(ω1 + 1) is consistent.
In [5] a similar result was proved for uncountable cardinals instead of ω: if κ is a regular cardinal with 

κ<κ = κ > ω and 2κ = κ+, then in some cardinality preserving generic extension of the ground model we 
have

〈κ〉κ+
�
〈
κ++〉 ∈ C(κ+ + 1).

In [10] we proved that if κ and λ are regular cardinals with κ ≤ λ, κ<κ = κ, 2κ = κ+, and δ < κ++ with 
cf(δ) = κ+, then in some cardinality preserving generic extension of the ground model we have

〈κ〉�δ 〈λ〉 ∈ C(δ + 1).

In this paper we will prove a much stronger result than the above mentioned one.

Theorem 1.1. Assume that κ and λ are regular cardinals, κ++ ≤ λ, κ<κ = κ, 2κ = κ+, λκ+ = λ and 
δ < κ++. Then, in some cardinality preserving generic extension of the ground model, we have 2κ = λ and

{f ∈ δ([κ, λ] ∩ Card) : f(α) = κ whenever cf(α) < κ} ⊂ Cκ(δ).

Definition 1.2. Let C be a family of sequences of cardinals. We say that an LCS space X is universal for C
iff CS(X) ∈ C and for each s ∈ C there is an open subspace Z ⊂ X with CS(Z) = s.

Remark. The assumption δ < κ++ is essential in the construction as we will explain in a Remark on page 
8.

So, we do not know whether Theorem 1.1 can be generalized to δ = κ++. In fact, if κ is a specific 
uncountable cardinal, the problem whether it is relatively consistent with ZFC that 〈κ〉κ++ ∈ C(κ++) is a 
long-standing open question. Nevertheless, by a well-known result of Baumgartner and Shelah, it is known 
that it is relatively consistent with ZFC that 〈ω〉ω2 ∈ C(ω2) (see [2]).

Instead of Theorem 1.1 we prove the following stronger result:

Theorem 1.3. Assume that κ and λ are regular cardinals, κ++ ≤ λ, κ<κ = κ, 2κ = κ+, λκ+ = λ and 
δ < κ++. Then, in some cardinal preserving generic extension, we have 2κ = λ and there is an LCS space 
X which is universal for

C = {f ∈ δ
(
[κ, λ] ∩ Card

)
: f(α) = κ whenever cf(α) < κ}.
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Definition 1.4. Let κ < λ be cardinals, δ be an ordinal, and A ⊂ δ. An LCS space X of height δ is called 
(κ, λ, δ, A)-good iff there is an open subspace Y ⊂ X such that

(1) CS(Y ) = 〈κ〉δ,
(2) Iζ(Y ) = Iζ(X), and so | Iζ(X)| = κ, for ζ ∈ δ \A,
(3) | Iζ(X)| = λ for ζ ∈ A,
(4) for ζ ∈ A the set Zζ = I<ζ(Y ) ∪ Iζ(X) is an open subspace of X such that

(a) Iξ(Zζ) = Iξ(Y ) for ξ < ζ,
(b) Iζ(Zζ) = Iζ(X).

Theorem 1.3 follows immediately from Koszmider’s Theorem, Theorem 1.6 and Proposition 1.7 below.
The following result of Koszmider can be obtained by putting together [7, Fact 32 and Theorem 33]:

Definition 1.5 (See [6,7]). Assume that κ < λ are infinite cardinals. We say that a function F : [λ]2 −→ κ+

is a κ+-strongly unbounded function on λ iff for every ordinal ϑ < κ+ and for every family A ⊂ [λ]<κ of 
pairwise disjoint sets with |A| = κ+, there are different a, b ∈ A such that F{α, β} > ϑ for every α ∈ a and 
β ∈ b.

Koszmider’s Theorem. If κ, λ are infinite cardinals such that κ++ ≤ λ, κ<κ = κ, 2κ = κ+ and λκ+ = λ, 
then in some cardinal preserving generic extension κ<κ = κ, λκ = λ and there is a κ+-strongly unbounded 
function on λ.

For an ordinal δ < κ++ let

Lδ
κ =

{
α < δ : cf(α) ∈ {κ, κ+}

}
.

Theorem 1.6. If κ < λ are regular cardinals with κ<κ = κ, λκ = λ, and there is a κ+-strongly unbounded 
function on λ, then for each δ < κ++ there is a κ-complete κ+-c.c poset P of cardinality λ such that in V P

we have 2κ = λ and there is a (κ, λ, δ, Lδ
κ)-good space.

We will prove Theorem 1.6 in Section 2.

Proposition 1.7. If κ < λ are regular cardinals and δ < κ++, then a (κ, λ, δ, Lδ
κ)-good space is universal for

C = {f ∈ δ
(
[κ, λ] ∩ Card

)
: f(α) = κ whenever cf(α) < κ}.

Proof. Let X be a (κ, λ, δ, Lδ
κ)-good space. Fix f ∈ C. For ζ ∈ Lδ

κ pick Tζ ∈
[
Iζ(X)

]f(ζ), and let

Z = Y ∪
⋃

{Tζ : ζ ∈ Lδ
κ}.

Since I<ζ(Y ) ∪ Tζ is an open subspace of X for ζ ∈ Lδ
κ, for every α < δ we have

Iα(Z) = Iα(Y ) ∪
⋃

{Iα(I<ζ(Y ) ∪ Tζ) : ζ ∈ Lδ
κ}.

Since

Iα(I<ζ(Y ) ∪ Tζ) =

⎧⎪⎨
⎪⎩

Iα(Y ) if α < ζ,
Tζ if α = ζ,
∅ if ζ < α,
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we have

Iα(Z) =
{

Iα(Y ) if α /∈ Lδ
κ,

Iα(Y ) ∪ Tα if α ∈ Lδ
κ.

Since | Iα(Y )| = κ and | Iα(Y ) ∪ Tα| = κ + f(α) = f(α), we have CS(Z) = f , which was to be proved. �
2. Proof of Theorem 1.6

2.1. Graded posets

In [5], [8], [11] and in many other papers, the existence of an LCS space is proved in such a way that instead 
of constructing the space directly, a certain “graded poset” is produced which guaranteed the existence of 
the wanted LCS-space. From these results, Bagaria, [1], extracted the notion of s-posets and established the 
formal connection between graded posets and LCS-spaces. For technical reasons, we will use a reformulation 
of Bagaria’s result introduced in [12].

If � is an arbitrary partial order on a set X then define the topology τ� on X generated by the family 
{U�(x), X \ U�(x) : x ∈ X} as a subbase, where U�(x) = {y ∈ X : y � x}.

In what follows, if i is a partial function from [X]2 to X where X is the domain of some poset, for every 
{s, t} ∈ [X]2 \ dom(i) we will write i{s, t} = undef . So, we will write i :

[
X
]2 −→ X ∪ {undef} in order to 

represent a partial function i from [X]2 to X.

Proposition 2.1 ([12, Proposition 2.1]). Assume that 〈X,�〉 is a poset, {Xα : α < δ} is a partition of X
and i :

[
X
]2 −→ X ∪ {undef} is a function satisfying (a)–(c) below:

(a) if x ∈ Xα, y ∈ Xβ and x � y then either x = y or α < β,
(b) ∀{x, y} ∈

[
X
]2 (

∀z ∈ X (z � x ∧ z � y) iff z � i{x, y}
)
,

(c) if x ∈ Xα and β < α then the set {y ∈ Xβ : y � x} is infinite.

Then X = 〈X, τ�〉 is an LCS space with Iα(X ) = Xα for α < δ.

Definition 2.2. Let κ < λ be cardinals, δ be an ordinal, and A ⊂ δ. Assume that 〈X,�〉 is a poset, 
{Xα : α < δ} is a partition of X and i :

[
X
]2 −→ X ∪ {undef} is a function satisfying conditions (a)–(c) 

from Proposition 2.1.
We say that poset 〈X,�〉 is (κ, λ, δ, A)-good iff there is a set Y ⊂ X such that:

(d) if x0 � x1, then either x0 = x1 or x0 ∈ Y ;
(e) Xζ ∈

[
Y
]κ for ζ ∈ δ \A;

(f) |Xζ | = λ and |Xζ ∩ Y | = κ for ζ ∈ A.

Proposition 2.3. Let κ < λ be cardinals, δ be an ordinal, and A ⊂ δ. If 〈X,�〉 is a (κ, λ, δ, A)-good poset, 
then X = 〈X, τ�〉 is a (κ, λ, δ, A)-good space.

Proof. By Proposition 2.1, X = 〈X, τ�〉 is an LCS space with Iα(X ) = Xα for α < δ.
By (d), the subspace Y is open, and so Iζ(Y ) = Iζ(X) ∩ Y . Thus | Iζ(Y )| = κ by (e) and (f). So 

CS(Y ) = 〈κ〉δ, i.e. 1.4(1) holds.
If ζ ∈ δ \A, then Iζ(X) ⊂ Y by (e), so Iζ(X) = Iζ(Y ). Thus 1.4(2) holds. Moreover Iζ(Y ) = Iζ(X) ∩ Y .
1.4(3) follows from (f).
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Also, for ζ ∈ A (a) and (d) imply that U�(s) ⊂ Zζ for s ∈ Zζ , and so Zζ is an open subspace of X . 
Hence Iξ(Zζ) = Iξ(X) ∩ Zζ = Xξ ∩ Zζ .

Thus Iξ(Zζ) = Iξ(Y ) for ξ < ζ, and Iζ(Zζ) = Xζ . So 1.4(4) also holds.
Thus X is a (κ, λ, δ, A)-good space. �
So, instead of Theorem 1.6, it is enough to prove Theorem 2.4 below.

Theorem 2.4. If κ < λ are regular cardinals with κ<κ = κ, λκ = λ, and there is a κ+-strongly unbounded 
function on λ, then for each δ < κ++ there is a κ-complete κ+-c.c poset P of cardinality λ such that in V P

we have 2κ = λ and there is a (κ, λ, δ, Lδ
κ)-good poset.

So, assume that κ, λ and δ satisfy the hypothesis of Theorem 2.4. In order to construct the required 
poset P, first we need to recall some notion from [8, Section 1].

2.2. Orbits

If α ≤ β are ordinals let

[α, β) = {γ : α ≤ γ < β}.

We say that I is an ordinal interval iff there are ordinals α and β with I = [α, β). Write I− = α and I+ = β.
If I = [α, β) is an ordinal interval let E(I) = {εIν : ν < cf(β)} be a cofinal closed subset of I having order 

type cf(β) with α = εI0 and put

E(I) = {[εIν , εIν+1) : ν < cf β}

provided β is a limit ordinal, and let E(I) = {α, β′} and put

E(I) = {[α, β′), {β′}}

provided β = β′ + 1 is a successor ordinal.
Define {In : n < ω} as follows:

I0 = {[0, δ)} and In+1 =
⋃

{E(I) : I ∈ In}.

Put I =
⋃
{In : n < ω}.

Note that I is a cofinal tree of intervals in the sense defined in [8]. So, the following conditions are 
satisfied:

(i) For every I, J ∈ I, I ⊂ J or J ⊂ I or I ∩ J = ∅.
(ii) If I, J are different elements of I with I ⊂ J and J+ is a limit ordinal, then I+ < J+.
(iii) In partitions [0, δ) for each n < ω.
(iv) In+1 refines In for each n < ω.
(v) For every α < δ there is an I ∈ I such that I− = α.

Then, for each α < δ we define

n(α) = min{n : ∃I ∈ In with I− = α},

and for each α < δ and n < ω we pick
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I(α, n) ∈ In such that α ∈ I(α, n).

Proposition 2.5. Assume that ζ < δ is a limit ordinal. Then, there is an interval

J(ζ) ∈ In(ζ)−1 ∪ In(ζ)

such that ζ is a limit point of E(J(ζ)).
If cf(ζ) = κ+, then J(ζ) ∈ In(ζ) and J(ζ)+ = ζ.

Proof. If there is an I ∈ In(ζ) with I+ = ζ then J(ζ) = I. If there is no such I, then ζ is a limit point of 
E(I(ζ,n(ζ) − 1)), so J(ζ) = I(ζ, n(ζ) − 1).

Assume now that cf(ζ) = κ+. Then ζ ∈ E(I(ζ,n(ζ) − 1)), but | E(I(ζ,n(ζ) − 1)) ∩ ζ| ≤ κ, so ζ can not 
be a limit point of E(I(ζ,n(ζ) − 1)). Therefore, it has a predecessor ξ in E(I(ζ,n(ζ) − 1)), i.e. [ξ, ζ) ∈ In(ζ), 
and so J(ζ) = [ξ, ζ) and J(ζ) ∈ In(ζ). �

If cf(J(ζ)+) ∈ {κ, κ+}, we denote by {εζν : ν < cf(J(ζ)+)} the increasing enumeration of E(J(ζ)), i.e. 
εζν = ε

J(ζ)
ν for ν < cf(J(ζ)+).

Now if ζ < δ, we define the basic orbit of ζ (with respect to I) as

o(ζ) =
⋃

{(E(I(ζ,m)) ∩ ζ) : m < n(ζ)}.

We refer the reader to [8, Section 1] for some fundamental facts and examples on basic orbits. In particular, 
we have that α ∈ o(β) implies o(α) ⊂ o(β).

If ζ ∈ Lδ
κ, we define the extended orbit of ζ by

o(ζ) = o(ζ) ∪ (E(J(ζ)) ∩ ζ).

Observe that if J(ζ) ∈ In(ζ)−1 then o(ζ) = o(ζ).
The underlying set of our poset will consist of blocks. The following set B below serves as the index set 

of our blocks:

B = {S} ∪ Lδ
κ.

Let

BS = δ × κ

and

Bζ = {ζ} × [κ, λ)

for ζ ∈ Lδ
κ.

The underlying set of our poset will be

X =
⋃

{BT : T ∈ B}.

To obtain a (κ, λ, δ, Lδ
κ)-good poset we take Y = BS and

Xζ =
{

{ζ} × κ if ζ ∈ δ \ Lδ
κ,

{ζ} × λ if ζ ∈ Lδ .
κ
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Define the functions π : X −→ δ and ρ : X −→ λ by the formulas

π(〈α, ν〉) = α and ρ(〈α, ν〉) = ν.

Define

πB : X −→ B by the formula x ∈ BπB(x).

Finally we define the orbits of the elements of X as follows:

o*(x) =
{

o(π(x)) for x ∈ BS ,

o(π(x)) for x ∈ X \BS .

Observe that o*(x) ∈
[
π(x)

]≤κ+

and

| o*(x)| ≤ κ unless x ∈ Bξ with cf(ξ) = κ+.

To simplify our notation, we will write o(x) = o(π(x)) and o(x) = o(π(x)).

2.3. Forcing construction

Let Λ ∈ I and {x, y} ∈
[
X
]2. We say that Λ separates x from y if

Λ− < π(x) < Λ+ < π(y).

Let F :
[
λ
]2 −→ κ+ be a κ+-strongly unbounded function.

Define

f :
[
X
]2 −→

[
δ
]≤κ

as follows:

f{x, y} =

⎧⎪⎨
⎪⎩

o(x) ∪
{
ε
π(x)
ζ : ζ < F{ρ(x), ρ(y)}

}
if πB(x) = πB(y) �= S,
and cf(π(x)) = κ+,

o*(x) ∩ o*(y) otherwise.

Observe that

| f{x, y}| ≤ κ

for all {x, y} ∈
[
X
]2.

Definition 2.6. We define the poset P = 〈P,≤〉 as follows: 〈A,�, i〉 ∈ P iff the following conditions hold:

(P1) A ∈
[
X
]<κ;

(P2) � is a partial order on A such that x � y implies x = y or π(x) < π(y);
(P3) if x � y and πB(x) �= S, then x = y;
(P4) i :

[
A
]2 −→ A ∪ {undef} such that for each {x, y} ∈

[
A
]2 we have

∀a ∈ A([a � x ∧ a � y] iff a � i{x, y});
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(P5) for each {x, y} ∈
[
A
]2 if x and y are �-incomparable but �-compatible, then

π(i{x, y}) ∈ f{x, y};

(P6) If {x, y} ∈ [A]2 with x ≺ y, and Λ ∈ I separates x from y, then there is z ∈ A such that x ≺ z ≺ y

and π(z) = Λ+.

The ordering on P is the extension: 〈A,�, i〉 ≤ 〈A′,�′, i′〉 iff A′ ⊂ A, �′=� ∩(A′ ×A′), and i′ ⊂ i.

Remark. Property (P5) will be used to prove that P satisfies the κ+-chain condition. For this, we will use in 
an essential way that δ < κ++ and f : [X]2 → [δ]≤κ. Then, if R = 〈rν : ν < κ+〉 is a subset of P of size κ+

with rν = 〈Aν ,�ν , iν〉 for ν < κ+, by using the assumption that κ<κ = κ, we can assume that {Aν : ν < κ+}
forms a Δ-system with kernel A� and that the conditions rν (ν < κ+) are pairwise isomorphic. Note that 
if κ+ < δ < κ++, we can not assume that A� is an initial segment of each Aν for ν < κ+. However, since 
|f{x, y}| ≤ κ for all {x, y} ∈ [X]2, we can assume by (P5) that if x, y ∈ A� with x �= y and ν < μ < κ+, 
we have that iν{x, y} = iμ{x, y}. Then, by using the fact that F is a κ+-strongly unbounded function, we 
will be able to find two different conditions rν and rμ in R that are compatible in P. To show that rν and 
rμ are compatible, we will be able to define the infimum of pairs of elements {x, y} where x ∈ Aν \Aμ and 
y ∈ Aμ \Aν by using the properties of trees of intervals and orbits (specially Proposition 2.5). Note that if 
δ = κ++, we can not define the notion of a basic orbit of an element ζ < δ on a tree of intervals {In : n < ω}
where I0 = {[0, δ)} in such a way that |o(ζ)| ≤ κ.

For p ∈ P write p = 〈Ap,�p, ip〉.
To complete the proof of Theorem 2.4 we will use the following lemmas which will be proved later:

Lemma 2.7. P is κ-complete.

Lemma 2.8. P satisfies the κ+-c.c.

Lemma 2.9.

(a) For all x ∈ X, the set

Dx = {q ∈ P : x ∈ Aq}

is dense in P.
(b) If x ∈ X, α < π(x) and ζ < κ, then the set

Ex,α,ζ = {q ∈ P : x ∈ Aq ∧ ∃b ∈ Aq ∩ ({α} × (κ \ ζ)) b �q x}

is dense in P

Since λ<κ = λ, the cardinality of P is λ. Thus, Lemma 2.7 and Lemma 2.8 above guarantee that forcing 
with P preserves cardinals and 2κ = λ in the generic extension.

Let G ⊂ P be a generic filter. Put A =
⋃
{Ap : p ∈ G}, i =

⋃
{ip : p ∈ G} and �=

⋃
{�p: p ∈ G}. Then 

A = X by Lemma 2.9(a).
We claim that 〈X,�〉 is a (κ, λ, δ, Lδ

κ)-poset.
Recall that we put Xζ = {ζ} ×κ for ζ ∈ δ \Lδ

κ and Xζ = {ζ} ×λ for ζ ∈ Lδ
κ. Then the poset 〈X,�〉, the 

partition {Xζ : ζ < δ}, the function i and Y = δ× κ clearly satisfy conditions 2.1(a,b) and 2.2(d,e,f) by the 
definition of the poset P.
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Finally condition 2.1(c) holds by Lemma 2.9(b).
So to complete the proof of Theorem 2.4 we need to prove Lemmas 2.7, 2.8 and 2.9.
Since κ is regular, Lemma 2.7 clearly holds.

Proof of Lemma 2.9. (a) Let p ∈ P be arbitrary. We can assume that x /∈ Ap.
Let Aq = Ap ∪ {x}, �q=�p ∪{〈x, x〉}, and define i′ ⊃ i such that i′{a, x} = undef for a ∈ Ap. Then 

q = 〈Aq,�q, iq〉 ∈ Dx and q ≤ p.
(b) Let p ∈ P be arbitrary. By (a) we can assume that x ∈ Ap. Write β = π(x).
Let m be the natural number such that I(α, m) = I(β, m) and I(α, m + 1) �= I(β, m + 1). We put 

Ik = I(α, k) for k ≥ m + 1. Let K = {α} ∪ {I+
k : m + 1 ≤ k < n(α)}.

For each γ ∈ K pick bγ ∈ ({γ} × (κ \ ζ)) \Ap. So π(bγ) = γ.
Let Aq = Ap ∪ {bγ : γ ∈ K},

�q=�p ∪{〈bγ , bγ′〉 : γ, γ′ ∈ K, γ ≤ γ′} ∪ {〈bγ , z〉 : γ ∈ K, z ∈ Ap, x �p z}.

We let iq{y, z} = ip{y, z} if {y, z} ∈
[
Ap

]2, iq{bγ , bγ′} = bγ if γ, γ′ ∈ K with γ < γ′, iq{bγ , z} = bγ if γ ∈ K

and x �p z, and iq{bγ , z} = undef otherwise.
Let q = 〈Aq,�q, iq〉. Next we check that q ∈ P . Clearly (P1), (P2), (P3) and (P5) hold for q. (P4) also 

holds because if y ∈ Ap and γ ∈ K then either bγ �q y or they are �q-incompatible.
To check (P6) assume that bγ ≺q y and Λ separates bγ from y. If Λ+ < β, then z = bΛ+ meets the 

requirements of (P6). If Λ+ = β, we have bγ ≺q x ≺q y and π(x) = β, and so we are done. And if Λ+ > β, 
we apply condition (P6) for p, and so there is z ∈ Ap such that x ≺p z ≺p y and π(z) = Λ+, and hence 
bγ ≺q z ≺q y.

By the construction, q ≤ p.
Finally q ∈ Ex,α,ζ because bα ∈ Aq ∩

(
{α} × (κ \ ζ)

)
and bα �q x. �

The rest of the paper is devoted to the proof of Lemma 2.8.

Proof of Lemma 2.8. Assume that 〈rν : ν < κ+〉 ⊂ P with rν �= rμ for ν < μ < κ+.
In the first part of the proof, till Claim 2.16, we will find ν < μ < κ+ such that rν and rμ are twins in 

a strong sense, and rν and rμ form a good pair (see Definition 2.15). Then, in the second part of the proof, 
we will show that if {rν , rμ} is a good pair, then rν and rμ are compatible in P.

Write rν = 〈Aν ,�ν , iν〉 and Aν = {xν,i : i < σν}.
Since we are assuming that κ<κ = κ, by thinning out 〈rν : ν < κ+〉 by means of standard combinatorial 

arguments, we can assume the following:

(A) σν = σ for each ν < κ+.
(B) {Aν : ν < κ+} forms a Δ-system with kernel A�.
(C) For each ν < μ < κ+ there is an isomorphism hν,μ : 〈Aν ,�ν , iν〉 −→ 〈Aμ,�μ, iμ〉 such that for every 

i, j < σ the following holds:
(a) hν,μ � A� = id,
(b) hν,μ(xν,i) = xμ,i,
(c) πB(xν,i) = πB(xν,j) iff πB(xμ,i) = πB(xμ,j),
(d) πB(xν,i) = S iff πB(xμ,i) = S,
(e) if {xν,i, xν,j} ∈

[
A�

]2 then xν,i = xμ,i, xν,j = xμ,j and iν{xν,i, xν,j} = iμ{xμ,i, xμ,j},
(f) π(xν,i) ∈ o(xν,j) iff π(xμ,i) ∈ o(xμ,j),
(g) π(xν,i) ∈ o(xν,j) iff π(xμ,i) ∈ o(xμ,j),
(h) π(xν,i) ∈ o*(xν,j) iff π(xμ,i) ∈ o*(xμ,j),
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(i) π(xν,k) ∈ f{xν,i, xν,j} iff π(xμ,k) ∈ f{xμ,i, xμ,j}.
(j) cf(π(xν,i)) = κ+ iff cf(π(xμ,i)) = κ+.

Note that in order to obtain (C)(e) we use condition (P5) and the fact that | f{x, y}| ≤ κ for all x �= y.
Also, we may assume the following:

(D) There is a partition σ = K ∪∗ F ∪∗ D ∪∗ M such that for each ν < μ < κ+:
(a) ∀i ∈ K xν,i ∈ A� and so xν,i = xμ,i. A� = {xν,i : i ∈ K}.
(b) ∀i ∈ F xν,i �= xμ,i but πB(xν,i) = πB(xμ,i) �= S.
(c) ∀i ∈ D xν,i /∈ A�, πB(xν,i) = S and π(xν,i) �= π(xμ,i).
(d) ∀i ∈ M πB(xν,i) �= S and π(xν,i) �= π(xμ,i).

(E) If π(xν,i) = π(xν,j) then {i, j} ∈
[
K ∪ F

]2 ∪ [
D ∪M

]2.
By [3, Corollary 17.5], if σ < κ = κ<κ then the following partition relation holds:

κ+ −→ (κ+, (ω)σ)2.

(i.e. given any function c : [κ+]2 −→ 1 + ρ either there is a set A ∈ [κ+]κ
+

such that c′′[A]2 = {0}, or for 
some ξ < σ there is a set B ∈ [κ+]ω such that c′′[B]2 = {1 + ξ}.)

Hence we can assume:

(F) π(xν,i) ≤ π(xμ,i) for each i ∈ σ and ν < μ < κ+.

For i ∈ σ let

δi =
{

π(xν,i) if i ∈ K ∪ F ,

sup{π(xν,i) : ν < κ+} if i ∈ D ∪M .

Claim 2.10. (a) If i ∈ D ∪M , then the sequence 〈π(xν,i) : ν < κ+〉 is strictly increasing, cf(δi) = κ+ and 
sup(J(δi)) = δi. Moreover for every ν < κ+ we have π(xν,i) < δi.

(b) If {i, j} ∈ [M ]2 and xν,i �ν xν,j, then xν,i = xν,j.

Proof. If i ∈ D∪M , then (F) and (D)(c-d) imply that the sequence {π(xν,i) : ν < κ+} is strictly increasing. 
Hence cf(δi) = κ+ and π(xν,i) < δi for i ∈ D ∪M .

Thus Proposition 2.5 implies sup(J(δi)) = δi. So (a) holds.
(D)(d) and condition (P3) imply (b). �
We put

Z0 = {δi : i ∈ σ}.

Since π′′A� = {δi : i ∈ K} we have π′′A� ⊂ Z0. Then, we define Z as the closure of Z0 with respect to I:

Z = Z0 ∪ {I+ : I ∈ I, I ∩ Z0 �= ∅}.

Observe that

|Z| < κ.
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By Claim 2.10(a), the sequence 〈π(xν,i) : ν < κ+〉 is strictly increasing for i ∈ D∪M . Since |Z| < κ, and 
| o*(xν,k)| ≤ κ for xν,k ∈ BS ∩A�, we can assume that

(G) π(xν,i) /∈ o*(xν,k) for xν,k ∈ BS ∩A� and i ∈ D ∪M .

Our aim is to prove that there are ν < μ < κ+ such that the forcing conditions rν and rμ are compatible. 
However, since we are dealing with infinite forcing conditions, we will need to add new elements to Aν ∪Aμ

in order to be able to define the infimum of pairs of elements {x, y} where x ∈ Aν \ Aμ and y ∈ Aμ \ Aν . 
The following definitions will be useful to provide the room we need to insert the required new elements.

Let

σ1 = {i ∈ σ \K : cf(δi) = κ}

and

σ2 = {i ∈ σ \K : cf(δi) = κ+}.

Assume that i ∈ σ1 ∪ σ2. Let

ξi = min{ζ ∈ cf(δi) : εJ(δi)
ζ > sup(δi ∩ Z)}.

Since |Z| < κ ≤ cf(δi), the ordinal ξi is defined and δi > ε
J(δi)
ξi

.
Then, if i ∈ σ1 we put

γ(δi) = ε
J(δi)
ξi

and γ(δi) = δi,

and if i ∈ σ2 we put

γ(δi) = ε
J(δi)
ξi

and γ(δi) = ε
J(δi)
ξi+κ .

For i ∈ σ2, since γ(δi) < δi and δi = lim{π(xν,i) : ν < κ+} by Claim 2.10(a) for all i ∈ D ∪M , we can 
assume that

(H) π(xν,i) ∈ J(δi) \ γ(δi), and so π(xν,i) /∈ Z, for all i ∈ D ∪M .

We will use the following fundamental facts.

Claim 2.11. If xν,i �ν xν,j then δi ≤ δj.

Proof. xν,i �ν xν,j implies π(xν,i) ≤ π(xν,j) by (P2). �
Claim 2.12. Assume i, j ∈ σ. If xν,i �ν xν,j then either δi = δj or there is a ∈ A�∩BS with xν,i �ν a �ν xν,j.

Proof. Assume that i, j /∈ K and δi �= δj . By Claim 2.11, we have δi < δj . Since i ∈ F ∪M and xν,i �ν xν,j

imply xν,i = xν,j and so δi = δj , we have that i ∈ D, and so π(xν,i) < δi, cf(δi) = κ+ and J(δi)+ = δi by 
Proposition 2.5.

Since δi < δj , we have δi < γ(δj) < π(xν,j) by (H), and so J(δi) separates xν,i from xν,j . By (P6), we 
infer that there is an a = xν,k ∈ Aν such that π(a) = δi and xν,i �ν a �ν xν,j .

Since xν,k �= xν,j , we have xν,k ∈ BS , and so k ∈ K ∪D. But as π(xν,k) = δi ∈ Z we obtain k /∈ D by 
(H), and so k ∈ K, which implies a = xν,k ∈ A� ∩BS . �
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Claim 2.13. If xν,i ∈ A� ∩ BS and xν,j ∈ Aν are compatible but incomparable in rν , then xν,k =
iν{xν,i, xν,j} ∈ A� ∩BS.

Proof. First, (P2) implies xν,k ∈ BS .
Since π(xν,k) = π(iν {xν,i, xν,j}) ∈ f{xν,i, xν,j} = o*(xν,i) ∩ o*(xν,j) ⊂ o*(xν,i) by (P5), and xν,i ∈

A� ∩BS , we have k /∈ D ∪M by (G). Thus k ∈ K, and so xν,k ∈ A�.
Hence xν,k = iν{xν,i, xν,j} ∈ A� ∩BS . �

Claim 2.14. Assume that xν,i and xν,j are compatible but incomparable in rν. Let xν,k = iν{xν,i, xν,j}. Then 
either xν,k ∈ A� or δi = δj = δk.

Proof. If δk �= δi, we infer that there is b ∈ A�∩BS with xν,k �ν b �ν xν,i by Claim 2.12. So xν,k = iν{b, xν,j}
and thus xν,k ∈ A� by using Claim 2.13.

Similarly, δk �= δj implies xν,k ∈ A�. �
Definition 2.15. {rν , rμ} is a good pair

iff the following holds:

(a) for all i ∈ F with cf(δi) = κ+ we have

f{xν,i, xμ,i} ⊃ o(δi) ∩ γ(δi), (�)

(b) for all {i, j} ∈
[
F
]2 with δi = δj and cf(δi) = κ+ we have

f{xν,i, xμ,j} ⊃ o(δi) ∩ γ(δi). (�)

Claim 2.16. There are ν < μ < κ+ such that the pair {rν , rμ} is good.

Proof. Let

ϑ = sup{ξ� + κ : � ∈ σ2 ∩ F}.

Since F is a κ+-strongly unbounded function on λ we can find ν < μ < κ+ such that
for all i ∈ F we have

F{ρ(xν,i), ρ(xμ,i)} ≥ ϑ

and for all {i, j} ∈
[
F
]2 with δi = δj and cf δi = κ+ we have

F{ρ(xν,i), ρ(xμ,j)} ≥ ϑ.

Hence, {rν , rμ} is good. �
To finish the proof of Lemma 2.8 we will show that

If {rν , rμ} is a good pair, then rν and rμ are compatible. (†)

So, assume that {rν , rμ} is a good pair.
Write δxν,i

= δxμ,i
= δi.

If s = xν,i write s ∈ K iff i ∈ K. Define s ∈ F , s ∈ M , s ∈ D similarly.



J.C. Martínez, L. Soukup / Annals of Pure and Applied Logic 172 (2021) 103017 13
In order to amalgamate conditions rν and rμ, we will use a refinement of the notion of amalgamation 
given in [8, Definition 2.4].

Let A′ = {xν,i : i ∈ F ∪D ∪M}. For x ∈ (Aν \Aμ) ∪ (Aμ \Aν) define the twin x′ of x in a natural way: 
x′ = hν,μ(x) for x ∈ Aν \Aμ, and x′ = h−1

ν,μ(x) for x ∈ Aμ \Aν .
Let rk : 〈A′,�ν� A′〉 −→ θ be an order-preserving injective function for some ordinal θ < κ, and for 

x ∈ A′ let

βx = εδxγ(δx)+rk(x).

Since cf(γ(δx)) = κ and |A′| < κ we have

βx ∈
(
o(δx) ∩ [γ(δx), γ(δx))) \ sup{βz : rk(z) < rk(x)}.

For x ∈ A′ let

yx = 〈βx, 0〉 ,

and put

Y = {yx : x ∈ A′}.

So, for every x ∈ A′, yx ∈ BS with π(yx) < π(x).
Define the functions g : Y −→ Aν and ḡ : Y −→ Aμ as follows:

g(yx) = x and ḡ(yx) = x′,

where x′ is the “twin” of x in Aμ.
Now, we are ready to start to define the common extension r = 〈A,�, i〉 of rν and rμ. First, we define 

the universe A as

A = Aν ∪Aμ ∪ Y.

Clearly, A satisfies (P1). Now, our purpose is to define �.
Extend the definition of g as follows: g : A −→ Aν is a function,

g(x) =

⎧⎪⎨
⎪⎩

x if x ∈ Aν ,
x′ if x ∈ Aμ \Aν ,
s if x = ys for some s ∈ A′.

We introduce two relations on Ap ∪Aq ∪ Y as follows:

�R1 = {〈y, x〉 ∈ Y ×A : g(y) �ν g(x)},

�R2 = {〈x, z〉 ∈ A×A : ∃a ∈ A� g(x) �ν a �ν g(z)}.

Then, we put

�=�ν ∪ �μ ∪ �R1 ∪ �R2 . (�)

The following claim is well-known and straightforward.
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Claim 2.17. �ν,μ=�� (Aν ∪Aμ) is the partial order on Aν ∪Aμ generated by �ν ∪ �μ.

The following straightforward claim will be used several times in our arguments.

Claim 2.18. If x � z then g(x) �ν g(z).

Sublemma 2.19. � is a partial order on Aν ∪Aμ ∪ Y .

Proof. We should check that �ν is transitive, because it is trivially reflexive and antisymmetric.
So let s � t � u. We should show that s � u.
Since x � z implies g(x) �ν g(z), we have g(s) �ν g(t) �ν g(u) and so

g(s) �ν g(u). (�)

If 〈s, u〉 ∈ (Y × A) ∪ (Aν × Aν) ∪ (Aμ × Aμ), then (�) implies s �R1 u or s �ν u or s �μ u, which implies 
s � u by (�).

So we can assume that s ∈ Aν (the case s ∈ Aμ is similar), and so u ∈ Y or u ∈ Aμ.

Case 1. u ∈ Aμ.

If t ∈ Aν ∪Aμ, then s �ν,μ t �ν,μ u, and so s �ν,μ u by Claim 2.17. So s � u.
Assume that t ∈ Y . Then s �R2 t, and so there is a ∈ A� such that g(s) �ν a �ν g(t). Since t � u

implies g(t) �ν g(u), we have g(s) �ν a �ν g(u), and so s �R2 u. Thus s � u.

Case 2. u ∈ Y .

If t ∈ Y , then s�R2t, and so there is a ∈ A� such that g(s) �ν a �ν g(t). Since t � u implies g(t) �ν g(u), 
we have g(s) �ν a �ν g(u), and so s�R2u. Thus s � u.

Assume that t ∈ Aν ∪ Aμ. Then t�R2u, and so there is a ∈ A� such that g(t) �ν a �ν g(u). Then 
g(s) �ν a �ν g(u), and so s�R2u. Thus s � u. �

So, by the previous Sublemma 2.19 and by the construction, (P2) and (P3) hold for �.
Next define the function i :

[
A
]2 −→ A ∪ {undef} as follows:

i ⊃ iν ∪ iμ,

and for {s, t} ∈
[
A
]2\([Aν

]2∪[Aμ

]2) such that s and t are �-compatible, put i{s, t} = i{s, ys} = i{t, ys} = ys
if s ∈ A′ and t = s′, and otherwise consider the element

v = iν{g(s), g(t)},

and let

i{s, t} =

⎧⎨
⎩

v if v ∈ A�,

yv if v /∈ A�.

Let

i{s, t} = undef
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if s and t are not �-compatible.
If s and t are compatible, then so are g(s) and g(t) because x � y implies g(x) �ν g(y) by Claim 2.18. 

Moreover iν{s, t} = iμ{s, t} for {s, t} ∈
[
A�

]2 by condition (C)(e), so the definition above is meaningful, 
and gives a function i.

Claim 2.20. If v ∈ A� and s ∈ A, then π(v) ∈ o*(g(s)) iff π(v) ∈ o*(s).

Proof. If s ∈ Aν ∪ Aμ then g(s) = s or g(s) = s′, and so π(v) ∈ o*(g(s)) iff π(v) ∈ o*(s) by (C)(b) and 
(C)(h).

Consider now the case s = yx ∈ Y . Then π(s) ∈ E(J(δx)) ∩ [γ(δx), γ(δx)), and so

o*(s) = o(π(s)) =
⋃

{E(I) : I ∈ I, I− < π(s) < I+} ∩ π(s) =
⋃

{E(I) : I ∈ I, J(δx) ⊂ I} ∩ π(s).

We distinguish the following two cases.

Case 1. π(x) < δx.

If x ∈ BS then γ(δx) < π(x) < δx by (H), and so

o*(x) ∩ π(s) = o(π(x)) ∩ π(s) =
⋃

{E(I) : J(δx) ⊂ I} ∩ π(s) = o*(s).

If x /∈ BS then x ∈ M and γ(δx) < π(x) < δx by (H), and so

o*(x) ∩ π(s) = o(π(x)) ∩ π(s) = (
⋃

{E(I) : J(δx) ⊂ I} ∪ E(J(π(x)))) ∩ π(s) =⋃
{E(I) : J(δx) ⊂ I} ∩ π(s) = o*(s).

Case 2. π(x) = δx.

Then x ∈ F and so

o*(x) = o(π(x)) = o(x) ∪ (E(J(δx)) ∩ δx) =
(⋃

{E(I) : I− < π(x) < I+} ∪ E(J(δx))
)
∩ π(x) =⋃

{E(I) : J(δx) ⊂ I} ∩ π(x),

so o*(s) = o*(x) ∩ π(s).
So in both cases o*(s) = o*(x) ∩ π(s). Also, note that as v ∈ A�, we have that π(v) /∈ (γ(δx), δx), and 

hence if v ∈ o*(g(s)) then π(v) < π(s). So, π(v) ∈ o*(x) = o*(g(s)) iff π(v) ∈ o*(s). �
Claim 2.21. If {s, t} ∈

[
A
]2, v ∈ A� and π(v) ∈ f{g(s), g(t)} then π(v) ∈ f{s, t}.

Proof. We should distinguish two cases.

Case 1. f{g(s), g(t)} = o∗(g(s)) ∩ o∗(g(t)).

As π(v) ∈ f{g(s), g(t)}, we have π(v) ∈ o∗(g(s)) ∩ o∗(g(t)). Since π(v) ∈ o*(g(s)) implies π(v) ∈ o*(s)
and π(v) ∈ o*(g(t)) implies π(v) ∈ o*(t) by Claim 2.20, we have π(v) ∈ o∗(s) ∩ o∗(t) = f{s, t}.

Case 2. f{g(s), g(t)} = o(g(s)) ∪
{
ε
π(g(s)) : ζ < F{ρ(g(s)), ρ(g(t))}

}
.
ζ
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So πB(g(s)) = πB(g(t)) �= S and cf(π(g(s))) = κ+. We can assume that s ∈ Aν \ Aμ and t ∈ Aμ \ Aν . 
If g(s) ∈ M , then g(t) ∈ M by (E). Then as [γ(δg(s)), J(δg(s))+) ∩ π′′A� = ∅, we infer that π(v) ∈
o(g(s)) = o(g(t)), and thus π(v) ∈ o(s) ∩ o(t) ⊂ f{s, t}. Now assume that g(s), g(t) ∈ F . So s, t ∈ F , and 
δ′ = δg(s) = δg(t) has cofinality κ+. So,

π(v) ∈ f{g(s), g(t)} = o(δ′) ∪
{
εδ

′

ζ : ζ < F{ρ(g(s)), ρ(g(t))}
}
. (�)

Since π′′A� ∩ (γ(δ′), δ′) = ∅, (�) implies

π(v) ∈ o(δ′) ∩ γ(δ′).

But, by (�)

o(δ′) ∩ γ(δ′) ⊂ f{s, t},

and so π(v) ∈ f{s, t}. �
Sublemma 2.22. 〈A,�, i〉 satisfies (P4) and (P5).

Proof. Let {s, t} ∈
[
A
]2 be a pair of �-incomparable and �-compatible elements. We distinguish the 

following cases.

Case 1. {s, t} ∈
[
Aν

]2. (The case {s, t} ∈
[
Aμ

]2 is similar)

Since �ν⊂�, we have iν{s, t} � s, t, so to check (P4) we should show that x � s, t implies x � iν{s, t}. 
We can assume that x /∈ Aν .

If x ∈ Y , then x �R1 s and x �R1 t, i.e. g(x) �ν g(s), g(t) and so g(x) �ν iν{g(s), g(t)} = iν{s, t} =
g(iν{s, t}), and so x �R1 iν{s, t}. Thus x � iν{s, t}.

If x ∈ Aμ \ Aν , then x �R2 s and x �R2 t, i.e. g(x) �ν a �ν g(s) and g(x) �ν b �ν g(t) for some 
a, b ∈ A�. Then c = iν{a, b} ∈ A�, and so g(x) �ν c �ν iν{g(s), g(t)} = iν{s, t} = g(iν{s, t}), and so 
x �R2 iν{s, t}. Thus x � iν{s, t}.

Finally (P5) holds in Case 1 because rν satisfies (P5).

Case 2. {s, t} /∈
[
Aν

]2 ∪ [
Aμ

]2.
To check (P4) we should prove that i{s, t} is the greatest common lower bound of s and t in 〈A,�〉.
Assume first that s and t are not twins. Note that by Claim 2.18, g(s) and g(t) are �ν-compatible. Write 

v = iν{g(s), g(t)}.

Case 2.1. v ∈ A�, and so i{s, t} = v.

Since v = g(v) �ν g(s) and v ∈ A�, we have v �R2 s. Similarly v �R2 t. Thus v is a common lower 
bound of s and t.

To check that v is the greatest lower bound of s, t in 〈A,�〉 let w ∈ A, w � s, t. Then g(w) �ν g(s), g(t). 
Thus g(w) �ν iν{g(s), g(t)} = v.

Since v ∈ A�, g(w) �ν v implies w �R2 v. Thus w � v. Thus (P4) holds.
To check (P5) observe that g(s) and g(t) are incomparable in Aν . Indeed, g(s) �ν g(t) implies v = g(s) ∈

A� and so g(s) �ν g(t) implies s �R2 t, which contradicts our assumption that s and t are �-incomparable.
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Thus, by applying (P5) in rν ,

π(v) ∈ f{g(s), g(t)}.

Thus π(v) ∈ f{s, t} by Claim 2.21, and so (P5) holds.

Case 2.2. v /∈ A�, and so i{s, t} = yv.

First, we show that δv = δg(s) = δg(t). Note that if g(s) and g(t) are �ν-comparable, then v = g(s) or 
v = g(t), and we have that δg(s) = δg(t), because otherwise we would infer from Claim 2.12 that s, t are 
�-comparable, which is impossible.

Now assume that g(s) and g(t) are �ν-incomparable.
If δv < δg(s), then there is a ∈ A� ∩BS with v �ν a �ν g(s) by Claim 2.12. Thus v = iν{a, g(t)} and so 

v ∈ A� by Claim 2.13, which is impossible. Thus δv = δg(s), and similarly δv = δg(t). Hence

δg(s) = δg(t) = δv.

And we have

π(yv) ∈ E(J(δv)) ∩ [γ(δv), γ(δv)).

Then, if s, t ∈ F and cf(δv) = κ+, by condition (�), we deduce that E(J(δv)) ∩ γ(δv) ⊂ f{s, t}, and so as 
π(yv) < γ(δv), we have π(yv) ∈ f{s, t}. Otherwise,

E(J(δv)) ∩ min(π(s), π(t)) ⊂ f{s, t}.

Then as v = iν{g(s), g(t)}, we have π(v) < π(g(s)), π(g(t)), hence π(yv) < π(s), π(t) and thus π(yv) ∈ f{s, t}.
Thus (P5) holds.
To check (P4) first we show that yv � s, t. Indeed g(v) �ν g(s) implies yv �R1 s. We obtain yv �R1 t

similarly.
Let w � s, t.
Assume first that δg(w) < δv. Since w � s, t we have g(w) �ν g(s), g(t) by Claim 2.18 and hence 

g(w) �ν iν{g(s), g(t)} = v. By Claim 2.12 there is a ∈ A� such that g(w) �ν a �ν v. Thus w �R2 yv.
Assume now that δg(w) = δv.
Then, we have that w ∈ Y . To check this fact, assume on the contrary that w ∈ Aν ∪ Aμ. So, we have 

δw = δg(w) = δv = δg(s) = δg(t). Note that if s ∈ Y , then π(s) ∈ [γ(δw), γ(δw)), which contradicts the 
assumption that w � s. So s /∈ Y , and analogously t /∈ Y .

Assume that w ∈ Aν . If s ∈ Aμ, as w � s there is b ∈ A� such that w � b � s, which is impossible because 
π(w) > γ(δw) = γ(δs) and [γ(δs), J(δs)+) ∩ π′′A� = ∅. Thus s /∈ Aμ. And by means of a parallel argument, 
we can show that t /∈ Aμ. So s, t ∈ Aν , which was excluded. Analogously, w ∈ Aμ implies s, t ∈ Aμ.

Therefore, w = yz for some z ∈ A′. Then z �ν g(s) and z �ν g(t), and so z �ν iν{g(s), g(t)} = v. Thus 
yz �R1 yv.

Now, assume that s and t are twins. So t = s′ and i{s, s′} = ys. If s ∈ F and cf(π(s)) = κ+, we have 
that π(ys) ∈ o(δs) ∩ γ(δs) ⊂ f{s, s′} by (�). Otherwise, π(ys) ∈ o∗(π(s)) ∩ o∗(π(s′)) = f{s, s′}. Thus (P5) 
holds. To check (P4), it is clear that ys ≺ s, s′. So, assume that w ≺ s, s′. If w = yu ∈ Y , then as w ≺ s we 
infer that u � s, and thus w � ys. Now, suppose that w ∈ Aν ∪Aμ. Then, there is b ∈ A� such that either 
w � b � s or w � b � s′. In both cases, we have w � ys.

So we proved Sublemma 2.22. �
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Sublemma 2.23. 〈A,�, i〉 satisfies (P6).

Proof. Assume that {s, t} ∈
[
A
]2, s � t and Λ separates s from t, i.e.,

Λ− < π(s) < Λ+ < π(t).

We should find v ∈ A such that s � v � t and π(v) = Λ+.
Note that since s � t, we have δg(s) ≤ δg(t) by Claim 2.11.
We can assume that {s, t} /∈

[
Aν

]2 ∪ [
Aμ

]2 because rν and rμ satisfy (P6).
We distinguish the following cases.

Case 1. δg(s) < δg(t).

As g(s) �ν g(t), there is a ∈ A� ∩BS with g(s) �ν a �ν g(t) by Claim 2.12.

Case 1.1. π(a) ∈ Λ.

Thus Λ separates a from g(t).
Applying (P6) in rν for a and g(t) and Λ we obtain b ∈ Aν such that a �ν b �ν g(t) and π(b) = Λ+.
Note that as π(a) ∈ Λ, a ∈ A� and π(b) = Λ+, we have that π(b) ∈ Z. Thus b ∈ A� by (H).
Thus g(s) �ν b �ν g(t) implies s �R2 b �R2 t, and so s � b � t.

Case 1.2. π(a) /∈ Λ.

If Λ+ = π(a), then we are done because g(s) �ν a �ν g(t) implies s � a � t.
So we can assume that Λ+ < π(a).
Since rν and rμ satisfy (P6) and Λ separates s from a, we can assume that s /∈ Aν ∪Aμ.
Hence s = yg(s) and Λ separates g(s) from a because π(s) ∈ J(δg(s)) ⊂ Λ. (If Λ � J(δg(s)), then 

Λ− < π(s) < Λ+ is not possible.)
Thus there is b ∈ Aν such that g(s) �ν b �ν a and π(b) = Λ+.
Since δg(s) ∈ Z0, we have π(b) ∈ Z, and so b ∈ A� by (H).
Thus s = yg(s) �R1 b �R2 t, and so s � b � t.

Case 2. δg(s) = δg(t).

We will see that this case is not possible.

Case 2.1. s ∈ Aν .

Note that if t ∈ Aμ, then since s � t there is b ∈ A� such that s � b � t, which is impossible because 
π(s) > γ(δs) and [γ(δs), J(δs)+) ∩ π′′A� = ∅. Thus t /∈ Aμ.

Since s ∈ Aν , s � t and δs = δg(t) we have t /∈ Y , and so t ∈ Aν , which was excluded.
By means of a similar argument, we can show that s ∈ Aμ is also impossible.

Case 2.2. s = yg(s).

Then π(s) ∈ E(J(δg(s))) and so Λ− < π(s) < Λ+ implies J(δg(s)) ⊂ Λ. But then π(t) ≤ Λ+, so Λ can 
not separate s from t.

Thus (P6) holds.
So we proved Sublemma 2.23. �
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Thus we proved that r is a common extension of rν and rμ.
This completes the proof of Lemma 2.8, i.e. P satisfies κ+-c.c. �
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