Contents lists available at ScienceDirect

Annals of Pure and Applied Logic

www.elsevier.com/locate/apal

A consistency result on long cardinal sequences $\stackrel{\Rightarrow}{\sim}$

Juan Carlos Martínez^{a,*}, Lajos Soukup^b

 ^a Facultat de Matemàtiques i Informàtica, Universitat de Barcelona, Gran Via 585, 08007 Barcelona, Spain
 ^b Alfréd Rényi Institute of Mathematics, Eötvös Loránd Research Network, Budapest, V. Reáltanoda u. 13-15, H-1053, Hungary

A R T I C L E I N F O

Article history: Received 15 January 2020 Received in revised form 3 July 2021 Accepted 3 July 2021 Available online 9 July 2021

MSC: 54A25 06E05 54G12 03E35

Keywords: Locally compact scattered space Superatomic Boolean algebra Cardinal sequence

1. Introduction

If X is a locally compact, scattered Hausdorff (in short: LCS) space and α is an ordinal, we let $I_{\alpha}(X)$ denote the α th Cantor-Bendixson level of X. The cardinal sequence of X, CS(X), is the sequence of the cardinalities of the infinite Cantor-Bendixson levels of X, i.e.

$$\mathrm{CS}(X) = \langle |I_{\alpha}(X)| : \alpha < \mathrm{ht}^{-}(X) \rangle,$$

where ht⁻(X), the reduced height of X, is the minimal ordinal β such that $I_{\beta}(X)$ is finite. The height of X, denoted by ht(X), is defined as the minimal ordinal β such that $I_{\beta}(X) = \emptyset$. Clearly ht⁻(X) \leq ht⁻(X) + 1.

* Corresponding author.

https://doi.org/10.1016/j.apal.2021.103017

ABSTRACT

For any regular cardinal κ and ordinal $\eta < \kappa^{++}$ it is consistent that 2^{κ} is as large as you wish, and every function $f: \eta \longrightarrow [\kappa, 2^{\kappa}] \cap Card$ with $f(\alpha) = \kappa$ for $cf(\alpha) < \kappa$ is the cardinal sequence of some locally compact scattered space.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

 $^{^{*}}$ The first author was supported by the Spanish Ministry of Education DGI grant MTM2017-86777-P (Spanish Ministry of Science and Innovation (SMSI)) and by the Catalan DURSI grant 2017SGR270. The second author was supported by NKFIH grants nos. K113047 and K129211.

E-mail addresses: jcmartinez@ub.edu (J.C. Martínez), soukup@renyi.hu (L. Soukup).

^{0168-0072/© 2021} The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

If α is an ordinal, let $\mathcal{C}(\alpha)$ denote the class of all cardinal sequences of LCS spaces of reduced height α and put

$$\mathcal{C}_{\lambda}(\alpha) = \{ s \in \mathcal{C}(\alpha) : s(0) = \lambda \land \forall \beta < \alpha \ s(\beta) \ge \lambda \}.$$

Let $\langle \kappa \rangle_{\alpha}$ denote the constant κ -valued sequence of length α .

In [4] it was shown that the class $C(\alpha)$ is described if the classes $C_{\kappa}(\beta)$ are characterized for every infinite cardinal κ and ordinal $\beta \leq \alpha$. Then, under GCH, a full description of the classes $C_{\kappa}(\alpha)$ for infinite cardinals κ and ordinals $\alpha < \omega_2$ was given.

The situation becomes, however, more complicated for $\alpha \geq \omega_2$. In [9] we gave a consistent full characterization of $C_{\kappa}(\alpha)$ for any uncountable regular cardinals κ and ordinals $\alpha < \kappa^{++}$ under GCH.

If *GCH* fails, much less is known on $C_{\kappa}(\alpha)$ even for $\alpha < \kappa^{++}$.

In [11] it was proved that $\langle \omega \rangle_{\omega_1} \cap \langle \omega_2 \rangle \in \mathcal{C}_{\omega}(\omega_1 + 1)$ is consistent.

In [5] a similar result was proved for uncountable cardinals instead of ω : if κ is a regular cardinal with $\kappa^{<\kappa} = \kappa > \omega$ and $2^{\kappa} = \kappa^+$, then in some cardinality preserving generic extension of the ground model we have

$$\langle \kappa \rangle_{\kappa^+} \stackrel{\frown}{} \langle \kappa^{++} \rangle \in \mathcal{C}(\kappa^+ + 1).$$

In [10] we proved that if κ and λ are regular cardinals with $\kappa \leq \lambda$, $\kappa^{<\kappa} = \kappa$, $2^{\kappa} = \kappa^+$, and $\delta < \kappa^{++}$ with $cf(\delta) = \kappa^+$, then in some cardinality preserving generic extension of the ground model we have

$$\langle \kappa \rangle_{\delta}^{\frown} \langle \lambda \rangle \in \mathcal{C}(\delta+1).$$

In this paper we will prove a much stronger result than the above mentioned one.

Theorem 1.1. Assume that κ and λ are regular cardinals, $\kappa^{++} \leq \lambda$, $\kappa^{<\kappa} = \kappa$, $2^{\kappa} = \kappa^{+}$, $\lambda^{\kappa^{+}} = \lambda$ and $\delta < \kappa^{++}$. Then, in some cardinality preserving generic extension of the ground model, we have $2^{\kappa} = \lambda$ and

$$\{f \in {}^{\delta}([\kappa, \lambda] \cap Card) : f(\alpha) = \kappa \text{ whenever } cf(\alpha) < \kappa\} \subset \mathcal{C}_{\kappa}(\delta).$$

Definition 1.2. Let \mathcal{C} be a family of sequences of cardinals. We say that an LCS space X is universal for \mathcal{C} iff $CS(X) \in \mathcal{C}$ and for each $s \in \mathcal{C}$ there is an open subspace $Z \subset X$ with CS(Z) = s.

Remark. The assumption $\delta < \kappa^{++}$ is essential in the construction as we will explain in a Remark on page 8.

So, we do not know whether Theorem 1.1 can be generalized to $\delta = \kappa^{++}$. In fact, if κ is a specific uncountable cardinal, the problem whether it is relatively consistent with ZFC that $\langle \kappa \rangle_{\kappa^{++}} \in C(\kappa^{++})$ is a long-standing open question. Nevertheless, by a well-known result of Baumgartner and Shelah, it is known that it is relatively consistent with ZFC that $\langle \omega \rangle_{\omega_2} \in C(\omega_2)$ (see [2]).

Instead of Theorem 1.1 we prove the following stronger result:

Theorem 1.3. Assume that κ and λ are regular cardinals, $\kappa^{++} \leq \lambda$, $\kappa^{<\kappa} = \kappa$, $2^{\kappa} = \kappa^+$, $\lambda^{\kappa^+} = \lambda$ and $\delta < \kappa^{++}$. Then, in some cardinal preserving generic extension, we have $2^{\kappa} = \lambda$ and there is an LCS space X which is universal for

$$\mathcal{C} = \{ f \in {}^{\delta} ([\kappa, \lambda] \cap Card) : f(\alpha) = \kappa \text{ whenever } cf(\alpha) < \kappa \}.$$

Definition 1.4. Let $\kappa < \lambda$ be cardinals, δ be an ordinal, and $A \subset \delta$. An LCS space X of height δ is called $(\kappa, \lambda, \delta, A)$ -good iff there is an open subspace $Y \subset X$ such that

- (1) $CS(Y) = \langle \kappa \rangle_{\delta},$
- (2) $I_{\zeta}(Y) = I_{\zeta}(X)$, and so $|I_{\zeta}(X)| = \kappa$, for $\zeta \in \delta \setminus A$,
- (3) $|I_{\zeta}(X)| = \lambda$ for $\zeta \in A$,
- (4) for ζ ∈ A the set Z_ζ = I_{<ζ}(Y) ∪ I_ζ(X) is an open subspace of X such that
 (a) I_ξ(Z_ζ) = I_ξ(Y) for ξ < ζ,
 (b) I_ζ(Z_ζ) = I_ζ(X).

Theorem 1.3 follows immediately from Koszmider's Theorem, Theorem 1.6 and Proposition 1.7 below. The following result of Koszmider can be obtained by putting together [7, Fact 32 and Theorem 33]:

Definition 1.5 (See [6, 7]). Assume that $\kappa < \lambda$ are infinite cardinals. We say that a function $\mathcal{F} : [\lambda]^2 \longrightarrow \kappa^+$ is a κ^+ -strongly unbounded function on λ iff for every ordinal $\vartheta < \kappa^+$ and for every family $\mathcal{A} \subset [\lambda]^{<\kappa}$ of pairwise disjoint sets with $|\mathcal{A}| = \kappa^+$, there are different $a, b \in \mathcal{A}$ such that $\mathcal{F}\{\alpha, \beta\} > \vartheta$ for every $\alpha \in a$ and $\beta \in b$.

Koszmider's Theorem. If κ, λ are infinite cardinals such that $\kappa^{++} \leq \lambda$, $\kappa^{<\kappa} = \kappa$, $2^{\kappa} = \kappa^{+}$ and $\lambda^{\kappa^{+}} = \lambda$, then in some cardinal preserving generic extension $\kappa^{<\kappa} = \kappa$, $\lambda^{\kappa} = \lambda$ and there is a κ^{+} -strongly unbounded function on λ .

For an ordinal $\delta < \kappa^{++}$ let

$$\mathcal{L}_{\kappa}^{\delta} = \left\{ \alpha < \delta : \mathrm{cf}(\alpha) \in \{\kappa, \kappa^+\} \right\}.$$

Theorem 1.6. If $\kappa < \lambda$ are regular cardinals with $\kappa^{<\kappa} = \kappa$, $\lambda^{\kappa} = \lambda$, and there is a κ^+ -strongly unbounded function on λ , then for each $\delta < \kappa^{++}$ there is a κ -complete κ^+ -c.c poset \mathcal{P} of cardinality λ such that in $V^{\mathcal{P}}$ we have $2^{\kappa} = \lambda$ and there is a $(\kappa, \lambda, \delta, \mathcal{L}^{\delta}_{\kappa})$ -good space.

We will prove Theorem 1.6 in Section 2.

Proposition 1.7. If $\kappa < \lambda$ are regular cardinals and $\delta < \kappa^{++}$, then a $(\kappa, \lambda, \delta, \mathcal{L}^{\delta}_{\kappa})$ -good space is universal for

$$\mathcal{C} = \{ f \in {}^{\delta}([\kappa, \lambda] \cap Card) : f(\alpha) = \kappa \text{ whenever } cf(\alpha) < \kappa \}$$

Proof. Let X be a $(\kappa, \lambda, \delta, \mathcal{L}_{\kappa}^{\delta})$ -good space. Fix $f \in \mathcal{C}$. For $\zeta \in \mathcal{L}_{\kappa}^{\delta}$ pick $T_{\zeta} \in [I_{\zeta}(X)]^{f(\zeta)}$, and let

$$Z = Y \cup \bigcup \{ T_{\zeta} : \zeta \in \mathcal{L}_{\kappa}^{\delta} \}.$$

Since $I_{<\zeta}(Y) \cup T_{\zeta}$ is an open subspace of X for $\zeta \in \mathcal{L}_{\kappa}^{\delta}$, for every $\alpha < \delta$ we have

$$\mathbf{I}_{\alpha}(Z) = \mathbf{I}_{\alpha}(Y) \cup \bigcup \{ \mathbf{I}_{\alpha}(\mathbf{I}_{<\zeta}(Y) \cup T_{\zeta}) : \zeta \in \mathcal{L}_{\kappa}^{\delta} \}.$$

Since

$$\mathbf{I}_{\alpha}(\mathbf{I}_{<\zeta}(Y) \cup T_{\zeta}) = \begin{cases} \mathbf{I}_{\alpha}(Y) & \text{if } \alpha < \zeta, \\ T_{\zeta} & \text{if } \alpha = \zeta, \\ \emptyset & \text{if } \zeta < \alpha, \end{cases}$$

we have

$$\mathbf{I}_{\alpha}(Z) = \begin{cases} \mathbf{I}_{\alpha}(Y) & \text{if } \alpha \notin \mathcal{L}_{\kappa}^{\delta}, \\ \mathbf{I}_{\alpha}(Y) \cup T_{\alpha} & \text{if } \alpha \in \mathcal{L}_{\kappa}^{\delta}. \end{cases}$$

Since $|I_{\alpha}(Y)| = \kappa$ and $|I_{\alpha}(Y) \cup T_{\alpha}| = \kappa + f(\alpha) = f(\alpha)$, we have CS(Z) = f, which was to be proved. \Box

2. Proof of Theorem 1.6

2.1. Graded posets

In [5], [8], [11] and in many other papers, the existence of an LCS space is proved in such a way that instead of constructing the space directly, a certain "graded poset" is produced which guaranteed the existence of the wanted LCS-space. From these results, Bagaria, [1], extracted the notion of s-posets and established the formal connection between graded posets and LCS-spaces. For technical reasons, we will use a reformulation of Bagaria's result introduced in [12].

If \leq is an arbitrary partial order on a set X then define the topology τ_{\leq} on X generated by the family $\{ U_{\prec}(x), X \setminus U_{\prec}(x) : x \in X \}$ as a subbase, where $U_{\prec}(x) = \{ y \in X : y \leq x \}.$

In what follows, if i is a partial function from $[X]^2$ to X where X is the domain of some poset, for every $\{s,t\} \in [X]^2 \setminus \text{dom}(i)$ we will write $i\{s,t\} = undef$. So, we will write $i: [X]^2 \longrightarrow X \cup \{undef\}$ in order to represent a partial function i from $[X]^2$ to X.

Proposition 2.1 ([12, Proposition 2.1]). Assume that $\langle X, \preceq \rangle$ is a poset, $\{X_{\alpha} : \alpha < \delta\}$ is a partition of X and $i: [X]^2 \longrightarrow X \cup \{undef\}$ is a function satisfying (a)-(c) below:

(a) if $x \in X_{\alpha}$, $y \in X_{\beta}$ and $x \leq y$ then either x = y or $\alpha < \beta$, (b) $\forall \{x, y\} \in [X]^2$ ($\forall z \in X \ (z \leq x \land z \leq y)$ iff $z \leq i\{x, y\}$),

(c) if $x \in X_{\alpha}$ and $\beta < \alpha$ then the set $\{y \in X_{\beta} : y \leq x\}$ is infinite.

Then $\mathcal{X} = \langle X, \tau_{\prec} \rangle$ is an LCS space with $I_{\alpha}(\mathcal{X}) = X_{\alpha}$ for $\alpha < \delta$.

Definition 2.2. Let $\kappa < \lambda$ be cardinals, δ be an ordinal, and $A \subset \delta$. Assume that $\langle X, \preceq \rangle$ is a poset, $\{X_{\alpha} : \alpha < \delta\}$ is a partition of X and $i : [X]^2 \longrightarrow X \cup \{undef\}$ is a function satisfying conditions (a)–(c) from Proposition 2.1.

We say that poset $\langle X, \preceq \rangle$ is $(\kappa, \lambda, \delta, A)$ -good iff there is a set $Y \subset X$ such that:

- (d) if $x_0 \leq x_1$, then either $x_0 = x_1$ or $x_0 \in Y$;
- (e) $X_{\zeta} \in [Y]^{\kappa}$ for $\zeta \in \delta \setminus A$;
- (f) $|X_{\zeta}| = \lambda$ and $|X_{\zeta} \cap Y| = \kappa$ for $\zeta \in A$.

Proposition 2.3. Let $\kappa < \lambda$ be cardinals, δ be an ordinal, and $A \subset \delta$. If $\langle X, \preceq \rangle$ is a $(\kappa, \lambda, \delta, A)$ -good poset, then $\mathcal{X} = \langle X, \tau_{\prec} \rangle$ is a $(\kappa, \lambda, \delta, A)$ -good space.

Proof. By Proposition 2.1, $\mathcal{X} = \langle X, \tau_{\preceq} \rangle$ is an LCS space with $I_{\alpha}(\mathcal{X}) = X_{\alpha}$ for $\alpha < \delta$.

By (d), the subspace Y is open, and so $I_{\zeta}(Y) = I_{\zeta}(X) \cap Y$. Thus $|I_{\zeta}(Y)| = \kappa$ by (e) and (f). So $CS(Y) = \langle \kappa \rangle_{\delta}$, i.e. 1.4(1) holds.

If $\zeta \in \delta \setminus A$, then $I_{\zeta}(X) \subset Y$ by (e), so $I_{\zeta}(X) = I_{\zeta}(Y)$. Thus 1.4(2) holds. Moreover $I_{\zeta}(Y) = I_{\zeta}(X) \cap Y$. 1.4(3) follows from (f).

Also, for $\zeta \in A$ (a) and (d) imply that $U_{\preceq}(s) \subset Z_{\zeta}$ for $s \in Z_{\zeta}$, and so Z_{ζ} is an open subspace of \mathcal{X} . Hence $I_{\xi}(Z_{\zeta}) = I_{\xi}(X) \cap Z_{\zeta} = X_{\xi} \cap Z_{\zeta}$. Thus $I_{\xi}(Z_{\zeta}) = I_{\xi}(Y)$ for $\xi < \zeta$, and $I_{\zeta}(Z_{\zeta}) = X_{\zeta}$. So 1.4(4) also holds.

Thus \mathcal{X} is a $(\kappa, \lambda, \delta, A)$ -good space. \Box

So, instead of Theorem 1.6, it is enough to prove Theorem 2.4 below.

Theorem 2.4. If $\kappa < \lambda$ are regular cardinals with $\kappa^{<\kappa} = \kappa$, $\lambda^{\kappa} = \lambda$, and there is a κ^+ -strongly unbounded function on λ , then for each $\delta < \kappa^{++}$ there is a κ -complete κ^+ -c.c poset \mathcal{P} of cardinality λ such that in $V^{\mathcal{P}}$ we have $2^{\kappa} = \lambda$ and there is a $(\kappa, \lambda, \delta, \mathcal{L}^{\delta}_{\kappa})$ -good poset.

So, assume that κ , λ and δ satisfy the hypothesis of Theorem 2.4. In order to construct the required poset \mathcal{P} , first we need to recall some notion from [8, Section 1].

2.2. Orbits

If $\alpha \leq \beta$ are ordinals let

$$[\alpha,\beta) = \{\gamma : \alpha \le \gamma < \beta\}.$$

We say that I is an ordinal interval iff there are ordinals α and β with $I = [\alpha, \beta)$. Write $I^- = \alpha$ and $I^+ = \beta$.

If $I = [\alpha, \beta)$ is an ordinal interval let $E(I) = \{\varepsilon_{\nu}^{I} : \nu < cf(\beta)\}$ be a cofinal closed subset of I having order type $cf(\beta)$ with $\alpha = \varepsilon_{0}^{I}$ and put

$$\mathcal{E}(I) = \{ [\varepsilon_{\nu}^{I}, \varepsilon_{\nu+1}^{I}) : \nu < \operatorname{cf} \beta \}$$

provided β is a limit ordinal, and let $E(I) = \{\alpha, \beta'\}$ and put

$$\mathcal{E}(I) = \{ [\alpha, \beta'), \{\beta'\} \}$$

provided $\beta = \beta' + 1$ is a successor ordinal.

Define $\{\mathcal{I}_n : n < \omega\}$ as follows:

$$\mathcal{I}_0 = \{[0, \delta)\} \text{ and } \mathcal{I}_{n+1} = \bigcup \{\mathcal{E}(I) : I \in \mathcal{I}_n\}.$$

Put $\mathbb{I} = \bigcup \{ \mathcal{I}_n : n < \omega \}.$

Note that \mathbb{I} is a *cofinal tree of intervals* in the sense defined in [8]. So, the following conditions are satisfied:

- (i) For every $I, J \in \mathbb{I}, I \subset J$ or $J \subset I$ or $I \cap J = \emptyset$.
- (ii) If I, J are different elements of \mathbb{I} with $I \subset J$ and J^+ is a limit ordinal, then $I^+ < J^+$.
- (iii) \mathcal{I}_n partitions $[0, \delta)$ for each $n < \omega$.
- (iv) \mathcal{I}_{n+1} refines \mathcal{I}_n for each $n < \omega$.
- (v) For every $\alpha < \delta$ there is an $I \in \mathbb{I}$ such that $I^- = \alpha$.

Then, for each $\alpha < \delta$ we define

$$n(\alpha) = \min\{n : \exists I \in \mathcal{I}_n \text{ with } I^- = \alpha\},\$$

and for each $\alpha < \delta$ and $n < \omega$ we pick

 $I(\alpha, n) \in \mathcal{I}_n$ such that $\alpha \in I(\alpha, n)$.

Proposition 2.5. Assume that $\zeta < \delta$ is a limit ordinal. Then, there is an interval

$$J(\zeta) \in \mathcal{I}_{n(\zeta)-1} \cup \mathcal{I}_{n(\zeta)}$$

such that ζ is a limit point of $E(J(\zeta))$. If $cf(\zeta) = \kappa^+$, then $J(\zeta) \in \mathcal{I}_{n(\zeta)}$ and $J(\zeta)^+ = \zeta$.

Proof. If there is an $I \in \mathcal{I}_{n(\zeta)}$ with $I^+ = \zeta$ then $J(\zeta) = I$. If there is no such I, then ζ is a limit point of $E(I(\zeta, n(\zeta) - 1))$, so $J(\zeta) = I(\zeta, n(\zeta) - 1)$.

Assume now that $cf(\zeta) = \kappa^+$. Then $\zeta \in E(I(\zeta, n(\zeta) - 1))$, but $|E(I(\zeta, n(\zeta) - 1)) \cap \zeta| \leq \kappa$, so ζ can not be a limit point of $E(I(\zeta, n(\zeta) - 1))$. Therefore, it has a predecessor ξ in $E(I(\zeta, n(\zeta) - 1))$, i.e. $[\xi, \zeta) \in \mathcal{I}_{n(\zeta)}$, and so $J(\zeta) = [\xi, \zeta)$ and $J(\zeta) \in \mathcal{I}_{n(\zeta)}$. \Box

If $\operatorname{cf}(J(\zeta)^+) \in \{\kappa, \kappa^+\}$, we denote by $\{\epsilon_{\nu}^{\zeta} : \nu < \operatorname{cf}(J(\zeta)^+)\}$ the increasing enumeration of $\operatorname{E}(J(\zeta))$, i.e. $\epsilon_{\nu}^{\zeta} = \varepsilon_{\nu}^{J(\zeta)}$ for $\nu < \operatorname{cf}(J(\zeta)^+)$.

Now if $\zeta < \delta$, we define the *basic orbit* of ζ (with respect to I) as

$$\mathbf{o}(\zeta) = \bigcup \{ (\mathbf{E}(\mathbf{I}(\zeta, m)) \cap \zeta) : m < \mathbf{n}(\zeta) \}.$$

We refer the reader to [8, Section 1] for some fundamental facts and examples on basic orbits. In particular, we have that $\alpha \in o(\beta)$ implies $o(\alpha) \subset o(\beta)$.

If $\zeta \in \mathcal{L}^{\delta}_{\kappa}$, we define the *extended orbit* of ζ by

$$\overline{\mathrm{o}}(\zeta) = \mathrm{o}(\zeta) \cup (\mathrm{E}(J(\zeta)) \cap \zeta).$$

Observe that if $J(\zeta) \in \mathcal{I}_{n(\zeta)-1}$ then $\overline{o}(\zeta) = o(\zeta)$.

The underlying set of our poset will consist of blocks. The following set \mathbb{B} below serves as the index set of our blocks:

$$\mathbb{B} = \{S\} \cup \mathcal{L}^{\delta}_{\kappa}.$$

Let

$$B_S = \delta \times \kappa$$

and

$$B_{\zeta} = \{\zeta\} \times [\kappa, \lambda)$$

for $\zeta \in \mathcal{L}_{\kappa}^{\delta}$.

The underlying set of our poset will be

$$X = \bigcup \{ B_T : T \in \mathbb{B} \}.$$

To obtain a $(\kappa, \lambda, \delta, \mathcal{L}_{\kappa}^{\delta})$ -good poset we take $Y = B_S$ and

$$X_{\zeta} = \begin{cases} \{\zeta\} \times \kappa & \text{if } \zeta \in \delta \setminus \mathcal{L}_{\kappa}^{\delta}, \\ \{\zeta\} \times \lambda & \text{if } \zeta \in \mathcal{L}_{\kappa}^{\delta}. \end{cases}$$

Define the functions $\pi: X \longrightarrow \delta$ and $\rho: X \longrightarrow \lambda$ by the formulas

$$\pi(\langle \alpha, \nu \rangle) = \alpha$$
 and $\rho(\langle \alpha, \nu \rangle) = \nu$.

Define

$$\pi_B: X \longrightarrow \mathbb{B}$$
 by the formula $x \in B_{\pi_B(x)}$.

Finally we define the *orbits* of the elements of X as follows:

$$o^*(x) = \begin{cases} o(\pi(x)) & \text{ for } x \in B_S, \\ \overline{o}(\pi(x)) & \text{ for } x \in X \setminus B_S. \end{cases}$$

Observe that $o^*(x) \in [\pi(x)]^{\leq \kappa^+}$ and

$$|o^*(x)| \leq \kappa$$
 unless $x \in B_{\xi}$ with $cf(\xi) = \kappa^+$

To simplify our notation, we will write $o(x) = o(\pi(x))$ and $\overline{o}(x) = \overline{o}(\pi(x))$.

2.3. Forcing construction

Let $\Lambda \in \mathbb{I}$ and $\{x, y\} \in [X]^2$. We say that Λ separates x from y if

$$\Lambda^- < \pi(x) < \Lambda^+ < \pi(y)$$

Let $\mathcal{F}: [\lambda]^2 \longrightarrow \kappa^+$ be a κ^+ -strongly unbounded function. Define

$$f: [X]^2 \longrightarrow [\delta]^{\leq \kappa}$$

as follows:

$$f\{x,y\} = \begin{cases} o(x) \cup \left\{\epsilon_{\zeta}^{\pi(x)} : \zeta < \mathcal{F}\{\rho(x), \rho(y)\}\right\} & \text{if } \pi_B(x) = \pi_B(y) \neq S, \\ & \text{and } cf(\pi(x)) = \kappa^+, \\ o^*(x) \cap o^*(y) & \text{otherwise.} \end{cases}$$

Observe that

$$|f\{x,y\}| \le \kappa$$

for all $\{x, y\} \in [X]^2$.

Definition 2.6. We define the poset $\mathcal{P} = \langle P, \leq \rangle$ as follows: $\langle A, \leq, i \rangle \in P$ iff the following conditions hold:

(P1) $A \in [X]^{<\kappa}$; (P2) \leq is a partial order on A such that $x \leq y$ implies x = y or $\pi(x) < \pi(y)$; (P3) if $x \leq y$ and $\pi_B(x) \neq S$, then x = y; (P4) i: $[A]^2 \longrightarrow A \cup \{\text{undef}\}$ such that for each $\{x, y\} \in [A]^2$ we have

$$\forall a \in A([a \leq x \land a \leq y] \text{ iff } a \leq i\{x, y\});$$

(P5) for each $\{x, y\} \in [A]^2$ if x and y are \leq -incomparable but \leq -compatible, then

$$\pi(\mathrm{i}\{x,y\}) \in \mathrm{f}\{x,y\};$$

(P6) If $\{x, y\} \in [A]^2$ with $x \prec y$, and $\Lambda \in \mathbb{I}$ separates x from y, then there is $z \in A$ such that $x \prec z \prec y$ and $\pi(z) = \Lambda^+$.

The ordering on P is the extension: $\langle A, \preceq, i \rangle \leq \langle A', \preceq', i' \rangle$ iff $A' \subset A, \preceq' = \preceq \cap (A' \times A')$, and $i' \subset i$.

Remark. Property (P5) will be used to prove that \mathcal{P} satisfies the κ^+ -chain condition. For this, we will use in an essential way that $\delta < \kappa^{++}$ and $f : [X]^2 \to [\delta]^{\leq \kappa}$. Then, if $R = \langle r_{\nu} : \nu < \kappa^+ \rangle$ is a subset of P of size κ^+ with $r_{\nu} = \langle A_{\nu}, \preceq_{\nu}, i_{\nu} \rangle$ for $\nu < \kappa^+$, by using the assumption that $\kappa^{<\kappa} = \kappa$, we can assume that $\{A_{\nu} : \nu < \kappa^+\}$ forms a Δ -system with kernel A_{Δ} and that the conditions r_{ν} ($\nu < \kappa^+$) are pairwise isomorphic. Note that if $\kappa^+ < \delta < \kappa^{++}$, we can not assume that A_{Δ} is an initial segment of each A_{ν} for $\nu < \kappa^+$. However, since $|f\{x,y\}| \leq \kappa$ for all $\{x,y\} \in [X]^2$, we can assume by (P5) that if $x, y \in A_{\Delta}$ with $x \neq y$ and $\nu < \mu < \kappa^+$, we have that $i_{\nu}\{x,y\} = i_{\mu}\{x,y\}$. Then, by using the fact that \mathcal{F} is a κ^+ -strongly unbounded function, we will be able to find two different conditions r_{ν} and r_{μ} in R that are compatible in \mathcal{P} . To show that r_{ν} and r_{μ} are compatible, we will be able to define the infimum of pairs of elements $\{x,y\}$ where $x \in A_{\nu} \setminus A_{\mu}$ and $y \in A_{\mu} \setminus A_{\nu}$ by using the properties of trees of intervals and orbits (specially Proposition 2.5). Note that if $\delta = \kappa^{++}$, we can not define the notion of a basic orbit of an element $\zeta < \delta$ on a tree of intervals $\{\mathcal{I}_n : n < \omega\}$ where $\mathcal{I}_0 = \{[0, \delta)\}$ in such a way that $|o(\zeta)| \leq \kappa$.

For $p \in P$ write $p = \langle A_p, \preceq_p, \mathbf{i}_p \rangle$.

To complete the proof of Theorem 2.4 we will use the following lemmas which will be proved later:

Lemma 2.7. \mathcal{P} is κ -complete.

Lemma 2.8. \mathcal{P} satisfies the κ^+ -c.c.

Lemma 2.9.

(a) For all $x \in X$, the set

$$D_x = \{q \in P : x \in A_q\}$$

is dense in \mathcal{P} .

(b) If $x \in X$, $\alpha < \pi(x)$ and $\zeta < \kappa$, then the set

$$E_{x,\alpha,\zeta} = \{q \in P : x \in A_q \land \exists b \in A_q \cap (\{\alpha\} \times (\kappa \setminus \zeta)) \ b \preceq_q x\}$$

is dense in ${\mathcal P}$

Since $\lambda^{<\kappa} = \lambda$, the cardinality of P is λ . Thus, Lemma 2.7 and Lemma 2.8 above guarantee that forcing with P preserves cardinals and $2^{\kappa} = \lambda$ in the generic extension.

Let $G \subset P$ be a generic filter. Put $A = \bigcup \{A_p : p \in G\}$, $i = \bigcup \{i_p : p \in G\}$ and $\preceq = \bigcup \{\preceq_p : p \in G\}$. Then A = X by Lemma 2.9(a).

We claim that $\langle X, \preceq \rangle$ is a $(\kappa, \lambda, \delta, \mathcal{L}_{\kappa}^{\delta})$ -poset.

Recall that we put $X_{\zeta} = \{\zeta\} \times \kappa$ for $\zeta \in \delta \setminus \mathcal{L}_{\kappa}^{\delta}$ and $X_{\zeta} = \{\zeta\} \times \lambda$ for $\zeta \in \mathcal{L}_{\kappa}^{\delta}$. Then the poset $\langle X, \preceq \rangle$, the partition $\{X_{\zeta} : \zeta < \delta\}$, the function *i* and $Y = \delta \times \kappa$ clearly satisfy conditions 2.1(a,b) and 2.2(d,e,f) by the definition of the poset \mathcal{P} .

Finally condition 2.1(c) holds by Lemma 2.9(b).

So to complete the proof of Theorem 2.4 we need to prove Lemmas 2.7, 2.8 and 2.9.

Since κ is regular, Lemma 2.7 clearly holds.

Proof of Lemma 2.9. (a) Let $p \in P$ be arbitrary. We can assume that $x \notin A_p$.

Let $A_q = A_p \cup \{x\}, \leq_q = \leq_p \cup \{\langle x, x \rangle\}$, and define $i' \supset i$ such that $i'\{a, x\} = undef$ for $a \in A_p$. Then $q = \langle A_q, \leq_q, \mathbf{i}_q \rangle \in D_x$ and $q \leq p$.

(b) Let $p \in P$ be arbitrary. By (a) we can assume that $x \in A_p$. Write $\beta = \pi(x)$.

Let *m* be the natural number such that $I(\alpha, m) = I(\beta, m)$ and $I(\alpha, m+1) \neq I(\beta, m+1)$. We put $I_k = I(\alpha, k)$ for $k \ge m+1$. Let $K = \{\alpha\} \cup \{I_k^+ : m+1 \le k < n(\alpha)\}$.

For each $\gamma \in K$ pick $b_{\gamma} \in (\{\gamma\} \times (\kappa \setminus \zeta)) \setminus A_p$. So $\pi(b_{\gamma}) = \gamma$. Let $A_q = A_p \cup \{b_{\gamma} : \gamma \in K\},$

 $\leq_q = \leq_p \cup \{ \langle b_{\gamma}, b_{\gamma'} \rangle : \gamma, \gamma' \in K, \gamma \leq \gamma' \} \cup \{ \langle b_{\gamma}, z \rangle : \gamma \in K, z \in A_p, x \leq_p z \}.$

We let $i_q\{y, z\} = i_p\{y, z\}$ if $\{y, z\} \in [A_p]^2$, $i_q\{b_\gamma, b_{\gamma'}\} = b_\gamma$ if $\gamma, \gamma' \in K$ with $\gamma < \gamma'$, $i_q\{b_\gamma, z\} = b_\gamma$ if $\gamma \in K$ and $x \leq_p z$, and $i_q\{b_\gamma, z\} = undef$ otherwise.

Let $q = \langle A_q, \preceq_q, \mathbf{i}_q \rangle$. Next we check that $q \in P$. Clearly (P1), (P2), (P3) and (P5) hold for q. (P4) also holds because if $y \in A_p$ and $\gamma \in K$ then either $b_{\gamma} \preceq_q y$ or they are \preceq_q -incompatible.

To check (P6) assume that $b_{\gamma} \prec_q y$ and Λ separates b_{γ} from y. If $\Lambda^+ < \beta$, then $z = b_{\Lambda^+}$ meets the requirements of (P6). If $\Lambda^+ = \beta$, we have $b_{\gamma} \prec_q x \prec_q y$ and $\pi(x) = \beta$, and so we are done. And if $\Lambda^+ > \beta$, we apply condition (P6) for p, and so there is $z \in A_p$ such that $x \prec_p z \prec_p y$ and $\pi(z) = \Lambda^+$, and hence $b_{\gamma} \prec_q z \prec_q y$.

By the construction, $q \leq p$.

Finally $q \in E_{x,\alpha,\zeta}$ because $b_{\alpha} \in A_q \cap (\{\alpha\} \times (\kappa \setminus \zeta))$ and $b_{\alpha} \preceq_q x$. \Box

The rest of the paper is devoted to the proof of Lemma 2.8.

Proof of Lemma 2.8. Assume that $\langle r_{\nu} : \nu < \kappa^+ \rangle \subset P$ with $r_{\nu} \neq r_{\mu}$ for $\nu < \mu < \kappa^+$.

In the first part of the proof, till Claim 2.16, we will find $\nu < \mu < \kappa^+$ such that r_{ν} and r_{μ} are twins in a strong sense, and r_{ν} and r_{μ} form a *good pair* (see Definition 2.15). Then, in the second part of the proof, we will show that if $\{r_{\nu}, r_{\mu}\}$ is a good pair, then r_{ν} and r_{μ} are compatible in \mathcal{P} .

Write $r_{\nu} = \langle A_{\nu}, \preceq_{\nu}, \mathbf{i}_{\nu} \rangle$ and $A_{\nu} = \{ x_{\nu,i} : i < \sigma_{\nu} \}.$

Since we are assuming that $\kappa^{<\kappa} = \kappa$, by thinning out $\langle r_{\nu} : \nu < \kappa^+ \rangle$ by means of standard combinatorial arguments, we can assume the following:

- (A) $\sigma_{\nu} = \sigma$ for each $\nu < \kappa^+$.
- (B) $\{A_{\nu} : \nu < \kappa^+\}$ forms a Δ -system with kernel A_{Δ} .

(C) For each $\nu < \mu < \kappa^+$ there is an isomorphism $h_{\nu,\mu} : \langle A_{\nu}, \preceq_{\nu}, \mathbf{i}_{\nu} \rangle \longrightarrow \langle A_{\mu}, \preceq_{\mu}, \mathbf{i}_{\mu} \rangle$ such that for every $i, j < \sigma$ the following holds:

- (a) $h_{\nu,\mu} \upharpoonright A_{\Delta} = \mathrm{id},$
- (b) $h_{\nu,\mu}(x_{\nu,i}) = x_{\mu,i},$

(c)
$$\pi_B(x_{\nu,i}) = \pi_B(x_{\nu,j})$$
 iff $\pi_B(x_{\mu,i}) = \pi_B(x_{\mu,j}),$

(d) $\pi_B(x_{\nu,i}) = S$ iff $\pi_B(x_{\mu,i}) = S$,

(e) if
$$\{x_{\nu,i}, x_{\nu,j}\} \in [A_{\Delta}]^{\perp}$$
 then $x_{\nu,i} = x_{\mu,i}, x_{\nu,j} = x_{\mu,j}$ and $i_{\nu}\{x_{\nu,i}, x_{\nu,j}\} = i_{\mu}\{x_{\mu,i}, x_{\mu,j}\}$

(f)
$$\pi(x_{\nu,i}) \in o(x_{\nu,j})$$
 iff $\pi(x_{\mu,i}) \in o(x_{\mu,j}),$

(g)
$$\pi(x_{\nu,i}) \in \overline{o}(x_{\nu,j})$$
 iff $\pi(x_{\mu,i}) \in \overline{o}(x_{\mu,j})$,

(h) $\pi(x_{\nu,i}) \in o^*(x_{\nu,j})$ iff $\pi(x_{\mu,i}) \in o^*(x_{\mu,j})$,

(i) $\pi(x_{\nu,k}) \in f\{x_{\nu,i}, x_{\nu,j}\}$ iff $\pi(x_{\mu,k}) \in f\{x_{\mu,i}, x_{\mu,j}\}$. (j) $cf(\pi(x_{\nu,i})) = \kappa^+$ iff $cf(\pi(x_{\mu,i})) = \kappa^+$.

Note that in order to obtain (C)(e) we use condition (P5) and the fact that $|f\{x, y\}| \le \kappa$ for all $x \ne y$. Also, we may assume the following:

(D) There is a partition $\sigma = K \cup^* F \cup^* D \cup^* M$ such that for each $\nu < \mu < \kappa^+$: (a) $\forall i \in K \ x_{\nu,i} \in A_\Delta$ and so $x_{\nu,i} = x_{\mu,i}$. $A_\Delta = \{x_{\nu,i} : i \in K\}$. (b) $\forall i \in F \ x_{\nu,i} \neq x_{\mu,i}$ but $\pi_B(x_{\nu,i}) = \pi_B(x_{\mu,i}) \neq S$. (c) $\forall i \in D \ x_{\nu,i} \notin A_\Delta, \ \pi_B(x_{\nu,i}) = S$ and $\pi(x_{\nu,i}) \neq \pi(x_{\mu,i})$. (d) $\forall i \in M \ \pi_B(x_{\nu,i}) \neq S$ and $\pi(x_{\nu,i}) \neq \pi(x_{\mu,i})$.

(E) If $\pi(x_{\nu,i}) = \pi(x_{\nu,j})$ then $\{i, j\} \in [K \cup F]^2 \cup [D \cup M]^2$.

By [3, Corollary 17.5], if $\sigma < \kappa = \kappa^{<\kappa}$ then the following partition relation holds:

$$\kappa^+ \longrightarrow (\kappa^+, (\omega)_\sigma)^2$$

(i.e. given any function $c : [\kappa^+]^2 \longrightarrow 1 + \rho$ either there is a set $A \in [\kappa^+]^{\kappa^+}$ such that $c''[A]^2 = \{0\}$, or for some $\xi < \sigma$ there is a set $B \in [\kappa^+]^{\omega}$ such that $c''[B]^2 = \{1 + \xi\}$.)

Hence we can assume:

(F) $\pi(x_{\nu,i}) \leq \pi(x_{\mu,i})$ for each $i \in \sigma$ and $\nu < \mu < \kappa^+$.

For $i \in \sigma$ let

$$\delta_i = \begin{cases} \pi(x_{\nu,i}) & \text{if } i \in K \cup F, \\ \sup\{\pi(x_{\nu,i}) : \nu < \kappa^+\} & \text{if } i \in D \cup M. \end{cases}$$

Claim 2.10. (a) If $i \in D \cup M$, then the sequence $\langle \pi(x_{\nu,i}) : \nu < \kappa^+ \rangle$ is strictly increasing, $cf(\delta_i) = \kappa^+$ and $sup(J(\delta_i)) = \delta_i$. Moreover for every $\nu < \kappa^+$ we have $\pi(x_{\nu,i}) < \delta_i$. (b) If $\{i, j\} \in [M]^2$ and $x_{\nu,i} \preceq_{\nu} x_{\nu,j}$, then $x_{\nu,i} = x_{\nu,j}$.

Proof. If $i \in D \cup M$, then (F) and (D)(c-d) imply that the sequence $\{\pi(x_{\nu,i}) : \nu < \kappa^+\}$ is strictly increasing. Hence $cf(\delta_i) = \kappa^+$ and $\pi(x_{\nu,i}) < \delta_i$ for $i \in D \cup M$.

Thus Proposition 2.5 implies $\sup(J(\delta_i)) = \delta_i$. So (a) holds. (D)(d) and condition (P3) imply (b). \Box

We put

$$Z_0 = \{\delta_i : i \in \sigma\}.$$

Since $\pi''A_{\Delta} = \{\delta_i : i \in K\}$ we have $\pi''A_{\Delta} \subset Z_0$. Then, we define Z as the closure of Z_0 with respect to \mathbb{I} :

$$Z = Z_0 \cup \{I^+ : I \in \mathbb{I}, I \cap Z_0 \neq \emptyset\}.$$

Observe that

 $|Z| < \kappa.$

(G)
$$\pi(x_{\nu,i}) \notin o^*(x_{\nu,k})$$
 for $x_{\nu,k} \in B_S \cap A_{\Delta}$ and $i \in D \cup M$.

Our aim is to prove that there are $\nu < \mu < \kappa^+$ such that the forcing conditions r_{ν} and r_{μ} are compatible. However, since we are dealing with infinite forcing conditions, we will need to add new elements to $A_{\nu} \cup A_{\mu}$ in order to be able to define the infimum of pairs of elements $\{x, y\}$ where $x \in A_{\nu} \setminus A_{\mu}$ and $y \in A_{\mu} \setminus A_{\nu}$. The following definitions will be useful to provide the room we need to insert the required new elements. Let

$$\sigma_1 = \{i \in \sigma \setminus K : \mathrm{cf}(\delta_i) = \kappa\}$$

and

$$\sigma_2 = \{ i \in \sigma \setminus K : \operatorname{cf}(\delta_i) = \kappa^+ \}.$$

Assume that $i \in \sigma_1 \cup \sigma_2$. Let

$$\xi_i = \min\{\zeta \in \operatorname{cf}(\delta_i) : \epsilon_{\zeta}^{J(\delta_i)} > \sup(\delta_i \cap Z)\}.$$

Since $|Z| < \kappa \le cf(\delta_i)$, the ordinal ξ_i is defined and $\delta_i > \epsilon_{\xi_i}^{J(\delta_i)}$. Then, if $i \in \sigma_1$ we put

$$\underline{\gamma}(\delta_i) = \epsilon_{\xi_i}^{J(\delta_i)} \text{ and } \gamma(\delta_i) = \delta_i$$

and if $i \in \sigma_2$ we put

$$\underline{\gamma}(\delta_i) = \epsilon_{\xi_i}^{J(\delta_i)} \text{ and } \gamma(\delta_i) = \epsilon_{\xi_i+\kappa}^{J(\delta_i)}$$

For $i \in \sigma_2$, since $\gamma(\delta_i) < \delta_i$ and $\delta_i = \lim \{\pi(x_{\nu,i}) : \nu < \kappa^+\}$ by Claim 2.10(a) for all $i \in D \cup M$, we can assume that

(H) $\pi(x_{\nu,i}) \in J(\delta_i) \setminus \gamma(\delta_i)$, and so $\pi(x_{\nu,i}) \notin Z$, for all $i \in D \cup M$.

We will use the following fundamental facts.

Claim 2.11. If $x_{\nu,i} \leq_{\nu} x_{\nu,j}$ then $\delta_i \leq \delta_j$.

Proof. $x_{\nu,i} \leq_{\nu} x_{\nu,j}$ implies $\pi(x_{\nu,i}) \leq \pi(x_{\nu,j})$ by (P2). \Box

Claim 2.12. Assume $i, j \in \sigma$. If $x_{\nu,i} \preceq_{\nu} x_{\nu,j}$ then either $\delta_i = \delta_j$ or there is $a \in A_{\Delta} \cap B_S$ with $x_{\nu,i} \preceq_{\nu} a \preceq_{\nu} x_{\nu,j}$.

Proof. Assume that $i, j \notin K$ and $\delta_i \neq \delta_j$. By Claim 2.11, we have $\delta_i < \delta_j$. Since $i \in F \cup M$ and $x_{\nu,i} \leq_{\nu} x_{\nu,j}$ imply $x_{\nu,i} = x_{\nu,j}$ and so $\delta_i = \delta_j$, we have that $i \in D$, and so $\pi(x_{\nu,i}) < \delta_i$, $\operatorname{cf}(\delta_i) = \kappa^+$ and $J(\delta_i)^+ = \delta_i$ by Proposition 2.5.

Since $\delta_i < \delta_j$, we have $\delta_i < \gamma(\delta_j) < \pi(x_{\nu,j})$ by (H), and so $J(\delta_i)$ separates $x_{\nu,i}$ from $x_{\nu,j}$. By (P6), we infer that there is an $a = x_{\nu,k} \in A_{\nu}$ such that $\pi(a) = \delta_i$ and $x_{\nu,i} \preceq_{\nu} a \preceq_{\nu} x_{\nu,j}$.

Since $x_{\nu,k} \neq x_{\nu,j}$, we have $x_{\nu,k} \in B_S$, and so $k \in K \cup D$. But as $\pi(x_{\nu,k}) = \delta_i \in Z$ we obtain $k \notin D$ by (H), and so $k \in K$, which implies $a = x_{\nu,k} \in A_{\Delta} \cap B_S$. \Box

Claim 2.13. If $x_{\nu,i} \in A_{\Delta} \cap B_S$ and $x_{\nu,j} \in A_{\nu}$ are compatible but incomparable in r_{ν} , then $x_{\nu,k} = i_{\nu}\{x_{\nu,i}, x_{\nu,j}\} \in A_{\Delta} \cap B_S$.

Proof. First, (P2) implies $x_{\nu,k} \in B_S$.

Since $\pi(x_{\nu,k}) = \pi(i_{\nu} \{x_{\nu,i}, x_{\nu,j}\}) \in f\{x_{\nu,i}, x_{\nu,j}\} = o^*(x_{\nu,i}) \cap o^*(x_{\nu,j}) \subset o^*(x_{\nu,i})$ by (P5), and $x_{\nu,i} \in A_{\Delta} \cap B_S$, we have $k \notin D \cup M$ by (G). Thus $k \in K$, and so $x_{\nu,k} \in A_{\Delta}$. Hence $x_{\nu,k} = i_{\nu}\{x_{\nu,i}, x_{\nu,j}\} \in A_{\Delta} \cap B_S$. \Box

Claim 2.14. Assume that $x_{\nu,i}$ and $x_{\nu,j}$ are compatible but incomparable in r_{ν} . Let $x_{\nu,k} = i_{\nu} \{x_{\nu,i}, x_{\nu,j}\}$. Then either $x_{\nu,k} \in A_{\Delta}$ or $\delta_i = \delta_j = \delta_k$.

Proof. If $\delta_k \neq \delta_i$, we infer that there is $b \in A_{\Delta} \cap B_S$ with $x_{\nu,k} \preceq_{\nu} b \preceq_{\nu} x_{\nu,i}$ by Claim 2.12. So $x_{\nu,k} = i_{\nu} \{b, x_{\nu,j}\}$ and thus $x_{\nu,k} \in A_{\Delta}$ by using Claim 2.13.

Similarly, $\delta_k \neq \delta_j$ implies $x_{\nu,k} \in A_{\Delta}$. \Box

Definition 2.15. $\{r_{\nu}, r_{\mu}\}$ is a *good pair* iff the following holds:

(a) for all $i \in F$ with $cf(\delta_i) = \kappa^+$ we have

$$f\{x_{\nu,i}, x_{\mu,i}\} \supset \overline{o}(\delta_i) \cap \gamma(\delta_i),\tag{(V)}$$

(b) for all $\{i, j\} \in [F]^2$ with $\delta_i = \delta_j$ and $cf(\delta_i) = \kappa^+$ we have

$$f\{x_{\nu,i}, x_{\mu,j}\} \supset \overline{o}(\delta_i) \cap \gamma(\delta_i). \tag{(A)}$$

Claim 2.16. There are $\nu < \mu < \kappa^+$ such that the pair $\{r_{\nu}, r_{\mu}\}$ is good.

Proof. Let

$$\vartheta = \sup\{\xi_{\ell} + \kappa : \ell \in \sigma_2 \cap F\}.$$

Since \mathcal{F} is a κ^+ -strongly unbounded function on λ we can find $\nu < \mu < \kappa^+$ such that for all $i \in F$ we have

$$\mathcal{F}\{\rho(x_{\nu,i}), \rho(x_{\mu,i})\} \ge \vartheta$$

and for all $\{i, j\} \in [F]^2$ with $\delta_i = \delta_j$ and $\operatorname{cf} \delta_i = \kappa^+$ we have

$$\mathcal{F}\{\rho(x_{\nu,i}), \rho(x_{\mu,j})\} \ge \vartheta$$

Hence, $\{r_{\nu}, r_{\mu}\}$ is good. \Box

To finish the proof of Lemma 2.8 we will show that

If
$$\{r_{\nu}, r_{\mu}\}$$
 is a good pair, then r_{ν} and r_{μ} are compatible.

So, assume that $\{r_{\nu}, r_{\mu}\}$ is a good pair. Write $\delta_{x_{\nu,i}} = \delta_{x_{\mu,i}} = \delta_i$. If $s = x_{\nu,i}$ write $s \in K$ iff $i \in K$. Define $s \in F$, $s \in M$, $s \in D$ similarly. (\dagger)

In order to amalgamate conditions r_{ν} and r_{μ} , we will use a refinement of the notion of amalgamation given in [8, Definition 2.4].

Let $A' = \{x_{\nu,i} : i \in F \cup D \cup M\}$. For $x \in (A_{\nu} \setminus A_{\mu}) \cup (A_{\mu} \setminus A_{\nu})$ define the *twin* x' of x in a natural way: $x' = h_{\nu,\mu}(x)$ for $x \in A_{\nu} \setminus A_{\mu}$, and $x' = h_{\nu,\mu}^{-1}(x)$ for $x \in A_{\mu} \setminus A_{\nu}$.

Let $\mathrm{rk} : \langle A', \preceq_{\nu} \upharpoonright A' \rangle \longrightarrow \theta$ be an order-preserving injective function for some ordinal $\theta < \kappa$, and for $x \in A'$ let

$$\beta_x = \epsilon_{\underline{\gamma}(\delta_x) + \mathrm{rk}(x)}^{\delta_x}.$$

Since $cf(\gamma(\delta_x)) = \kappa$ and $|A'| < \kappa$ we have

$$\beta_x \in (\overline{o}(\delta_x) \cap [\gamma(\delta_x), \gamma(\delta_x))) \setminus \sup\{\beta_z : \mathrm{rk}(z) < \mathrm{rk}(x)\}.$$

For $x \in A'$ let

$$y_x = \langle \beta_x, 0 \rangle$$

and put

$$Y = \{y_x : x \in A'\}.$$

So, for every $x \in A'$, $y_x \in B_S$ with $\pi(y_x) < \pi(x)$.

Define the functions $g: Y \longrightarrow A_{\nu}$ and $\overline{g}: Y \longrightarrow A_{\mu}$ as follows:

$$g(y_x) = x$$
 and $\overline{g}(y_x) = x'$,

where x' is the "twin" of x in A_{μ} .

Now, we are ready to start to define the common extension $r = \langle A, \preceq, i \rangle$ of r_{ν} and r_{μ} . First, we define the universe A as

$$A = A_{\nu} \cup A_{\mu} \cup Y.$$

Clearly, A satisfies (P1). Now, our purpose is to define \preceq . Extend the definition of g as follows: $g: A \longrightarrow A_{\nu}$ is a function,

$$g(x) = \begin{cases} x & \text{if } x \in A_{\nu}, \\ x' & \text{if } x \in A_{\mu} \setminus A_{\nu}, \\ s & \text{if } x = y_s \text{ for some } s \in A'. \end{cases}$$

We introduce two relations on $A_p \cup A_q \cup Y$ as follows:

Then, we put

$$\preceq = \preceq_{\nu} \cup \preceq_{\mu} \cup \preceq^{R1} \cup \preceq^{R2} . \tag{(\bigstar)}$$

The following claim is well-known and straightforward.

Claim 2.17. $\leq_{\nu,\mu} = \leq [(A_{\nu} \cup A_{\mu})]$ is the partial order on $A_{\nu} \cup A_{\mu}$ generated by $\leq_{\nu} \cup \leq_{\mu}$.

The following straightforward claim will be used several times in our arguments.

Claim 2.18. If $x \leq z$ then $g(x) \leq_{\nu} g(z)$.

Sublemma 2.19. \leq is a partial order on $A_{\nu} \cup A_{\mu} \cup Y$.

Proof. We should check that \leq_{ν} is transitive, because it is trivially reflexive and antisymmetric. So let $s \leq t \leq u$. We should show that $s \leq u$. Since $x \leq z$ implies $g(x) \leq_{\nu} g(z)$, we have $g(s) \leq_{\nu} g(t) \leq_{\nu} g(u)$ and so

$$g(s) \preceq_{\nu} g(u). \tag{(\star)}$$

If $\langle s, u \rangle \in (Y \times A) \cup (A_{\nu} \times A_{\nu}) \cup (A_{\mu} \times A_{\mu})$, then (\star) implies $s \preceq^{R_1} u$ or $s \preceq_{\nu} u$ or $s \preceq_{\mu} u$, which implies $s \preceq u$ by (\bigstar) .

So we can assume that $s \in A_{\nu}$ (the case $s \in A_{\mu}$ is similar), and so $u \in Y$ or $u \in A_{\mu}$.

Case 1. $u \in A_{\mu}$.

If $t \in A_{\nu} \cup A_{\mu}$, then $s \leq_{\nu,\mu} t \leq_{\nu,\mu} u$, and so $s \leq_{\nu,\mu} u$ by Claim 2.17. So $s \leq u$.

Assume that $t \in Y$. Then $s \leq^{R_2} t$, and so there is $a \in A_{\Delta}$ such that $g(s) \leq_{\nu} a \leq_{\nu} g(t)$. Since $t \leq u$ implies $g(t) \leq_{\nu} g(u)$, we have $g(s) \leq_{\nu} a \leq_{\nu} g(u)$, and so $s \leq^{R_2} u$. Thus $s \leq u$.

Case 2. $u \in Y$.

If $t \in Y$, then $s \preceq^{R_2} t$, and so there is $a \in A_{\Delta}$ such that $g(s) \preceq_{\nu} a \preceq_{\nu} g(t)$. Since $t \preceq u$ implies $g(t) \preceq_{\nu} g(u)$, we have $g(s) \preceq_{\nu} a \preceq_{\nu} g(u)$, and so $s \preceq^{R_2} u$. Thus $s \preceq u$.

Assume that $t \in A_{\nu} \cup A_{\mu}$. Then $t \preceq^{R_2} u$, and so there is $a \in A_{\Delta}$ such that $g(t) \preceq_{\nu} a \preceq_{\nu} g(u)$. Then $g(s) \preceq_{\nu} a \preceq_{\nu} g(u)$, and so $s \preceq^{R_2} u$. Thus $s \preceq u$. \Box

So, by the previous Sublemma 2.19 and by the construction, (P2) and (P3) hold for \leq . Next define the function $i : [A]^2 \longrightarrow A \cup \{undef\}$ as follows:

 $i \supset i_{\nu} \cup i_{\mu},$

and for $\{s,t\} \in [A]^2 \setminus ([A_\nu]^2 \cup [A_\mu]^2)$ such that s and t are \preceq -compatible, put $i\{s,t\} = i\{s,y_s\} = i\{t,y_s\} = y_s$ if $s \in A'$ and t = s', and otherwise consider the element

$$v = \mathbf{i}_{\nu} \{ g(s), g(t) \},$$

and let

$$\mathbf{i}\{s,t\} = \begin{cases} v & \text{if } v \in A_{\Delta}, \\ \\ y_v & \text{if } v \notin A_{\Delta}. \end{cases}$$

Let

$$i\{s,t\} = undef$$

if s and t are not \leq -compatible.

If s and t are compatible, then so are g(s) and g(t) because $x \leq y$ implies $g(x) \leq_{\nu} g(y)$ by Claim 2.18. Moreover $i_{\nu}\{s,t\} = i_{\mu}\{s,t\}$ for $\{s,t\} \in [A_{\Delta}]^2$ by condition (C)(e), so the definition above is meaningful, and gives a function i.

Claim 2.20. If $v \in A_{\Delta}$ and $s \in A$, then $\pi(v) \in o^*(g(s))$ iff $\pi(v) \in o^*(s)$.

Proof. If $s \in A_{\nu} \cup A_{\mu}$ then g(s) = s or g(s) = s', and so $\pi(v) \in o^*(g(s))$ iff $\pi(v) \in o^*(s)$ by (C)(b) and (C)(h).

Consider now the case $s = y_x \in Y$. Then $\pi(s) \in E(J(\delta_x)) \cap [\underline{\gamma}(\delta_x), \gamma(\delta_x))$, and so

$$o^*(s) = o(\pi(s)) = \bigcup \{ E(I) : I \in \mathbb{I}, I^- < \pi(s) < I^+ \} \cap \pi(s) = \bigcup \{ E(I) : I \in \mathbb{I}, J(\delta_x) \subset I \} \cap \pi(s).$$

We distinguish the following two cases.

Case 1. $\pi(x) < \delta_x$.

If $x \in B_S$ then $\gamma(\delta_x) < \pi(x) < \delta_x$ by (H), and so

$$o^{*}(x) \cap \pi(s) = o(\pi(x)) \cap \pi(s) = \bigcup \{ E(I) : J(\delta_x) \subset I \} \cap \pi(s) = o^{*}(s)$$

If $x \notin B_S$ then $x \in M$ and $\gamma(\delta_x) < \pi(x) < \delta_x$ by (H), and so

$$\mathbf{o}^*(x) \cap \pi(s) = \overline{\mathbf{o}}(\pi(x)) \cap \pi(s) = \left(\bigcup \{ E(I) : J(\delta_x) \subset I \} \cup E(J(\pi(x))) \right) \cap \pi(s) = \bigcup \{ E(I) : J(\delta_x) \subset I \} \cap \pi(s) = \mathbf{o}^*(s).$$

Case 2. $\pi(x) = \delta_x$.

Then $x \in F$ and so

$$o^*(x) = \overline{o}(\pi(x)) = o(x) \cup (E(J(\delta_x)) \cap \delta_x) = \left(\bigcup \{E(I) : I^- < \pi(x) < I^+\} \cup E(J(\delta_x))\right) \cap \pi(x) = \bigcup \{E(I) : J(\delta_x) \subset I\} \cap \pi(x),$$

so $o^*(s) = o^*(x) \cap \pi(s)$.

So in both cases $o^*(s) = o^*(x) \cap \pi(s)$. Also, note that as $v \in A_{\Delta}$, we have that $\pi(v) \notin (\underline{\gamma}(\delta_x), \delta_x)$, and hence if $v \in o^*(g(s))$ then $\pi(v) < \pi(s)$. So, $\pi(v) \in o^*(x) = o^*(g(s))$ iff $\pi(v) \in o^*(s)$. \Box

Claim 2.21. If $\{s,t\} \in [A]^2$, $v \in A_{\Delta}$ and $\pi(v) \in f\{g(s), g(t)\}$ then $\pi(v) \in f\{s,t\}$.

Proof. We should distinguish two cases.

Case 1. $f\{g(s), g(t)\} = o^*(g(s)) \cap o^*(g(t)).$

As $\pi(v) \in f\{g(s), g(t)\}$, we have $\pi(v) \in o^*(g(s)) \cap o^*(g(t))$. Since $\pi(v) \in o^*(g(s))$ implies $\pi(v) \in o^*(s)$ and $\pi(v) \in o^*(g(t))$ implies $\pi(v) \in o^*(t)$ by Claim 2.20, we have $\pi(v) \in o^*(s) \cap o^*(t) = f\{s, t\}$.

Case 2. $f\{g(s), g(t)\} = o(g(s)) \cup \{\epsilon_{\zeta}^{\pi(g(s))} : \zeta < F\{\rho(g(s)), \rho(g(t))\}\}.$

So $\pi_B(g(s)) = \pi_B(g(t)) \neq S$ and $cf(\pi(g(s))) = \kappa^+$. We can assume that $s \in A_\nu \setminus A_\mu$ and $t \in A_\mu \setminus A_\nu$. If $g(s) \in M$, then $g(t) \in M$ by (E). Then as $[\gamma(\delta_{g(s)}), J(\delta_{g(s)})^+) \cap \pi'' A_\Delta = \emptyset$, we infer that $\pi(v) \in o(g(s)) = o(g(t))$, and thus $\pi(v) \in o(s) \cap o(t) \subset f\{s,t\}$. Now assume that $g(s), g(t) \in F$. So $s, t \in F$, and $\delta' = \delta_{g(s)} = \delta_{g(t)}$ has cofinality κ^+ . So,

$$\pi(v) \in \mathbf{f}\{g(s), g(t)\} = \mathbf{o}(\delta') \cup \left\{\epsilon_{\zeta}^{\delta'} : \zeta < F\{\rho(g(s)), \rho(g(t))\}\right\}.$$
 (Δ)

Since $\pi'' A_{\Delta} \cap (\gamma(\delta'), \delta') = \emptyset$, (Δ) implies

$$\pi(v) \in \overline{\mathbf{o}}(\delta') \cap \gamma(\delta').$$

But, by (\blacktriangle)

$$\overline{\mathbf{o}}(\delta') \cap \gamma(\delta') \subset \mathbf{f}\{s, t\},\$$

and so $\pi(v) \in f\{s, t\}$. \square

Sublemma 2.22. $\langle A, \leq, i \rangle$ satisfies (P4) and (P5).

Proof. Let $\{s,t\} \in [A]^2$ be a pair of \leq -incomparable and \leq -compatible elements. We distinguish the following cases.

Case 1. $\{s,t\} \in [A_{\nu}]^2$. (The case $\{s,t\} \in [A_{\mu}]^2$ is similar)

Since $\leq_{\nu} \subset \leq$, we have $i_{\nu}\{s,t\} \leq s,t$, so to check (P4) we should show that $x \leq s,t$ implies $x \leq i_{\nu}\{s,t\}$. We can assume that $x \notin A_{\nu}$.

If $x \in Y$, then $x \leq^{R_1} s$ and $x \leq^{R_1} t$, i.e. $g(x) \leq_{\nu} g(s), g(t)$ and so $g(x) \leq_{\nu} i_{\nu} \{g(s), g(t)\} = i_{\nu} \{s, t\} = g(i_{\nu}\{s, t\})$, and so $x \leq^{R_1} i_{\nu} \{s, t\}$. Thus $x \leq i_{\nu} \{s, t\}$.

If $x \in A_{\mu} \setminus A_{\nu}$, then $x \leq^{R^2} s$ and $x \leq^{R^2} t$, i.e. $g(x) \leq_{\nu} a \leq_{\nu} g(s)$ and $g(x) \leq_{\nu} b \leq_{\nu} g(t)$ for some $a, b \in A_{\Delta}$. Then $c = i_{\nu}\{a, b\} \in A_{\Delta}$, and so $g(x) \leq_{\nu} c \leq_{\nu} i_{\nu}\{g(s), g(t)\} = i_{\nu}\{s, t\} = g(i_{\nu}\{s, t\})$, and so $x \leq^{R^2} i_{\nu}\{s, t\}$. Thus $x \leq i_{\nu}\{s, t\}$.

Finally (P5) holds in Case 1 because r_{ν} satisfies (P5).

Case 2. $\{s,t\} \notin [A_{\nu}]^2 \cup [A_{\mu}]^2$.

To check (P4) we should prove that $i\{s,t\}$ is the greatest common lower bound of s and t in $\langle A, \preceq \rangle$. Assume first that s and t are not twins. Note that by Claim 2.18, g(s) and g(t) are \preceq_{ν} -compatible. Write $v = i_{\nu}\{g(s), g(t)\}$.

Case 2.1. $v \in A_{\Delta}$, and so $i\{s, t\} = v$.

Since $v = g(v) \leq_{\nu} g(s)$ and $v \in A_{\Delta}$, we have $v \leq^{R^2} s$. Similarly $v \leq^{R^2} t$. Thus v is a common lower bound of s and t.

To check that v is the greatest lower bound of s, t in $\langle A, \preceq \rangle$ let $w \in A, w \preceq s, t$. Then $g(w) \preceq_{\nu} g(s), g(t)$. Thus $g(w) \preceq_{\nu} i_{\nu} \{g(s), g(t)\} = v$.

Since $v \in A_{\Delta}$, $g(w) \preceq_{\nu} v$ implies $w \preceq^{R_2} v$. Thus $w \preceq v$. Thus (P4) holds.

To check (P5) observe that g(s) and g(t) are incomparable in A_{ν} . Indeed, $g(s) \leq_{\nu} g(t)$ implies $v = g(s) \in A_{\Delta}$ and so $g(s) \leq_{\nu} g(t)$ implies $s \leq^{R2} t$, which contradicts our assumption that s and t are \leq -incomparable.

Thus, by applying (P5) in r_{ν} ,

$$\pi(v) \in \mathbf{f}\{g(s), g(t)\}.$$

Thus $\pi(v) \in f\{s, t\}$ by Claim 2.21, and so (P5) holds.

Case 2.2. $v \notin A_{\Delta}$, and so $i\{s, t\} = y_v$.

First, we show that $\delta_v = \delta_{g(s)} = \delta_{g(t)}$. Note that if g(s) and g(t) are \leq_{ν} -comparable, then v = g(s) or v = g(t), and we have that $\delta_{g(s)} = \delta_{g(t)}$, because otherwise we would infer from Claim 2.12 that s, t are \leq -comparable, which is impossible.

Now assume that g(s) and g(t) are \leq_{ν} -incomparable.

If $\delta_v < \delta_{g(s)}$, then there is $a \in A_{\Delta} \cap B_S$ with $v \preceq_{\nu} a \preceq_{\nu} g(s)$ by Claim 2.12. Thus $v = i_{\nu} \{a, g(t)\}$ and so $v \in A_{\Delta}$ by Claim 2.13, which is impossible. Thus $\delta_v = \delta_{g(s)}$, and similarly $\delta_v = \delta_{g(t)}$. Hence

$$\delta_{g(s)} = \delta_{g(t)} = \delta_v.$$

And we have

$$\pi(y_v) \in E(J(\delta_v)) \cap [\gamma(\delta_v), \gamma(\delta_v)).$$

Then, if $s, t \in F$ and $cf(\delta_v) = \kappa^+$, by condition (\blacktriangle), we deduce that $E(J(\delta_v)) \cap \gamma(\delta_v) \subset f\{s, t\}$, and so as $\pi(y_v) < \gamma(\delta_v)$, we have $\pi(y_v) \in f\{s, t\}$. Otherwise,

$$E(J(\delta_v)) \cap \min(\pi(s), \pi(t)) \subset f\{s, t\}.$$

Then as $v = i_{\nu} \{g(s), g(t)\}$, we have $\pi(v) < \pi(g(s)), \pi(g(t))$, hence $\pi(y_v) < \pi(s), \pi(t)$ and thus $\pi(y_v) \in f\{s, t\}$. Thus (P5) holds.

To check (P4) first we show that $y_v \leq s, t$. Indeed $g(v) \leq_{\nu} g(s)$ implies $y_v \leq^{R_1} s$. We obtain $y_v \leq^{R_1} t$ similarly.

Let $w \leq s, t$.

Assume first that $\delta_{g(w)} < \delta_v$. Since $w \leq s, t$ we have $g(w) \leq_{\nu} g(s), g(t)$ by Claim 2.18 and hence $g(w) \leq_{\nu} i_{\nu} \{g(s), g(t)\} = v$. By Claim 2.12 there is $a \in A_{\Delta}$ such that $g(w) \leq_{\nu} a \leq_{\nu} v$. Thus $w \leq^{R_2} y_v$.

Assume now that $\delta_{g(w)} = \delta_v$.

Then, we have that $w \in Y$. To check this fact, assume on the contrary that $w \in A_{\nu} \cup A_{\mu}$. So, we have $\delta_w = \delta_{g(w)} = \delta_v = \delta_{g(s)} = \delta_{g(t)}$. Note that if $s \in Y$, then $\pi(s) \in [\underline{\gamma}(\delta_w), \gamma(\delta_w))$, which contradicts the assumption that $w \leq s$. So $s \notin Y$, and analogously $t \notin Y$.

Assume that $w \in A_{\nu}$. If $s \in A_{\mu}$, as $w \leq s$ there is $b \in A_{\Delta}$ such that $w \leq b \leq s$, which is impossible because $\pi(w) > \gamma(\delta_w) = \gamma(\delta_s)$ and $[\gamma(\delta_s), J(\delta_s)^+) \cap \pi'' A_{\Delta} = \emptyset$. Thus $s \notin A_{\mu}$. And by means of a parallel argument, we can show that $t \notin A_{\mu}$. So $s, t \in A_{\nu}$, which was excluded. Analogously, $w \in A_{\mu}$ implies $s, t \in A_{\mu}$.

Therefore, $w = y_z$ for some $z \in A'$. Then $z \preceq_{\nu} g(s)$ and $z \preceq_{\nu} g(t)$, and so $z \preceq_{\nu} i_{\nu} \{g(s), g(t)\} = v$. Thus $y_z \preceq^{R_1} y_v$.

Now, assume that s and t are twins. So t = s' and $i\{s, s'\} = y_s$. If $s \in F$ and $cf(\pi(s)) = \kappa^+$, we have that $\pi(y_s) \in \overline{o}(\delta_s) \cap \gamma(\delta_s) \subset f\{s, s'\}$ by $(\mathbf{\nabla})$. Otherwise, $\pi(y_s) \in o^*(\pi(s)) \cap o^*(\pi(s')) = f\{s, s'\}$. Thus (P5) holds. To check (P4), it is clear that $y_s \prec s, s'$. So, assume that $w \prec s, s'$. If $w = y_u \in Y$, then as $w \prec s$ we infer that $u \preceq s$, and thus $w \preceq y_s$. Now, suppose that $w \in A_{\nu} \cup A_{\mu}$. Then, there is $b \in A_{\Delta}$ such that either $w \preceq b \preceq s$ or $w \preceq b \preceq s'$. In both cases, we have $w \preceq y_s$.

So we proved Sublemma 2.22. $\hfill\square$

Sublemma 2.23. $\langle A, \preceq, i \rangle$ satisfies (P6).

Proof. Assume that $\{s,t\} \in [A]^2$, $s \leq t$ and Λ separates s from t, i.e.,

$$\Lambda^- < \pi(s) < \Lambda^+ < \pi(t)$$

We should find $v \in A$ such that $s \leq v \leq t$ and $\pi(v) = \Lambda^+$. Note that since $s \leq t$, we have $\delta_{g(s)} \leq \delta_{g(t)}$ by Claim 2.11. We can assume that $\{s,t\} \notin [A_{\nu}]^2 \cup [A_{\mu}]^2$ because r_{ν} and r_{μ} satisfy (P6). We distinguish the following cases.

Case 1. $\delta_{g(s)} < \delta_{g(t)}$.

As $g(s) \leq_{\nu} g(t)$, there is $a \in A_{\Delta} \cap B_S$ with $g(s) \leq_{\nu} a \leq_{\nu} g(t)$ by Claim 2.12.

Case 1.1. $\pi(a) \in \Lambda$.

Thus Λ separates a from g(t).

Applying (P6) in r_{ν} for a and g(t) and Λ we obtain $b \in A_{\nu}$ such that $a \preceq_{\nu} b \preceq_{\nu} g(t)$ and $\pi(b) = \Lambda^+$. Note that as $\pi(a) \in \Lambda, a \in A_{\Delta}$ and $\pi(b) = \Lambda^+$, we have that $\pi(b) \in Z$. Thus $b \in A_{\Delta}$ by (H). Thus $g(s) \preceq_{\nu} b \preceq_{\nu} g(t)$ implies $s \preceq^{R2} b \preceq^{R2} t$, and so $s \preceq b \preceq t$.

Case 1.2. $\pi(a) \notin \Lambda$.

If $\Lambda^+ = \pi(a)$, then we are done because $g(s) \leq_{\nu} a \leq_{\nu} g(t)$ implies $s \leq a \leq t$. So we can assume that $\Lambda^+ < \pi(a)$. Since r_{ν} and r_{μ} satisfy (P6) and Λ separates s from a, we can assume that $s \notin A_{\nu} \cup A_{\mu}$.

Hence $s = y_{g(s)}$ and Λ separates g(s) from a because $\pi(s) \in J(\delta_{g(s)}) \subset \Lambda$. (If $\Lambda \subsetneq J(\delta_{g(s)})$, then $\Lambda^- < \pi(s) < \Lambda^+$ is not possible.)

Thus there is $b \in A_{\nu}$ such that $g(s) \leq_{\nu} b \leq_{\nu} a$ and $\pi(b) = \Lambda^+$. Since $\delta_{g(s)} \in Z_0$, we have $\pi(b) \in Z$, and so $b \in A_{\Delta}$ by (H). Thus $s = y_{g(s)} \leq^{R_1} b \leq^{R_2} t$, and so $s \leq b \leq t$.

Case 2. $\delta_{g(s)} = \delta_{g(t)}$.

We will see that this case is not possible.

Case 2.1. $s \in A_{\nu}$.

Note that if $t \in A_{\mu}$, then since $s \leq t$ there is $b \in A_{\Delta}$ such that $s \leq b \leq t$, which is impossible because $\pi(s) > \gamma(\delta_s)$ and $[\gamma(\delta_s), J(\delta_s)^+) \cap \pi'' A_{\Delta} = \emptyset$. Thus $t \notin A_{\mu}$.

Since $s \in A_{\nu}$, $s \leq t$ and $\delta_s = \delta_{g(t)}$ we have $t \notin Y$, and so $t \in A_{\nu}$, which was excluded.

By means of a similar argument, we can show that $s \in A_{\mu}$ is also impossible.

Case 2.2. $s = y_{g(s)}$.

Then $\pi(s) \in E(J(\delta_{g(s)}))$ and so $\Lambda^- < \pi(s) < \Lambda^+$ implies $J(\delta_{g(s)}) \subset \Lambda$. But then $\pi(t) \leq \Lambda^+$, so Λ can not separate s from t.

Thus (P6) holds.

So we proved Sublemma 2.23. \Box

Thus we proved that r is a common extension of r_{ν} and r_{μ} . This completes the proof of Lemma 2.8, i.e. \mathcal{P} satisfies κ^+ -c.c. \Box

Acknowledgement

The authors gratefully thank to the referee for checking all the technical details, for constructive comments and recommendations which helped to improve the quality of the paper.

References

- [1] J. Bagaria, Locally-generic Boolean algebras and cardinal sequences, Algebra Univers. 47 (3) (2002) 283–302.
- [2] J.E. Baumgartner, S. Shelah, Remarks on superatomic Boolean algebras, Ann. Pure Appl. Log. 33 (2) (1987) 109–129.
- [3] P. Erdős, A. Hajnal, A. Mátá, R. Rado, Combinatorial Set Theory: Partition Relations for Cardinals, Studies in Logic and the Foundations of Mathematics, vol. 106, North-Holland Publishing Co., Amsterdam, 1984.
- [4] I. Juhász, L. Soukup, W. Weiss, Cardinal sequences of length $< \omega_2$ under GCH, Fundam. Math. 189 (1) (2006) 35–52.
- [5] P. Koepke, J.C. Martínez, Superatomic Boolean algebras constructed from morasses, J. Symb. Log. 60 (3) (1995) 940–951.
- [6] P. Koszmider, Semimorasses and nonreflection at singular cardinals, Ann. Pure Appl. Log. 72 (1) (1995) 1–23.
- [7] P. Koszmider, Universal matrices and strongly unbounded functions, Math. Res. Lett. 9 (4) (2002) 549–566.
- [8] J.C. Martínez, A forcing construction of thin-tall Boolean algebras, Fundam. Math. 159 (2) (1999) 99–113.
- [9] J.C. Martinez, L. Soukup, Cardinal sequences of LCS spaces under GCH, Ann. Pure Appl. Log. 161 (9) (2010) 1180–1193.
- [10] J.C. Martinez, L. Soukup, Superatomic Boolean algebras constructed from strongly unbounded functions, Math. Log. Q. 57 (5) (2011) 456–469.
- [11] J. Roitman, A very thin thick superatomic Boolean algebra, Algebra Univers. 21 (2–3) (1985) 137–142.
- [12] L. Soukup, A lifting theorem on forcing LCS spaces, in: More Sets, Graphs and Numbers, in: Bolyai Soc. Math. Stud., vol. 15, Springer, Berlin, 2006, pp. 341–358.