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Abstract

One of the main challenges that neuroscience faces nowadays is to understand how the
brain represents different stimuli. This involves dealing with large amounts of data,
which are usually high-dimensional and have to be processed to unveil how they are
related with the associated cognitive processes. This work describes methods to preserve
the topology of recorded data when their dimensionality is reduced, using predictions
from neural coding theory. Relevant dimensionality reduction techniques are exposed,
along with a couple of examples where persistent homology is crucial to discriminate the
resulting neural manifold from being a circle or a torus. It is impossible to infer this
from dimensionality reduction alone. Thus, to combine both techniques is essential for
the manifold’s parameterization and the subsequent variable decoding to be successful.

Resum

Un dels principals reptes de la neurociència actual és entendre com el cervell representa
diferents est́ımuls. Això comporta tractar amb una gran quantitat de dades, generalment
en espais de dimensions elevades, que cal processar per relacionar-les amb els processos
cognitius als quals estan associades. En aquest treball es descriuen maneres de preservar
la topologia de les dades enregistrades quan se’n redueix la dimensionalitat, basant-nos en
les prediccions de la teoria de codis neuronals. S’introdueixen les bases per a comprendre
l’espai on les representem, els models que se n’han fet i els motius pels quals la topologia és
rellevant per a interpretar-les. Per últim, s’exposen tècniques emprades per a la reducció
de la dimensió, acompanyades de dos exemples on l’homologia persistent és crucial per tal
de distingir si les varietats neuronals obtingudes són anells o són tors. Aquesta distinció no
seria possible partint només dels resultats de reducció de la dimensió. Combinar aquestes
tècniques és d’especial rellevància per a poder obtenir una correcta parametrització de la
varietat neuronal i, conseqüentment, una descodificació correcta de les variables.
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1 Introduction

Understanding how the brain represents different stimuli is a topic of broad and cur-
rent interest in neuroscience. These inputs, whether they stem from physical features or
psychological constructs, trigger neural activity whose dynamics brings us closer to un-
derstanding cognition processes. This is of relevant interest for several purposes ranging
from promoting clinical comprehension of the brain to human-machine interface improve-
ments, and to either address abnormal physiological needs or social and business oriented
concerns [1, 32]. This area of study also provides a basis to compare neural network
simulations, not to mention how cognition can be an enormous inspiration source for
computational development.

Sensory neuroscience has tested how neurons respond to small sets of behaviourally
meaningful inputs to represent them in the brain [30]. This is achieved by neuron-to-
neuron communication through spikes. Synaptically connected neurons create networks
that consolidate learning by changing the influence of the cells on each other, which leads
to stable dynamics for us to study [19]. When we attempt to measure this neural activity,
the outputs we deal with throughout this compilation correspond to firing rates of indi-
vidual neurons. However, firing rates may not reflect the brain’s natural computational
“units”. For example, other works base their analyses on the summed electrical signal in
a certain frequency band as a representation of neural activity [1, 32].

What makes firing rates a good choice is that stimuli modulate them in a quite straight-
forward way to model, since neuron responses are usually a function of a small set of inputs
[45, 31]. This actually simplifies the information for the brain to deal with, and allows
us to characterize stimulus by its coordinates in a stimuli space. Recall the three cone-
cell types in our retina, associated to long, medium and short wavelengths respectively.
Each of them has unique frequency absorption properties that makes them behave as a
function of a weighted sum of the light’s intensities at different frequencies. Although one
could describe the light’s colour by an infinite-dimensional spectrogram in terms of power
spectrum across all frequencies, our retina splits this information into a three-dimensional
representation through the activation of each of the cone types. This is a sound example
of dimensionality reduced perception already executed by our senses.

The possibility of linking neuron firing rates to a specific stimulus motivated neural
code theory [11, 16, 40], which is addressed in Section 2.1. This established a theoretical
relationship between brain representations, known as neural manifolds, and the stimuli
space [20]. Its potential lies in the information about unknown and abstract stimuli spaces
we could extract from empirical neural manifolds. Nevertheless, this model has to be first
consolidated for neural populations sensitive to inputs that we can measure. A sound
choice has been spatial representation, since many brain regions encoding head-direction,
location or velocity have been studied in detail during the last decades [8, 20, 34, 59, 60].
In this work, we analyze a data set of head-direction cells [33]. Since these are orientation-
tuned, the angular encoded variable can be represented by taking S1 as the stimuli space
[35, 60]. Neural coding theory states that, under certain assumptions, the underlying
neural manifold should match the dimension and homotopy type of the stimuli space
[8, 14, 26, 58].

Some of the involved hypotheses, however, require simultaneous recordings from many
cells to test its predictions, which was not possible until the performance of relatively
recent experiments. Moreover, a neuron’s behaviour is closely related to that of the whole
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network, so, to study its dynamics, recordings at a population level are necessary as well
[6, 8, 59, 60]. Experimental limitations are being overcome but the cost of this is to
deal with large high-dimensional data sets. These are interpreted through neural mode
theory (depicted in Fig. 12), that tracks patterns of neural activity in terms of just a few
summarizing features [25]. The ideal goal would be to provide a minimal set of parameters
that characterize the resulting manifold, so that we could compare it with the external
stimuli for supervised decoding.

An intuitive way to choose the most relevant features would be to statistically express
the given point cloud in terms of the directions in space which capture most of the
data variance. This standard dimensionality reduction is known as Principal Component
Analysis, but due to its linear nature it tends to fail to provide a good parameterization
of the manifold [37]. In Section 3.1, we apply it to our data set. Although it provides a
visualization of the expected manifold, a significant amount of the data variance is lost,
which renders little credibility to this representation.

Non-linear dimensionality reduction methods can improve these results, but they are
usually insufficient to deal with non-convex manifolds [52]. A simple example of this
would be the one we analyze, a 1-dimensional ring. Despite it can be faithfully embedded
in Rn with n ≥ 2, its optimal parameterization would be angular, hence 1-dimensional. In
fact, this is what we obtain from applying Isomap, a well-known non-linear dimensionality
reduction method, to our point cloud. Isomap’s principles and its outcome when applied
to the studied head-direction cells are examined in Section 3.2.1. All of our dimensionality
reductions are carried out using the Scikit-learn package for Python [46].

Luckily, Topological Data Analysis (TDA) allows us to infer the homotopy type of
the underlying manifold, which is one of the risked key features when dimensionality is
reduced. In particular, we resort to persistent homology, which summarizes the stable
topological features of the data set. The mathematical background upon which these
methods are built is spread throughout Section 4.1, and results of its application to our
data set are to be found in Section 4.2. It is worth mentioning that we compute TDA
by means of the Ripser package for Python [55], from Scikit-TDA [51]. Its algorithm
actually relies on cohomology, mainly because of two clear purposes: improving of com-
putational performance [4] and facilitating circular parameterization [52]. At the end of
the aforementioned section, two additional examples are examined with the aim of taking
neural codes predictions one step further. The first of them addresses grid cells, that
fire periodically for location in space, which challenges some of the neural coding theory
hypotheses. The problem is sorted by identifying the periodical vertices, and predicts the
neural manifold to be homotopy equivalent to a torus [21, 26]. Finally, conjunctive cells
can be associated with a stimuli space in the form of a Cartesian product of that of the
former examples, hence S1×S1×S1 [34]. Persistent cohomology allows us to affirm that
the underlying manifold subscribes the model in that case as well. The given results are
sufficient to make such a statement due to Poincaré duality [28].

To sum up, although general dimensionality reduction methods do not output topolog-
ical information explicitly, when we accompany the manifold’s visualization in an overes-
timated embedding space with TDA results, we are able to confirm neural coding theory
predictions. Both techniques together allow to find successful parameterizations, by means
of several approaches, for subsequent variable decoding.
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2 The study of neural activity

The main aim of this approach to neuroscience is to figure out how the world is represented
by the brain. We ought to first consider the properties of the stimuli perceived, which
are known as features and can either be physical properties —such as motion direction or
colours, as well as psychological constructs— related to behaviour and emotion perception.
The values taken by these features are thought as coordinates in the so-called feature space
or stimuli space, a multidimensional model of what is being represented that assigns a
stimulus, with certain feature values, to each point in the space. This construction is not
unequivocal, for example colours discriminated by the human-eye can be dissected into
different three-dimensional feature spaces, e.g., RGB or HSL, so we can choose to do it
in the way that seems more suitable to describe the particular task.

The actual brain’s representation of a given set of stimuli under specific task conditions
is called a representational space. It can be studied in a hypothesis-driven way, if a small
set of feature dimension is chosen to characterize a set of stimuli. However, this only
works on a small subset of each possible feature space, leaving large regions unexplored
without any clue of how the brain conceives it wholly.

If we were to work at a population level, we should take into account that we may be
ignoring other variables encoded by that neural populationthe natural dimension of the
feature space should not be taken for granted. Perhaps ‘data-driven’ definitions of the
feature dimensions of relevance to the brain, without tying them to a particular feature
space, could be a nice alternative to operate. Perfecting this procedure through brain
regions we already understand will be of great help for studying not-so-trivial stimuli in
the future, such as psychological constructs. Dimensionality reduction can be applied to
recordings to ‘discover’ an empirical approximation of the brain’s representational space.
Then, neural coding theory provides us with guidelines to establish a relationship between
the empirical representational space and the unknown corresponding feature space. It is
through this model that we realize how important can be to preserve topological features
when applying dimensionality reduction.

2.1 Theoretical neuroscience

Topological ideas and methods have experienced a broad demand during the last decades,
to either face fundamental questions or data analysis. The way how neuroscience has em-
braced it in such a natural way, is mainly supported by both topological data analysis
(TDA) and network theory. Nevertheless, fundamental neuroscience encounters topolog-
ical questions in disguise when it comes to computing neural codes as well, collections
of binary patterns used for information processing and representation in the brain [11].
These are a rich nexus between fundamental and computational neuroscience. This chap-
ter gives a closer look to them.

Throughout this work, we mention experiments where neurons were both pictured as
nodes in a network or autonomous sensors of the outside world. Neural network theory
aims to understand how do properties of the network itself modulate each neuron’s activ-
ity. Contrarily, neural coding theory often considers the network to be a black box and
focuses on the relationship between neural activity and external stimuli instead. Notwith-
standing that both pictures are valid, the second approach has been more accessible in
experimental terms throughout history of neuroscience. The first great breakthrough was
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the discovery of orientation-tuned neurons, studied by Hubel and Wiesel in 1959 [30].
They could only study one neuron at a time. By trying different black and white patterns
of light, they managed to observe that each neuron fired to a certain motion or inclination
of a screened black bar. Hence, knowing the preferred angle for the measured cell, they
could predict its activity simply looking at the stimulus, yet the network was unknown.
This way, they could associate mathematical objects, known as tuning curves, to char-
acterize the responses of sensory neurons to the associated inputs. Again, the individual
neurons in this network seem to directly respond to external stimuli, behaving as units,
which made them more suitable to be studied —and understood— than other neurons
governed by complex network dynamics.

Similarly, O’Keefe discovered place cells in the hippocampus that fired to different
locations in the animal’s physical environment as if they were position sensors in space
[43]. The associated region to which the neuron responds is called its associated place
field. These kind of neural populations show that the world is not perceived as a stream
of stimuli but rather as highly structured separated stimuli spaces. It should be noted,
however, that not all neural populations might have such a straight forward topological
analysis. That is the case for grid cells, discovered in the entorhinal cortex (EC) by
Edvard and May-Britt Moser, which encode position as well but in the hippocampus EC
neighboring area [24]. There, they are displayed in periodic place fields arranged in a
hexagonal lattice as we will see with more detail in Section 2.1.4.

From the coding theory ansatz, the brain does not have access to the encoding. That
suggests that there actually is an intrinsic structure of the neural code. If we were to ex-
tract information about an unknown feature space, just knowing the individual stimulus-
response functions, we would need to know which features of the stimuli space are encoded
in that intrinsic structure. Algebraic geometry provided tools to infer geometric and topo-
logical features of spaces by means of rings of functions associated to these spaces. Thus,
if the stimuli spaces are encoded in the intrinsic structure of the brain, we should be
able to extract information about them from ideals in appropriately defined neural rings
emerging from neural codes [16].

2.1.1 Neural codes, receptive fields and receptive field codes

When neural responses were first associated to sensory stimuli as discrete events, the
possibility of labeling synapses’ states in a binary fashion emerged. Neurons could either
remain silent or generate an action potential, states that could perfectly fit into 0s and 1s
respectively. This gave birth to neural coding, a theory that provides useful descriptions
to translate the network’s activity into computational or algebraic computations. Early
experiments already lead to results from which the necessity of TDA could be guessed.

Consider a set of n neurons labelled [n] := {1, . . . , n} and let a binary pattern on
n neurons be a string of 0s and 1s associated to labelled neurons being active or silent
respectively. It can be regarded as the subset σ ⊂ [n] of active neurons as well.

Neural codes

Definition 2.1. Let {0, 1}n denote the set of all possible combinations of n elements
that can have values 0 or 1. A binary neural code C ⊂ {0, 1}n is a set of binary patterns
of neural activity. This description does not take timing nor rate of that activity into
account, thus provides a rather combinatorial approach.
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The elements of C are called codewords and correspond to c = (c1, . . . , cn) ∈ C binary
patterns. The subset of active neurons for each codeword is

supp(c) := {i ∈ [n] | ci = 1} ⊂ [n].

In similar fashion, for 2[n] the set of all subsets in [n], the subset of firing neurons associated
to the neural code can be regarded as

supp(C) := {supp(c) | c ∈ C} ⊂ 2[n].

For the brain areas involved in this work, experiments suggest that neural codes are
sparse, which means that relatively few neurons co-fire to a stimulus [3, 29]. A neural
code C ⊂ 2[n] is said to be k-sparse for k < n if |σ| ≤ k for all σ ∈ C.

Figure 1: Spike trains recorded from si-
multaneously recorded neurons allow to in-
fer subsets of co-firing neurons. Regard-
ing the four neurons as labelled from the
bottom up, for example, the first codeword
0111 which would indicate that firing places
U2 ∩ U3 ∩ U4 6= ∅, while the second, 1000,
would not give much information about pos-
sible intersections. From the third, 1010, we
can affirm that U1 ∩ U3 6= ∅. Source: [11].

Although recordings correspond to a time series of activity for each neuron, thus
providing spike times for each neuron, due to the brief nature of spikes it is more useful
to work with time-varying rates. The dynamics of the firing rates for cortical neurons
—the ones of interest in this work— are well represented by a threshold-linear network
model [12]. It describes recurrent networks like those found in the brain cortex [47]. The
involved differential equations allows to express the firing rate of the i-th neuron at time
t as xi(t) ∈ R≥0, so that the instantaneous neural activity of the population can be seen
as x(t) = (x1(t), . . . , xn(t)) ∈ Rn≥0. Among other parameters, it depends on the synaptic
connectivity matrix, W —that captures the strengths of recurrent connection— and the
external input to each neuron bi ∈ R —being b ∈ Rn the external input to the whole
recorded population.

Definition 2.2. For a fixed choice of network dynamics, a permitted set of the network is
a subset of neurons σ ⊂ [n] such that, for at least one external input b ∈ Rn, there exists an
asymptotically stable fixed point x∗ ∈ Rn≥0 such that σ = supp(x∗) := {i ∈ [n] | x∗i > 0}.
The connectivity matrix W determines the set of all permitted sets, P(W ).

For W a symmetric threshold-linear network, P(W ) is an abstract simplicial complex.

Definition 2.3. A set of subsets ∆ ⊂ 2[n] is an abstract simplicial complex if σ ∈ ∆ and
τ ⊂ ∆ imply that τ ∈ ∆. The simplicial complex of a code ∆(C) is the smallest abstract
simplicial complex on [n] that contains supp(C),

∆(C) := {σ ∈ [n] | σ ⊂ supp(c) for some c ∈ C}.
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If supp(C) were not a simplicial complex itself, we should add the missing subsets of
codewords. In terms of co-firing neurons, this would mean that if record simultaneous
activity among some of them we have to consider possibility of co-firing for each subset
contained. Three co-firing neurons {i, j, k} ⊂ [n], for example, would imply taking into
account {i, j}, {i, k} and {j, k}.

Receptive fields

As we mentioned, activity patterns of neurons, in many brain areas, can be characterized
by which preferred stimuli that makes them fire. This can be put in terms of a function
from the stimuli space to the representational space.

Definition 2.4. Let the stimuli space X ⊂ R be regarded as a topological space and
i ∈ [n] one of the neurons considered. A receptive field is a map fi : X → R≥0 from the
stimuli space to its average firing rate in response to each stimulus in X.

It is important to notice that the subsets Ui ⊂ X where fi > 0, even supposing
an abuse of notation, are also referred to as receptive fields. The mammalian brain ex-
hibits redundant cortical neurons, in the sense that some of them have nearly identical
preferred features, which leads to overlapping receptive fields. This fact reveals subnet-
works contained in cortical circuits with increased connectivity relative to the network
average [47]. Paradigmatic examples of receptive field functions, obtained by correlat-
ing neural responses to independently measured external stimuli, are tuning curves for
orientation-selective neurons and place fields for place cells. We will look closer at them
in Section 2.1.4.

To know all the receptive fields for a set of neurons would enable us to infer, from
the overlapping regions among them, the expected neural code. Conversely, if we are
studying a brain region whose associated stimuli space is unknown, we would like to
know how much information about it can we recover from the empirical neural code.

We have given examples of cells with a preferred convex region of the physical environ-
ment where they undergo high firing rates. As a reminder, we say that a subset B ⊂ Rn
is convex if, for all x, y ∈ B, the point z := tx+ (1− t)y is contained in B for all t ∈ [0, 1].
This empirical fact invites us pay special attention to this property, especially since it can
hold information about how these co-firing intersections may be.

Definition 2.5. An arrangement of receptive fields Ui whose intersections are those
described by the neural code C is known as a realization of C. If the receptive fields can
be chosen to be convex, then it is a convex realization of C.

Note that this definition involves the possibility of an arrangement with convex re-
ceptive fields only, which does not mean that the original given realization satisfies this
condition.

Receptive field codes

So far, we have seen receptive fields that map the stimuli x ∈ X to individual neuron’s
firing and neural codes as a description of the spiking trains from simultaneously recorded
neurons. Recall U = {U1, . . . , Un} a collection of open subsets of X, being each Ui ⊂ X
the receptive field of the i-th neuron of a population [n].

Definition 2.6. The associated neural code to the brain’s representation of a given set of
receptive fields U ⊂ X is known as the receptive field code, C(U) ⊂ {0, 1}n. It is the set of
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all binary codewords corresponding to stimuli in X that fall into a non-empty intersection
of receptive fields where silent neuron’s regions have been subtracted,

C(U) :=
{
c ∈ {0, 1}n |

(⋂
i∈supp(c) Ui

)
r
(⋃

j /∈supp(c) Uj

)
6= ∅
}
.

Notice that this limits the stimuli to a region included in the whole co-firing intersection,
as illustrated in Fig. 2. If X ⊂ Rd and every Ui ⊂ X is convex, we say that C(U) is a
convex receptive field code (convex RF code).

Figure 2: Two-dimensional receptive fields
for 6 neurons. The RF code C has a code-
word for each overlap region. For example,
the shaded region corresponds to the binary
pattern 001011; equivalently, we denote it as
σ = {3, 5, 6} ∈ C. The corresponding coarse
RF code also includes all subsets, such as
η = {3, 5}, even if they are not part of the
original RF code. Source: [12].

We take the empty intersection as
⋂
i∈∅ Ui = X and the empty union

⋃
i∈∅ Ui = ∅.

This way, if
⋃
i∈[n] Ui ( X then C(U) includes all-zeros codeword which correspond to

points that are not covered by the receptive fields, thus leaving all the recorded neurons
silent. Similarly, if

⋂
i∈[n] Ui 6= ∅ then C(U) includes all-ones codeword meaning that, for

some stimulus, all the recorded neurons [n] co-fire.

If we were to use these to infer information about the stimuli space, a natural thing
would be to ask for them to at least cover X. That is, for a given topological space,
X, a collection of open subsets U = {U1, . . . , Un} is a open cover of X if

⋃n
i=1 Ui = X.

Furthermore, U is a good cover if every nonempty intersection
⋂
i∈σ Ui 6= ∅, for σ ⊆ [n] =

{1, . . . , n}, is contractible. Nevertheless, if we start from an empirical neural code, this
would only provide information about the intersections of the subsets but not about set
containment (see Fig. 2). Due to this, the population’s activity alone would give us the
nerve of the cover,

N (U) := {σ ⊂ [n] subsets of neurons |
⋂
i∈σ Ui 6= ∅} ⊂ 2[n]. (2.1)

Notice that, for σ ∈ N (U) and τ ⊂ σ we have τ ∈ N (U), which makes N (U) a simplicial
complex with vertex set [n]. It is notated as N (U) = ∆(C(U)). By construction, it is the
smallest simplicial complex containing the nerve. Once we know the nerve of the cover,
despite not knowing the cover itself, we can already infer the topology of the stimuli space
due to the following topological result [16].

Theorem 2.7 (Nerve Theorem). Let X be a topological space and U a countable good
cover of X. The homotopy type of X(U) :=

⋃n
i=1 Ui is equal to the homotopy type of

N (U), the nerve of the cover. In particular, despite they may differ in dimension, X(U)
and N (U) have the same homology groups.

Note that the space X(U) may not capture the whole stimulus space X if X\X(U) 6= ∅.
Altogether shows that, to infer the topology of X we need that the given empirical neural
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code can be realized as a RF code, since N (U) = ∆(C(U). However, Lemma 2.8 shows
that this, apparently, does not impose any constraints on X.

Lemma 2.8. Given a neural code C ⊂ {0, 1}n, for each d ≥ 1 there exists X ⊂ Rd and
a collection of open subsets U = U1, . . . , Un, Ui ⊂ X for i ∈ [n], not necessarily convex,
such that C = C(U).

2.1.2 Constraints on the stimuli space emerging from neural codes

If recordings only give us information of C but not about U , what can we learn about the
underlying stimulus spaceX? In our case, the answer will depend on whether the receptive
fields are required to be convex. The first we see when we consider this, contrarily to the
results in Lemma 2.8, is that not all neural codes can be realized as RF codes under
convexity assumption. A counterexample extracted from [16] is shown below.

Example 2.9. Consider three recorded neurons with associated neural code C = {0, 1}3\
{111, 001}. Let us see that C cannot be realized as a convex RF code.

If that were possible, there should exist a set of convex open sets U = {U1, U2, U3} ⊂ Rd
such that C = C(U). The intersections among them will be given by the included words.
For example, since {110} ∈ C, we know that (U1 ∩ U2) \ U3 6= ∅ and, by inclusion, (U1 ∩
U2) 6= ∅. Similarly, {101}, {011} ∈ C indicate that (U1∩U3)\U2 6= ∅ and (U2∩U3)\U1 6= ∅
respectively. Let p13 ∈ (U1 ∩ U3) \ U2 and p23 ∈ (U2 ∩ U3) \ U1, both in U3. Since it is
convex, the line segment between them must be contained in U3 as well. That is, for
t ∈ [0, 1], ` = (1− t)p13 + tp23 ⊂ U3. This translates in two only possibilities:

• ` passes through U1 ∩U2 (Figure 3, left), which means U1 ∩U2 ∩U3 6= ∅ and would
contradict {111} /∈ C.

• ` does not intersect with U1 ∩ U2. However, from {001} /∈ C we know that U3 ⊂
U1 ∪ U2 so we can write U3 as a disjoint union of two non-empty sets. U3 being
disconnected would be in contradiction with U being a convex neither good cover.

Figure 3: Not all neural codes can be realized as a convex RF code. A counterexample is
provided here, analogous to that exposed in [16].

In this line of thought, we can deduce some geometrical and topological constraints
on the stimulus space may arise if we demand C to be realizable as a convex RF code.
To begin with, suppose that U = U1, . . . , Un ⊂ Rd, d < n is a collection of convex open
subsets.
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Theorem 2.10 (Helly’s Theorem). Given k convex subsets U1, . . . , Uk ⊂ Rd for d < k,
if the intersection of every d + 1 of these subsets is not empty then the full intersection⋂k
i=1 Ui is non-empty.

Figure 4: Example of Helly’s
Theorem. If we considered
three convex open subsets in R,
d = 1, and our code showed
that each of the pairs must in-
tersect, then all of them should
overlap together. Thus, if this
intersection is not in the code
we should work with d ≥ 2.

Helly’s theorem imposes a minimal dimension for the
stimulus space X when C = C(U) is assumed to be a
convex RF code, due to N (U) = ∆(C(U)). Actually,
N (U) is completely determined by its d-skeleton. As a
reminder, the d-skeleton of a topological space X pre-
sented as a simplicial complex is the subspace Xd ⊂ X
corresponding to the union of the m-faces of X, m ≤ n.
If follows that N (U) is the largest simplicial complex
having such d-skeleton.

However, constraints derived from the combinatorial
properties of C(U), can not be captured by ∆(C). The
Example 2.11 illustrates a case of convex receptive fields
with the same simplicial complex ∆(C) despite being
part of a different stimuli space X.

Example 2.11. Consider the convex receptive fields in
the plane and the four proposed arrangements in Fig. 5.
Since all them satisfy 111 ∈ C, each of their RF codes
has the same simplicial complex associated, the set of
all subsets in [n], ∆(C) = 2[n]. Their combinatorial properties, however, are different.

Regard the square boxes as the stimulus space for those displays where U1∪U2∪U3 (
X. The sets from Fig. 5.A show no containment relationships among them and C(U)A =
2[n]. On the contrary, Fig. 5.B has C(U)B = {111, 101, 011, 001} and X = U3. Inclusions
are also present for Fig. 5.C, where U1 ⊂ U2 ⊂ U3, C(U)C = {111, 011, 001, 000} and for
Fig. 5.D since U3 ⊂ U2 ∪U1 and C(U)D = {111, 110, 101, 011, 100, 010} and X = U1 ∪U2.
This stands for different receptive field structures of the code.

From Helly’s Theorem (2.10) we know the minimal dimension d for the code C to be
able to be realized as a convex RF code in Rd. Due to convexity, one can picture it as
the number of 1-dimensional segments we would need to capture all the intersections. A
single segment could not do it for codes CA, CD , we would need two of them at least so
they have d = 2. On the other hand, just one would be enough for CA, CD and thus they
have d = 1.

Figure 5: Three convex receptive fields in the
plane, U = {U1, U2, U3}, displayed in four
different setups leading to the same simpli-
cial complex ∆(C(U) = 2[n] (regarding the
squared boxes in (A) and (C) as the stimulus
space X, X = U3 for (B) and X = U1 ∪ U2

for (D)). However, they differ in the mini-
mal embedding dimension for CA, CD would
be d = 2 while CB, CC would have d = 1.
Source: [16].
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2.1.3 Further insights on neural codes

The receptive field structure (RF structure) of a neural code

At this point, we have seen that if we have a convex neural code, we can infer the stim-
uli space’s homology groups from ∆(C(U)) = N (U) as well as its minimum dimension.
Nevertheless, if we do not know which are the encoded variables, we would like to have
a minimum embedding for their parameterization. The simplicial complex ∆(C) is not
sufficient to determine the minimal embedding dimension d of C, because it misses in-
formation that we pointed out as relevant in C(U). This information is present in the
intrinsic structure of the neural code hold by what we call the RF structure of the code.

Definition 2.12. Consider a neural code C ⊂ {0, 1}n and a set of fields, whatever their
arrangement U = {U1, . . . , Un} is in a stimulus space X such that C = C(U) (which is
guaranteed to exist by Lemma 2.8). The receptive field structure (RF structure) describes
the non-trivial relations among the Ui.

These relations point out neurons that imply others to co-fire with them, for the
receptive field of the former is contained by the latter. For example, Fig. 5.A does not
show particularly interesting structure relations while in Fig. 5.B U2 ⊂ U3 and U1 ⊂ U3

force the 3rd to co-fire when either 1, 2 or both do. The same applies to Fig. 5.C, since
U1 ⊂ U2 ⊂ U3, and Fig. 5.D due to U3 ⊂ U1 ∪ U2.

It is of current interest to develop effective methods that algorithmically compute a
minimal description of the RF structure directly from the neural code C, without the need
of first realizing it for some arrangement of receptive fields as C(U). This would allow to
work with reliable inferences about unknown stimulus spaces that the simplicial complex
∆(C) cannot provide.

Neural rings

Neural rings are algebraic objects associated to any combinatorial neural code which can
provide us information about the underlying stimuli space [16]. Together with neural
ideals, which work on polynomials that vanish for the codewords in C, we are led to a
minimal compact description of the receptive fields structure dictated by the code. This
algebraic ansatz has been used to study structural information about the code and to
determine which codes have convex realizations [13]. However, the information given so
far is enough to understand the motivations to use persistent homology in neural manifold
discovery. Although we will not go deeper into this topic, any interested readers should
consult the publications [15, 16, 40, 44].
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2.1.4 Known receptive field examples. Place and grid cells

Theoretical models from Section 2.1 were motivated by early neural activity recordings
that could not track many cells at the same time. In fact, brain regions were still being
characterized, so the interesting thing to do at first was to find which stimuli activated the
neuron’s activity. When an association was made between stimuli and a neuron, they were
automatically inferring the receptive fields. This allowed to represent, for each recorded
cell, its firing intensity over the stimuli space as in Fig. 6. Here we present two neuron
populations that capture spatial location, each of them with a different representation
specifically provided by the attributes of the network where they operate.

Figure 6: Recorded place fields from a rat’s place cells during a exploratory task on a
two-dimensional square box environment. Each picture corresponds to a neuron’s activity
over the environment, ranging from silent (dark blue) to highly active (dark red). The
activity determines place fields that are independent from other behavioural features such
as velocity. Data computation provided by Pastalkova laboratory.

Place cells

When neuroscientists were finally able to monitor simultaneous place cells at a time,
significant correlations between the animal’s physical position and the place fields came
to light. Furthermore, this statistical inference allowed to work out the animal’s location
from place cell activity at a population level alone. If we go through a sufficient amount
of recorded place fields in a particular environment, these resemble to an open cover with
each of them thought as an open set Ui (see Fig. 7). One can actually assume them as
convex approximately so they provide a good cover indeed. This allows us to apply the
Nerve Lemma if X is “sufficiently” nice in topological terms.

When we do not have access to U , intersections can be put in terms of a codeword c
as well, being σ := supp(c) ⊂ [n] the subset of active neurons that stands for those place
fields with nonempty intersection ∩i∈σUi 6= ∅. In experiments, σ comes from binning spike
trains (see Fig. 1) from the animal which, eventually, will fully explore their environment
and thus provide us with the co-firing subsets. Then, with Lemma 2.7 we can compute
the homology of the estimated simplicial complex N (U). Since place cells stick to good
cover assumptions, the computed homology group will match that of X.

This is relevant for taking non-trivial-homology topological spaces into account when
doing dimensionality reduction. For example, in Fig. 7, neural activity would allow us
to compute the first homology group of the underlying stimuli space. Since the right
environment in Fig. 7 is contractible but the left one is not, we could distinguish them.
As a curiosity, place cells provide 3-dimensional descriptions when we move in height as
well. A marvelous example of this is found in place cell recordings from bats during flight
(see Fig. 8).
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Figure 7: Results from a simulation carried by Curto and Itskov to infer the homology
groups for two possible environments. This illustrates features we can infer from the
mentioned theory about receptive fields from place cells. The discs, fully covering the
space, correspond to place fields. A, sample rasters for the five-neuron population in the
two different environments. The neural code is extracted from co-firing cells within a
coarse time window (colored rectangles). B, simplicial complexes of the code obtained
in (A). Two co-firing cells are represented by edges, while shaded triangles correspond to
three simultaneous firing cells. C, co-firing cells correspond to intersecting place fields,
denoted with matching colour of that in (A) and (B). The overlapping pattern fully
determines the topology of a space covered by convex place fields. The first configuration
forces an arrangement of place fields with a hole in the middle (left); the latter implies no
holes can be placed. D, sampled trajectories (green) in environments with one and zero
holes respectively (left to right). Gray circles stand for the place fields of one trial. E, for
each simulated environment (labeled with different colours), the percentage of correct
trials for stimuli space discovery depending on the added noise. A trial was considered to
be correct if all five computed homology groups matched the topology of the environment.
If one or more did not match, they were qualified as incorrect. Source: [14].
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Figure 8: Examples of 3D place cells recorded from the hippocampus of flying bats.
One-cell example dissected from (A) to (E). A, neuron’s spatial firing representation.
Top left: spikes (red dots) overlaid on bat’s position (gray lines); the spike waveform is
shown on top of it. Top right: 3D colour-coded rate map over position, from silent (dark
blue) to the indicated highest firing rate (red). Bottom: convex hull encompassing the
neuron’s place field (red polygon) and the volume covered along the flight (gray polygon).
B, 2D projections of the raw data (top) and colour-coded rate maps (bottom) C & D,
stability of the neuron’s spatial firing for the first and second half of the recording session.
E, reliability of firing across 61 flight passes through the place field. Bottom: raster plot
showing spikes during individual passes (time 0, point closest to field center). Top: spike
density function, unsmoothed; bin size 40 ms. F to K, six additional place cells from the
hippocampus of different bats. Same notation as in (A). When a neuron fired for more
than one place field, different fields were marked with different colours (K). The neuron in
(J) was recorded in the cubic enclosure; the rest of them are from the rectangular-cuboid
room. Source: [58].
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Grid cells

Figure 9: Loss of homolog-
ical correspondence between
N (U) and X, when dispens-
ing with the good cover as-
sumption. A, three-set cover
with contractible intersections,
thus providing a good cover.
B, two-set cover with disjoint
intersection, thus translating
into a simplicial complex with
different homology to that of
the annulus. Source: [11].

Together with hippocampal place cells, a subject’s po-
sition within a physical space is in part mapped in the
medial entorhinal cortex by grid cells, which have their
firing fields forming an hexagonal pattern of locations
(see Fig. 10) and are organized in modules [27, 53].
This leads to multiple disconnected components that,
together, form a hexagonal grid which violates the hy-
pothesis of the Nerve Lemma. This means that, a priori,
we could not compare the topology of the nerve, N (U),
derived from the recorded neural code to that of the
stimuli space. As an example of what could go wrong,
let us examine different covers for an annulus. One could
propose a three-set UA = {U1, U2, U3} and a two-set
cover UB = {V1, V2} displayed as in Fig. 9. Recalling Ui
to be open sets, they must intersect to cover the space.
The nerve associated to the former collection, N (U)A
(Fig. 9.A), holds the topology of a circle which is homo-
topy equivalent to that of the covered space. Contrarily,
N (U)B (Fig. 9.B) is contractible (homotopy equivalent
to a point) and thus differs from the topology of the
covered space.

The good cover hypothesis was derived from the na-
ture of the receptive fields presented so far. Grid cells,
however, are proof of the fact that we can not assume
all brain regions to wholly operate over a good cover of
receptive fields over the stimulus space. Nevertheless,
if we restrict our attention to a fundamental domain of
grid cells’ receptive fields (see Fig. 11.B) we can associate a single convex component to
each grid field and, from its spiking activity, infer the topology of its fundamental domain.

Figure 10: Three recorded grid cells
with different spacing and field size.
Left: trajectory of the rats (gray line)
and spikes (red dots) from walks in a
150 cm wide box. Middle: spiking rate
mapped over the environment, colour
coded from minimum (dark blue) to
maximum rate (dark red). Right: spa-
tial auto-correlation maps, with same
colour code as the rate maps but with
scale doubled from those. Source: [24]
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Figure 11: “Firing fields for grid cells. A, firing fields for four entorhinal grid cells, each in
a different color. A single grid field consists of multiple disconnected regions and forms a
hexagonal grid in the animal’s two-dimensional environment. B, a hexagonal fundamental
domain contains just one disc-like region per grid cell. Pairs of edges with the same label
(a, b, or c) are identified with orientations specified by the arrows”. Source: [11]. C, a
hexagon, with its opposite edges identified as shown, corresponds topologically to a torus.
Note that, due to stretching and shrinking, its geometry, the way things look from the
inside, will result differently as that of a flat torus. Source: [36].

Such a hexagonal domain with opposite edges identified one another is topologically
characterized as a torus. Recall, for a given simplicial complex K, that its Euler charac-
teristic is defined as

χ(K) :=
∑
i≥0

(−1)ici. (2.2)

In this case, once the identifications have been made, we are left with 3 different vertices
and 3 different edges, thus χ(K) = 0. From the classification theorem of compact con-
nected surfaces we infer that it is homeomorphic to a torus. Also, we can compute it by
visually identifying the edges as shown in Fig. 11.C.

Past studies, however, were limited to small cell sample size so the data available.
Since grid cells operate in 2-dimensional stimuli spaces, samples could not cover sufficient
locations so the full topology of the population’s activity was not recovered. Recording
hundreds of grid cells finally showed how, in this fundamental domains, grid cells cluster
into a small number of layer-spanning, anatomically overlapping, modules with distinct
scale and orientation. This knowledge has allowed to properly spot the modules in ongo-
ing experiments that can simultaneously record thousands of grid cells. Dimensionality
reduction, together with topological data analysis, have led to see how the joint activity
from an individual module does indeed reside on a toroidal manifold.

The impact of these discoveries goes further since they showed that the modules can
respond independently to changes in the geometry of the environment. The correlation
structure of the populations’ code remains invariant across environments [18, 59] and be-
havioural states [22, 56] despite the specific sensory inputs, which points out a possible
intrinsic, recurrently connected continuous attractor network (CAN) underlying the grid
pattern. These networks constraining the joint activity of cells to a restricted but con-
tinuous range of co-activation patterns is in theoretical systems neuroscience’s crosshairs
[6, 59]. This lies in the neural manifold approach, that we will present in the following
section.
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2.2 Neural manifolds and neural modes

Figure 12: a, typical experimental set-ups usually cannot record the performance of the
same behaviour over days from the same neurons. b, model of single-neuron activity
arising from a weighted combination of the latent dynamics of the neural modes. c, latent
dynamics (black line, arrow indicates increasing time) underlying a behaviour are mostly
confined to a “true” manifold (gray surface) within the full D-dimensional neural space
involving all neurons modulated by the task. d, e, activity of the recorded neurons (a
different population each day) in an empirical neural space in which axis correspond to
the activity of one recorded neuron. During behaviour, the recorded population activity
describes a trajectory which is typically confined to a low-dimensional neural manifold
(blue and green traces in the respectively blue and green planes). The projection of the
population activity on to the two axes that define the neural manifold in this case are
the empirical latent dynamics. Even though, for different recorded sets of neurons, the
empirical manifold to which the latent dynamics are confined is embedded in a different
empirical neural space, the true latent dynamics for a given behaviour are hypothesized
to be stable during repeated execution. f, the paper predicts that, in the face of neural
turnover, the stable latent dynamics can be recovered by linear alignment. Source: [19].
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3 Dimensionality reduction

When we are trying to discover a neural manifold and its latent variables, grid cells, from
Section 2.1.4, were proof of how important it is to record enough neurons, so that their
receptive fields cover the stimuli space. As the reader may have guessed, this was not the
only reason that pushed scientist to record at a population level. There are mechanisms
operating at network scales, such as flickering or variability [39, 41], that remind us that
firing is likely to take place in coordinated ways. The main aim is to describe these
patterns of neural activity in terms of just a few summarizing features. These, however,
are probably unknown and have to be inferred by data-driven hypothesis, bringing up a
new problem: to deal with large quantities of neurons recorded along with great amounts
of samples through time.

Figure 13: A, point cloud
if we recorded three neu-
rons, one identified to each
axis. The principal compo-
nents (PCs, red) describe the
directions along which the data
has greater variance. B, re-
duced dimensionality spaced
by projecting the cloud onto
the 2PC (top) and 1PC (bot-
tom) coordinate systems C, re-
construction of the data in
the original coordinate system.
Source: [45].

Dimensionality reduction (DR) techniques try to un-
cover where, in the high-dimensional neural activity, the
essential information is encoded. Simons Foundation
propose a nice intuitive approach to this [38]. When we
hang a wall clock, despite being in a three-dimensional
room, its activity lies in a two-dimensional circle. How-
ever, the latent variable (time) is actually encoded by a
one-dimensional variable (angle). In this section, some
of the DR techniques used to adress this are given. First
of all, a statistical linear DR can be applied for purely
optimization purposes. This brings the N -dimensional
representational space to a lower-dimensional one, which
still preserves a great amount of the variance of the data.
In the example, that would be, regarding the whole
building as N -dimensional, to realize that the is clock
in a three-dimensional room. However, we will see that
non-linear DR techniques are needed to take any step
further from that. By the end of the section, we will see
that this is not sufficient to clearly characterize some of
the manifolds. It is then when persistent homology will
make a difference.

3.1 PCA for linear dimensionality reduction

We usually represent the neural state of N recorded neu-
rons, in some interval of time, by the N -dimensional
vector of their firing rates. Each activation profile over
those N neurons is called a pattern. Principal Compo-
nent Analysis (PCA) —one of the most frequently used
linear DR methods— calculates which activation pat-
terns best capture the variance in the data, so that we
can express neural states as a linear combination of a
subset of activation patterns.
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PCA derives from three criteria: minimal reconstruction error, maximal preserved
variance and distance preservation [37]. N -dimensional vectors s = [s1, . . . , sn, . . . , sN ]T

are regarded as the result of a linear transformation W ∈MN,P (R) of P unknown latent
variables x = [x1, . . . , xp, . . . , xP ]T :

s = Wx. (3.1)

Here W is assumed to be an axis change, so its columns are orthonormal one another.
Notice that we work as if s and x are centered. If it were not the case, we should remove
their expectation from each sample. Let S = [s(1), . . . , s(T )] ∈ MT,N (R) be the matrix
generated by T observations of N -dimensional activation patterns. Thus, we would be
assigning

s(t)− Es{s} → s(t). (3.2)

As for the expectation of x, often unknown, we approximate it by the sample mean
Es{s} ≈ 1

T

∑T
t=1 s(t). The derivation of the exact values for P and W, emerging from the

set criteria, can be found in [37, Chapter 2.3.2.]. However, since we do not really expect
the manifold to be linear, we can just set P for it to capture a fixed (high) percentage
of the data variance. It is important to overestimate the dimension of the space that
“hosts” the manifold, so that we loose as little information as possible. An example from
the cited book illustrates what can we miss when applying this method. Regard two latent
variables, with Gaussian distributions of variances 1 and 4, as illustrated in Fig. 14.A. We
can generate a point cloud from them, by multiplying the latent variables by a given

W =

0.2 0.8
0.4 0.5
0.7 0.3

 .
Now, however, we set its columns to be neither orthogonal nor normal. Taking this as the
original data, when we apply PCA it will not be able to exactly recover the true encoded
values. The estimated ones despite preserving the Gaussian distribution, will be rotated
and re-scaled (Fig. 14.D). In the case we will explore, Fig. 15, it will not really make a
difference when it comes to manifold discovery. However, ongoing studies work hard on
metric preservation to perform successful latent variable decoding. Moreover, the results
of PCA are even worst if we perform a nonlinear embedding. If we now mix the two
Gaussian variables —thus the same two-dimensional latent space as in Fig. 14.A— in a
nonlinear fashion with

W =

4 cos(14x1)

4 sin(14x1)

x1 + x2

 ,
we get a curved surface in the three-dimensional embedding space (Fig. 14.C). The nor-
malized eigenvalues of the sample co-variance matrix are the same as in the former case.
The projections onto the two first principal components, however, is far from reconstruct-
ing the original sample (Fig. 14.E).

If one recalls the torus- embedded in a N -dimensional space- that is supposed to emerge
from grid cells’ activity at a population level, it should not be difficult to imagine how
problematic would it be to linearly over-project in an attempt to discover the manifold.
Not to mention how much information can we loose about the latent variables if our
intention is to decode them. To sum up, PCA should only be applied for statistical
and computational optimization purposes, aiming for a best performance of non-linear
dimensionality reduction methods or TDA.

18



Figure 14: Limitations of PCA. A, T = 1000 observations of two Gaussian latent vari-
ables x1, x2. B, three-dimensional embedding through linear mixing process. C, three-
dimensional embedding through a non-linear mixing process. D, E projection of the
three-dimensional observations in (A) and (B), respectively, onto the two first PC. The
solid line represents the true latent distribution while, the dashed one, stands for the
latent variables estimated by PCA. Source: [37]

In this work, however, we have used PCA to explore the neural ring emerging from
the joint activity of head-direction cells, also known as orientation-tuned neurons. Since
our purpose is only to test the hypothesis of their activity patterns being constrained
to a S1 ⊂ RN , for N recorded neurons, the topology of the 3-dimensional embedding,
after projecting the data onto the three first PC, should be preserved. We have used an
open-access HD cells data-set [33], first used by [34]. The number of neurons recorded is
N = 2000 and it holds T = 5000 samples.

For the reader to understand how PCA operates here, we first defined a 3-dimensional
segment (Fig. 15 left, blue) which is supposed to have all of its variance contained in its
1st PC. So, redundant as it sounds, projected it to its first three components, centering
the projection at the origin (Fig. 15 left, red). That is, the 1st PC is now regarded in the
x-axis and so on. The result is not surprising.

As a last check before examining the HD data.set, we generated a noisy S1 ⊂ RN , where
noise represented the 10% of the samples. The projection along its three first components
recovers a circular shape (Fig. 15 mid). Specifically, all variance is contained in the 2 first
PC, with ratios 0.512 in the 1st PC and 0.488 in the 2nd PC. It is an expectable result,
since the three-dimensional embedding should not mess with the non-linearity in a S1.

It becomes a bit more interesting for the head-direction cells data-set. First of all,
despite getting manifold homeomorphic to S1, it is convolved (Fig. 15 right). The activity
patterns do not come in a typical S1 ⊂ R2 as the formerly generated was (in spite of being
generated in a N -dimensional embedding already).
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Figure 15: PCA of T = 5000 samples of N = 2000 head-direction cells embedding the
activity patterns into a 3-dimensional space. Left: control PCA applied in a segment
(blue). The projection on its 1st PC is centered in the origin and placed along the x-axis.
Variance ratio accounted by the three first principal components: 1.000, 0.000, 0.000.
Mid: control S1 ⊂ RN of radius r = 7, generated with TS = 1000 data points with
0.1 noise, projected onto its first three PC. Variance ratio accounted by the three first
principal components: 0.512, 0.488, 0.000. Right: 5000 point cloud of N -dimensional HD
activity patterns, projected onto its first three PC. Variance ratio accounted by the three
first principal components: 0.357, 0.327, 0.119. The disconnected point at the origin must
be due to recordings where all neurons were silent. The data was processed using PCA
function provided by Scikit-learn Python’s library.

Furthermore, the variances captured by the first three PC now do not recover the
total. Their variance ratio values are 0.357, 0.327, 0.119, respectively. Altogether, this
dimensionality reduction contains the 80.3% of the total variance in the original sample.
To improve these results, we should set a greater dimensionality reduced embedding space,
by taking more of its principal components, until the total accounted variance reached a
certain fixed threshold. To visualize the low-dimensional manifold, however, we will need
non-linear dimensionality reduction techniques.

3.2 Non-linear dimensionality reduction

So far, we have seen that PCA fails to provide a good parameterization of the encoded
variables due to its insufficient variance preservation. Nevertheless, if we fix a threshold,
we can linearly reduce dimensionality until it is reached. In our case, the first six principal
components contain the 98.6% of the data’s variance (see Table 1), which is enough.
To connect this data with the latent variables, we can now resort to more informative
techniques than a simple matrix multiplication. Since we do not know how folded the
manifold may be, we will need some geometrical considerations to correct the fact that
Euclidean distance may not represent the on-manifold distances (Fig. 16).

When we seek for distances to depend less on the particular embedding, to measure
along the manifold rather than through the host space- such as the Euclidean does- can
stand curvatures better. This is usually called geodesic distance. In a one-dimensional
manifold M, depending on a single latent variable x, the parametric equations can be
expressed like

m : R −→M ⊂ RN

x 7→m(x) := [m1(x), . . . ,mN (x)]T .

20



Figure 16: The C curve traces a 1-dimensional
manifold embedded in a 2-dimensional space. We
would expect from DR to unfold it so the on-
manifold coordinates lead to the encoded variables.
Since the Euclidean distance is only preserved on
small scales, where C is almost linear, the geodesic
distance does not depend as much on the par-
ticular embedding. In this particular example,
the distance between the two endpoints in the 1-
dimensional embedding differs a lot from the 2-
dimensional one, while the geometric distance is
the same for both. Source: [37].

Thus, we can compute the geometric distance as an arc length. From the point y(i) =
m(x(i)) to the point y(j) = m(x(j)) that would be

l =

∫ y(j)

y(i)
dl =

∫ y(j)

y(i)

√√√√ N∑
k=1

dm2
i dx =

∫ x(j)

x(i)
||Jxm(x)||,

being ||Jxm(x)|| the Jacobian matrix of m with respect to x. This should be enough for
the HD cells we are studying. Nevertheless, neural manifolds such as the place and grid
cell’s can be multidimensional, with parametric equations

m : RP −→M ⊂ RN

x = [x1, . . . , xP ]T 7→m(x) := [m1(x), . . . ,mN (x)]T .

In this case, there might be several on-manifold paths between points y(i) = m(x(i))
and y(j) = m(x(j)) ∈ M, each of them forming a 1-dimensional sub-manifold P ⊂ M
parameterized as

p : R −→ P ⊂M ⊂ RP

z 7→ p(z) := [p1(z), . . . , pP (z)]T .

The geodesic distance now will be the minimum of all these paths’ integrals,

l = minp(z)

∫ z(j)

z(i)
||Jzm(p(z))||. (3.3)

This minimization should not concern us for our data analysis purposes since we do
not actually know the parametric equations ofM neither P. The problem for us, indeed,
has to be reformulated for our discrete point cloud. That is, minimizing the length of a
path between y(i) and y(j) that goes through a certain amount of other points y(K1),
y(K2), etc. in the manifoldM. The allowed points to conform the path are usually chosen
either by the K-rule or the ε-rule. The former allows to jump from the current point to
its nearest K neighbours, for a fixed threshold K. The latter allows to reach the ones
falling in a ball of fixed radius ε, centered in the current point. Since the homogeneity
of distances between our data points depends on the recorded neurons, we rather work
under the K nearest-neighbour restriction.
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The set of T data points accounting as vertices, VT = {vi}i=1,...,T , along with the edges
associated to allowed jumps between neighbours, E = {(vi, vj)}j∈IK , can be formalized as
a graph, G = (VT , E). The one-to-one correspondence between the T data points and the
vertices is labeled as label(vi) = y(i). This allows to label the edges as well, associating
a weight to them, based on its length:

label((vi, vj)) = d(label(vi), label(vj)) = d(y(i),y(j)).

Provided with this notation, we can define a path π in a graph G as the ordered subset
of vertices [vi0 = vi, vi1 , . . . , vik = vj ] such that the edges formed successively (vi0 , vi1),
(vi1 , vi2), etc. belong to E. The length of the path stands for the sum of the edges’ lengths,

length(π) = label((vi0 , vi1)) + label((vi1 , vi2)) + · · ·

Under the assumptions made, it is easy to check that this satisfies non-negativity, sym-
metry and the triangle inequality, so this can be considered as a distance. Notice that
using the K-rule, if a point y(j) belongs to the K nearest-neighbours for point y(i), IK ,
we consider that d(y(i),y(j)) = d(y(j),y(i)) even if y(i) /∈ JK .

At this juncture, the shortest path in a weighted graph can be computed using Dijk-
stra’s algorithm. In particular, it computes the single-source shortest paths, namely all
shortest paths between a given point and all the rest. If we run it for each vertex we get to
solve the all-pairs shortest path problem. Further details on graph distance can be found
in [37]. Recapping, this formalism intended to be a discrete analogy to the minimization
of the distance integral 3.3. Nevertheless, we still have to check how accurately does
it approximate the geodesic distance. A visual intuition can be found in Fig. 17 while
proper demonstrations can be consulted in [5]. Although we will not delve into further
considerations when this is applied to noisy data, it should be noted that the exposed
development is based in the ideal case where all points are contained in the manifold.

Figure 17: Considering the curve C in Fig. 16 when
no manifold parameterization is available, vertices
are associated to the points to build a graph. The
geodesic distance between, for example between
both end-points, can be approximated by the sum
of the shortest path’s edges. The shortest path
is given by Dijkstra’s algorithm. The more points
available in the data cloud, the better the approx-
imation. Source: [37].

3.2.1 ISOMAP

Isomap is the simplest non-linear approach to DR which implemented the graph distance
as an approximation of the geodesic distance [54]. It combines the main algorithmic fea-
tures of PCA and Multi-Dimensional Scaling (MDS). In short, MDS builds a configuration
of points in a metric space based on point-to-point distances, transforming the data into
latent variables in a similar algebraic fashion to PCA. It preserves pairwise scalar prod-
ucts rather than pairwise distances, but by definition it still cannot achieve non-linear
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DR. Both of these linear methods, together, set Isomap as a ”non-iterative, polyno-
mial time procedure with a guarantee of global optimality” approach, plus asymptotic
convergence to the true structure is ensured, when dealing with intrinsically Euclidean
manifolds. Euclidean P -manifolds, in this case, are meant to be those whose pairwise
point-to-point geodesic distances can be mapped to pairwise Euclidean distances mea-
sured on a P -dimensional Euclidean space. On the other hand, Isomap does not require
a fixed manifold dimensionality, d, to initialize nor increases the computational resources
exponentially with d. However, since our HD cells example has a expected intrinsic di-
mensionality P , we explore the idea of Isomap’s implementation for a given d-dimensional
embedding (P ≤ d ≤ N).

Again, we start from the data coordinate’s matrix Y ∈MT×N , in our case containing
T = 5000 samples of N = 2000 neurons. The first step is to determine the neighbours for
each point. Under the assumption that these have their inter-point distances fairly ap-
proximated by the input space distance, dX(i, j), the K nearest ones are kept. This infor-
mation is represented by a weighted graph G that, as a T ×T symmetric matrix, will have
K non-zero edges’ length for each row/column. Points set further away on the manifold
have their on-manifold geodesic distance, dM (i, j), approximated by addition of ”jump”
lengths between neighboring points in between. Dijkstra’s algorithm computes the short-
est paths, dG(i, j), and leads to a matrix of graph distances, DG = {dG(i, j)}. Finally,
classical MDS is applied to the set of on-manifold paths, so dG(i, j) needs to be converted
into a Gram matrix S by double centering. We want to obtain a matrix X, containing
the d-dimensional coordinates of the embedded data. From the spectral decomposition,
S = UΛUT , we obtain such a representation of Y by setting X = Id×NΛ1/2UT ∈ MT×d.
If the manifold’s intrinsic dimension had to be estimated, we would add a cost function
minimization to the process.

After all this, one could wonder why do not we apply Isomap from the beginning.
Its parameters are the number of data points (T ) and their original dimension (N), the
embedding dimensionality (d) and, for our chosen constraint, the number of neighbours
(K). The used function Isomap from Scikit-learn Python’s library has an overall cost [46]

O[N log(K)Tlog(T)] +O[N2(K + log(T))] +O[dT2]. (3.4)

Conversely, the PCA projection for a set of T N -dimensional vectors to its first C prin-
cipal components used O(CN) parameters that can be already determined from C + 1
points[37]. For the HD cell example, these values were N = 2000, T = 5000, k = 10 and
the embedding was computed for both d = 2, 3. The cost was unbearable, even when a
previous 6-dimensional embedding was performed using PCA.Since we could not refuse
to any of the PC, we down-sampled until a computable cost was reached, for T = 2000.

Another critical point of Isomap, likewise other DR techniques, is that the low-
dimensional coordinates used to describe the intrinsic structure are given under the
assumption that the unknown manifold, M, has the topological structure of a convex
domain in RN . This falls apart by simply considering a 1-dimensional circle, as it is the
case for the HD cells, so Isomap solves the loss-of-variance problem from PCA but still
leads to a non-minimal 2-dimensional faithful embedding. It is easy to think of several
topological obstructions of this kind, for some manifolds to being embedded in an Eu-
clidean space of their natural dimension. In [52], this is sorted by enlarging the class of
coordinate functions candidate to parameterize M to include circle-valued coordinates
θ : M → S1, as we will see in Section 4.1.2.
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Principal component 1 2 3 4 5 6

Captured variance ratio 0.357 0.327 0.119 0.118 0.051 0.014

Total captured variance: 98.6%

Table 1: PCA performed on N = 2000 head direction cell for T = 5000 provided samples.
For a captured variance threshold of 98.6%, at least the first 6 principal components are
needed. Data was processed with the PCA function of Scikit-learn Python’s library.

(a) 3-dimensional embedding using Isomap after PCA dimensionality reduction to their first 6PC.
Left: control S1 ⊂ RN . Right: HD cells N -dimensional data.

(b) 3-dimensional embedding using Isomap after PCA dimensionality reduction to their first 6PC.
Left: control S1 ⊂ RN . Right: HD cells N -dimensional data.

Figure 18: Isomap embeddings for T = 2000 data points from N = 2000 head-direction
cells, with its dimensionality previously reduced to 6 applying PCA. The processed data
is accompanied by an analogous analysis of a generated S1 ⊂ RN as a control of what
we expect from neural coding theory. The disconnected point at the origin must be due
to recordings where all neurons were silent. These results apparently agree with the
neural code predictions for HD cells. Computations were made with isomap function
from Scikit-learn Python’s library.
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3.2.2 SPUD

Conventional DR methods, including those mentioned above, prioritize local distance
preservation rather than global structure. It can be enough to reach the minimum global
embedding dimension, which for a 1-dimensional ring is 2. Despite this result is close to
satisfactory for us to check neural theory predictions, a 2-dimensional parameterization
fails to discover the real 1-dimensional circular latent variable, which is the current target
of neuroscience. We will see different ways to approach this issue, starting by briefly pre-
senting the Spline Parameterization for Unsupervised Decoding (SPUD) method, proposed
in [8]. Their aim is to characterize the manifold structure to discover- in an unsupervised
fashion- low-dimensional internal states.

The data is displayed in the usual N neurons - N dimensions fashion. Then, recall
neural coding theory as well, to justify that if a variable of dimension Dm << N and
a certain topology, the emerging neural manifold should match both the dimension and
topology of that, modulo possible convolutions. The topology of the point cloud is ana-
lyzed with persistent homology (see Section 4.1.3). Then the intrinsic manifold dimension
is estimated and the manifold is fit with a spline of the expected topology and dimen-
sion. A spline is a piecewise defined function made of polynomial sections, which allows
smooth parameterization. Altogether, leads to a local, on-manifold, minimal-dimensional
parameterization. Then, for a given activity pattern of the population, its projection onto
the nearest point of the spline provides the estimated unsupervised value of the latent
variable.

Figure 19: SPUD. A, N neurons’ population activity vectors (blue points) with its ri
component represents the i-th neuron’s activity. B, sample manifolds with their 0,1 and 2
Betti numbers (see Def. 4.16). C, persistent homology performed to determine homotopy
type of the underlying manifold. This particular barcode (see Def. 4.28) refers to the ring
features appearing at different scales (colored rings). D, data manifold is fit with a spline
(cyan line) of matching topology and dimension to those emerging in A-C. The anchor
points (cyan points) are chosen by clustering methods and interconnected with polynomial
curves. E, spline parameterization assigning coordinates along its length. These values
represent those of the latent variable presumably encoded by the circuit. F, instantaneous
internal state (red point) decoding by assigning the parameterization value at the point
where the spline is closest to the sample. Source: [8].
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The HD circuit is modelled as an integrator, that is its inputs describe changes on
the existing state rather than new states themselves [6, 8]. This requires changes in state
along the integrator and changes in the stimuli to be equal. The strength of testing this
model in a known circuit is that it would allow to, eventually, extend this model to explain
other population’s dynamics, maybe representing more abstract metric spaces.

3.2.3 UMAP

Figure 20: Open balls
of radius one with
locally varying met-
ric for UMAP’s open
cover. Source: [42]

In view of the conventional DR methods’ limitations, due to the
diversity of the large high-dimensional data-sets scientist face,
new techniques are being developed. UMAP emerges from com-
bining Riemannian geometry and algebraic topology in an at-
tempt to preserve global structure. It aims to discover manifolds
by building Vietoris-Rips complexes (Def. 4.24), which is deter-
mined by the graph of its 0- and 1-simplices, so that it becomes
a graph layout problem. The ideal thing would be for the data
points to be uniformly distributed over the manifold so that, when
computing persistent homology the radius of the balls could be
“easily” chosen. Since recorded data will probably not satisfy this
condition, we can consider the non-uniformity as if the notion
of distance could vary throughout the manifold. Under the as-
sumption of uniform distribution Riemannian geometry can help
defining the local distances by setting the unit ball, around each
point, to reach its K nearest-neighbours. This way, each point is
given a specific distance function. Of course, this is just a brief
idea of how it works so any further interested should be fulfilled
checking [42]. The previous section apparently recovered —Isomap does not explicitly
provide topological information— the manifold predicted by neural coding theory for HD
cells. If we now recall the grid cell example (Fig. 11), a toroidal neural manifold was ex-
pected for each of the modules. The results presented below, extracted from [21], follow
from using UMAP on grid cells.

The first natural step would be to spot the grid modules. Considering that physio-
logical studies showed the hexagonal patterns along the EC present different degrees of
dilation, rotation and ellipticity distortion, the study avoids assuming any specific geom-
etry for the pattern [53]. The modules are classified by finding cell clusters with similar
periodicity among their spatial activity (receptive fields) while the rat explores an open
field. In order to have coarse-resolution of each cells’ rate map (see Fig. 21), they divided
them with 10× 10 cm bins. To compare their spatial periodicity, the autocorrelogram of
each rate map were converted into column vectors and concatenated to form a matrix.
By construction, rows were associated to each spatial bin and columns contained the
cells. Applying UMAP to reduce each cell’s autocorrelogram to a 2-dimensional point,
the emerging clusters lead to cells with similar grid spacing and orientations.
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Figure 21: Left: firing rate map of a grid
cell, as those in Fig. 10, for a rat exploring
an open field arena. Colour coding as in-
dicated by scale bar (peak rates 16.1 Hz).
Right: the corresponding autocorrelogram,
whose values ranged from −0.56 to 0.83. It
follows from binning the rate maps and, tak-
ing both rows and columns as the bins, com-
puting their correlation. Source [21].

Figure 22: Example of grid modules spotted by clustering. Each of the recorded cells’
open field firing rate maps (see Fig. 21) was binned into M = 668 spatial regions. Af-
ter performing coarse spatial M -dimensional autocorrelograms among the bins, UMAP
reduced them to 2-dimensional point clouds where each point represents the autocor-
relogram of a single cell. Thus, similarity between the cells’ firing periodicities can be
measured from the distance between the points. Left: Scatter plot of the 2D point cloud,
with colour code according to cluster ID. The largest cluster (in grey, “main”) comprised
mainly non-grid cells. The four remaining coloured clusters represent different modules
of grid cells. Note that the cells in each cluster, n, is far from the few cells that earlier
experiments could record simultaneously. Right: combinations of three grid parameters
(grid score, spacing and orientation respectively) for simultaneously recorded cells, whose
autocorrelograms are represented by dots. Colour code as in the scatter plot. The high
grid scores of cells in the same module reflect the 6-fold symmetry of these cells’ grid
patterns [50]. Source: [21].
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Once the cells were classified into different modules, a firing rates matrix with time
bins as rows and cells in columns was associated to each of them. PCA was applied to
this data, regarding samples as observations and neurons as variables, to keep the first
six principal components just like we did for the HD example. Then, UMAP was applied
to to provide a 3-dimensional embedding, using the cosine metric. Further information
about these methods can be found in [21, 26, 34].

Figure 23: Visualization of toroidal structure in the activity of a module of grid cells.
a. Firing rates of 149 simultaneously recorded grid cells, from the same module, for
a rat exploring an open field arena. This data actually corresponds to the module ‘2’
from rat ‘R’, day 1, in Fig. 22. Colour code, indicated by a scale bar, stands for the
firing rates as a function of the rat’s position in the open field. Maximum rates range
from 0.2 Hz to 35.0 Hz. Each square shows one cell’s activity map, and are placed in
order of spatial information content (the most informative at top left, the least bottom
right). b. For the same module of 149 cells as in a, non-linear DR reveals torus-like
structure in its population activity. PCA was performed first to identify the first six PC,
then this were reduced to the 3-dimensional embedding shown by UMAP. In the plot,
three different views of the same point cloud are provided. Each of its points represents
a single sample of the population activity, and are coloured by the value of their main
principal component for the sake of visualization. A 5 s trajectory is provided (bold
coloured line) as an example of smooth on-manifold movement, which corresponds to the
behavioural trajectory of the animal in the open field placed to the right. Colour in all
plots indicate elapsed time (see the scale bar). c. Toroidal positions of spikes form four
of the neurons from the module in a. Each panel shows the same 3-dimensional point
cloud of population activity states as in b, together with the population state at times
when the given cells fired (black dots). Insets under the point clouds stand for (left) the
2D firing locations of the cell (black dots) over the trajectory (grey line) in the open field,
(middle) the colour coded firing rate amp of the cell in the open field, ranging from silent
(dark blue) to maximum value of the cell (idicated above the rate map). Finally, (right)
the autocorrelogram of the rate map, with similar colour code, whose values range from
−1 to +1. The text above indicates the grid score from the autocorrelogram. d. same as
in c, for the same four cells recorded during a session when the animal ran on an elevated,
wheel-shaped track.
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4 Topological data analysis

The two last non-linear DR methods, exposed in the previous section, benefit from per-
sistent homology. Furthermore, regardless of whether manifold visualization has been
computed or not, persistent homology can provide a lot of information about the struc-
ture of a point cloud even from higher-dimensional embeddings (see Table 1), without
risking any of its features. By risking we mean that the finite set of embedding functions
{φi}i∈I parameterizing the manifoldM, assumed to be linear projections in PCA or func-
tions φi : M→ R, fail to describe non-convex domains of RN . We will delve into TDA to
characterize the topology of the data sets, in order to achieve further discrimination on
the DR results and examine how cohomology helps to include circle-valued coordinates.

4.1 Mathematical background

4.1.1 Simplicial homology

Definition 4.1. An n-simplex in RN , for 0 ≤ n ≤ N , is the convex hull of a collection of
n+ 1 affinely independent points p0, . . . , pn of RN . This means that the emerging vectors
p1 − p0, . . . , pn − p0 are linearly independent. The n-simplices will be denoted as follows:

∆(p0, . . . , pn) = {(x0p0 + · · ·+ xnpn) ∈ RN | x0 + · · ·+ xn = 1, xi ≥ 0 for all i}.

Recall the unit points ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rn+1, with 1 at the i-th component.
A standard n-simplex ∆n is the convex hull of the coordinate units points e0, . . . , en in
Rn+1, ∆n = ∆(e0, . . . , en) = {(x0, . . . , xn) ∈ Rn+1 | x0 + · · ·+ xn = 1, xi ≥ 0 for all i}.

Definition 4.2. For a given n-simplex, the k-simplex ∆(pi0 , . . . , pik) spanned by any of
its subsets {pi0 , . . . , pik} ⊂ {p0, . . . , pn} with 0 ≤ k ≤ n is called a k-face of ∆(p0, . . . , pn).

Definition 4.3. A geometric simplicial complex in Rn is a set X of simplices in Rn such
that every face of a simplex of X is in X and such that any two simplices of X are either
disjoint or intersect along one common face.

The dimension of a geometric simplicial complex is the maximum of the dimensions
of its simplices if we consider k-simplices to have dimensions k.

For any given geometric simplicial complex X, there is an underlying topological space
|X| emerging from the union of all simplices in X, provided with the Euclidean topology.
The space |X| is called a polyhedron and we say that X is a triangulation of |X|.

Definition 4.4. Given a vertex set V = {vi}i∈I , an abstract simplicial complex is the
collection K of subsets {vi0 , . . . , vik} ⊆ V such that {v} ∈ K for all v ∈ K and, if F ∈ K
and G ⊆ F , then G ∈ K.

The elements of V are called vertices of K and the elements of K are known as the
faces of K. A face {vi0 , . . . , vik} of cardinality k+1, for k ≥ 0, is called a k-face. The faces
that are not contained in any larger face of K are called maximal faces and completely
determine the abstract simplicial complex.

For 0 ≤ k ≤ m, for any m, the collection of all k-faces of K is an abstract simplicial
complex known as the m-skeleton of K.

Note that, for any vertex v, {v} ⊂ K is a 0-face of K. The 1-faces are called edges.
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Definition 4.5. When an abstract simplicial complex K with vertex set V = {vi}i∈I has
a total order assigned, we call it ordered. In some computationally oriented TDA books
these are said to be oriented. For the sake of pragmatism, if K is ordered we will denote
its faces by (i0, . . . , ik) with i0 < · · · < ik instead of {vi0 , . . . , vik}.

Definition 4.6. Let K be an ordered abstract simplicial complex with vertex set V =
{v1, . . . , vn}. The geometric realization XK of X is the geometric simplicial complex of all
the simplices associated to the faces of K. These are, for the set {e0, . . . , en} of coordinate
points in Rn+1 and each k-face {vi0 , . . . , vik} in K (0 ≤ k ≤ n), the associated k-simplices
∆(ei0 , . . . , eik) in Rn+1.

The underlying topological space of the geometric realization |XK | is also denoted by
|K|. If K is not ordered, then |K| depends on a choice of an order on V so we can only
determine it up to a face-preserving homeomorphism.

This allows to set a correspondence between geometric and abstract complexes. For
any X geometric complex and V the set of its 0-faces, we can compute an abstract complex
KX with vertex set V and faces given by the simplices of X. By definition, there would
be a face-preserving homeomorphism |X| ∼= |KX |. Conversely, every abstract complex K
admits a face-preserving bijective correspondence with the abstract complex determined
by the geometric realization XK .

Definition 4.7. Consider an ordered abstract simplicial complex K with vertex set V =
{vi∈I} and the abelian group R = Z. For all p ≥ 0 we call group of p-dimensional chains
of K to the free abelian group generated by the ordered set of p-dimensional faces of K.
Regarding the sum over the ordered set of p-faces, we denote it as

Cp(K;Z) := ⊕Z[σ].

We assume C−1(K) = 0. Moreover, if p > dimK then Cp(K) = 0. The elements of
Cp(K) are called p-chains in K, which stand for the formal sum

a1(i
1
0, . . . , i

1
p) + · · ·+ am(im0 , . . . , i

m
p ),

where each (ik0, . . . , i
k
p) is a p-face of K and ak ∈ Z its corresponding coefficient for all k.

This can be generalized for any commutative ring R with 1 so that ai ∈ R, providing
the free R-module over the set of n-faces of K, Cp(K;R). Its elements are the n-chains
in K with coefficients in R. Henceforth, the notation will be Cn(K;Z) ≡ Cn(K). Also,
for every R,

Cn(K;R) ∼= R⊗Z Cn(K;Z).

Remark 1. Cp(∆
n) ∼= Z

(
n+1
p+1

)
.

Definition 4.8. For K an ordered simplicial complex we can define, for any p ≥ 1, the
boundary operator is the abelian groups morphism

∂p : Cp(K;R) −→ Cp−1(K;R)

[vi0 , ..., vip ] 7−→ ∂p([vi0 , ..., vip ]) :=

p∑
k=0

(−1)k[vi0 , ...v̂ik , vip ],

where the notation v̂ik means that that the vertex is omitted. We define ∂0 ≡ 0.
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Lemma 4.9 (Poincaré’s lemma). ∂p ◦ ∂p+1 = 0 for all p ≥ 0.

Corollary 4.10. It follows from Poincaré’s lemma that Im(∂p+1) ⊆ Ker(∂p) for all p ≥ 0.

Definition 4.11. Given an ordered simplicial complex K, let Cp(K) be its group of p-
dimensional chains and ∂p the associated abelian group morphisms (boundary operators).
We call a chain complex the sequence of finitely generated abelian groups

C∗(K) := · · · ∂n+1−→ Cn(K)
∂n−→ Cn−1(K)

∂n−1−→ · · · ∂2−→ C1(K)
∂1−→ C0(K).

Definition 4.12. For any p ≥ 0, we define the group of p-cycles of K as Zp(K;R) :=
Ker(∂p) and the group of p-boundaries of K as Bp(K;R) := Im(∂p+1). Both of them are
subgroups of Cp(K;R) since the boundary operator is a group morphism, thus both will
be finitely generated. Also, from Corollary 4.10, every n-boudary is a n-cycle, but not
conversely.

Definition 4.13. Let K be an ordered simplicial complex. For all n ≥ 0 the n-th
homology group of K with coefficients in R is defined by the quotient

Hn(K;R) := Zn(K;R)/Bn(K;R).

It is an abelian group if R = Z and, for any ring R, an R-module. The latter become
vector spaces over R if R is a field. The elements of Hn(K;R) are the equivalence
classes [z] of n-cycles, z ∈ Zn(K;R), that do not bound any (n+ 1)-chain. Two k-cycles
zk1 , z

k
2 ∈ Zk(K;R) are in the same equivalence class if (zk1 − zk2 ) ∈ Bk(K;R), namely

[zk1 ] = [zk2 ] if there exists a chain c ∈ Ck+1(K;R) such that (zk1 − zk2 ) ∈ ∂c. In that case,
these are called homologous cycles.

Computing and interpreting simplicial homology

Proposition 4.14. Let K be an ordered abstract simplicial complex. Its homology
groups Hp(K;Z) are finitely generated abelian groups, for all p ≥ 0. Thus, from the
structure theorem of finitely generated abelian groups it follows that

Hp(K;Z) ∼= Zr ⊕ T1 ⊕ · · · ⊕ Tm,

where r := rank(Hp(K;Z)), that is equal to the dimension of Hp(K;Q) as a Q-vector
space, and Ti ∼= Z/diZ, with d0 | d1 | · · · | dm, are the cyclic finite groups emerging from
the torsion part.

The proposition above holds for finite point clouds and their emergent simplicial com-
plexes. However, it is common to use G = Z/2Z to facilitate the computation by just
considering sums of singular simplices with coefficients 0 or 1. This way, chains can be
regarded as a finite “union” of those with non-null coefficient. Boundaries also simplify
this way, since we cannot take signs into account anymore, which is fine if we do not need
to preserve orientation. The following theorem allows us to establish similarity between
the homology groups in Prop. 4.1.1 and those with coefficients in some abelian group R.

Theorem 4.15 (Universal coefficients for homology). When Hn(K;Z) is finitely gener-
ated, Hn(K;Q) ≈ Hn(K;Z) ⊗ Q. Thus, the dimension of Hn(K;Q) as a vector space
over Q equals the rank of Hn(K;Z).

Also, if Hn(K;Z) and Hn−1(K;Z) are finitely generated, then for any prime p,
Hn(K; Z/pZ) consists of:
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i. a Z/pZ summand for each Z summand of Hn(K;Z),

ii. a Z/pZ summand for each Z/pkZ summand of Hn(K;Z), k ≥ 1,

iii. a Z/pZ summand for each Z/pkZ summand of Hn−1(K;Z), k ≥ 1.

Since the involved neural manifolds are torsion-free, only (i) will be needed and

Hn(K;Z/pZ) ≈ Hn(K;Z)⊗ Z/pZ.

Now we would like to interpret the information these groups provide. For K a simplicial
complex, we say it is simplicially connected if, for each pair of vertices v0, v1 ∈ K, there
exists a sequence of vertices of K, w0, w1, . . . , wr, such that w0 = v0 and wr = v1 and
such that, if 0 ≤ i ≤ r − 1, the simplex ∆(wi, wi+1) is an edge of K. We say that K
is simplicially connected if, and only if, |K| is connected. Given a non-empty connected
polyhedron |K|,

H0(K;Z) ∼= Z.

Moreover, for K a non-empty simplicial complex, if |K| is not connected, H0(K;Z) is a
free abelian group with rank equal to the number of connected components of |K|. In
fact,

H0(K;Z) ∼= ZN ⇐⇒ the geometric realization |K| has N connected components.

It follows that if |K| is a finite connected graph, then

H1(K;Z) ∼= ZN ⇐⇒ there are exactly N independent cycles in |K|.

In particular if |K| is a connected graph, then H1(K;Z) = 0⇐⇒ |K| is a tree.

Notice that if K is the abstract simplicial complex emerging from a geometric n-
simplex with n ≥ 1, then Hi(K) = 0 for all i ≥ 1, since every i-cycle is a boundary
indeed. Now, if K is determined by a geometric (n+ 1)-simplex with n ≥ 1, and S is the
n-skeleton of K (hence S is homeomorphic to an n-sphere), then for 1 ≤ i ≤ n − 1 we
have Hi(S;Z) = 0 while Hn(S;Z) ∼= Z. Thus, Hn detects “n-cavities” as one could have
expected.

Definition 4.16. Let K be a finite ordered abstract simplicial complex, again considering
its p-chains to have coeficients in Z. We define the p-th Betti number of K as

βp(K) := rank(Hp(K;Z)) = dimQ(Hp(K;Q))

for p ≥ 0. If we generalize to take coefficients in any field F, the p-th Betti number of K
with coefficients in F is

βp(K;F) := dimF(Hn(K;F)).

Betti numbers will be of great relevance onwards. With the results above we can expect
that, when working over Z, the p-th Betti number will provide information on the number
of p-dimensional holes in the simplicial complex considered.

On the other hand, they are related to the Euler characteristic of K (Eq. 2.2) by

χ(K) :=
N∑
n=0

(−1)nβn(K). (4.1)
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4.1.2 Cohomology

To study the topological properties of the cloud of data points, we resort to persistent
cohomology, since it is key to the high performance of the Ripser Python’s package.
Moreover, it is of relevant interest for manifolds that do not have match to topological
structure of a convex domain in R, which was the weak point of performing Isomap on
HD cells. This is because it enlarges the class of coordinate functions to include circle-
valued ones, that could describe well spaces like the annulus and the torus predicted by
neural codes in Section.2.1.4. Cohomology results from a simple dualization in homology’s
definition [28, 52]. For a fixed abelian group G, the chain groups Cn(K;R) are replaced
by groups of homomorphism Hom(Cn, G), and the boundary maps ∂ by their dual maps
δ. Then, the cohomology groups are computed in a similar fashion to those of homology.

Given an ordered simplicial complex K, with sets of vertices, edges and triangles
K0,K1,K2 respectively. This is that, for the (total) order assigned to the vertices, if
a, b ∈ K0 are a < b, then the edge between them is denoted ab, and the same fashion
is followed for simplices of greater order. So far, we have dealt its chain complex, with
coefficients in an abelian group G,

C(X;G) = · · · ∂n+1−→ Cn(X;G)
∂n−→ Cn−1(X;G)

∂n−1−→ · · · ,

Definition 4.17. The cochain complex is the dualization of C(X) by replacing each Cn by
its dual cochain group C∗n = Hom(Cn(X), G), the group of homomorphisms Cn(X)→ G,
and the boundary maps ∂ : Cn(X)→ Cn+1(X) by their dual coboundary maps

δ := ∂∗ : C∗n+1(X;G)→ C∗n(X;G).

That is,

C∗(X;G) = · · · δn+1←− Cn+1(X;G)
δn←− Cn(X;G)

δn−1←− · · · ,

with the general coboundary maps defined as

δn : Cn(X;G)→ Cn+1(X;G)

φ 7→ δφ([v0, . . . , vn+1]) :=
n+1∑
j=0

(−1)jφ([v0, . . . v̂j , . . . , vn+1]).

Note that the latter sum is just φ(∂[v0, . . . , vn+1]), therefore δφ ≡ φ∂ since, by definition,

δφ : Cn+1(X)
∂−→ Cn(K)

φ−→ G.

In terms of linear algebra, δ is the dual map of ∂. If φn ∈ C∗n has δn(φn) = 0, we say φn
is an n-cocycle. If there is a map φn such that δn(φn) = φn+1, then φn+1 is a coboundary.
All coboundaries are cocycles, that is Im(δn) ⊆ Ker(δn+1) and δn+1(δnφn) = 0.

Definition 4.18. The n-th cohomology group is defined as Hn(X;G) := Ker(δ)/Im(δ).
Its elements, the cohomology classes, are the classes of cocycles.

The homology groups determine those of cohomology and, if the former are finitely
generated the converse holds as well. Moreover, cohomology groups satisfy the axioms
stated for homology, but with the induced homomorphisms going in the opposite di-
rection due to dualization, which allows to formulate a universal coefficient theorem for
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cohomology, analogous to Theorem 4.15 for homology groups [28]. From now on, consider
a commutative ring R, usually Z, Z/pZ or R.

Since neural code theory expects the manifold to match the stimuli space dimension,
so far 3 at most, let us work this out for the 0, 1 and 2-cochains, regarded as R-modules,

C0(X;R) = {f : X0 → R},

C1(X;R) = {g : X1 → R},

C2(X;R) = {h : X2 → R}.

Now, the two first coboundary maps would be

δ0 : C0(X;R)→ C1(X;R),

f 7→ δf(ab) := f(b)− f(a)

δ1 : C1(X;R)→ C2(X;R).

g 7→ δg(abc) := g(bc)− g(ac) + g(ab)

A 1-cocycle would be some g ∈ C1(X;R) such that δ1g = 0. Also, if δ0f = g admits
a solution f ∈ C0(X;R), g would be a 1-coboundary. If the solution exists, it can be
thought as the discrete integral of g, and it is unique up to addition of elements from
Ker(δ0), functions that are constant on each connected component of X.

If now give interpretation to their cohomology groups, H0(X;G) can be explained as
the group of all functions from the set of components of X, X0, to R, which is a direct
product of copies of R (one for each component of X). On the other hand, H1(K;G) =
Ker(δ1)/Im(δ0), so if two 1-cocycles differ by a coboundary, they are considered equivalent.
Namely, g, g′ ∈ C1(X;R) are cohomologous if g − g′ ∈ C0(X;R) is a coboundary.

Figure 24: Cohomology
intuition up to the 2-
cochains of X, for G =
Z/2Z, of the associate col-
lection of disjoint curves
to each 1-cocycle. Source:
[28].

To have an intuition of this, X be regarded as an oriented
graph if we only consider X0 and X1. We will be interested
in the homomorphism

δ : C0(X;G)→ C1(X;G)

φ 7→ δ(φ) = ψ.

The value of δ(φ) = ψ ∈ C1(X;G) on an oriented edge
[v0, v1] is ψ(v1) − ψ(v0). Therefore, φ ∈ C0(X;G) has
δ(φ) = 0 iff φ takes the same value at both ends of each
edges of X. If we consider δ as a chain complex with
0’s before and after both terms, to compute the homol-
ogy groups would, by definition, provide the cohomology
groups. In particular, H0(X;G) = Ker(δ) ⊂ C1(X;G) and
H1(X;G) = C1(X;G)/Im(δ).

If we now consider X with its 2-dimensional components, we would define a homo-
morphism δ : C1(X;G) → C2(X;G) as well. In a similar fashion to homology, we could
specify δψ([v0, v1, v2]) = ψ([v1, v2])−ψ([v0, v2])+ψ([v0, v1]), which is the sum of the values
taken by ψ ∈ C1(X;G) on the three edges in the boundary of [v0, v1, v2]. In this case,
δ(ψ) = 0 iff ψ satisfies the additivity property ψ([v0, v2]) = ψ([v0, v1]) + ψ([v1, v2]). This
condition, δψ = 0, has a more geometric interpretation if we take Z/2Z as G. This would
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be that, the number of times that ψ takes the value 1 on the edges of each 2-simplex is
even, either 0 or 2. We can associate a collection Cψ of disjoint curves in X, crossing the
1-skeleton transversely, such that the number of intersections of Cψ with each edge equals
the value of ψ on that edge. If, for some ψ ∈ C1(X;G), ϕ = δψ, then the curves in Cψ
divide X into two regions, X0 and X1, where the subindex indicates the value of ψ on all
vertices in the regions. An illustration on this idea is shown in Fig. 24.

Theorem 4.19. There is an isomorphism between the 1-dimensional cohomology classes
with integer coefficients of a space X and the set of homotopy classes of maps from X to
the circle S1 = R/Z. That is,

H1(X,Z) ∼= [X,S1].

This is a special case of [28, Theorem 4.57], as H1(X,Z) ∼= [X,K(Z, 1) = [X,S1]. Alter-
natively, the Universal Coefficient Theorem tells us that

H1(X,Z) ∼= Hom(H1(X,Z),Z) ∼= Hom(π1(X),Z) ∼= [X,S1],

since S1 is 1-dimensional.

The theorem above is especially useful for our purposes since allows circular param-
eterization, which suits perfectly for our main examples: a S1 itself and a torus. Given
a cocycle α ∈ C1(X;Z) = Hom(C1,Z), there is a map θ : X → S1 ' R/Z that sends
all points in X to 0, and each edge, [vi, vj ], around the circle with winding number
α([vi, vj ]). Positive or negative integers give clockwise or counter-clockwise winding re-
spectively. Here θ can be linearly extended to the rest of X with winding number of θ
along the boundary of each triangle:

θ([vi, vj , vk]) = α(vj , vk)− α(vi, vk) + α(vi, vj) = δ1[α([vi, vj , vk])] = 0.

If necessary, this could be extended to higher order cells of X since all higher homotopy
groups of S1 are zero.

If all vertices are sent to the same point in the circle, we cannot consider our maps
to be really smooth. This can be solved by considering cohomology with real coefficients
as follows. For an integer cocycle α ∈ C1(X;Z), we can construct a cohomologous real
cocycle α = α + δ0f ∈ C1(X;R) for some f ∈ C0(X;R). This allows to define, on
the vertices of X, θ([vi]) = f([vi]) (mod Z), so that it maps each edge [vi, vj ] to an
interval of length α([vi, vj ]), measured with the same sign convention as in the integer
case. Explicitly,

θ([vi, vj ]) = θ([vj ])− θ([vi]) = f([vj ])− f([vi]) = δ0f([vi, vj ]) = α([vi, vj ])− α([vi, vj ]),

which is congruent to α([vi, vj ]) (mod Z). Due to α being a cocyle, it extends to higher
cells as before.

The fact that cohomology groups are contravariant functors while homology groups
are covariant endows cohomology with an extra structure in the form of a natural product
known as cup product. Together with the additive structure, it yields a ring structure.
Some implications of this are further detailed in [21, 28].
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4.1.3 Persistent homology

In our attempt to discover neural manifolds, an accurate characterization of them is
essential to provide good parameterizations to perform variable decoding. Topological
Data Analysis (TDA) provides tools that, contrarily to dimensionality reduction alone,
can further distinguish between manifolds that may seem similar at first glance. For
example, in the cited results on the head-direction circuit, it is necessary to discriminate
a 1D ring from being a torus indeed. For anyone familiar with homology groups, these
would provide enough information to answer such question.

The data sets of neural recordings are usually displayed in an N -dimensional space,
with each axis associated to one of the recorded neurons. This actually forms a point
cloud, an unordered finite collection X = {xi}i∈I of points in RN for some N ≥ 2. All
point clouds can be regarded as finite metric spaces (hence compact) with the Euclidean
distance. Despite starting from a finite set of vertices, which would lead to a not really
interesting sequence of homology groups, we aim to extract some kind of underlying
space generating a simplicial complex that preserves metric information about the initial
distribution.

Persistent homology manages to answer this by blurring the point cloud of data to
different scales. For each resolution, the emergent connected groups of data form simplicial
complexes which may contain certain topological structures. The resulting sequence of
simplicial complexes will be called a filtration, whose Betti numbers form a list of binary
structural designations that characterize the complexes. If a Betti number persists over
many scales on a structure, this feature is robust and taken into account as significant.
Otherwise, it will be considered non-relevant to the structure or even just statistical noise.
This process ends up characterizing the structure of a data-set up to isomporphism.

Definition 4.20. A filtration of an abstract simplicial complex K is a finite nested
sequence of subcomplexes of K that ends with K itself,

K0 ⊆ K1 ⊆ · · · ⊆ Km−1 ⊆ Km = K.

For any field F and all p ≥ 0, nesting in the filtration of a finite ordered complex
induces a morphism between homology groups. For all i, j ∈ {0, . . . ,m} with i < j,

ii,jp : Hp(Ki;F) −→ Hp(Kj ;F),

due to all faces in Ki being faces of Kj>i as well. This relation between subcomplexes can
help us to track, as the filtration evolves, how long do the emerging simplicial complexes
last for increasing scale.

Definition 4.21. A homology class [z] ∈ Hp(Ki;F) is said to be born atKi if [z] /∈ Im(ih,ip )

for any h ≤ i. Conversely, a class [z] ∈ Hp(Ki) is said to die at Kj , for j > i, if ii,jp ([z]) = 0

but ii,j−1p ([z]) 6= 0. In other words, [z] dies entering Kj if it merges to another class in Kj .
If [z] is born at Ki and dies at Kj , then the life of persistence of [z] is said to be (j − i).

Definition 4.22. The (i, j)-persistent p-th homology vector space is the image of the
induced morphism

H i,j
p (K;F) := Im(ii,jp ), 0 ≤ i ≤ j ≤ n.

It is an F-subspace of Hp(K;F), and its elements are the homology classes that are born
at or before Ki and survive at least until Kj . The classes that survive until K are said
to be essential.
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Also with respect to the given filtration and with coefficients in F, we define the (i, j)-
persistent p-th Betti number as βi,jp (K;F) = dimF(H i,j

p (K;F)).

A clearer idea of the life or persistence of the classes will be given by barcodes and
persistence diagrams (details in Section 4.1.4). These are graphic representations of the
persistent homology classes, both allowing to spot when do they born and die by just
inspecting them. However, they require a theoretical buildup so, for now, we will settle
for an alternative expression of the (i, j)-persistent p-th homology vector space, proposed
in [61],

H i,j
p (K;F) ∼= Zp(Ki;F)/(Bp(Kj ;F) ∩ Zp(Ki;F)). (4.2)

It is well defined since Bp(K;Z), Zp(K;Z) ⊆ Cp(K;Z), which makes their intersection a
well-defined subgroup of Zp(Ki;Z). Then

Im(ii,jp ) ∼= Hp(Ki)/Ker(ii,jp ) ∼= Zp(Ki)/(Bp(Kj) ∩ Zp(Ki)),

and this extends to any field F through the structure theorem for finitely generated
modules over principal ideal domains [61, Theorem 2.1].

Common simplicial complexes arising from point clouds

Simplicial homology is built upon simplicial complexes so our first concern should be
how to build these from a data-set. Consider a point cloud X = {xi}i∈I ⊂ RN with
N ≥ 2. There are different approaches to the geometric simplicial complexes (continuous
spaces) that we can form from the vertices in X (which is discrete) to compute a filtration,
setting K0 = X and |K| = ∆NX if X has cardinality #I := NX + 1. We will focus in the
Vietoris-Rips complexes, since these are used in the Ripser package we use to compute
TDA. However, let us first introduce the Čech complexes, which are bond to neural coding
theory, and then examine their relation to those mentioned previously.

We have seen that for a topological space X with a cover U = {Ui}i∈I , the nerve
of the cover N (U) defined in2.1 is the simplicial complex with vertex set I and where
{i0, . . . , ip} is a p-face of the nerve if

⋂p
l=0 Uil 6= ∅. This allowed to infer the homotopy

type of X through Theorem 2.7. When we work on a metric space, a simple cover would
be given by the balls, of a given radius, centered in each of the vertices. Since that is
the case for X ⊂ RN , which is in a Euclidean space, we can define the Čech complex as
follows.

Definition 4.23. Regard X = {xi}i∈I ⊂ RN with N ≥ 2. For all ε > 0, we can define
a cover of X with closed balls of radius ε/2 around all xi ∈ X, U = {Bε/2(xi)}i∈I . The

nerve of such cover is called a Čech complex. We denote it by Cε(U) := N (U).

That is to say, for any real number ε > 0, the Čech complex Cε(X) of X is the
abstract simplicial complex with vertex set X whose k-simplices are collections of points,
{xi0 , . . . , xik}, such that the closed balls Bε/2(xi0), . . . , Bε/2(xik) have, at least, one point
in common. We denote

Cε(X) = {σ ⊆ X |
⋂
ik∈σ

Bε(xik)}.

To sum up, we add a p-simplex each time there is a subset of p+ 1 vertices with common
intersection.

It should be noticed that the Nerve Theorem is defined for a open cover while the
one in 4.23 uses closed sets. However, the Nerve Theorem holds for a a closed cover
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as long as the (k + 1)-fold intersections of its elements are neighborhood retracts in X,
i.e., any intersection V admits a retraction r : W → V for some open neighborhood W .
Fortunately, this applies to finite intersections of Euclidean balls.

Definition 4.24. Regard X = {xi}i∈I ⊂ RN , with N ≥ 2, as a metric space (X, d). For
each real number ε > 0, the Vietoris-Rips complex Rε(X) of X is the abstract simplicial
complex with vertex set X whose k-faces are collections of points {xi0 , . . . , xik} of diameter
at most ε. This means that d(xir , xis) ≤ ε for r, s ∈ {0, . . . , k}.

Proposition 4.25. For a given metric space X and for all ε > 0,

Cε(X) ⊆ Rε(X).

Note that small values of ε will make both complexes to be discrete (bijective to X)
and the equality will hold [7]. Then, at a certain value as ε increases, they go equal again
and their geometric realization is a single n-simplex if X consists of n+ 1 points.

Figure 25: Simplicial complexes built upon a point cloud X, with its vertices represented
by black dots. Left: Čech complex emerging from balls with radius α centered in each
x ∈ X. Right: Vietoris-Rips complex with inter-vertices threshold distance 2α. Source: [9]

4.1.4 Barcodes and persistence diagrams

In short, our main aim was to inspect which topological structures within the point cloud
were significant to its overall shape. We have seen a couple of examples about how
can we compute the emerging simplicial complexes to form a filtration, so that we can
characterize topological features at different scales through simplicial homology. As we
mentioned, we will proceed with Vietoris-Rips complexes, since these are the ones used
during our computations. Let us formally examine the life or persistence of the homology
classes among them to have an idea of how significant these are.

Definition 4.26. A persistence module over a fixed field F is a pair (V, π) where V =
{Vt}t∈R is a collection of F-vector spaces of finite dimension and π is a collection of F-linear
maps, πs,t : Vs → Vt for s ≤ t, satisfying:

1. (Persistence) For any s ≤ t ≤ r, πs,t ◦ πr,s = πr,t.

2. (Finite type) There is a finite set A = {a0, . . . , an} ⊆ R known as the spectrum of
(V, π) such that:
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(a) For all x ∈ R r A there exists a neighbourhood Ux of x so that πs,t is an
isomorphism for all s ≤ t in Ux.

(b) For all a ∈ A, there exists ε > 0 such that if a ≤ t < a + ε then πa,t is an
isomorphism while if a− ε < s < a then πs,a is not an isomorphism.

3. (Zero origin) Assuming an order a0 < · · · < an, we have Vt = {0} for t < a0.

From these conditions it follows that πt,t = id for all t ∈ R and that πs,t is an isomorphism
if an ≤ s ≤ t. Any Vt with t ≥ an is denoted by V∞, which is the direct limit of (V, π)
seen as a directed diagram.

The elements of the spectrum A of (V, π) are spectral points and they point out that
there is a finite number of instances where πs,t 6= Id It follows that it will be enough to
associate a finite number of vector spaces Ps,t := Im(πs,t) to the persistence module. This
collection of spaces is known as the persistent homology of V .

For a point cloud X ⊂ RN , we denote the Vietoris-Rips complex associated to X for
each t ≥ 0 as Rt(X), and define the Vietoris-Rips module of X as the persistence module
over a field F given as follows:

Vt = H∗(Rt(X);F) =

∞⊕
i=0

Hi(Rt(X);F) if t ≥ 0, and Vt = 0 for t ≤ 0. (4.3)

There are inclusions Rs(X) ⊆ Rt(X) if s ≤ t, with Rs(X) = ∅ if s ≤ 0, and πs,t are the
homomorphisms induced in homology.

The third condition ensures unequivocal decomposition for persistence modules, up to
isomorphism. To define how they decompose, we need some definitions. First, a morphism
of persistence modules f : (V, π) → (V ′, π′) over a field F is a collection of F-linear maps
ft : Vt → V ′t such that ft ◦ πs,t = π′s,t ◦ fs for s ≤ t. The morphism f is an isomorphism if
there exists g : (V ′, π′)→ (V, π) satisfying g ◦ f = id and f ◦ g = id, which means that, in
fact, all ft are isomorphisms for any t.

For any interval Ii = (a, b] ⊂ R, a ∈ R and b ∈ R∪{∞}, we define interval modules as
the persistence modules of the form

I(I)t =

{
F if t ∈ I

0 otherwise,
(4.4)

with πs,t = id if s, t ∈ I and πs,t = 0 otherwise. Their spectrum is {a, b} if I = [a, b) or
{a} if I = [a,∞).

Finally, the direct sum of persistence modules (V, π), (V ′, π′), is another persistence
module (W, θ) with Wt = Vt ⊕ V ′t , for all t, and θs,t = πs,t ⊕ π′s,t, for all s, t. For every
positive integer m, we denote I(I)m = I(I)⊕ m. . .⊕ I(I).

Theorem 4.27. Normal Form Theorem. Given any persistence module (V, π), there is
a finite collection of intervals {Ii}Ni=1 with Ii = [ai, bi) or I = [ai,∞) for each i, such that
Ii 6= Ij if i 6= j. Also, there is an isomorphism of persistence modules

V ∼=
N⊕
i=1

I(Ii)m, (4.5)

where m1, . . . ,mN are positive integers.
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This allows to represent each persistence module (V, π) as follows.

Definition 4.28. For a given filtration of a finite ordered abstract simplicial complex K,

K0 ⊆ K1 ⊆ · · · ⊆ Km−1 ⊆ Km = K,

the persistence of homology classes can be represented in a plane coordinate system with
x-axis labeled by {0, . . . ,m} and whose y-axis marks the levels of an ordered sequence of
homology generators for Hn, n ≥ 0. A homology class [z] ∈ Hn —marked at a certain
height in the y-axis— born at Ki and dying at Kj , will draw a segment from i to j. This
representation is known as a barcode. The convention is to draw bottom-up the segments
from shorter to longer, those starting later appearing above the younger ones.

Definition 4.29. Suppose given a persistence module (V, π) over a field F in its normal
form (Eq. 4.5), assuming that Ii 6= Ij if i 6= j and mi ≥ 1 for all i. The persistence
diagram for (V, π) has a point (bi, di) in a coordinate plane for each bounded interval
[bi, di) in its normal form. Each of the points in the diagram denotes a basis vector of V∗
with birth parameter bi and death parameter di. If the spectrum of (V, π) is {a0, . . . , an},
we will have V∗ = Va0 ⊕ · · · ⊕ Van . The convention is to depict the multiplicities mi by
increasing the dot’s size. It is also customary to include the diagonal b = d, regarding its
points as having infinite multiplicity.

Notice that barcodes only explicit the number of generators at each scale, but do not
specify the generators themselves. This is a direct consequence of the Normal Form The-
orem, which provides a decomposition of persistence modules only up to isomorphism.
Although we have built persistence upon homology terms, the universal coefficient the-
orem implies that the same results will be identical for persistent cohomology. The key
is that, when working with coefficients in a field, cohomology is the vector-space dual of
homology. In our case, Ripser finds the decomposition intervals of the cohomology Rips
complex,

Hn(R(X);Z/pZ) ∼= I[a1,b1) ⊕ I[a2,b2) ⊕ · · · ⊕ I[ak,bk).

Then it yields a representative cocycle αi,ε ∈ C1(Rε(X);Z/pZ) for each interval and a
scale ai ≤ ε < bi, from which we can obtain circular coordinates. It will be represented
by an interval [ai, bi) in the barcode and a point (ai, bi) in the persistence diagram.

Note that persistent cocycles are computed over a field so the results must be taken
with coefficients in Z to compute circular parameterization. This step may fail if H1(X;Z)
has non-trivial p-torsion, which is not common among our data sets. The simplest ex-
amples exhibiting 2-torsion are non-orientable closed surfaces, which are not expected to
appear in our context.

Stability theorems

It would be fair to wonder how much can the persistence diagrams vary if our set of data
is noisy. Consider two point clouds X,Y ⊂ RN , both satisfying diam(X) := sup{d(x, x′) |
x, x′ ∈ X}. In [48], the Hausdorff distance dH(X,Y ) between two point clouds X and
Y is defined, as well as the bottleneck distance between their Vietoris-Rips persistence
diagrams D(X), D(Y ), denoted by W∞(D(X), D(Y )). The Stability Theorem states that

W∞(D(X), D(Y )) ≤ 2 dH(X,Y ).

If we regard Y as a noisy recording of the same data in X, this inequality implies that
the difference between persistence results is bounded. This is further detailed in [10].
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4.2 Practical results based on homotopical discrimination

Figure 26: Persistence diagrams
computed with Ripser for the 6D
embedding. Top: generated S1 ⊂
RN of radius r = 7, with TS =
1000 samples, 0.1 noise. Filtration
threshold 15. It shows 1 connected
component (blue) and a 1-cycle (or-
ange). Bottom: HD cells data [33]
from N = 2000 neurons, downsam-
pled to T ′ = 2000 for TDA. Filtra-
tion threshold 22. As justified by
visualization, it shows a connected
component that persists throughout
the analysis (blue, H0 → ∞), with
a 1-cycle (orange) associated, to-
gether with a disconnected compo-
nent emerging from a point associ-
ated to null recordings.

So far, the neural manifold emerging from HD cells
DR seemed to recover the neural coding theory pre-
dictions. This were based on the assumption that
the tuning curves (HD receptive fields) conformed
an open cover of the S1 ⊂ R2 used as stimuli space.
It follows, from the Nerve Theorem, that in the rep-
resentational space, embedded in a a N = 2000
dimensional space, the population activity should
lie on a manifold of matching dimension and topol-
ogy. We embedded a control S1 ⊂ RN , with 10%
of noisy points, to contrast our results againts those
expected from theory. After performing PCA to the
N -dimensional point clouds to keep their first six
PC, accounting 100% and 98.6% of the data vari-
ance, for the control S1 and the HD cells’ data re-
spectively, we blindly computed the persistence di-
agrams with Ripser Python’s package.

As one could expect, the generated S1 showed a
single connected component (H0 cycle with persis-
tence → ∞) and a 2-dimensional hole (significant
persistent single cycle H1), whose life depends on
the sphere radius (r = 7) and the filtration’s set
threshold (thresh = 15). Since Ripser computes
a Vietoris-Rips filtration, simplices are accounted
when two vertices are at distance at least the fil-
tration scale. Despite one could think that, not
until the scale reached the diameter size the circu-
lar feature would vanish, taking into account that,
at some points, the Isomap 3D embedding showed
a slightly narrower diameter than the original 2r,
it seems reasonable that it lasts until 12. Simi-
larly, the real data cloud shows a circular feature
that lasts until scale 20. To set the filtration’s pa-
rameters (thresh = 22), we took advantage from
the visualization provided by the 3D Isomap em-
bedding, that showed a convolved S1 of minimum
radius r ≈ 10. From this, one should expect the cir-
cular component to vanish for at a scale comparable
to the minimum diameter, which is exactly what we
see in Fig. 26. The main component comes as a H0

cycle with persistence → ∞. On the other hand,
a disconnected component arises, but through DR
visualization (Fig. 18) we can affirm it corresponds
to non-significant recordings where all neurons
where silent, thus being out of the neural manifold
of the population activity patterns.
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4.2.1 Further examples

S1 homotopy type for the population activity from head-direction cells

The HD manifold shown evidence of being autonomously generated by means of preserving
its population activity patterns during waking and sleep [8]. Special attention is paid to
the fact that there are no persistent 2-cycles, which, together with SPUD and unsupervised
decoding, allows to discard unknown variables in the ring’s thickness. Surprising as it may
seem, they found evidence of HD cells in other brain regions with this additional dimension
encoding head velocity. The awake 1D ring manifold is then compared, in occupancy
and dynamics, to that generated during REM sleep, when the states are not biased by
behaviour and the external world. The analysis concludes the states to be equivalent
which supports the idea of neural manifolds being internally generated (Fig. 27.b).

Interestingly, when they compare it during the nREM phase, the ring in the Betti
1 barcode vanishes. The Isomap DR allows to visualize it as a conical surface, which
now encodes, at least, two latent variables. They parameterize them by on-manifold
tangential and radial coodinates. When the tangential component is given to wake-trained
supervised decoders of head angle, the latent variable estimates match, which means the
HD variable holds in the angular structure of the manifold, proving the instrinsical nature
of the representational space. The radial latent variable estimate is found to encode the
population’s firing rate.

Figure 27: Neural manifold from
anterior dorsal nulceus head-
direction cells, N = 1000. a.
Barcodes for REM sleep states,
Betti 0 bar shows there is a single
connected component. Betti 1
bar evidences the 1D ring preser-
vation during REM sleep. No
persistent cycles for H2 allow to
rule out the possibility of hav-
ing unknown latent variables en-
coded in the ring’s thickness. b.
Joint plot of REM (green) and
waking manifolds (dark blue) us-
ing Isomap. c. Barcodes for
nREM sleep states show a single
connected component absent of
a persistent ring structure in it.
d. Joint visualization of nREM
(yellow) and waking data (dark
blue), with alternative views of
it on the side. The new man-
ifold partially overlaps with the
waking and REM ones. These
cap the circular rim of the nREM
cone. Source [8].
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Torus homotopy type for the population activity from grid cells

Conversely, a toroidal manifold was predicted for population activity from grid cells’
modules, grouped by periodicity comparison in Fig. 22. This process resulted from the
hexagonal pattern of their receptive fields violating the good cover assumption (Fig. 11).
In this line of thought, the persistence diagrams in Fig. 28 show that, if not enough cells
are simultaneously taken into account, we cannot recover the toroidal manifold neither,
which is what kept earlier studies from success.

Figure 28: The first three persistence diagrams show the emergence of the two expected
1-cocycles (orange) as the number of grid cells, from the same module, increases. The
fourth one, last on the right with 40 grid cells from the module, accounts 0- and 2-cocycles
as well (blue, green resp.), evidencing a homotopy equivalence to a torus. Source: [34].

Figure 29: Barcodes for grid cells, during opend field exploration (modules R2 in a, R3
in b) and in a “wagon-wheel” environment (c, d, modules as in a, b respectively), from
the rat R in Figs. 22 and 23. Only the longest 30 cocycles are shown. At the left of each
panel, the firing rate maps of two cells from each of the modules. The persistence bars
are compared to those of 1000 shuffles of the data, whose longest lifetimes are shaded in
orange and are set to born at the same value as the original data bars. Note the difference
grid scale between R2 and R3 in the open field, as well as how they periodicities lower
in the wagon-wheel environment. The toroidal structure, however, is preserved despite
distortions of the grid pattern. Source: [21].
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3-torus homotopy type for the population activity of conjunctive cells

To conclude, let us introduce conjunctive cells, which allow us to take neural coding theory
one step further. To understand these, we need to remind that some populations encode
more than one stimulus at a time, what translates into extra dimensions on their neural
manifold. For example, there is evidence of postsubicular HD cells to be provided with an
additional structure besides the primarily 1-dimensional ring, which is orientation tuned,
that encodes head velocity in the thickness of such ring [8]. Also, the S1 we recovered
for population activity of ADn HD cells was found, in the same study, to turn into a disc
during nREM sleep with the populations’ firing rate encoded in the radial dimension.

When we look at conjunctive cells, the activity maps of each of them evidence position
and direction tuning , as shown in Fig. 30 (bottom right). This can actually be understood
as a combination of the preferred stimuli of orientation-tuned HD cells (bottom left) and
periodic location firing of grid cells (top). It follows, from the arbitrariness of the stimuli
space representation, that this could be regarded as a Cartesian product of both stimuli
spaces. For each single module, that is S1 × S1 × S1 ∼= S1 × T2. Although visualization
through dimensionality reduction techniques could be difficult, TDA allows to confirm
this hypothesis by comparing the persistent diagram of conjunctive cells against that of
a recording of the joint activity of grid cells and HD cells. This is shown in Fig. 31.

Figure 30: One-cell activity maps
from different populations, as a func-
tion of position (left) and direction
(right). Top: two grid cells, only show
periodical location tuning. Bottom
left: HD cells are only orientation-
tuned. Bottom right: conjunctive
cells are both location and orientation
tuned. Source: [34].

Since we expect a 3-dimensional torus T3, which is a closed orientable manifold,
Poincaré duality ([28, Ch. 3.3]) holds. This expresses a remarkable symmetry between
homology and cohomology groups of manifolds. For closed orientable manifolds M of
dimension n, the symmetry is given by isomorphisms Hk(M;Z) ∼= Hn−k(M;Z) for all k.
For the torus T3, we have

Hk(T3;Z) ≈ Z⊕
(3k)· · · ⊕ Z.

This allows to set an expected persistence diagram with

H0(T3;Z) ∼= Z,
H1(T3;Z) ∼= Z⊕ Z⊕ Z,
H2(T3;Z) ∼= Z⊕ Z⊕ Z,
H3(T3;Z) ∼= Z,
Hk(T3;Z) = 0 for k > 3.

The cohomology ring H∗(T3;Z) is isomorphic to an exterior algebra ΛZ(α1, α2, α3),
with the monomials on α1, α2, α3 corresponding to the cells of T3. Further details can be
found in [28, Ch. 3].
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Thus, we see that the persistence diagram of conjunctive cells is equal to that of grid
and head direction cells joint activity. Moreover, both show the expected persistent 0, 1
and 2-cocycles. The computational cost of calculating the 3-cocycles is usually too big,
but due to the cup product the information in lower dimensions is enough to spot the
homotopy type of T3. In conclusion, the persistent diagrams are consistent with a T3

model.

Figure 31: Persistence modules of a population of conjunctive cells (left) and the joint
activity from populations of grid and head-direction cells (right). The persistent cocycles
are of the same kind for both, proving that both neural manifolds are homotopy equivalent
to a 3-dimensional torus T3. A 0-cocycle (blue) indicates that there is a single connected
component. There are three 1-cocycles (orange) emerging, by definition, of S1×S1×S1.
The three 2-cocycles (green) confirm the homotopy type of T3. Source: [34].
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5 Conclusions

Throughout this work we show that neural populations with receptive fields satisfying
the good cover hypothesis exhibit underlying neural manifolds of matching dimension and
homotopy type to those of the chosen stimuli space. The data set we were able to analyze
corresponds to orientation-tuned ADn head-direction cells [33]. These encode a latent
angular variable that can be represented by taking S1 as its stimuli space. Since tuning
curves provide a good cover [30], the Nerve Theorem yields a topological equivalence
between the stimuli and the representational spaces. Hence, neural coding theory offers
a solid model to understand unknown stimuli spaces from data-driven discovered neural
manifolds.

We have found that Principal Component Analysis loses a significant amount of the
data variance, which lends little credibility to the resulting representation (Fig. 15). Nev-
ertheless, we take advantage from this method to reduce dimensionality up to a captured-
variance threshold. We set it to 98.6% and, as shown in Table 1, that is captured by the
first six principal components. Then, a combination of non-linear dimensionality reduc-
tion and topological data analysis allows us to infer a more faithful characterization of
the neural manifold.

When we run Isomap, we confirm that it overestimates the embedding dimension of S1,
as it is expected for non-convex manifolds in general. Despite the optimal parameteri-
zation to perform variable decoding would be 1-dimensional, Isomap can only provide a
2-dimensional global embedding. Nevertheless, this is way more reliable to that of Prin-
cipal Component Analysis. Then, we show that persistent cohomology succeeds to infer
the topological structure of the head-direction population activity from its 6-dimensional
embedding. However, we find ourselves obliged to consult the aforementioned visualiza-
tion, since two components appear in the form of 0-cycles in the persistence diagram of
our point cloud (Fig. 26). Once we confirm that the unexpected component corresponds
to a point in the origin due to null recordings, the remaining 0- and 1-cycle reveal the
homotopy type of S1. Thus, persistent homology should be used as an initial step to-
wards parameterization to detect or rule out nontrivial topological features. We learn
from [52] that cohomology leads to a very organic circular parameterization, which is
very convenient in our case.

Although the computer that we used could not deal with the operational cost of grid
and conjunctive cell analysis, the results in [21] and [34] show us that neural coding theory
holds under more complex conditions, if appropriately regarded. It can be adjusted for
both populations with periodic firing fields and stimuli spaces given as a Cartesian product
of other known ones. Again, the circular parameterization derived from cohomology fits
for the expected torus for grid cells, S1 × S1 ∼= T2, and the 3-dimensional one predicted
for conjunctive cells, S1 × S1 × S1 ∼= T3. The persistence diagrams of grid cells (Fig. 28)
and those of conjunctive cells (Fig. 31) exhibit the expected homotopy types.

Since no torsion is expected for the predicted manifolds in our context, it follows from
the Universal Coefficient Theorem that it is equivalent to compute persistence diagrams
and barcodes in terms of homology or cohomology. Nevertheless, it is noteworthy that
barcodes —hence persistence diagrams as well— only determine the homotopy type of the
underlying manifold. Thus, its visualization via dimensionality reduction will probably
be of great help in several situations to further characterize it. Furthermore, higher-order
homology groups are usually difficult to compute, which could make us doubt about some
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results. This actually happens for H3 in the conjunctive cells example. However, since we
deal with closed orientable manifolds, Poincaré duality allows us to spot the homotopy
type of T3 from the determination of H0, H1, H2.

We also take into account that barcodes and persistence diagrams should be robust to
noise, as it follows from Stability Theorems. When we generate the control S1 ⊂ RN to
contrast the persistence diagrams obtained from head-direction cells, we actually make it
0.1 noisy. The homotopy type of S1 is clearly maintained. We could test the given bound
between cloud and persistence diagrams distance by adjusting the noise to radius ratio in
the generated ring.

As a final remark, this work highlights the importance of testing these methods in
known neural manifolds with measurable stimuli spaces, in order to provide fair interpre-
tations of unknown brain representations in the future.
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Annex

1 Data analysis of the activity of a head-direction cell population

Find the Jupyter Notebook for Python’s code attached below. The specific methods and pack-
ages used are detailed in the main document.

[8]: import pandas as pd
import numpy as np
import scipy.io
import mne

import matplotlib
import matplotlib.pyplot as plt
from tensorpac import Pac
import tables
import h5py
import time

from ripser import ripser
from persim import plot_diagrams

from sklearn import datasets
from sklearn.metrics.pairwise import pairwise_distances
from scipy import sparse

import tadasets
import sklearn
from sklearn.decomposition import PCA
from sklearn.manifold import Isomap

[2]: # X[0][:,i] are the population activity vectors (5000 times)
# Ripser gets a distance matrix, let's compute distance between activity␣

↪→vectors
def makeSparseDM(X, thresh):

N = X.shape[0]
D = pairwise_distances(X, metric='euclidean')
[I, J] = np.meshgrid(np.arange(N), np.arange(N))
I = I[D <= thresh]
J = J[D <= thresh]
V = D[D <= thresh]
return sparse.coo_matrix((V, (I, J)), shape=(N, N)).tocsr()
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Data-sets
[3]: #Control segment in 3-dimensional space

segment=np.transpose(np.array([np.arange(0,10,0.05),np.arange(0,10,0.05),np.
↪→arange(0,10,0.05)]))

#Control S1 (1-sphere) generated in a 2000 dimensional space
sph=tadasets.dsphere(n=1000, d=1, r=7, noise=0.1, ambient=2000)
print('Segment array shape:',segment.shape,'. Sphere point cloud shape:',sph.

↪→shape)

#2Dim NumpyArray of headdirection cells
#X[row:time][column:neuron] is a signal value
file = 'activity_dir.csv'
data = pd.read_csv(file, header = None)
X=(np.transpose(np.array(data))) #data dimensional check
print('Read data dimension:',np.shape(X))

Segment array shape: (200, 3) . Sphere point cloud shape: (1000, 2000)
Read data dimension: (5000, 2000)

1.1 Straight-forward PCA into 3-dimensional embedding

[4]: pca = PCA(n_components=3)
DRseg=pca.fit_transform(segment)
print('segment array shape after PCA:',DRseg.shape)
print('Segment\'s variance ratio captured per PC \[ 1PC, 2PC, 3PC\]=',pca.

↪→explained_variance_ratio_)
print('First 3PC of the segment. Total ratio variance: ',pca.

↪→explained_variance_ratio_[0]+pca.explained_variance_ratio_[1]+pca.
↪→explained_variance_ratio_[2],'\n\n')

DRsph=pca.fit_transform(sph)
print('S^1 shape after PCA:',DRsph.shape)
print('S^1 variance ratio captured per PC \[ 1PC, 2PC, 3PC\]=',pca.

↪→explained_variance_ratio_)
print('First 3PC of the generated S^1. Total ratio variance: ',pca.

↪→explained_variance_ratio_[0]+pca.explained_variance_ratio_[1]+pca.
↪→explained_variance_ratio_[2],'\n\n')

start=time.time()
DRdat=pca.fit_transform(X)
end=time.time()
print('3 PCA time: ',end-start,' seconds')
print('Data matrix shape after PCA:',DRdat.shape)
print('Data variance ratio captured per PC \[ 1PC, 2PC, 3PC\]=',pca.

↪→explained_variance_ratio_)
print('First 3PC of the data. Total ratio variance: ',pca.

↪→explained_variance_ratio_[0]+pca.explained_variance_ratio_[1]+pca.
↪→explained_variance_ratio_[2])
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segment array shape after PCA: (200, 3)
Segment's variance ratio captured per PC \[ 1PC, 2PC, 3PC\]= [1.00000000e+00
5.38879409e-34 1.35697909e-64]
First 3PC of the segment. Total ratio variance: 1.0

Sˆ1 shape after PCA: (1000, 3)
Sˆ1 variance ratio captured per PC \[ 1PC, 2PC, 3PC\]= [5.04795722e-01
4.95204278e-01 4.36232258e-34]
First 3PC of the generated Sˆ1. Total ratio variance: 1.0

3 PCA time: 0.5930335521697998 seconds
Data matrix shape after PCA: (5000, 3)
Data variance ratio captured per PC \[ 1PC, 2PC, 3PC\]= [0.35687058 0.32726411
0.11930143]
First 3PC of the data. Total ratio variance: 0.8034361242623873

[5]: fig=plt.figure(figsize=(24, 7))
ax = fig.add_subplot(1, 3, 1, projection='3d')
ax.scatter(DRseg[:,0],DRseg[:,1],DRseg[:,2], marker='.',c = plt.cm.Reds(np.

↪→linspace(0,1,200)))
ax.scatter(segment[:,0],segment[:,1],segment[:,2], marker='.',c = plt.cm.

↪→Blues(np.linspace(0,1,200)))
leg_lines = [line for line in ax.lines if line.get_linestyle()=='-']
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
plt.title("Control segment after 3-PCA",fontsize=22)

ax = fig.add_subplot(1, 3, 2, projection='3d')
ax.scatter(DRsph[:,0],DRsph[:,1],DRsph[:,2], marker='.',c = plt.cm.Blues(np.

↪→linspace(0,1,1000)))
ax.set_zlim(-0.5,0.5)
leg_lines = [line for line in ax.lines if line.get_linestyle()=='-']
plt.title("Control S^1 in a 2000-dimensional space after 3-PCA",fontsize=22)
ax.set_xlabel('1PC')
ax.set_ylabel('2PC')
ax.set_zlabel('3PC')

ax = fig.add_subplot(1, 3, 3, projection='3d')
ax.scatter(DRdat[:,0],DRdat[:,1],DRdat[:,2], marker='.',c = plt.cm.hsv(np.

↪→linspace(0,1,5000)))
leg_lines = [line for line in ax.lines if line.get_linestyle()=='-']
plt.title("2000-dimensional data after 3-PCA",fontsize=22)
ax.set_xlabel('1PC')
ax.set_ylabel('2PC')
ax.set_zlabel('3PC')

plt.tight_layout()
plt.savefig("PCA.png")
plt.show()
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1.2 PCA embedding onto 6PC to account 98% of variance among HD cells’ joint
activity

[9]: pca = PCA(n_components=6)
DRsph=pca.fit_transform(sph)
print('S^1 shape after PCA:',DRsph.shape)
print('S^1 variance ratio captured per PC \[ 1PC, 2PC, 3PC, 4PC, 5PC,␣

↪→6PC\]=',pca.explained_variance_ratio_,'\n\n')
total=0.
for i in np.arange(0,6):

total=total+pca.explained_variance_ratio_[i]
print('First 6PC of the generated S^1. Total ratio variance: ',total,'\n\n')

start=time.time()
DRdat=pca.fit_transform(X)
end=time.time()
print('6 PCA time: ', end-start,' seconds')
print('Data matrix shape after PCA:',DRdat.shape)
print('Data variance ratio captured per PC \[ 1PC, 2PC, 3PC, 4PC, 5PC,␣

↪→6PC\]=',pca.explained_variance_ratio_,'\n')
total=0.
for i in np.arange(0,6):

total=total+pca.explained_variance_ratio_[i]
print('First 6PC of the data. Total ratio variance: ',total)

Sˆ1 shape after PCA: (1000, 6)
Sˆ1 variance ratio captured per PC \[ 1PC, 2PC, 3PC, 4PC, 5PC, 6PC\]=
[5.04795722e-01 4.95204278e-01 3.15451152e-34 2.63256485e-34
2.58761955e-34 2.30873082e-34]

First 6PC of the generated Sˆ1. Total ratio variance: 0.9999999999999998

6 PCA time: 0.6660382747650146 seconds
Data matrix shape after PCA: (5000, 6)
Data variance ratio captured per PC \[ 1PC, 2PC, 3PC, 4PC, 5PC, 6PC\]=
[0.35687058 0.32726411 0.11930143 0.11756915 0.05109841 0.01406808]

First 6PC of the data. Total ratio variance: 0.9861717662715238
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1.2.1 Persistent homology on the manifold (which is embedded in 6-dimensional space of
its PC)

Ripser computes the Vietoris–Rips persistence barcodes operating by default in Z/2Z

[11]: thresh = 15

controlresults = ripser(DRsph[0:500][:], thresh = thresh, maxdim=1)
print("%i edges added in the dense filtration"%results0['num_edges'])

D = makeSparseDM(DRsph[0:500][:], thresh)
results1 = ripser(D, distance_matrix=True)
print("%i edges added in the sparse filtration"%results1['num_edges'])

122872 edges added in the dense filtration
124750 edges added in the sparse filtration

[12]: fig, axs = plt.subplots(1,2, figsize=(10,7))
axs[0].set_title("Dense filtration S^1",fontsize=18)
plot_diagrams(controlresults['dgms'], show=False, ax=axs[0])

axs[1].set_title("Sparse filtration S^1", fontsize=18)
plot_diagrams(results1['dgms'], show=False, ax=axs[1])

plt.tight_layout()
plt.savefig("6PCpersistenceS1.png")
plt.show()

[13]: thresh = 22

results0 = ripser(DRdat[1000:1700][:], thresh = thresh, maxdim=1)
print("%i edges added in the dense filtration"%results0['num_edges'])
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D = makeSparseDM(DRdat[1000:1700][:], thresh)
results1 = ripser(D, distance_matrix=True)
print("%i edges added in the sparse filtration"%results1['num_edges'])

122872 edges added in the dense filtration
122872 edges added in the sparse filtration

[14]: fig, axs = plt.subplots(1,2, figsize=(10,7))
axs[0].set_title("Dense filtration HD cells",fontsize=18)
plot_diagrams(results0['dgms'], show=False, ax=axs[0])

axs[1].set_title("Sparse filtration HD cells", fontsize=18)
plot_diagrams(results0['dgms'], show=False, ax=axs[1])

plt.tight_layout()
plt.savefig("6PCpersistence.png")
plt.show()

[15]: fig, axs = plt.subplots(1,2, figsize=(10,7))
axs[0].set_title("Control S^1 filtration",fontsize=18)
plot_diagrams(controlresults['dgms'], show=False, ax=axs[0])

axs[1].set_title("HD cells filtration", fontsize=18)
plot_diagrams(results0['dgms'], show=False, ax=axs[1])

plt.tight_layout()
plt.savefig("6PCpersistence.png")
plt.show()
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1.3 ISOMAP

[16]: #S^1 CONTROL (2 and 1 dimensional embeddings respectively)
embedding = Isomap(n_components=2,n_neighbors=12)
S_transformed = embedding.fit_transform(DRsph)
print("6PC S^1 into 2-dimensional embed has shape: ",S_transformed.

↪→shape,'\n\n')

embedding_one= Isomap(n_components=1,n_neighbors=10)
S_one = embedding_one.fit_transform(DRsph)
print("6PC S^1 into 1-dimensional embed has shape: ",S_one.shape,'\n\n')

#HEAD DIRECTION CELLS (2 and 1 dimensional embeddings respectively)
dataemb = Isomap(n_components=2, n_neighbors=10)
start=time.time()
transdata = dataemb.fit_transform(DRdat[1000:3000][:]) ###### T=2000
end=time.time()
print('Isomap 2-dim embedding for N=2000. Time:', end-start,' seconds\n\n')
print("6PC HD data into 2-dimensional embed has shape: ",transdata.shape)
print("2-dim reconstruction error: ",dataemb.reconstruction_error())

dataemb_one = Isomap(n_components=1,n_neighbors=10)
transdata_one = dataemb_one.fit_transform(DRdat[1000:3000][:])
print("6PC HD data into 1-dimensional embed has shape: ",transdata_one.shape)
print("1-dim reconstruction error: ",dataemb_one.reconstruction_error())

6PC Sˆ1 into 2-dimensional embed has shape: (1000, 2)
6PC Sˆ1 into 1-dimensional embed has shape: (1000, 1)

Isomap 2-dim embedding for N=2000. Time: 1.565089464187622 seconds
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6PC HD data into 2-dimensional embed has shape: (2000, 2)
2-dim reconstruction error: 182.87858871669644

6PC HD data into 1-dimensional embed has shape: (2000, 1)
1-dim reconstruction error: 430.45360594096616

[17]: fig, axs = plt.subplots(1,2, figsize=(25,12.5))
axs[0].set_title("S^1 in 6PC to 2-dimensional embedding with␣

↪→ISOMAP",fontsize=27)
axs[0].scatter(S_transformed[:, 0], S_transformed[:, 1], c = plt.cm.Blues(np.

↪→linspace(0,1,1000)))
axs[0].set_xlabel('1st variable', fontsize=20)
axs[0].set_ylabel('2nd variable', fontsize=20)

axs[1].set_title("HD data in 6PC to 2-dimensional embedding with ISOMAP",␣
↪→fontsize=27)

axs[1].scatter(transdata[:, 0], transdata[:, 1], c = plt.cm.Reds(np.
↪→linspace(0,1,2000)))#datasize

axs[1].set_xlabel('1st variable',fontsize=20)
axs[1].set_ylabel('2nd variable', fontsize=20)

plt.tight_layout()
plt.savefig("2ISOMAP.png")
plt.show()

fig, axs = plt.subplots(1,2, figsize=(25,5))

axs[0].set_title("S^1 in 6PC to 1-dimensional embedding with␣
↪→ISOMAP",fontsize=20)

axs[0].scatter(S_one[:, 0], np.zeros(1000), c = plt.cm.Blues(np.
↪→linspace(0,1,1000)))

axs[0].set_ylim(-0.1,0.1)
axs[0].set_xlabel('Encoded 1D variable', fontsize=25)

axs[1].set_title("HD data in 6PC to 1-dimensional embedding with ISOMAP",␣
↪→fontsize=20)

axs[1].scatter(transdata_one[:, 0], np.zeros(2000), c = plt.cm.Reds(np.
↪→linspace(0,1,2000)))#datasize

axs[1].set_ylim(-0.1,0.1)
axs[1].set_xlabel('Encoded 1D variable',fontsize=25)

plt.tight_layout()
plt.savefig("1ISOMAP.png")
plt.show()
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[18]: #S^1 CONTROL (3-dimensional embeddings)
triembed = Isomap(n_components=3,n_neighbors=12)
S_tridim = triembed.fit_transform(DRsph)
print("6PC S^1 into 3-dimensional embed has shape: ",S_tridim.shape,'\n\n')

datatriemb = Isomap(n_components=3,n_neighbors=10)
dat_tridim = datatriemb.fit_transform(DRdat[1000:3000][:])
print("Reconstruction error: ",datatriemb.reconstruction_error())
print("6PC HD data into 1-dimensional embed has shape: ",dat_tridim.shape)

6PC Sˆ1 into 3-dimensional embed has shape: (1000, 3)

Reconstruction error: 176.99034861063564
6PC HD data into 1-dimensional embed has shape: (2000, 3)

[19]: #######################################################################################################33
fig=plt.figure(figsize=(25, 7))
ax = fig.add_subplot(1, 2, 1, projection='3d')
ax.scatter(S_tridim[:, 0], S_tridim[:, 1], S_tridim[:, 2], c = plt.cm.

↪→Blues(np.linspace(0,1,1000)))
leg_lines = [line for line in ax.lines if line.get_linestyle()=='-']
ax.set_xlabel('x')

ix



ax.set_ylabel('y')
ax.set_zlabel('z')
ax.set_xlim(-12,12)
ax.set_ylim(-12,12)
ax.set_zlim(-8,8)
plt.title("S^1 in 6PC to 3-dimensional embedding with ISOMAP",fontsize=25)

ax = fig.add_subplot(1, 2, 2, projection='3d')
ax.scatter(dat_tridim[:, 0], dat_tridim[:, 1], dat_tridim[:, 2], c = plt.cm.

↪→Reds(np.linspace(0,1,2000)))#datasize
leg_lines = [line for line in ax.lines if line.get_linestyle()=='-']
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
plt.title("HD data in 6PC to 3-dimensional embedding with ISOMAP",␣

↪→fontsize=25)

plt.tight_layout()
plt.savefig("3dISOMAP.png")
plt.show()

x


	Data analysis of the activity of a head-direction cell population
	Straight-forward PCA into 3-dimensional embedding
	PCA embedding onto 6PC to account 98% of variance among HD cells' joint activity
	Persistent homology on the manifold (which is embedded in 6-dimensional space of its PC)

	ISOMAP


