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Abstract

Measurements of b-hadron lifetimes are reported using pp collision data, corre-
sponding to an integrated luminosity of 1.0 fb−1, collected by the LHCb detector
at a centre-of-mass energy of 7 TeV. Using the exclusive decays B+ → J/ψK+,
B0→ J/ψK∗(892)0, B0→ J/ψK0

S , Λ0
b→ J/ψΛ and B0

s→ J/ψφ the average decay
times in these modes are measured to be

τB+→J/ψK+ = 1.637 ± 0.004 ± 0.003 ps,

τB0→J/ψK∗0 = 1.524 ± 0.006 ± 0.004 ps,

τB0→J/ψK0
S

= 1.499 ± 0.013 ± 0.005 ps,

τΛ0
b→J/ψΛ

= 1.415 ± 0.027 ± 0.006 ps,

τB0
s→J/ψφ = 1.480 ± 0.011 ± 0.005 ps,

where the first uncertainty is statistical and the second is systematic. These represent
the most precise lifetime measurements in these decay modes. In addition, ratios
of these lifetimes, and the ratio of the decay-width difference, ∆Γd, to the average
width, Γd, in the B0 system, ∆Γd/Γd = −0.044± 0.025± 0.011, are reported. All
quantities are found to be consistent with Standard Model expectations.

Submitted to JHEP

c© CERN on behalf of the LHCb collaboration, license CC-BY-3.0.

†Authors are listed on the following pages.

ar
X

iv
:1

40
2.

25
54

v2
  [

he
p-

ex
] 

 1
9 

M
ar

 2
01

4

http://creativecommons.org/licenses/by/3.0/


ii



LHCb collaboration

R. Aaij40, B. Adeva36, M. Adinolfi45, A. Affolder51, Z. Ajaltouni5, J. Albrecht9, F. Alessio37,
M. Alexander50, S. Ali40, G. Alkhazov29, P. Alvarez Cartelle36, A.A. Alves Jr24, S. Amato2,
S. Amerio21, Y. Amhis7, L. Anderlini17,g, J. Anderson39, R. Andreassen56, M. Andreotti16,f ,
J.E. Andrews57, R.B. Appleby53, O. Aquines Gutierrez10, F. Archilli37, A. Artamonov34,
M. Artuso58, E. Aslanides6, G. Auriemma24,n, M. Baalouch5, S. Bachmann11, J.J. Back47,
A. Badalov35, V. Balagura30, W. Baldini16, R.J. Barlow53, C. Barschel38, S. Barsuk7,
W. Barter46, V. Batozskaya27, Th. Bauer40, A. Bay38, J. Beddow50, F. Bedeschi22, I. Bediaga1,
S. Belogurov30, K. Belous34, I. Belyaev30, E. Ben-Haim8, G. Bencivenni18, S. Benson49,
J. Benton45, A. Berezhnoy31, R. Bernet39, M.-O. Bettler46, M. van Beuzekom40, A. Bien11,
S. Bifani44, T. Bird53, A. Bizzeti17,i, P.M. Bjørnstad53, T. Blake47, F. Blanc38, J. Blouw10,
S. Blusk58, V. Bocci24, A. Bondar33, N. Bondar29, W. Bonivento15,37, S. Borghi53, A. Borgia58,
M. Borsato7, T.J.V. Bowcock51, E. Bowen39, C. Bozzi16, T. Brambach9, J. van den Brand41,
J. Bressieux38, D. Brett53, M. Britsch10, T. Britton58, N.H. Brook45, H. Brown51, A. Bursche39,
G. Busetto21,r, J. Buytaert37, S. Cadeddu15, R. Calabrese16,f , O. Callot7, M. Calvi20,k,
M. Calvo Gomez35,p, A. Camboni35, P. Campana18,37, D. Campora Perez37, A. Carbone14,d,
G. Carboni23,l, R. Cardinale19,j , A. Cardini15, H. Carranza-Mejia49, L. Carson49,
K. Carvalho Akiba2, G. Casse51, L. Castillo Garcia37, M. Cattaneo37, Ch. Cauet9, R. Cenci57,
M. Charles8, Ph. Charpentier37, S.-F. Cheung54, N. Chiapolini39, M. Chrzaszcz39,25, K. Ciba37,
X. Cid Vidal37, G. Ciezarek52, P.E.L. Clarke49, M. Clemencic37, H.V. Cliff46, J. Closier37,
C. Coca28, V. Coco37, J. Cogan6, E. Cogneras5, P. Collins37, A. Comerma-Montells35,
A. Contu15,37, A. Cook45, M. Coombes45, S. Coquereau8, G. Corti37, I. Counts55,
B. Couturier37, G.A. Cowan49, D.C. Craik47, M. Cruz Torres59, S. Cunliffe52, R. Currie49,
C. D’Ambrosio37, J. Dalseno45, P. David8, P.N.Y. David40, A. Davis56, I. De Bonis4,
K. De Bruyn40, S. De Capua53, M. De Cian11, J.M. De Miranda1, L. De Paula2, W. De Silva56,
P. De Simone18, D. Decamp4, M. Deckenhoff9, L. Del Buono8, N. Déléage4, D. Derkach54,
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D. Golubkov30, A. Golutvin52,30,37, A. Gomes1,a, H. Gordon37, M. Grabalosa Gándara5,
R. Graciani Diaz35, L.A. Granado Cardoso37, E. Graugés35, G. Graziani17, A. Grecu28,
E. Greening54, S. Gregson46, P. Griffith44, L. Grillo11, O. Grünberg60, B. Gui58, E. Gushchin32,
Yu. Guz34,37, T. Gys37, C. Hadjivasiliou58, G. Haefeli38, C. Haen37, T.W. Hafkenscheid62,
S.C. Haines46, S. Hall52, B. Hamilton57, T. Hampson45, S. Hansmann-Menzemer11, N. Harnew54,
S.T. Harnew45, J. Harrison53, T. Hartmann60, J. He37, T. Head37, V. Heijne40, K. Hennessy51,
P. Henrard5, J.A. Hernando Morata36, E. van Herwijnen37, M. Heß60, A. Hicheur1, D. Hill54,
M. Hoballah5, C. Hombach53, W. Hulsbergen40, P. Hunt54, N. Hussain54, D. Hutchcroft51,

iii



D. Hynds50, V. Iakovenko43, M. Idzik26, P. Ilten55, R. Jacobsson37, A. Jaeger11, E. Jans40,
P. Jaton38, A. Jawahery57, F. Jing3, M. John54, D. Johnson54, C.R. Jones46, C. Joram37,
B. Jost37, N. Jurik58, M. Kaballo9, S. Kandybei42, W. Kanso6, M. Karacson37, T.M. Karbach37,
I.R. Kenyon44, T. Ketel41, B. Khanji20, C. Khurewathanakul38, S. Klaver53, O. Kochebina7,
I. Komarov38, R.F. Koopman41, P. Koppenburg40, M. Korolev31, A. Kozlinskiy40,
L. Kravchuk32, K. Kreplin11, M. Kreps47, G. Krocker11, P. Krokovny33, F. Kruse9,
M. Kucharczyk20,25,37,k, V. Kudryavtsev33, K. Kurek27, T. Kvaratskheliya30,37, V.N. La Thi38,
D. Lacarrere37, G. Lafferty53, A. Lai15, D. Lambert49, R.W. Lambert41, E. Lanciotti37,
G. Lanfranchi18, C. Langenbruch37, T. Latham47, C. Lazzeroni44, R. Le Gac6, J. van Leerdam40,
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59Pontif́ıcia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil, associated to 2

60Institut für Physik, Universität Rostock, Rostock, Germany, associated to 11

61National Research Centre Kurchatov Institute, Moscow, Russia, associated to 30

62KVI - University of Groningen, Groningen, The Netherlands, associated to 40

63Celal Bayar University, Manisa, Turkey, associated to 37
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jUniversità di Genova, Genova, Italy
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1 Introduction

Within the framework of heavy quark expansion (HQE) theory [1–7], b-hadron observables
are calculated as a perturbative expansion in inverse powers of the b-quark mass, mb. At
zeroth order the lifetimes of all weakly decaying b hadrons are equal, with corrections
appearing at order 1/m2

b . Ratios of b-hadron lifetimes can be theoretically predicted with
higher accuracy than absolute lifetimes since many terms in the HQE cancel. The latest
theoretical predictions and world-average values for the b-hadron lifetimes and lifetime
ratios are reported in Table 1. A measurement of the ratio of the Λ0

b baryon lifetime, using
the Λ0

b → J/ψpK− decay mode1, to that of the B0 meson lifetime has recently been made
by the LHCb collaboration [8] and is not yet included in the world average.

In this paper, a measurement of the lifetimes of the B+, B0 and B0
s mesons and Λ0

b

baryon is reported using pp collision data, corresponding to an integrated luminosity of
1.0 fb−1, collected in 2011 with the LHCb detector at a centre-of-mass energy of 7 TeV.
The lifetimes are measured from the reconstructed b-hadron decay time distributions of
the exclusive decay modes B+→ J/ψK+, B0→ J/ψK∗(892)0, B0→ J/ψK0

S , B0
s→ J/ψφ

and Λ0
b→ J/ψΛ. Collectively, these are referred to as Hb→ J/ψX decays. In addition,

measurements of lifetime ratios are reported.
As a result of neutral meson mixing the decay time distribution of neutral B0

q mesons
(q ∈ {s, d}) is characterised by two parameters, namely the average decay width Γq and
the decay width difference ∆Γq between the light (L) and heavy (H) B0

q mass eigenstates.

The summed decay rate of B0
q and B

0

q mesons to a final state f is given by [9–11]

〈Γ(B0
q (t)→ f)〉 ≡ Γ(B0

q (t)→ f) + Γ(B
0

q(t)→ f) = Rf
q,Le

−Γq,Lt +Rf
q,He

−Γq,Ht, (1)

where terms proportional to the small flavour specific asymmetry, aqfs, are ignored [12].
Therefore, for non-zero ∆Γq the decay time distribution of neutral B0

q decays is not purely

exponential. In the case of an equal admixture of B0
q and B

0

q at t = 0, the observed average
decay time is given by [11]

τB0
q→f =

1

Γq

1

1− y2
q

(
1 + 2Af∆Γq

yq + y2
q

1 +Af∆Γq
yq

)
, (2)

where yq ≡ ∆Γq/(2Γq) and Af∆Γq
≡ (Rf

q,H − Rf
q,L)/(Rf

q,H + Rf
q,L) is an observable that

depends on the final state, f . As such, the lifetimes measured are usually referred to as
effective lifetimes. In the B0

s system, where ∆Γs/Γs = 0.159± 0.023 [13], the deviation
from an exponential decay time distribution is non-negligible. In contrast, in the B0

system this effect is expected to be small as ∆Γd/Γd is predicted to be (42± 8)× 10−4 in
the Standard Model (SM) [14,15]. Both the BaBar [16,17] and Belle [18] collaborations
have measured |∆Γd/Γd| and the current world average is |∆Γd/Γd| = 0.015± 0.018 [13].
A deviation in the value of ∆Γd from the SM prediction has recently been proposed [19] as

1Charge conjugation is implied throughout this paper, unless otherwise stated.
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Table 1: Theoretical predictions and current world-average values [13] for b-hadron lifetimes and
lifetime ratios.

Observable Prediction World average
τB+ [ ps ] – 1.641± 0.008
τB0 [ ps ] – 1.519± 0.007
τB0

s
[ ps ] – 1.516± 0.011

τΛ0
b
[ ps ] – 1.429± 0.024

τB+/τB0 1.063± 0.027 [15,22,23] 1.079± 0.007
τB0

s
/τB0 1.00 ± 0.01 [15,23–25] 0.998± 0.009

τΛ0
b
/τB0 0.86–0.95 [3, 23, 26–32] 0.941± 0.016

a potential explanation for the anomalous like-sign dimuon charge asymmetry measured by
the D0 collaboration [20]. In this paper, ∆Γd/Γd is measured from the effective lifetimes
of B0→ J/ψK∗(892)0 and B0→ J/ψK0

S decays, as proposed in Ref. [21].
The main challenge in the measurements reported is understanding and controlling

the detector acceptance, reconstruction and selection efficiencies that depend upon the
b-hadron decay time. This paper is organised as follows. Section 2 describes the LHCb
detector and software. The selection criteria for the b-hadron candidates are described
in Sec. 3. Section 4 describes the reconstruction efficiencies and the techniques used to
correct the decay time distributions. Section 5 describes how the efficiency corrections are
incorporated into the maximum likelihood fit that is used to measure the signal yields and
lifetimes. The systematic uncertainties on the measurements are described in Sec. 6. The
final results and conclusions are presented in Sec. 7.

2 Detector and software

The LHCb detector [33] is a single-arm forward spectrometer covering the pseudorapidity
range 2 < η < 5, designed for the study of particles containing b or c quarks. The
detector includes a high-precision tracking system consisting of a silicon-strip vertex
detector (VELO) surrounding the pp interaction region, a large-area silicon-strip detector
(TT) located upstream of a dipole magnet with a bending power of about 4 Tm, and
three stations of silicon-strip detectors and straw drift tubes placed downstream. The
combined tracking system provides a momentum, p, measurement with relative uncertainty
that varies from 0.4% at 5 GeV/c to 0.6% at 100 GeV/c, and impact parameter resolution
of 20µm for charged particles with high transverse momentum, pT. Charged hadrons
are identified using two ring-imaging Cherenkov detectors [34]. Photon, electron and
hadron candidates are identified by a calorimeter system consisting of scintillating-pad and
preshower detectors, an electromagnetic calorimeter and a hadronic calorimeter. Muons
are identified by a system composed of alternating layers of iron and multiwire proportional
chambers [35]. The right-handed coordinate system adopted has the z-axis along the
beam line and the y-axis along the vertical. The trigger [36] consists of a hardware stage,
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based on information from the calorimeter and muon systems, followed by a software stage,
which applies a full event reconstruction.

Two distinct classes of tracks are reconstructed using hits in the tracking stations on
both sides of the magnet, either with hits in the VELO (long track) or without (downstream
track). The vertex resolution of b-hadron candidates reconstructed using long tracks is
better than that for candidates reconstructed using downstream tracks. However, the use
of long tracks introduces a dependence of the reconstruction efficiency on the b-hadron
decay time.

In the simulation, pp collisions are generated using Pythia 6.4 [37] with a specific
LHCb configuration [38]. Decays of hadronic particles are described by EvtGen [39],
in which final state radiation is generated using Photos [40]. The interaction of the
generated particles with the detector and its response are implemented using the Geant4
toolkit [41] as described in Ref. [42].

3 Candidate selection

The reconstruction of each of the Hb→ J/ψX decays is similar and commences by selecting
J/ψ → µ+µ− decays. Events passing the hardware trigger contain dimuon candidates with
high transverse momentum. The subsequent software trigger is composed of two stages.
The first stage performs a partial event reconstruction and requires events to have two
well-identified oppositely charged muons with an invariant mass larger than 2.7 GeV/c2.
The selection at this stage has a uniform efficiency as a function of decay time. The second
stage performs a full event reconstruction, calculating the position of each pp interaction
vertex (PV) using all available charged particles in the event. The average number of PVs
in each event is approximately 2.0. Their longitudinal (z) position is known to a precision
of approximately 0.05 mm. If multiple PVs are reconstructed in the event, the one with the
minimum value of χ2

IP is associated with the J/ψ candidate, where χ2
IP is the increase in

the χ2 of the PV fit if the candidate trajectory is included. Events are retained for further
processing if they contain a J/ψ → µ+µ− pair that forms a vertex that is significantly
displaced from the PV. This introduces a non-uniform efficiency as function of decay time.

The offline sample of J/ψ meson candidates is selected by requiring each muon to
have pT larger than 500 MeV/c and the J/ψ candidate to be displaced from the PV by
more than three times its decay length uncertainty. The invariant mass of the two muons,
m(µ+µ−), must be in the range [3030, 3150] MeV/c2.

The b-hadron candidate selection is performed by applying kinematic and particle
identification criteria to the final-state tracks, the details of which are reported in Sec. 3.1
to 3.5. No requirements are placed on variables that are highly correlated to the b-hadron
decay time, thereby avoiding the introduction of additional biases. All final-state particles
are required to have a pseudorapidity in the range 2.0 < η < 4.5. In addition, the z-position
of the PV (zPV) is required to be within 100 mm of the nominal interaction point, where
the standard deviation of the zPV distribution is approximately 47 mm. These criteria
cause a reduction of approximately 10% in signal yield but define a fiducial region where
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the reconstruction efficiency is largely uniform.
The maximum likelihood fit uses the invariant mass, m(J/ψX), and proper decay

time, t, of each b-hadron candidate. The decay time of the b-hadron candidate in its
rest frame is derived from the relation t = ml/q, where m is its invariant mass and the
decay length, l, and the momentum, q, are measured in the experimental frame. In this
paper, t is computed using a kinematic decay-tree fit (DTF) [43] involving all final-state
tracks from the b-hadron candidate with a constraint on the position of the associated
PV. Unlike in the trigger, the position of each PV is calculated using all available charged
particles in the event after the removal of the b-hadron candidate final-state tracks. This
is necessary to prevent the final-state tracks from biasing the PV position towards the
b-hadron decay vertex and helps to reduce the tails of the decay-time resolution function.
This prescription does not bias the measured lifetime using simulated events. The χ2 of
the fit, χ2

DTF, is useful to discriminate between signal and background. In cases where
there are multiple b-hadron candidates per event, the candidate with the smallest χ2

DTF

is chosen. The z-position of the displaced b-hadron vertices are known to a precision of
approximately 0.15 mm.

Studies of simulated events show that in the case of B0→ J/ψK∗0 (B0
s→ J/ψφ) decays,

imposing requirements on χ2
DTF introduces a dependence of the selection efficiency on

the decay time if the K+ and π− (K+ and K−) tracks are included in the DTF. If no
correction is applied to the decay time distribution, the measured lifetime would be biased
by approximately −2 fs relative to the generated value. Using simulated events it is found
that this effect is correlated to the opening angle between the K+ and π− (K+ and K−)
from the K∗0 (φ) decay. No effect is observed for the muons coming from the J/ψ decay
due to the larger opening angle in this case. To remove the effect, the calculation of χ2

DTF

for the B0→ J/ψK∗0 and B0
s→ J/ψφ channels is performed with an alternative DTF in

which the assigned track parameter uncertainties of the kaon and pion are increased in
such a way that their contribution to the b-hadron vertex position is negligible.

Candidates are required to have t in the range [0.3, 14.0] ps. The lower bound on the
decay time suppresses a large fraction of the prompt combinatorial background that is
composed of tracks from the same PV, while the upper bound is introduced to reduce
the sensitivity to long-lived background candidates. In the case of the B0→ J/ψK0

S and
Λ0
b→ J/ψΛ decays, the lower bound is increased to 0.45 ps to compensate for the worse

decay time resolution in these modes.
In events with multiple PVs, b-hadron candidates are removed if they have a χ2

IP with
respect to the next best PV smaller than 50. This requirement is found to distort the decay
time distribution, but reduces a source of background due to the incorrect association of
the b hadron to its production PV.

The invariant mass is computed using another kinematic fit without any constraint
on the PV position but with the invariant mass of the µ+µ− pair, m(µ+µ−), constrained
to the known J/ψ mass [44]. Figures 1 and 2 show the m(J/ψX) distributions for the
selected candidates in each final state and Table 2 gives the corresponding signal yields.
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Figure 1: Distributions of the (left) mass and (right) decay time of B+ → J/ψK+,
B0→ J/ψK∗0 and B0→ J/ψK0

S candidates and their associated residual uncertainties
(pulls). The data are shown by the black points; the total fit function by the black solid
line; the signal contribution by the red dashed line and the background contribution by
the blue dotted line.
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Figure 2: Distributions of the (left) mass and (right) decay time of B0
s → J/ψφ and

Λ0
b → J/ψΛ candidates and their associated residual uncertainties (pulls). The data

are shown by the black points; the total fit function by the black solid line; the signal
contribution by the red dashed line and the background contribution by the blue dotted
line.
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Table 2: Estimated event yields for the five b → J/ψX channels selected using the criteria
described in Sec. 3.1 to 3.5.

Channel Yield
B+→ J/ψK+ 229 434± 503
B0→ J/ψK∗0 70 534± 312
B0→ J/ψK0

S 17 045± 175
B0
s→ J/ψφ 18 662± 152

Λ0
b→ J/ψΛ 3 960± 89

3.1 Selection of B+→ J/ψK+ decays

The B+ candidates are reconstructed by combining the J/ψ candidates with a charged
particle that is identified as a kaon with pT larger than 1 GeV/c and p larger than 10 GeV/c.
The invariant mass, m(J/ψK+), must be in the range [5170, 5400] MeV/c2, where the lower
bound is chosen to remove feed-down from incompletely reconstructed B0 → J/ψK∗0

decays. The χ2
DTF of the fit, which has 5 degrees of freedom, is required to be less than 25.

Multiple B+ candidates are found in less than 0.02% of selected events.

3.2 Selection of B0→ J/ψK∗0 decays

The K∗0 candidates are reconstructed by combining two oppositely charged particles
that are identified as a kaon and a pion. The pion and K∗0 must have pT greater than
0.3 GeV/c and 1.5 GeV/c, respectively. The invariant mass, m(K+π−), must be in the
range [826, 966] MeV/c2.

The B0 candidates are reconstructed by combining the J/ψ and K∗0 candidates. The
invariant mass, m(J/ψK+π−), must be in the range [5150, 5340] MeV/c2, where the upper

bound is chosen to remove the contribution from B0
s → J/ψK

∗0
decays. The χ2

DTF of the
fit, which has 3 degrees of freedom, is required to be less than 15. Multiple B0 candidates
are found in 2.2% of selected events.

3.3 Selection of B0→ J/ψK0
S

decays

The K0
S candidates are formed from the combination of two oppositely charged particles

that are identified as pions and reconstructed as downstream tracks. This is necessary
since studies of simulated signal decays demonstrate that an inefficiency depending on
the b-hadron decay time is introduced by the reconstruction of the long-lived K0

S and Λ
particles using long tracks. Even so, it is found that the acceptance of the TT still depends
on the origin of the tracks. This effect is removed by further tightening of the requirement
on the position of the PV to zPV > −50 mm.

For particles produced close to the interaction region, this effect is suppressed by the
requirements on the fiducial region for the PV, which is further tightened by requiring
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that , to account for the additional acceptance introduced by the TT.
The downstream pions are required to have pT greater than 0.1 GeV/c and p greater

than 2 GeV/c. The K0
S candidate must have pT greater than 1 GeV/c and be well separated

from the B0 decay vertex, to suppress potential background from B0→ J/ψK∗0 decays
where the kaon has been misidentified as a pion. The χ2 of the K0

S vertex fit must be less
than 25 and the invariant mass of the dipion system, m(π+π−), must be within 15 MeV/c2

of the known K0
S mass [44]. For subsequent stages of the selection, m(π+π−) is constrained

to the known K0
S mass.

The invariant mass, m(J/ψK0
S ), of the J/ψ and K0

S candidate combination must be in
the range [5150, 5340] MeV/c2, where the upper bound is chosen to remove the contribution
from B0

s → J/ψK0
S decays. The χ2

DTF of the fit, which has 6 degrees of freedom, is required
to be less than 30. Multiple B0 candidates are found in less than 0.4% of selected events.

3.4 Selection of B0
s→ J/ψφ decays

The φ candidates are formed from two oppositely charged particles that have been identified
as kaons and originate from a common vertex. The K+K− pair is required to have pT

larger than 1 GeV/c. The invariant mass of the K+K− pair, m(K+K−), must be in the
range [990, 1050] MeV/c2.

The B0
s candidates are reconstructed by combining the J/ψ candidate with the K+K−

pair, requiring the invariant mass, m(J/ψK+K−), to be in the range [5200, 5550] MeV/c2.
The χ2

DTF of the fit, which has 3 degrees of freedom, is required to be less than 15. Multiple
B0
s candidates are found in less than 2.0% of selected events.

3.5 Selection of Λ0
b→ J/ψΛ decays

The selection of Λ0
b→ J/ψΛ candidates follows a similar approach to that adopted for

B0→ J/ψK0
S decays. Only downstream protons and pions are used to reconstruct the

Λ candidates. The pions are required to have pT larger than 0.1 GeV/c, while pions and
protons must have p larger than 2 GeV/c. The Λ candidate must be well separated from
the Λ0

b decay vertex and have pT larger than 1 GeV/c. The χ2 of the Λ vertex fit must
be less than 25 and m(pπ−) must be within 6 MeV/c2 of the known Λ mass [44]. For
subsequent stages of the selection, m(pπ−) is constrained to the known Λ mass.

The invariant mass, m(J/ψΛ), of the J/ψ and Λ candidate combination must be in the
range [5470, 5770] MeV/c2. The χ2

DTF of the fit, which has 6 degrees of freedom, is required
to be less than 30. Multiple Λ0

b candidates are found in less than 0.5% of selected events.

4 Dependence of efficiencies on decay time

Section 3 described the reconstruction and selection criteria of the Hb→ J/ψX decays and
various techniques that have been used to minimise the dependence of selection efficiencies
upon the decay time. After these steps, there remain two effects that distort the b-hadron
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Figure 3: VELO-track reconstruction efficiency for kaon tracks reconstructed using the (a) online
and (b) offline algorithms as a function of the kaon ρ, as defined in Eq. (3). The red solid lines
show the result of an unbinned maximum likelihood fit using the parameterisation in Eq. (4) to
the background subtracted data (black points).

decay time distribution. These are caused by the VELO-track reconstruction efficiency,
εVELO, and the combination of the trigger efficiency, εtrigger, and offline selection efficiency,
εselection|trigger. This section will describe these effects and the techniques that are used to
evaluate the efficiencies from data control samples.

4.1 VELO-track reconstruction efficiency

The largest variation of the efficiency with the decay time is introduced by the track
reconstruction in the VELO. The track finding procedure in the VELO assumes that
tracks originate approximately from the interaction region [33,45]. In the case of long-lived
b-hadron candidates this assumption is not well justified, leading to a loss of reconstruction
efficiency for charged particle tracks from the b-hadron decay.

The distance of closest approach of the track to the z-axis is defined as

ρ ≡ |(d− v) · (p× ẑ)|
|p× ẑ|

, (3)

where p is the momentum of the final-state track from a b-hadron candidate decaying at
point d, ẑ is a unit vector along the z-axis and v is the origin of the VELO coordinate system.
During data taking the position of the LHCb VELO is monitored as a function of time and
is centred around the LHC beam line. Using a control sample of B+→ J/ψK+ candidates
where the K+ is reconstructed as a downstream track, the VELO-track reconstruction
efficiency, εVELO(ρ), is computed as the fraction of these tracks that are also reconstructed
as long tracks. From samples of simulated b-hadron decays, it is observed that εVELO(ρ)
can be empirically parameterised by

εVELO(ρ) = a(1 + cρ2), (4)
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Table 3: VELO reconstruction efficiency in data for kaon tracks reconstructed with the online
and offline algorithms. In both cases, the correlation coefficient between a and c is 0.2.

a c [ mm−2]
Online 0.9759± 0.0005 −0.0093± 0.0007
Offline 0.9831± 0.0004 −0.0041± 0.0005

where the parameters a and c are determined from a fit to the unbinned efficiency
distribution.

Figure 3 shows the VELO-track reconstruction efficiency obtained using this method
and Table 3 shows the corresponding fit results. Since different configurations of the VELO
reconstruction algorithms are used within the LHCb software trigger (online) and during
the subsequent processing (offline), it is necessary to evaluate two different efficiencies.
The stronger dependence of the online efficiency as a function of ρ is due to the additional
requirements used in the first stage of the software trigger such that it satisfies the required
processing time.

Applying the same technique to a simulated sample of B+→ J/ψK+ decays yields
qualitatively similar behaviour for εVELO(ρ). Studies on simulated data show that the
efficiency for kaons and pions from the decay of φ and K∗0 mesons is smaller than for the
kaon in B+→ J/ψK+ decays, due to the small opening between the particles in the φ and
K∗0 decays, as discussed in Sec. 3. In addition, there are kinematic differences between the
calibration B+ sample and the signal samples. Scaling factors on the efficiency parameters
are derived from simulation to account for these effects, and have typical sizes in the range
[1.04, 1.65], depending on the decay mode and final-state particle being considered.

The distortion to the b-hadron candidate decay time distribution caused by the VELO-
track reconstruction is corrected for by weighting each b-hadron candidate by the inverse
of the product of the per-track efficiencies. The systematic effect introduced by this
weighting is tested using simulated samples of each channel. The chosen efficiency depends
on whether the particle is reconstructed with the online or offline variant of the algorithm.
Studies on simulated data show that tracks found by the online tracking algorithm are
also found by the offline tracking efficiency. For example, the efficiency weight for each
B0→ J/ψK∗0 candidate takes the form

wB0→J/ψK∗0 = 1/
(
εµ

+

VELO,online ε
µ−

VELO,online ε
K+

VELO,offline ε
π−

VELO,offline

)
, (5)

since the two muons are required to be reconstructed online, while the kaons and the pions
are reconstructed offline.

In the case of the B0→ J/ψK0
S and Λ0

b→ J/ψΛ channels, since no VELO information
is used when reconstructing the K0

S and Λ particles, the candidate weighting functions

take the form w = 1/
(
εµ

+

VELO,online ε
µ−

VELO,online

)
.
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Figure 4: Combined trigger and selection efficiency, εselection(t), for B+→ J/ψK+ candidates.

4.2 Trigger and selection efficiency

The efficiency of the second stage of the software trigger depends on the b-hadron decay time
as it requires that the J/ψ meson is significantly displaced from the PV. A parameterisation
of this efficiency, εtrigger(t), is obtained for each b → J/ψX decay mode by exploiting a
corresponding sample of b→ J/ψX candidates that are selected without any displacement
requirement. For each channel, the control sample corresponds to approximately 40% of
the total number of signal candidates. A maximum likelihood fit to the unbinned invariant
mass distribution m(J/ψX) is performed to determine the fraction of signal decays that
survive the decay-time biasing trigger requirements as a function of decay time.

The same technique is used to determine the decay time efficiency of the triggered
candidates caused by the offline selection, εselection|trigger(t), which is introduced by the
requirement on the detachment of the J/ψ mesons in the sample used to reconstruct the
b-hadron decays. The combined selection efficiency, εselection(t), is given by the product of
εtrigger(t) and εselection|trigger(t).

Figure 4 shows εselection(t) obtained for the B+→ J/ψK+ channel as a function of decay
time. The efficiencies obtained for the other Hb→ J/ψX channels are qualitatively similar.
Studies using simulated events show that the efficiency drop below 0.5 ps is caused by the
J/ψ displacement requirement. The dip near 1.5 ps appears because the PV reconstruction
in the software trigger is such that some final-state tracks of short-lived b-hadron decays
may be used to reconstruct an additional fake PV close to the true b-hadron decay vertex.
As a result the reconstructed J/ψ meson does not satisfy the displacement requirement,
leading to a decrease in efficiency.

The efficiency parameterisation for each channel is used in the fit to measure the
corresponding b-hadron lifetime. An exception is made for the Λ0

b → J/ψΛ channel where,
owing to its smaller event yield, εselection(t) measured with B0→ J/ψK0

S decays is used
instead. The validity of this approach is checked using large samples of simulated events.
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5 Maximum likelihood fit

For each channel, the lifetime is determined from a two-dimensional maximum likelihood fit
to the unbinned m(J/ψX) and t distributions. The full probability density function (PDF)
is constructed as P = fs(Sm × St) + (1− fs)(Bm × Bt), where fs is the signal fraction,
determined in the fit, and Sm ×St and Bm ×Bt are the (m(J/ψX), t) PDFs for the signal
and background components, respectively. A systematic uncertainty is assigned to the
assumption that the PDFs factorise.

The signal mass PDF, Sm, is modelled by the sum of two Gaussian functions. The free
parameters in the fit are the common mean, the width of the narrower Gaussian function,
the ratio of the second to the first Gaussian width and the fraction of the first Gaussian
function. The background mass distribution, Bm, is modelled by an exponential function
with a single free parameter.

The signal b-hadron decay time distribution is described by an exponential function
with decay constant given by the b-hadron lifetime, τHb→J/ψX . The signal decay time
PDF, St, is obtained by multiplying the exponential function by the combined t-dependent
trigger and selection efficiency described in Sec. 4.2. From inspection of events in the
sidebands of the b-hadron signal peak, the background decay time PDF, Bt, is well modelled
by a sum of three exponential functions with different decay constants that are free in
the fit. These components originate from a combination of prompt candidates, where
all tracks originate from the same PV, and long-lived candidates where tracks from the
associated PV are combined with other tracks of long-lived particles. For each channel
the exponential functions are convolved with a Gaussian resolution function with width σ
and mean ∆, an offset of the order of a few femtoseconds that is fixed in the fit. Using
a sample of prompt J/ψ background events, the decay time resolution for Hb→ J/ψX
channels reconstructed using long tracks has been measured to be approximately 45 fs [46].
For B0→ J/ψK0

S and Λ0
b→ J/ψΛ decays, which use downstream tracks to reconstruct the

K0
S and Λ particles, a similar study of an event sample composed of prompt J/ψ mesons

combined with two downstream tracks, reconstructed as either a K0
S or Λ, has determined

the resolution to be 65 fs. The systematic uncertainties related to the choice of resolution
model are discussed in Sec. 6.

The negative log-likelihood, constructed as

− lnL = −α
∑

events i

wi lnP , (6)

is minimised in the fit, where the weights wi correspond to the per-candidate correction for
the VELO reconstruction efficiency described in Sec. 4.1. The factor α =

∑
iwi/

∑
iw

2
i

is used to include the effect of the weights in the determination of the uncertainties [47].
Figures 1 and 2 show the result of fitting this model to the selected candidates for each
channel, projected onto the corresponding m(J/ψX) and t distributions.

As a consistency check, an alternative fit procedure is developed where each event is
given a signal weight, Wi, determined using the sPlot [48] method with m(J/ψX) as the
discriminating variable and using the mass model described above. A weighted fit to the

12



decay time distribution using the signal PDF is then used to measure the b-hadron lifetime.
In this case, the negative log-likelihood is given by Eq. (6) where wi is replaced with Wiwi
and α =

∑
i(Wiwi)/

∑
i(Wiwi)

2. The difference between the results of the two fitting
procedures is used to estimate the systematic uncertainty on the background description.

6 Systematic uncertainties

The systematic effects affecting the measurements reported here are discussed in the
following and summarised in Tables 4 and 5.

The systematic uncertainty related to the VELO-track reconstruction efficiency can
be split into two components. The first uncertainty is due to the finite size of the
B+→ J/ψK+ sample, reconstructed using downstream kaon tracks, which is used to
determine the per-candidate efficiency weights and leads to a statistical uncertainty on the
εVELO(ρ) parameterisation. The lifetime fits are repeated after varying the parameters by
±1σ and the largest difference between the lifetimes is assigned as the uncertainty. The
second uncertainty is due to the scaling factors, which are used to correct the efficiency for
phase-space effects, obtained from simulated events. The fit is repeated using the unscaled
efficiency and half of the variation in fit results is assigned as a systematic uncertainty.
These contributions, of roughly the same size, are added in quadrature in Table 4.

A number of additional consistency checks are performed to investigate possible
mismodelling of the VELO-track reconstruction efficiency. First, εVELO(ρ) is evaluated in
two track momentum and two track multiplicity bins and the event weights recalculated.
Using both data and simulated events, no significant change in the lifetimes is observed
after repeating the fit with the updated weights and, therefore, no systematic uncertainty is
assigned. Secondly, to assess the sensitivity to the choice of parameterisation for εVELO(ρ)
(Eq. 4), the results are compared to those with linear model for the efficiency. The effect is
found to be negligible and no systematic uncertainty is applied. Thirdly, the dependence
of the VELO-track reconstruction efficiency on the azimuthal angle, φ, of each track is
studied by independently evaluating the efficiency in four φ quadrants for both data and
simulation. No dependence is observed. Finally, the efficiency is determined separately for
both positive and negative kaons and found to be compatible.

The techniques described in Sec. 4 to correct the efficiency as a function of the decay
time are validated on simulated data. The lifetime is fit in each simulated signal mode and
the departure from the generated lifetime, ∆τ , is found to be compatible with zero within
the statistical precision of each simulated sample. The measured lifetimes in the data
sample are corrected by each ∆τ and a corresponding systematic uncertainty is assigned,
given by the size of the statistical uncertainty on the fitted lifetime for each simulated
signal mode.

The assumption that m(J/ψX) is independent of the decay time is central to the
validity of the likelihood fits used in this study. It is tested by re-evaluating the signal
weights of the alternative fit in bins of decay time and then refitting the entire sample
using the modified weights. The systematic uncertainty for each decay mode is evaluated
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as the sum in quadrature of the lifetime variations, each weighted by the fraction of signal
events in the corresponding bin.

For each signal decay mode, the effect of the limited size of the control sample used
to estimate the combined trigger and selection efficiency is evaluated by repeating the
fits with εselection(t) randomly fluctuated within its statistical uncertainty. The standard
deviation of the distribution of lifetimes obtained is assigned as the systematic uncertainty.

The alternative likelihood fit does not assume any model for the decay time distribution
associated with the combinatorial background. Therefore, the systematic uncertainty
associated to the modelling of this background is evaluated by taking the difference in
lifetimes measured by the nominal and alternative fit methods.

The fit uses a double Gaussian function to describe the m(J/ψX) distribution of signal
candidates. This assumption is tested by repeating the fit using a double-sided Apollonios
function [49] where the mean and width parameters are varied in the fit and the remaining
parameters are fixed to those from simulation. The differences in lifetime with respect to
the default results are taken as systematic uncertainties.

As described in Sec. 5 the dominant background in each channel is combinatorial in
nature. It is also possible for backgrounds to arise due to misreconstruction of b-hadron
decays where the particle identification has failed. The presence of such backgrounds is
checked by inspecting events in the sidebands of the signal and re-assigning the mass
hypotheses of at least one of the final-state hadrons. The only contributions that have an
impact are Λ0

b → J/ψpK− decays in the B0
s → J/ψφ channel where a proton is misidentified

as a kaon and the cross-feed component between B0 → J/ψK0
S and Λ0

b → J/ψΛ decays
where pion and protons are misidentified. In the case of B0

s → J/ψφ decays, the fit is
repeated including a contribution of Λ0

b → J/ψpK− decays. The two-dimensional PDF
is determined from simulation, while the yield is found to be 6% from the sidebands of
the B0

s sample. This leads to the effective lifetime changing by 0.4 fs, which is assigned
as a systematic uncertainty. A similar procedure is used to determine the invariant mass
shape of the cross-feed background between B0 → J/ψK0

S and Λ0
b → J/ψΛ decays, while

the decay time is modelled with the exponential distribution of the corresponding signal
mode. A simultaneous fit to both data samples is performed in order to constrain the
yield of the cross-feed and the resulting change in lifetime of −0.3 fs and +1.1 fs for B0

and Λ0
b , respectively, is assigned as a systematic uncertainty.

Another potential source of background is the incorrect association of signal b hadrons
to their PV, which results in an erroneous reconstruction of the decay time. Since the fitting
procedure ignores this contribution, a systematic uncertainty is evaluated by repeating
the fit after including in the background model a component describing the incorrectly
associated candidates. The background distribution is determined by calculating the decay
time for each B+→ J/ψK+ decay with respect to a randomly chosen PV from the previous
selected event. In studies of simulated events the fraction of this background is less than
0.1%. Repeating the fit with a 1% contribution results in the lifetime changing by 0.1 fs
and, therefore, no systematic uncertainty is assigned.

The measurement of the effective lifetime in the B0
s→ J/ψφ channel is integrated over

the angular distributions of the final-state particles and is, in the case of uniform angular
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efficiency, insensitive to the different polarisations of the final state [46]. To check if the
angular acceptance introduced by the detector geometry and event selection can affect
the measured lifetime, the events are weighted by the inverse of the angular efficiency
determined in Ref. [46]. Repeating the fit with the weighted dataset leads to a shift of
the lifetime of −1.0 fs, the same as is observed in simulation. The final result is corrected
by this shift, which is also assigned as a systematic uncertainty. The B0

s effective lifetime
could also be biased due to a small CP -odd S-wave component from B0

s → J/ψK+K−

decays that is ignored in the fit. For the m(K+K−) mass range used here (Sec. 3), Ref. [50]
indicates that the S-wave contribution is 1.1%. The effect of ignoring such a component is
evaluated by repeating the fit on simulated experiments with an additional 1% CP -odd
component. A change in the lifetime of −1.2 fs is observed, which is used to correct the
final lifetime and is also taken as a systematic uncertainty. Finally, as described in Sec. 3,
only events with a decay time larger than 0.3 ps are considered in the nominal fit. This
offset leads to a different relative contribution of the heavy and light mass eigenstates such
that the lifetime extracted from the exponential fit does not correspond to the effective
lifetime defined in Eq. (2). A correction of −0.3 fs is applied to account for this effect.

The presence of a production asymmetry between B0 and B
0

mesons could bias the
measured B0→ J/ψK0

S effective lifetime, and therefore ∆Γd/Γd, by adding additional
terms in Eq. (2). The production asymmetry is measured to be AP(B0) = (0.6± 0.9)% [51],
the uncertainty of which is used to estimate a corresponding systematic uncertainty on the
B0→ J/ψK0

S lifetime of 1.1 fs. No uncertainty is assigned to the B0→ J/ψK∗0 lifetime
since this decay mode is flavour-specific2 and the production asymmetry cancels in the
untagged decay rate. For the B0

s system, the rapid oscillations, due to the large value of
∆ms = 17.768± 0.024 ps−1 [52], reduce the effect of a production asymmetry, reported as
AP(B0

s ) = (7± 5)% in Ref. [51], to a negligible level. Hence, no corresponding systematic
uncertainty is assigned.

There is a 0.02% relative uncertainty on the lifetime measurements due to the un-
certainty on the length scale of LHCb [52], which is mainly determined by the VELO
modules z positions. These are evaluated by a survey, having an accuracy of 0.1 mm over
the full length of the VELO (1000 mm), and refined through a track-based alignment.
The alignment procedure is more precise for the first track hits, that are less affected by
multiple scattering and whose distribution of z positions have an RMS of 100 mm. In
this region, the differences between the module positions obtained from the survey and
track-based alignment are within 0.02 mm, which is taken as systematic uncertainty. The
systematic uncertainty related to the momentum scale calibration affects both the b hadron
candidate mass and momentum and, therefore, cancels when computing the decay time.

The systematic uncertainty related to the choice of 45 fs for the width of the decay-time
resolution function (65 fs in the case of B0→ J/ψK0

S and Λ0
b→ J/ψΛ) is evaluated by

changing the width by ±15 fs and repeating the fit. This change in width is larger than
the estimated uncertainty on the resolution and leads to a negligible change in the fit

2Flavour-specific means that the final state is only accessible via the decay of a B0
(s) meson and

accessible by a meson originally produced as a B
0

(s) only via oscillation.
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Table 4: Statistical and systematic uncertainties (in femtoseconds) for the values of the b-hadron
lifetimes. The total systematic uncertainty is obtained by combining the individual contributions
in quadrature.

Source τB+→J/ψK+ τB0→J/ψK∗0 τB0→J/ψK0
S

τΛ0
b→J/ψΛ

τB0
s→J/ψφ

Statistical uncertainty 3.5 6.1 12.8 26.5 11.4

VELO reconstruction 2.0 2.3 0.9 0.5 2.3
Simulation sample size 1.7 2.3 2.9 3.7 2.4
Mass-time correlation 1.4 1.8 2.1 3.0 0.7
Trigger and selection eff. 1.1 1.2 2.0 2.0 2.5
Background modelling 0.1 0.2 2.2 2.1 0.4
Mass modelling 0.1 0.2 0.4 0.2 0.5
Peaking background – – 0.3 1.1 0.4
Effective lifetime bias – – – – 1.6
B0 production asym. – – 1.1 – –
LHCb length scale 0.4 0.3 0.3 0.3 0.3

Total systematic 3.2 3.9 4.9 5.7 4.6

results. Consequently, no systematic uncertainty is assigned. Furthermore, to test the
sensitivity of the lifetimes to potential mismodelling of the long tails in the resolution,
the resolution model is changed from a single Gaussian function to a sum of two or three
Gaussian functions with parameters fixed from simulation. Repeating the fit with the
new resolution model causes no significant change to the lifetimes and no systematic
uncertainty is assigned. The lifetimes are insensitive to the offset, ∆, in the resolution
model.

Several consistency checks are performed to study the stability of the lifetimes, by
comparing the results obtained using different subsets of the data in terms of magnet
polarity, data taking period, b-hadron and track kinematic variables, number of PVs in
the event and track multiplicity. In all cases, no trend is observed and all lifetimes are
compatible with the nominal results.

The majority of the systematic uncertainties described above can be propagated to the
lifetime ratio measurements in Table 7. However, some of the uncertainties are correlated
between the individual lifetimes and cancel in the ratio. For the first set of ratios and
for ∆Γd/Γd, the systematic uncertainty from the VELO-reconstruction efficiency weights
and the LHCb length scale are considered as fully correlated. For the second set of ratios,
other systematic uncertainties, as indicated in Table 5, cancel, since the ratio is formed
from lifetimes measured using the same decay mode. In contrast to the situation for the
measurement of the B0 lifetime in the B0→ J/ψK∗0 mode, the B0 production asymmetry
does lead to a systematic uncertainty on the measurement of τB0→J/ψK∗0/τ

B
0→J/ψK∗0 since

terms like AP cos(∆mdt) do not cancel in the decay rates describing the decays of B0 and

B
0

mesons to J/ψK∗0 and J/ψK
∗0

final states. The effect of candidates where the flavour,
via the particle identification of the decay products, has not been correctly assigned is
investigated and found to be negligible.
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Table 5: Statistical and systematic uncertainties (in units of 10−3) for the lifetime ratios and
∆Γd/Γd. For brevity, τB0 (τ

B
0) corresponds to the measurement of τB0→J/ψK∗0 (τ

B
0→J/ψK∗0). The

total systematic uncertainty is obtained by combining the individual contributions in quadrature.

Source τB+/τB0 τB0
s
/τB0 τΛ0

b
/τB0 τB+/τB− τΛ0

b
/τ
Λ
0
b

τB0/τ
B

0 ∆Γd/Γd

Statistical uncertainty 5.0 8.5 18.0 4.0 35.0 8.0 25.0

VELO reconstruction 1.6 1.7 1.1 – – – 4.1
Simulation sample size 2.0 2.2 2.8 2.1 5.3 3.0 6.3
Mass-time correlation 1.6 1.2 2.3 – – – 4.7
Trigger and selection eff. 1.1 1.8 1.5 – – – 4.0
Background modelling 0.3 0.1 1.5 0.2 3.0 1.4 3.8
Mass modelling 0.2 0.4 0.2 0.1 0.2 0.2 0.8
Peaking background – 0.3 0.7 – – – 0.5
Effective lifetime bias – 1.0 – – – – –
B0 production asym. – – – – – 8.5 1.9

Total systematic 3.2 3.7 4.4 2.1 6.1 9.1 10.7

Table 6: Fit results for the B+, B0, B0
s mesons and Λ0

b baryon lifetimes. The first uncertainty is
statistical and the second is systematic.

Lifetime Value [ ps ]
τB+→J/ψK+ 1.637 ± 0.004 ± 0.003
τB0→J/ψK∗0 1.524 ± 0.006 ± 0.004
τB0→J/ψK0

S
1.499 ± 0.013 ± 0.005

τΛ0
b→J/ψΛ 1.415 ± 0.027 ± 0.006

τB0
s→J/ψφ 1.480 ± 0.011 ± 0.005

7 Results and conclusions

The measured b-hadron lifetimes are reported in Table 6. All results are compatible
with existing world averages [13]. The reported τΛ0

b→J/ψΛ is smaller by approximately 2σ

than a previous measurements from LHCb [8]. With the exception of the Λ0
b→ J/ψΛ

channel, these are the single most precise measurements of the b-hadron lifetimes. The
B0
s meson effective lifetime is measured using the same data set as used in Ref. [46] for

the measurement of the B0
s meson mixing parameters and polarisation amplitudes in

B0
s→ J/ψφ decays. The B0

s meson effective lifetime computed from these quantities is
compatible with the lifetime reported in this paper and a combination of the two results
is, therefore, inappropriate.

Table 7 reports the ratios of the B+, B0
s and Λ0

b lifetimes to the B0 lifetime measured in
the flavour-specific B0→ J/ψK∗0 channel. This decay mode provides a better normalisation
than the B0→ J/ψK0

S channel due to the lower statistical uncertainty on the B0 meson
lifetime and due to the fact that the B0→ J/ψK∗0 lifetime only depends quadratically
on ∆Γd/Γd, as shown in Eq. (7). The statistical and systematic uncertainties from
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Table 7: Lifetime ratios for the B+, B0, B0
s mesons and Λ0

b baryon. The first uncertainty is
statistical and the second is systematic.

Ratio Value
τB+/τB0→J/ψK∗0 1.074 ± 0.005 ± 0.003
τB0

s
/τB0→J/ψK∗0 0.971 ± 0.009 ± 0.004

τΛ0
b
/τB0→J/ψK∗0 0.929 ± 0.018 ± 0.004

τB+/τB− 1.002 ± 0.004 ± 0.002
τΛ0

b
/τ
Λ
0
b

0.940 ± 0.035 ± 0.006

τB0→J/ψK∗0/τ
B

0→J/ψK∗0 1.000 ± 0.008 ± 0.009

the absolute lifetime measurements are propagated to the ratios, taking into account
the correlations between the systematic uncertainties. All ratios are consistent with SM
predictions [15,22–25,30–32] and with previous measurements [13]. Furthermore, the ratios
τB+/τB− , τΛ0

b
/τ
Λ
0
b

and τB0→J/ψK∗0/τ
B

0→J/ψK∗0 are reported. Measuring any of these different

from unity would indicate a violation of CPT invariance or, for B0→ J/ψK∗0 decays,
could also indicate that ∆Γd is non-zero and B0→ J/ψK∗0 is not 100% flavour-specific.
No deviation from unity of these ratios is observed.

The effective lifetimes of B0→ J/ψK∗0 and B0 → J/ψK0
S decays are used

to measure ∆Γd/Γd. Flavour-specific final states such as B0 → J/ψK∗0 have

AB
0→J/ψK∗0

∆Γd
= 0, while AB

0→J/ψK0
S

∆Γd
= cos(2β) to a good approximation in the SM, where

β ≡ arg [−(VcdV
∗
cb)/(VtdV

∗
tb)] is one of the CKM unitarity triangle angles. Hence, the two

effective lifetimes can be expressed as

τB0→J/ψK∗0 =
1

Γd

1

1− y2
d

(
1 + y2

d

)
, (7)

τB0→J/ψK0
S

=
1

Γd

1

1− y2
d

(
1 + 2 cos(2β)yd + y2

d

1 + cos(2β)yd

)
. (8)

Using the effective lifetimes reported in Table 6 and β = (21.5+0.8
−0.7)◦ [13], a fit of ∆Γd and

Γd to the expressions in Eq. (7) and Eq. (8) leads to

Γd = 0.656± 0.003± 0.002 ps−1, (9)

∆Γd = −0.029± 0.016± 0.007 ps−1, (10)

where the first uncertainty is statistical and the second is systematic. The correlation coef-
ficient between ∆Γd and Γd is 0.43 when including statistical and systematic uncertainties.
The combination gives

∆Γd
Γd

= −0.044± 0.025± 0.011, (11)

consistent with the SM expectation [14,15] and the current world-average value [13].
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