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Abstract

The appearance of the COVID-19 pandemic has urged governments from around
the world to resort to the scientific community in order to predict how the spread
of the virus would evolve. In Catalonia, the need to compare the two most used
models arose to decide on whether restrictions should be applied or not. The Cata-
lan government has mainly used the Gompertz model to predict the evolution of
the infected population but some scientists have shown concern for this model
as compared to the more traditional deterministic compartmental models. This
created the need to compare the effectiveness of these two models and determine
which of them is more useful for predicting future pandemics.

In this project, we will present and analyse both types of models. In the case
of compartmental models we will summarise only the three most basic types,
SIR,SEIR and SEIRS. We will determine which of these models is most effective
in predicting the spread of the virus by retrospectively comparing the predicted
values and the real ones obtained. We will use data from the database provided
by the Catalan government, Dades Obertes, and train our models with data from
30 days in order to predict two weeks in advance.

Our results have shown that SEIR is the best of the initially proposed meth-
ods but is clearly affected by noise in our data, especially after restrictions were
applied. A clear improvement was shown by averaging the values from the Gom-
pertz model together with the values of the SEIR model. We clearly obtained the
best possible model from combining both of them as it is smoother than predicting
with SEIR and yields better results than the Gompertz model.

In future work, we plan to include more complex compartmental models, such
as the ones including geographical and transportation factors, given the neces-
sary data. In addition, a larger average of models can be used, in which more
than 2 models is applied, for an even more precise prediction of the evolution of
pandemics.

Resum

L’aparició de la pandèmia de la COVID-19 ha instat a governs de tot el món a
recórrer a la comunitat científica per predir com evolucionaria la propagació del
virus. A Catalunya ha sorgit la necessitat de comparar els dos models més utilit-
zats per tal de decidir amb facilitat quan aplicar restriccions. El govern català ha
utilitzat principalment el model de Gompertz per a predir l’evolució de la pobla-
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ció infectada, però alguns científics han mostrat preocupació per aquest model en
comparació amb els models compartimentals deterministes més tradicionals. Ai-
xò ha creat la necessitat de comparar l’eficàcia d’aquests dos models i determinar
quin d’ells és més útil per a predir futures pandèmies.

En aquest projecte, presentarem i analitzarem els dos tipus de models. En
el cas dels models compartimentals, resumirem els tres tipus més bàsics: SIR,
SEIR i SEIRS. Determinarem quin d’aquests models és més eficaç per predir la
propagació del virus comparant retrospectivament els valors predits i els reals
obtinguts. Utilitzarem dades de la base de dades facilitada pel govern català,
Dades Obertes, i entrenarem els nostres models amb dades de 30 dies per tal de
predir l’evolució de la pandèmia en les dues setmanes següents.

Els nostres resultats han demostrat que el SEIR és el millor dels mètodes pro-
posats inicialment, però que està clarament afectat pel soroll de les nostres dades,
especialment dels dies posteriors en que s’apliquen restriccions. Es va demostrar
una clara millora mitjançant la mitjana dels valors del model de Gompertz jun-
tament amb els valors del model SEIR. Hem vist com clarament hem obtingut el
millor model possible combinant-los tots dos ja que obtenim un model més suau
que l’obtingut amb el SEIR i obtenim valors més precisos que amb el model de
Gompertz.

En futurs treballs, tenim previst incloure models compartimentals més comple-
xos, que tinguin en compte factors geogràfics i de transport, donat que tinguem
accés a les dades necessàries. A més, es pot utilitzar una mitjana amb més models,
en comptes d’utilitzar-ne dos, per a una predicció encara més precisa de l’evolució
de les pandèmies.

Resumen

La aparición de la pandemia de la COVID-19 instó a gobiernos de todo el
mundo a recurrir a la comunidad científica para predecir cómo evolucionaría la
propagación del virus. En Cataluña surgió la necesidad de comparar los dos mo-
delos más utilizados para decidir con facilidad cuando aplicar restricciones. El
gobierno catalán ha utilizado principalmente el modelo de Gompertz para prede-
cir la evolución de la población infectada, pero algunos científicos han mostrado
preocupación por este modelo en comparación con los modelos compartimenta-
les deterministas más tradicionales. Esto ha creado la necesidad de comparar la
eficacia de estos dos modelos y determinar cuál de ellos es más útil para predecir
futuras pandemias y en qué situaciones.

En este proyecto, presentaremos y analizaremos los dos tipos de modelos. En
el caso de los modelos compartimentales, resumiremos los tres tipos más bási-
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cos: SIR, SEIR y SEIRS. Determinaremos cuál de estos modelos es más eficaz para
predecir la propagación del virus, comparando retrospectivamente los valores pre-
dichos y los reales obtenidos. Utilizaremos los datos de la base de datos facilitada
por el gobierno catalán Dades Obertes y entrenaremos nuestros modelos con da-
tos de 30 días a fin de predecir la evolución de la pandemia en las dos semanas
siguientes.

Nuestros resultados han demostrado que el SEIR es el mejor de los métodos
propuestos inicialmente, pero que está claramente afectado por el ruido de nues-
tros datos, especialmente los días después de que se apliquen restricciones. Se
demostró una clara mejora tomando la media de los valores del modelo Gom-
pertz junto con los valores del modelo SEIR. Hemos obtenido el mejor modelo
posible combinando ambos dado que obtenemos un modelo más suave que el de
SEIR y más preciso que el de Gompertz.

En futuros trabajos, tenemos previsto incluir modelos compartimentales más
complejos, que tengan en cuenta factores geográficos i de transporte, si tenemos
acceso a los datos necesarios. Además, se puede utilizar una media con más mo-
delos, en vez de utilizar dos, para una predicción aún más precisa de la evolución
de las pandemias.



Chapter 1

Introduction

As the new SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2)
pandemic started, governments from around the world resorted to the scientific
community in order to predict how the spread of the virus would evolve. This
led the Catalan government to compare various methods from multiple research
groups but, in the end, they mostly took advice from the BIOCOMSC group at
UPC. This research group uses a mathematical model named Gompertz model
which predicts the evolution of the pandemic over the next few days and even
weeks. This curve was first proposed by Benjamin Gompertz [1] and was based
on the idea that the mortality rate increases exponentially as a person ages. This
model is one of the most frequently used sigmoid functions to fit cumulative
growth due to its asymmetric nature and has been used to model many kinds of
growths such as tumour growth, plant and animal growth, and bacterial growth.

Despite its widespread use, other researchers, such as URV’s Alex Arenas [2],
have doubted the effectiveness of this model as compared to the one proposed
by them, the more traditional compartmental models, due to the simplicity of
the Gompertz curve and the non-determinism involved in it. These compartmen-
tal models are based on the idea of dividing the population into compartments
or categories such as Susceptible, Infected and Recovered (SIR) and had already
been used in previous pandemics such as the spread of measles in the UK in 1986,
or the description of the Ebola epidemic in 1995 [3] and 2014 [4] or even the pre-
vious SARS epidemic of 2003 [5]. These use differential equations to model the
evolution of the pandemic and can be expanded to take into account the incuba-
tion period of the disease by simply adding a new compartment named Exposed
(SEIR). Moreover, you can take into account temporal immunity by feeding back
the model to the Susceptible compartment again (SEIRS). We can even expand it
further as more information becomes available. For example, Alex Arena’s group
uses SEAIHR, which takes into account Asymptomatic cases and Hospitalised pa-
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2 Introduction

tients.

Nonetheless, this pandemic has been marked by the continuous use of govern-
ment measures and involvement, such as the application of lockdowns and cur-
fews. These measures affect the evolution of the disease differently based on the
strength and type of restrictions applied on mobility and social life. Of course, the
evolution of the disease will be very different in countries such as New Zealand,
where a long total lockdown was applied at the start as compared to other coun-
tries with less restrictive measures such as the United States of America. Spain and
Catalonia fall somewhere in between, as multiple lockdowns have been applied,
which varied in both strength and restrictions. This creates situations in which the
choice of model becomes more complex. Simple compartmental models are not
designed to deal with this type of situation where the network of contacts and its
changes due to government policies are key [6].

In the mathematical modeling of a disease, as in most others areas of mathe-
matics there is always a trade-off between simple models, which omit most details
and are designed only to highlight general qualitative behaviour, and detailed
models, usually designed for specific situations including short-term quantitative
predictions [7] and this case is no exception. On the one hand, the Gompertz
model simplifies the evolution of the pandemic to a single equation and is useful
to determine statistically what the evolution of the pandemic will be in the future.
On the other hand, compartmental models can be as detailed as possible and try
to simulate reality in a more accurate way.

The main difference between these two models is that the Gompertz curve is
a stochastic model and compartmental models are deterministic models. Given
enough information compartmental models can model the evolution of a pan-
demic almost perfectly whereas the Gompertz curve can give us a rough idea of
how the disease will evolve. That being said, the main problem compartmental
models present is the effect noise has on the prediction of the data. Compartmen-
tal models are based on differential equations which can lead to chaotic systems.
In addition, there is a lot of uncertainty in predicting the evolution of the pan-
demic. Cases such as the New Year illegal party in Llinars del Vallès with over
2000 participants can create a lot of variance which compartmental models cannot
adapt to properly. In addition, data available contains a lot of this noise because
of the weekend effect, which lowers infected cases during weekends and accu-
mulates the expected difference into weekdays, especially Mondays and Tuesdays
[9].

With regards to tackling future pandemics more efficiently, the need to prop-
erly evaluate the two most important methods used in the prediction of the coro-
navirus pandemic becomes clear. In this project, we will compare the simpler
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Gompertz model to the more complex compartmental models in order to deter-
mine which of these would have been more valuable to predict the evolution of
the pandemic in Catalonia.

First of all, we will present and define both the Gompertz Curve and com-
partmental models, and explore some of the simpler subtypes of compartmental
models such as SIR, SEIR and SEIRS. We will also explore the advantages and dis-
advantages each of these models present. In addition, in Chapter 3 we will explain
the implementation of all of the models, focusing especially on the optimisation
of the initial parameters for the Gompertz model. This initial parameters are a
fundamental part of this project as it is important not to fit the data with local
minimums for the parameter values but instead fit with global minimums. This is
hard to accomplish as a single initial parameter has been used for all of the days of
the year. In this Chapter we have also explained the reasoning behind the choice
of initial parameters.

We will evaluate the effectiveness of all of these models by training them with
30 days of data and predicting the cumulative number of cases in two weeks time
for every day of this pandemic. In order to evaluate which of these methods is
best we will use a number of metrics, we will observe how well they predict the
curve using the coefficient of determination R2, we will present and study qualita-
tively the variance of the predictions and, finally, we will evaluate the cumulative
relative error rate. This way, we will have a better understanding of how the er-
ror varies, the effect noise has on our predictions and the effect restrictions have
on the evolution of our models. Finally, we will also take the average of the best
compartmental model and the Gompertz model in order to provide with a new
possible model and we will analyse the improvement this model provides. The
results obtained will be of great use in order to manage future possible pandemics
as a better understanding of all of these models will lead to a better response from
the governments.
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Chapter 2

State of the art

In this chapter, we discuss the two most used models to predict the evolution
of pandemics. Section 2.1 discusses the Gompertz model, whereas section 2.2
summarises the simplest compartmental models SIR, SEIR and SEIRS.

2.1 The Gompertz model

We employ the Gompertz model for growing processes to model the cumula-
tive cases of COVID-19. The Gompertz model is one of the most frequently used
sigmoid models and is fitted to growth data and other data, perhaps only second
to the logistic model [8]. The main difference between the logistic model and the
Gompertz function is the replacement of the saturation of the growing factor from
linear in the logistic model to an exponential decrease in the Gompertz model.
This modifies the symmetric function the logistic equation produces to an asym-
metric function with fast growth of new cases combined with a slow decrease,
which is closer to the distribution of new cases observed in different countries.
It has been shown [6] that this asymmetric nature of the Gompertz model is the
proper framework to study epidemics in which control measures are part of the
evolution of the disease. The simplicity of this function is what allows us to create
a simple model which easily approximates the cumulative cases for the COVID-19
epidemic. The Gompertz equation reads as follows:

N(t) = Ke−ln( K
N0

)e−at
(2.1)

where the parameter K represents the final number of cases, N0 is the initial
number of cases at time t=0, a is the rate of decrease in the initially exponential
growth and N(t) is the cumulative cases of the disease at time t. This equation was
originally proposed as a means to explain human mortality curves [10] but it has

5



6 State of the art

also been used in many other cases, including the evolution of bacterial colonies
[11] and tumours [12]. This function can also be interpreted as the solution to the
following pair of differential equations:

dN
dt

= µN

dµ

dt
= −aµ

(2.2)

Which corresponds to an exponential growth with a growing rate µ which
exponentially decreases with rate a [6]. This exponential rate µ provides us with
the relationship between K and a, as we have that:

µ = aln(K/N0) (2.3)

In Figure 2.1 we can observe the behaviour of this function for different values
of a. As a note, we remind the reader that the Gompertz curve represents the
evolution in the cumulative cases. As observed in Figure 2.1 an increase in the
value of a relates to a slower decrease of the initial exponential growth. In Figure
2.2 we can also observe the behaviour of this function for different values of K.
As said before, K represents the final number of cases, which results in a hori-
zontal asymptote at the value of K. This Figure clearly illustrates the horizontal
asymptote this function has at K.

Figure 2.1: Parameter a varies the rate of decrease in the initially exponential
growth
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Figure 2.2: Parameter K corresponds to the final number of cases

In order to more clearly illustrate the effect varying the parameter a has, we
need to observe the derivative of the function. We know that the Gompertz curve
models cumulative cases, therefore its derivative will model the daily cases. By
calculating the derivative with respect to time we obtain that the evolution of the
daily cases is modelled by the following equation:

Nn =
dN
dt

= aKe−ln( K
N0

)e−at
(ln(

K
N0

)e−at) (2.4)

And by plotting this we obtain Figure 2.3. In this case we can clearly observe
how larger values of a lead to a larger, sooner, and higher peak in daily infections.
We can also observe in Figure 2.3 and in Figure 2.1 what politicians refer to as
smoothing the curve. Despite the total number of cases remaining the same a
more disperse peak is formed for lower values of a. This can be the difference
between saturation of ICUs and a more relaxed environment for doctors.
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Figure 2.3: Variation of the parameter a on the derivative of the Gompertz curve

The peak observed in Figure 2.3 corresponds to the inflection point in the
cumulative cases curve in Figure 2.1 and can be calculated from equation 2.4 as
follows:

d2N
dt2 =

dNn

dt
= aK(ae−at(ln(

K
N0

)e−at)2 + e−ln( K
N0

)e−at
(−aln(

K
N0

)e−at))

0 = a2Ke−ln( K
N0

)e−at
(ln(

K
N0

)e−at)2 − a2Ke−ln( K
N0

)e−at
(ln(

K
N0

)e−at)

eat = ln(K/N0)

tp =
1
a

ln(ln(
K
N0

))

(2.5)

In this equation, we can more clearly see the effect a has. The larger the value
of a, the faster the appearance of the peak, as we have seen in Figure 2.3.
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2.2 Compartmental models

Compartmental models are based on the idea that we can divide the popula-
tion into different compartments representing the different stages of the disease
and use the relative size of each compartment to model how the numbers evolve
in time. The population is assigned labels for a better understanding, such as
Susceptible, Exposed, Infected and Recovered, in our case. This population can
transition from one compartment to another as defined by differential equations.
Different sets of differential equations result in the different types of models. In
this project we will only explore the simpler models as these compartmental mod-
els can become as large as necessary, given enough information is known. Com-
partmental models are especially useful when taking into account a very large
population, as deterministic models become more useful than stochastic models
at this point.

2.2.1 SIR

The simplest compartmental model consists of three compartments with two
transitions, Susceptible, Infected and Recovered. Population can go from being
susceptible to catching the disease and being infected and then to being recovered,
but it doesn’t take into account incubation periods of the disease or the possibility
of reinfection. In terms of transitions, this model can be visualised as:

S + I
β−→ I + I

I
µ−→ R

This model can be interpreted as follows. The first transition represents that a
susceptible person will become infected with a probability of β when interacting
with someone infected and the second one represents that an infected person will
recover spontaneously with a probability of µ at any moment. That being said,
these probabilities become rates when taking into account the entire population.
Therefore, we could also describe the previous system of transitions as follows.
The susceptible population is becoming infected at a rate of β and the infected
population is recovering at a rate of µ. This model can be better represented
mathematically as the following set of differential equations:
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δ

δt
St = −βSt

It

N
δ

δt
It = +βSt

It

N
− µIt

δ

δt
Rt = +µIt

Where N is the total population size and It/N represents the fraction of in-
fected population. St, It and Rt are the populations that are susceptible, infected
and recovered at a time t after the beginning of the epidemic. First of all, we can
observe that:

δ

δt
St +

δ

δt
It +

δ

δt
Rt = 0 (2.6)

from which we can obtain that St + It +Rt = constant, and, because we initially
had the entire population N divided into the three compartments, we have that
St + It + Rt = N. In addition, compartmental models allow us to calculate easily
the value of R0, which is a very important metric in order to understand the
evolution of a pandemic. Given R0 < 1 then the pandemic will slowly extinguish,
but an R0 > 1 results in an exponential increase in number of cases. From this
specific model we can calculate R0 as:

R0 =
β

µ
(2.7)

In Figure 2.4 we can observe an example of the evolution of a disease with 100
initial infected, a population N of 10000, β is 0.2 and µ is 0.1. This, as calculated
with Equation 2.6, results in an R0 of 2. As we can see, there is a single large peak
of infected population, but it quickly decreases and the epidemic ends. This peak
is in daily cases, and results in around 20000 cases at the peak of the pandemic,
which represents about 2% of the population being infected in a single day. An-
other important detail is the fact that not all the population becomes infected. This
is because after herd immunity is reached, the pandemic slowly dies down and
the rest of the population is not infected. The value this takes depends on β and
is βN. Therefore, in this case, with a population of 100000 and a β of 0.2, we have
that 20000 people won’t be infected thanks to heard immunity.

Despite being a very simple model, the behaviour displayed in Figure 2.4 rep-
resents what the evolution of the pandemic would have looked like if the disease
was not lethal, had no incubation period and without any type of interventions
from the government.
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Figure 2.4: Evolution of the different compartments of SIR
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2.2.2 SEIR

Compartmental models can be easily expanded to cover more cases. SEIR is
one example of this behaviour in which, by simply adding the Exposed compart-
ment to SIR, the model now includes an incubation period in which an individual
is infected but cannot transmit the disease. In terms of transitions, this model can
be visualised as:

S + I
β−→ E + I

E ε−→ I

I
µ−→ R

This model changes the interaction of Susceptible with Infected to an Exposed
instead of an Infected status, maintaining the probability of β, and adds a sponta-
neous interaction from Exposed to Infected at a rate ε which is proportional to the
duration of the incubation period. As said before, this intermediate step allows
for a representation of the population that has been infected but cannot yet infect
others. We can also represent these transitions as the following set of differential
equations:

δ

δt
St = −βSt

It

N
δ

δt
Et = +βSt

It

N
− εEt

δ

δt
It = +εEt − µIt

δ

δt
Rt = +µIt

Once again, we have that

δ

δt
St +

δ

δt
Et +

δ

δt
It +

δ

δt
Rt = 0 (2.8)

Which means the total population stays constant. For this model, the basic
reproduction number remains R0 = β

µ . In Figure 2.5 we can see an example of the
behaviour of the pandemic with the same base values as with SIR but with the
addition of the Exposed compartment. We initially start with 0 individuals in the
Exposed compartment and we assign an ε of 0.4. This models a pandemic with a
short incubation period, similar to what we see with COVID-19. That being said,
we can observe that introducing ε does not have an effect on R0, as seen before,
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it remains 2. We can observe how the total number of cases remains the same
but the infectious curve becomes slightly smoother. In this case, the peak of the
pandemic is reached at around day 100 instead of day 60 as with SIR. This is a
clear consequence of the incubation period. Of course, if we had an ε of 0 we
would obtain the same values as with SIR, as it would mean that the incubation
period is none.

Figure 2.5: Evolution of the different compartments of SEIR
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2.2.3 SEIRS

The final model we will be using is named SEIRS and allows us to model a
period of immunity. In terms of transitions, this model can be visualised as:

S + I
β−→ E + I

E ε−→ I

I
µ−→ R

R
ρ−→ S

Or, as the following set of differential equations:

δ

δt
St = +ρRt − βSt

It

N
δ

δt
Et = +βSt

It

N
− εEt

δ

δt
It = +εEt − µIt

δ

δt
Rt = +µIt − ρRt

Once again, we have that

δ

δt
St +

δ

δt
Et +

δ

δt
It +

δ

δt
Rt = 0 (2.9)

These more complex compartmental models have the slight drawback that R0

becomes harder to calculate and would need to be approximated. Therefore, we
don’t have a simple formula to calculate this value. That being said, we present
the evolution of a pandemic given the same values as with SEIR but adding a ρ of
0.3 in Figure 2.6a and a ρ of 0.03 in Figure 2.6b. We can observe how the behaviour
becomes very different to the ones proposed before as there is an equilibrium after
about 120 days, therefore, the epidemic reaches an endemic state. This is because
the total number of population infected to be smaller because some population
that has already been infected stops being immune and catches the disease again.
The rate ρ at which immunity is lost has a determinant effect in the progress of
the epidemic and the rise of endemicity. If ρ is sufficiently small (immunity is
longer lasting) we can even have several epidemic peaks before the steady state
of a fixed fraction of the population is reached [13]. In our case, a very high ρ in
Figure 2.6a is shown so we don’t see a clear peak in infections but we can already
observe how a ρ of 0.03 produces two peaks before stabilising. In Figure 2.6a we



2.2 Compartmental models 15

can also observe how the Recovered compartment is way smaller as compared to
2.6b, which is because a larger ρ results in a lower immunity and individuals can
become susceptible again a lot faster.

(a) Evolution of SEIRS with ρ=0.3

(b) Evolution of SEIRS with ρ=0.03

Figure 2.6: Evolution of the different compartments of SEIRS for different values
of ρ
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Chapter 3

Implementation

In this chapter we present the implementation and optimisation of our models,
together with the process of fitting.

3.1 Models

For this project we wanted the models to predict 14 days in the future because
we believe that it would be an acceptable amount of time required by hospitals
to prepare for future peaks in infections. In order to predict this accurately we
decided to train our models with data from the past 30 days, and repeat that for
every day of the pandemic. This would then give us the most optimal parameters1

together with some data that we cannot obtain such as the Exposed population.
This would simulate how models have been used during the pandemic and allow
for a better understanding of which of these models is better.

Given the complexity of the models, non-linear least squares regression needs
to be applied. For this reason, we will be using Scipy’s optimize.curve_fit, which
allows us to fit a function f to a set of data d. This method also allows us to apply
bounds to both of our functions. In Gompertz’s case, we have K ∈ [0, 1000000],
i.e. the maximum number of total infected population is the entire population
of Catalonia and a ∈ [0, 1]. On the other hand, SIR, SEIR and SEIRS models
have each compartment bounded by [0,7556000] and each parameter is bounded
by [0,1]. That being said, we made sure that the population stayed constant at
7556000, as we need that S+E+I+R=7556000 as seen before.

It is important to mention that finding the optimal initial parameters is a very
important part of this project as the fitting of the functions can easily tend to local
minimums instead of global minimums. For this reason, our initial values in the

1β, ε, µ, ρ in case of compartmental models and a,K in the case of the Gompertz model

17
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(a) Variation of parameter a

(b) Variation of parameter K

Figure 3.1: Optimisation of the parameters in the Gompertz model
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base model are the following. For Gompertz, we chose a=0.01 as we found that
our model converged to this value after enough time has passed, N0 is the number
of cumulative cases 30 days before the first prediction of our model and we take
K to be the number of cumulative cases for the day before we are currently doing
the prediction from. We chose these initial values because, as seen in Figure 3.1a a
tends to 0.01 after the pandemic settles but we don’t have a clear indicator of which
value K tends to, as it more easily fluctuates depending on the current conditions,
as seen in Figure 3.1b. Nonetheless, we can clearly see an increasing tendency for
the value of K, which we can model by using the number of cumulative cases for
the day before we are currently doing the prediction from. Finally, we capped the
value of K to 1000000 because we retrospectively know that in Catalonia we have
not yet reached this value of cumulative cases and this should allow us to obtain
a better prediction. For this reason, Figure 3.1b presents maximums at 1000000.
Uncapping this value could potentially lead to really high predictions in certain
days which don’t correlate to the other predictions.

We also plot in Figure 3.2 the evolution of µ which, as said in Chapter 2 repre-
sents the relationship between this two values. As we can see, it follows a pattern
similar to the one in Figure 3.1a and, despite the variation in the parameter K, it
still converges to around 0.04.

Figure 3.2: Variation of parameter µ
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In the case of SIR we use β = 0.2, µ = 0.1 and for SEIR we also have ε = 0.3
and we suppose that the Exposed compartment initially has a population of 25000.
Finally, for SEIRS we also suppose an initial ρ value of 0.01. This election of the
parameters was reached by trying multiple values of all of the parameters for
every day and choosing which one yielded the lowest error in the fitting of the
data. Given the complexity of these model, finding a single optimal parameter
that works for every day is complicated and in real life should be recalculated in
a daily basis.

It is also important to note that we train the compartmental models with daily
data and the Gompertz model with the cumulative data. This is because Gompertz
model was made to approximate cumulative cases but compartmental models ap-
proximate daily cases in an easier way. This brought us a big challenge because we
had to eliminate noise from the data, especially the daily data. The main problem
our data had was the weekend effect. Infected cases were detected less during the
weekends and, instead, would be accumulated on Mondays and Tuesdays. Cumu-
lative data does not have this problem as the variation in daily cases is relatively
small as compared to the total cumulative cases.

Another important note is that with Gompertz model a single prediction can
be made, but, because we are fitting compartmental models to daily data, we have
to add up all the values predicted for the 14 days by our model. Therefore, despite
seeing in Figure 3.3b a single predicted value, all of the previous predicted values
will also be added. Therefore, a bigger error is expected with compartmental
models, given that error can accumulate more easily.

Finally, we had to find a balance between number of iterations and precision
of the fitting. We found that a maximum of 100000 iterations with a tolerance
for the termination by the change of the cost function of 10−7 allowed us to fit
both models easily and precisely. Anything that could create a prediction with
less time than a night would be acceptable for us, as we need models that can
predict 14 days into the future for every single day. Figure 3.3a and 3.3b present
the fitting of the data. In Figure 3.3a we have fitted the Gompertz curve to the
cumulative data whereas in Figure 3.3b we have fitted the SEIRS model to the
daily data. In this second Figure it is more clear how the weekend effect clearly
affects compartmental models whereas the cumulative data is not affected by it.

The provided code in Annex 1 is our implementation of all that has been ex-
plained during our work. We chose Python as our Programming Language as it
provides many libraries that are very useful for data analysis. Specifically, we use
libraries that are useful for data management, such as Numpy, Pandas and Scipy.
Another library we have used in this project is Bruno Gonçalves’ EpiModel.py,
which facilitates the modelling of the compartmental models. We make especial
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use of its integrate method instead of the simulate method because we are not
interested in the statistical variation of these models but rather the deterministic
part of them. This library uses Scipy’s integrate.odeint() to calculate the necessary
differential equations. In the case of the Gompertz model, no additional libraries
were used as we implemented Equation 2.1 in Python and the fitting can be done
directly on the function.

(a) Gompertz curve that best approximates cumula-
tive cases during 30 days and its prediction for 14 days
in advance

(b) SEIRS approximation of daily cases during 30 days
and its prediction for 14 days in advance

Figure 3.3: Examples of approximations of the models
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Chapter 4

Experiments

After a short note about data acquisition, we describe the methodology fol-
lowed to evaluate the experiments.

4.1 Data acquisition and management

All the data employed in this project has been accessed through the public
database of the Catalan government1. The Catalan government uses a portal
named Dades Obertes which contains all kinds of data that is public and free to
use. The Catalan administration receives, generates and manages a large amount
of data, which is stored in a wide variety of information systems. The main pur-
pose of Dades Obertes is to make data managed by the Catalan administration
available to society, so that any person or organisation can use them. With this
service, the Catalan administration increases transparency. In addition, the reuse
of open data by companies, entities, associations and the general public allows
the development of new products and services that provide value, innovation,
knowledge and business opportunities [14].

In our case, we are interested in the database that contains daily data on
COVID-19 divided by counties, "Dades diàries de COVID-19 per Comarca". In
order to access this database we need to use the Socrata API which we will ob-
tain from the sodapy library. The main objective of this dataset is to facilitate in
a public and transparent way the epidemiological monitoring of the COVID-19
pandemic by monitoring the key indicators defined in the control plan for the
transmission of COVID-19 in Catalonia. It contains data of the confirmed cases
of COVID-19, positive PCR tests, hospital admissions and deaths of the popula-
tion, further divided by age group, sex and whether or not the cases occurred in

1All of the available databases related to COVID-19 can be found at
https://analisi.transparenciacatalunya.cat/browse?q=covid&sortBy=relevance
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a nursing home. Given that our main interest was on the cumulative cases, this
was the best dataset to use. In addition, if further compartmental methods have to
be applied, we can expand the ones we have implemented by adding hospitalised
cases and deaths.

It is important to note that this dataset starts on the 1st of March and is updated
two days after the current date. That being said, the first detection of COVID-19
in Catalonia was on the 25th of February 2020. In addition, data from the first few
weeks of the pandemic was very inconsistent and unreliable, therefore, the first
day we will start to predict is the 30th of April. This is because we need 30 days
of reliable data in order to predict accurately and we believe that after the 15th of
March 2020, once the pandemic was more set, data becomes more reliable. We end
our predictions on the 8th of June 2021, 450 days after the start of the pandemic.
This allows us to have a large sample of predictions in order to better understand
where the models fail to act correctly and improve these predictions in the future.

In addition, the most important days regarding predictions have been marked
in all of the figures. These correspond to the 2nd of May 2020, where the re-
strictions started to get lifted due to an improvement in the evolution of the pan-
demic, the 16th of October 2020, where restrictions where reapplied previous to
the Christmas campaign, the 14th of December 2020, where this campaign started
and restrictions where temporarily lifted, the 7th of January 2021, where restric-
tions where reapplied after a failed Christmas campaign with a high increase in
cases and a lot of pressure from the medical standpoint and finally, the 26th of
April of 2021, where restrictions started to get lifted again, in a de-escalating man-
ner.

From this database we will be grouping by days to obtain the total number
of infected individuals each day because for this project we are not interested in
dividing the data by counties. We will be making use of Pandas’ dataframes to
facilitate the treatment of this data. It is important to note that we are still missing
some information that we must use for this project. Some of it is easy to find, for
example, the cumulative cases needed for the modeling of the Gompertz curve
can be calculated by doing the cumulative sum of the daily cases we have, which
we do when parsing the data.

Other data is harder to find but we were able to find approximations. This is
the case of the recovered cases that we need for the compartmental models. No
data on the number of recovered patients is included in this or other databases so
we needed to approximate this value. We found that the average time it took for
an individual to recover from COVID-19 was 21 days so, in order to find the initial
approximation of this value, we took the cumulative cases registered 21 days ago.

Finally, it is necessary to mention that there is some data which cannot be
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found nor approximated, and we had to guess the initial value. This is the case for
the Exposed compartment. It is virtually impossible to know how many people
have been exposed to the virus at any point in time, as we can only guess this
number by later knowing how many infected individuals there are two or three
days after.

4.2 Methodology

We have implemented all of the models described in Chapter 2. We have im-
plemented the Gompertz function directly in Python, whereas for compartmental
methods we have implemented them using the EpiModel.py library. After this
implementation, we train them with 30 days of data and predict for day 44, ex-
actly two weeks later. We repeat this for every day of this pandemic and evaluate
the resulting curve as compared to the real values in Catalonia. We evaluate all of
the results based on two metrics:

• The coefficient of determination

R2 = 1− ∑i(yi − fi)
2

∑i(yi − ȳ)

• The mean difference of consecutive days

Mean diff = ∑i |yi − yi+1|
n

These metrics will give us an idea of which of the models better approximates the
real values as we will understand how well our functions predicts the real values,
how much variance it has and how much peaks affect our predictions. In order to
facilitate the analysis of the variance, we also provide qualitative graphs that we
will study to determine whether or not the model groups errors in a single day
or distributes them throughout the entire pandemic. In addition to implementing
all of the models and evaluating them with these parameters, we will also be im-
plementing an average of the Gompertz model together with the compartmental
model that provides us with the best results. Finally, we will evaluate the cumu-
lative relative error rate. This metric will allow us to better understand where the
error is concentrated and reads as follows:

Cumulative relative error = ∑
i

|yi − fi|
fi
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Chapter 5

Results and discussion

Gompertz Model

We now present and analyse the results obtained. We begin by showing the
predictions made by our models, which use a normal 5 day average on the daily
data to train the models and a static initial value. Every Figure shown shows our
predictions made with each model in orange compared to the real values in blue.
We also include the days restrictions were applied and lifted to show the effect
this has on our predictions.

We start by presenting the predictions made by fitting the Gompertz curve.
In Figure 5.1 we can observe how we obtain a very smooth curve to begin with.
We can also observe how the model adjusts very well when no restrictions are
applied but deviates slightly at both restrictions. This is because the model fails to
realise fast enough that changes have been made and that the number of cases is no
longer increasing rapidly as it used to. This creates a valley in the prediction which
quickly increases to the more normal values. The stronger the restrictions are, the
lower this valley is as compared to the real values. We find that these predictions
by the model adjust to the curve with an R2 of 0.993231. This is already a very
promising result as we can already see how the base model of the Gompertz curve
adjusts very well to the real cumulative cases curve.

1All the values presented in this section have been summarised in table 5.1 for a better under-
standing
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Figure 5.1: Base model Gompertz predictions

We can also observe how the Gompertz curve has a mean difference of con-
secutive days of 1499. It is important to note that to make sense of this metric
we have to compare it to the value obtained with the real cases curve, which is of
1436. As we can see, the value obtained with the Gompertz model is very close
to the real value and we will also see how it translates to it being the smoothest
of the obtained curves. It is also worth noting that this model tends to predict
lower values than the real obtained number of cases as compared to the future
compartmental models.

We finally make a qualitative study of the evolution of the error of the Gom-
pertz model in order to better understand if the error is accumulated in certain
days or if it is distributed throughout the entire pandemic. First of all, we can ob-
serve in Figure 5.2 the evolution of the daily error created by our prediction. We
can see how the highest difference in cases is of around 600002, which is attributed
to the peak we see in December in Figure 5.1.

2It is important to mention that this is a difference of 60000 cumulative cases, distributed over
14 days, which means an average daily error of infections of around 4285. That being said, these
functions are not linear, so a higher error is expected the further away we predict.
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Figure 5.2: Absolute value of the daily error of the Gompertz model

That being said, the Gompertz model presents many smaller peaks in differ-
ence. We can see that until June 2021 there are at least 6 peaks of at least 10000
cases in absolute difference and 3 of these peak with more than 20000. We can
also more clearly observe the effect restrictions have on our data. As we can better
observe in Figure 5.2 peak errors come after these restrictions are applied, and
are higher the more strict these restrictions are. Finally, we also plot the mean
error from the Gompertz model, which is of about 12000 cumulative cases. This
represents an average daily error of around 850 cases.
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Compartmental Models

A similar behaviour can be seen in compartmental models, as we can observe
in figures 5.3, 5.5, and 5.7. However, the more complex the model is, the quicker
and easier it adjusts to changes in restrictions. We can already observe in Figure
5.3 a clear effect of noise in our model. That being said, we still obtain that our SIR
model adjusts to the real values with an R2 of 0.99319. We can see an improvement
in the predicted values in figures 5.5 and 5.7. SEIR and SEIRS models seem to be
less affected by changes in restrictions and react faster to these than SIR, but are
still worse than the Gompertz model in the sense that they present larger peaks.

Figure 5.3: Base model SIR predictions

This can be easily observed when comparing error rates. In Figure 5.4 we can
observe how the peak in error is higher than with Gompertz, at around 70000.
Despite this, it seems like this model adjusts better in the other days as compared
to Gompertz, as it presents less peaks of a difference of more than 10000. Sim-
ilarly, we can observe how 4 peaks are formed with more than 10000 cases in
absolute difference and 2 of more than 20000. In addition, we can observe a slight
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improvement from the Gompertz model in the mean error rate. In this case we
have around 11000 cases as compared to Gompertz’ 12000, which results in a daily
average error of around 785.

It is interesting to observe how in both cases, peaks and valleys are formed. We
believe that this is because the model takes time to correct itself and it overcorrects
to better predict the results. This generates a pattern in which some days the
model is extremely precise for the 14 day prediction but others where it is very far
from the actual value. As we have seen before, this pattern also appears with the
Gompertz model, and we will also see how it appears again with SEIR and SEIRS.

Figure 5.4: Absolute value of the daily error of the SIR model
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In Figure 5.5 we can observe the evolution of the predictions for the SEIR
model. As we said before, it improves the SIR model by reducing the peak after
the restrictions and smoothing the curve overall. We can also see how it adjusts
better to the real values, as we have an R2 of 0.99598 as compared to the previous
0.99319 from SIR. We can clearly observe some improvement from SIR to SEIR.
Finally, we can also see how this curve is smoother than the one obtained by SIR by
comparing consecutive days. We obtain that the average difference between days
reduces to 2121 as compared to SIR’s 2331, which proves that this curve is slightly
smoother on average. Nevertheless, we can still observe the effect restrictions have
on this model. In this case, a more clear peak can be observed but the correction
to adjust to the new values happens more quickly.

Figure 5.5: Base model SEIR predictions
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By analysing the error rate in Figure 5.6, we can see some similarities and
differences presented by this new model as compared to SIR. First of all, this com-
partmental model also presents a very large peak after the restrictions. This peak
is larger than with SIR but also lasts less time. We can clearly observe how most
of the error this function brings is concentrated in that period of time, whereas the
other smaller peaks are less pronounced than with SIR. It is especially important
to notice how this model corrects itself quicker than SIR when restrictions are ap-
plied, specially when these are less strict. We again have an improvement in the
average error rate. This time, we have a mean error rate of around 9000, which
represents an average daily error rate of around 650 cases.

Figure 5.6: Absolute value of the daily error of the SEIR model
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Finally, we present the results obtained by SEIRS. We can clearly see in Figure
5.7 a very similar result to the one obtained with SEIR. The main difference being
an increase in smaller peaks, due to SEIRS being more affected by noise. We can
also see this with our mean difference of days metric, which is of 2354 in SEIRS as
compared to the 2121 obtained with SEIR.

Figure 5.7: Base model SEIRS predictions
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By analysing Figure 5.8 we can more clearly see how this error graph really
resembles the one created when predicting with SEIR. We again see a clear peak
in error after the restrictions but it realises faster than the Gompertz model. This
creates the more clear peak of 80000 cases in difference. Finally, we do not see a
clear improvement in average error rate in this model as compared to SEIR, which
follows the pattern we have been seeing.

Figure 5.8: Absolute value of the daily error of the SEIRS model

For now, we have seen that SEIR produces the best model. It’s the model
with the highest R2, together with the lowest variance in the daily change of the
prediction. Having said this, Gompertz produces the smoothest of curves. Of
course, we know that this is probably due to the fact that Gompertz fits cumulative
cases and compartmental models fit daily cases. Therefore, the effect noise has is
more clear in compartmental models as compared to the Gompertz model.
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Average of Gompertz and SEIR

With all of this in mind, we finally propose a single new model. We have taken
the averages of the values obtained with SEIR and the Gompertz model to create a
new model. We have decided to try this model because the Gompertz model had
a tendency to predict lower values than expected whereas compartmental models
had the opposite tendency. We also decided to use the SEIR model instead of
SEIRS because we believe it produced the best approximation of the real values,
together with it being simpler than SEIRS. We only used two of the models because
using more compartmental models would influence the new curve as they all have
similar tendencies of focusing the error during the periods of restrictions. This
would have led to similar results with a multiple average of the values as to the
compartmental models. We now present the results in Figure 5.9.

Figure 5.9: Predictions made with the average of SEIR and Gompertz models
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We can already clearly observe how this average model is an improvement of
all of the previous ones presented. This model deviates very little when restric-
tions are applied and presents the smoothest of curves. We can observe this trend
more clearly by studying the metrics mentioned previously. This curve presents an
R2 of 0.9985 and the mean difference between consecutive days is of 1538, which
is much closer to the real value of 1422 as compared to compartmental models.
This curve clearly presents the advantages of both of the models.

We can more clearly observe the improvement this method provides in Figure
5.10. We can already observe how the peak value in error is of around 35000 cases
which, compared to SEIR’s 80000 or Gompertz’s 60000 is a great improvement. In
addition to this, we obtain only 2 peaks of more than 20000 cases in difference and
only 4 of more than 10000. Clearly, the error is well distributed and not focused
on single days, like with compartmental models, but also a more precise value
is obtained daily as compared to the Gompertz model. This can also be seen by
observing an average error rate of around 5500 cases, the best we have seen. This
represents an average daily error of around 390 cases, which results in a very
precise model.

Figure 5.10: Absolute value of the daily error of the Average of SEIR and Gompertz
model
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Finally, we also compare the relative error rates of all of the models. In this
case, we add the daily relative error to compute a cumulative error. In Figure 5.11
we can observe the obtained values. In this case, it is normal that the Gompertz
model produces higher values given that it distributes its error evenly. For this
reason, when lower real values are made, the Gompertz model has some more
error than compartmental models and this leads to it having a total cumulative
relative error higher than the one obtained with the real models. We can also
observe more clearly how, by a slight margin, SEIR model is the best of the com-
partmental models. Nonetheless, even by using this metric, the average model is
still by far the best of all of those mentioned above.

Figure 5.11: Relative error rates of the models
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Summary

We summarise the obtained values in table 5.1 for a better understanding of the
different models. As we have seen, the Gompertz curve results in the smoothest
of the original models but only results in a more accurate curve than SIR. We
have also seen how SEIR and SEIRS present less smooth curves but more accurate
than the ones mentioned before and how the average curve of Gompertz and SEIR
improves all of the previous ones, it now becomes the smoothest of the curves
and the most accurate to predict the evolution of the disease. This is due to the
fact that the Gompertz model tends to predict less than the real values whereas
compartmental models tend to predict higher number of cases. Therefore, the
accumulated error from both cancels out and results in the best obtainable curve.

R2 Mean difference Mean Error Rate

Gompertz 0.99323 1499 12000

SIR 0.99319 2331 11000

SEIR 0.99598 2121 9000

SEIRS 0.99579 2354 9000

Average 0.99855 1538 5500

Table 5.1: Metrics used to evaluate the effectiveness of the models
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Chapter 6

Conclusion

The main goal of this project was to learn about the effectiveness of different
predictive methods for the evolution of the COVID-19 pandemic. These included
the Gompertz curve and compartmental methods such as SIR, SEIR, and SEIRS.
We mainly wanted to compare which of these methods predicts best the evolution
in cumulative cases.

We first presented and analysed the behaviour of all of the models. Learn-
ing that the Gompertz curve presented a stochastic approach to predicting the
evolution of the pandemic, whereas compartmental models use a deterministic
approach to do so. Both models have advantages and disadvantages, on the one
hand, the stochastic approach estimates the parameters based on previous data in
order to predict the future. On the other hand, the deterministic approach uses a
set of differential equations to do so with parameters adjusted to the real data.

We presented different metrics to analyse which of the methods was most ef-
fective, and obtained data from the Catalan government’s database Dades Obertes.
We used this data to train our models with 30 days of data and predict 14 days
in the future. We did a retrospective analysis of the evolution of the pandemic by
repeating this prediction for every day of this pandemic and comparing it to the
real values. We also described how we treated our data and we justified the initial
parameters used to train our predictions.

By analysing the results obtained, we are able to conclude that Gompertz pro-
duces the smoothest of curves and SEIR produces the best overall model, resulting
in the most accurate predictions. That being said, we decided that trying to av-
erage both values would yield a better prediction and therefore we applied the
same process in order to obtain an average predictor. This model produced the
best results overall, predicting the evolution of the pandemic very closely and
being smoother than the Gompertz curve obtained. We have also been able to ob-
serve how restrictions and re-openings affect all of our models. Clearly, all of the
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models take some time to realise the change in cases that these restrictions create
and tend to have a higher error some time after these restrictions.

In future work, we plan to include more complex compartmental models, such
as the one used by Alex Arenas, given the necessary data. In addition, a larger
average of models can be used, in which more than 2 models is applied, or we can
adjust the weights of the different models, for an even more precise prediction of
the evolution of pandemics.
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