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Abstract

The main goal of this project is the investigation of the mathematical structures
called categories, looking at their most important features and applications. It will
also be see the concept of functors, how they make sense when working with
categories and two of the most relevant type of functors, representable and adjoint
functors. The development of the study is based on the book Categories by T.S.
Blyth.

2010 Mathematics Subject Classification. 11G05, 11G10, 14G10



Acknowledgements

First of all, I would like to thanks my tutor Kiko for letting me work with him
and for introducing me into this field.

Thanks to Severino, Sandra, and Rubén for being my closest friend during all
my degree.

I am really grateful to Fritz for being an incredible duo and for always sup-
porting me.

Finally, I would like to recognize my greatest support, my family, especially
my parents. I would not be here without them.



Introduction

Motivation
Category theory, developed in the middle of the last century, is a relevant theory

in mathematics which tries to organize different mathematical objects and struc-
tures. This report introduces the most important aspects of categories, how these
frameworks allow us to work different aspects of mathematics like sets, groups,
vector spaces, topological spaces, etc., and look at some similarities between these
mathematical structures. To do it we need to manage categories, functors, the con-
struction of universal objects like products or pullbacks. We will relate two types of
functors, adjoint, and representable functors.

Structure of the project
In the first chapter we look at classes and how important they are to have an ap-

propriate definition for categories. The second chapter is when we identify some
of the most important examples of categories, and some of the most important
elements in categories. This chapter will be the basics for the development of the
next chapters.
In the third chapter, we will talk about new particular elements in categories, these
are products, pullbacks, intersections, and equalisers, all these are known as uni-
versal objects. To find them we need to construct new categories where they have
the sense to exist, and then translate any result to our original category.
The last chapter is the most relevant in our project, this one talks about functors
and natural transformations. The reason to study them is that functors relate cate-
gories, and natural transformations relate functors. At this point, we will be ready
to announce Yoneda’s Theorem and then define representable functors. Finally,
we define adjoint functors, adjoint pairs, and show a theorem that relates adjoint
pair with representable functor.



Chapter 1

Classes

1.1 Context

Set theory is the base of mathematics as we know nowadays, it would be im-
possible to work out of these fundamentals. Nevertheless, to define the notion
of a category we should start with something more than sets, we need the notion
of classes. This necessity arises from the theoretical limitations of sets. Let see a
historical example of this:

Example 1.1. Russell’s Paradox: Consider the "set" of all sets that does not belong
to themselves. This would be:

A = {x|x /∈ x}

We arrive at a contradiction with this "set", that is:

A ∈ A⇐⇒ A /∈ A

Here the problem that we have is to work with A as a set. According to Zermelo-
Fraenkel’s axiomatic there is no set that belongs to itself, so A would be the "set"
of all sets, but there is no such "set".

The point with this example is the limitations of how sets are defined. Well,
with classes we won’t have this problem.

Definition 1.2. We define a class as a free reunion of objects.

To see the difference between sets and classes, we figured out that every set is
a class, but not every class is a set, this is why sets are also called small classes.
The classes which are not sets are named proper classes. The point is that we
can define a class with a property that its objects satisfy, without the condition to
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2 Classes

be first in another class. Recalling Russell’s Paradox, from example 1.1 we can not
have the set of all sets, this arrives to a contradiction, but with classes is different.
For example, we can work with the class of all classes or classes that belong to
themselves (assuming the belonging of classes the same way that is in sets).

We need classes to define concepts in category theory in a general vision, but
mostly we will be working with the set category. Nevertheless, we will show how
a class is really a set in a particular case of this report.



Chapter 2

Categories

2.1 Notion of category

Definition 2.1. We define a category as a class C of objects such that:

(1) for every pair of objects X, Y of C there is a set MorC(X,Y), called the the set of
morphisms from X to Y, with MorC(X,Y) and MorC(X’,Y’) disjoint unless X = Y
and Y = Y’ in which case they coincide;

(2) for any three objects X, Y, Z of C there is a mapping

MorC(X,Y)×MorC(Y,Z) −→ MorC(X,Z)

described by (g, f ) 7−→ f ◦ g, with the following properties:

(α) for every object X there is a morphism idX ∈ MorC(X,X) which is a right
identity under ◦ for the elements of MorC(X,Y) and a left identity under ◦ for
the elements of MorC(Y,X);

(β) ◦ is ’associative’ in the sense that when the composites h ◦ (g ◦ f ) and (h ◦
g) ◦ f are defined they are equal.

Notice that in Definition 2.1 we do not require the morphisms to be maps, we
take abuse of notation but we could also name the morphisms arrows. To have a
better notion of categories we will see some examples:

Example 2.2. A graph:

x
f //

h
��

y

g
����������

z
Here we have that objects of C constitute the set {x, y, z} and morphisms the

set {idx, idy, idz, f , g, h}, where g ◦ f = h

3



4 Categories

Example 2.3. The second category we are going to show is the Set category. This
category has as objects all the sets; as morphisms (or arrows) the maps from one
set to another. The composition between the arrows is the common composition
of functions, and the identity morphism of an object in Set is the identity map. As
we are used to work within the set theory it is clear that we obtain a category with
this class.

When objects are sets we say the category is a small category. In the next exam-
ples, as they are small categories, we will not mention the composition between
them, so composition is the same as in Example 2.3.

Example 2.4. The next example is another mathematical structure, the groups. As
we know well the groups, it is natural to take as arrows the group homomorphisms.
This is because, as we will see in the next examples, we maintain the mathematical
structure. So we have the category Grp.

Example 2.5. VecK is the category with objects vector spaces over a field K with
finite dimension, and arrows linear transformations between them.

Example 2.6. Ab the category based on abelian groups with the group morphisms
between abelian groups.

Example 2.7. Topological spaces generate another category with the continuous
maps. This category is known as Top.

Example 2.8. The category Ring based on rings with ring morphisms.

Observation: when working with categories it is common to show just the
objects, the morphisms tend to be the most obvious to compose between them,
the ones that preserve the structure.

Another interesting and important concept we will be working with during
the project is the dual category.

Definition 2.9. Given a category C we denote C* as the dual category generated with the
same objects as C and morphisms are defined:

MorC*(A, B) := MorC(B, A)

This category will be useful to get more important results and properties of
categories. Let see an example:

Example 2.10. Consider the category given by the directed graph from Example
2.2:

x
f //

h
��

y

g
����������

z



2.2 Particular objects 5

In this case its associated dual category is:

x y
foo

z

h

OO

g

??��������

We see that objects do not change, the difference with the category C is the direc-
tion of the edges. Of course, the identity morphisms are still the same.

2.2 Particular objects

We are going to talk now about particular objects in a category that may exist
but it is not a necessity. These are universal objects.

Definition 2.11. Let C be a category, we say that U is an initial object if it is an object
of C such that MorC(U, A) is a singleton for every object A of C. Dually, U is said to be
a terminal object if U is an initial object in C*, this is MorC(A, U) is singleton for every
object A in C.

Example 2.12. ∅ is an initial object in Set due to there is just one map from ∅ to
any set, the empty map.
The set {x}, with x a set, is a terminal object. Given any set Y, there is just one
map fY from Y to {x} defined by y 7−→ fY(y) = x for all y ∈ Y.

Notice that we require every object of C being connected to the universal object,
in the sense that there has to be a morphism between them, and of course to be
unique. The sense of being connected in a category goes this way (clearly without
the singleton condition).

Definition 2.13. Let C be a category. We say that C is a connected category if and only
if, for every two pair of objects X, Y of C, the set MorC(X, Y) 6= ∅.

To introduce a very useful theorem that relates these universal objects, we need
first the concept of isomorphic objects.

Definition 2.14. We say f : A −→ B is an isomorphism if and only if there exist (a
necessarily unique) g : B −→ A such that f ◦ g = idB and g ◦ f = idA. If we have
h1, h2 : B −→ A such that f ◦ h1 = idB and h2 ◦ f = idA it gives:

h1 = idA ◦ h1 = (h2 ◦ f ) ◦ h1 = h2 ◦ ( f ◦ h1) = h2 ◦ idB = h2

We write g as f−1.



6 Categories

Definition 2.15. We say objects X, Y of C are isomorphic if MorC(X, Y) contains an
isomorphism. In this case we often write X ' Y.

Theorem 2.16. Universal objects of the same type are isomorphic.

Proof. Let U1 and U2 be initial objects in a category C (the same proof would
work for terminal objects). We have to proof that MorC(U1, U2) is a singleton
that consists of an isomorphism. As U1, U2 are initial object for every object
X of C MorC(U1, X( and MorC(U2.X) are singleton. In particular, for X = U2,
MorC(U1, U2) = {α}, MorC(U2, U2) = {idU2}; for X = U1, MorC(U1, U1) = {idU1},
MorC(U2, U1) = {β}. So we have that α ◦ β = idU2 . Similarly β ◦ α = idU1 . Conse-
quently α is isomorphic to β with β = α−1.

This is an important result, for example recalling the Example 2.12 we can say
that just singleton sets are terminal objects, and ∅ is the only initial object.
So it would be a reasonable question if there exists an object that satisfies both
properties, being an initial and terminal object.

Definition 2.17. Let C be a category, we say U is a zero object if it is both terminal and
initial object.

Example 2.18. In Grp category we have that trivial group {*} is a zero object. The
proof of being a terminal object goes the same way we saw in Example 2.12. The
point is seeing it as an initial object. Looking to group homomorphisms, we have
that identity element goes to identity element; in our case, given a group G there is just
one group homomorphism f : {∗} −→ G defined by f (∗) = 1G with 1G identity
element of G.

Theorem 2.19. Let C be a category with initial and terminal objects. Then, C is connected
if and only if C has a zero object.

Proof. ⇐
Assume 0 is a zero object of C. Let A and B be two objects of C. We want to show
MorC(A, B) 6= ∅. We will use the zero object as a "factorizator"; this is, as 0 is a
terminal object there is a unique α ∈ MorC(A, 0), and as 0 is an initial object there
is a unique β ∈ MorC(0, B). So now we have β ◦ α : A −→ 0 −→ B, we have just
found an element γ = β ◦ α ∈ MorC{A, B}. As we choose A and B arbitrarily we
have C a connected category.
⇒
We will not show this implication because we need some concepts not explained
in this work.



Chapter 3

Universal Constructions

In the first chapters, we defined categories and looked at the most important
and basic concepts. In this new chapter, we will see some applications of cate-
gories. In a general vision, our goal is to generate categories from given categories.
This will be a way to define new concepts in categories thanks to the constructed
ones, this process is known as "turning theorems into definitions".

3.1 Products and coproducts

We begin considering a family of sets {Ai}i∈I indexed by a set I. Let ∏i∈I Ai

be the cartesian product of this family, and πj : ∏i∈I Aj −→ Ai the projections for
each set Aj defined by πj((ai)i∈I) = aj. Suppose now that X is a set and a family
of mappings fi : X −→ Ai. Our goal is to have a unique function σ such that the
diagram

X σ //

fi ##GGGGGGGGG ∏i∈I Ai

πi
��

Ai

is commutative for every i ∈ I.
Choosing the mapping σ : X −→ ∏i∈I Aj defined by σ(x) = ( fi(x))i∈I it would

be a mapping that makes our diagram a commutative diagram. This is because

∀x ∈ X (πi ◦ σ)(x) = πi(σ(x)) = πi(( f j(x))j∈I) = fi(x)

So πi ◦ σ = fi. To proof the uniqueness let suppose another mapping ψ : X −→
∏i∈I Aj such that πi ◦ ψ = fi. Given x ∈ X let ψ(x) = (ei)i∈I . Then

f j(x) = πj(ψ(x)) = πj((ei)i∈I) = ej

hence ψ(x) = (ei)i∈I = ( fi(x))i∈I = σ(x) and so ψ = σ.

7



8 Universal Constructions

Let turn this "theorem" into a definition. Let C be a category and let (Ai)i∈I

be a family of objects of C. We define a new category K in the following way:
the objects of K are pairs (E, {gi}i∈I) with E an object of C and gi : E −→ Ai

morphisms of C. A morphism f is in the set MorK((F, { fi}), (E, {gi})) if it is in
MorC(F, E) such that the diagram

F
f //

fi ��???????? E
gi

��
Ai

is commutative for every i ∈ I.

Definition 3.1. Let (P, {pi}i∈I) be a terminal object in the previous category, then we
say that (P, {pi}i∈I) is a product of the family (Ai)i∈I .

Dual notion of the product would be an object (Q, {qi}i∈I) such that it is an initial
object, we say it is a coproduct.

We will say that C has (finite) products if every (finite) family of objects of C
has a product in the category K.

Notice that the sense of products (coproducts) are unique up to isomorphism,
given that every terminal (initial) object is unique up to isomorphism as we saw
in Theorem 2.16. Let see an example of a product to visualize it better.

Example 3.2. Let VecK be the category of vector spaces over a field K with finite
dimension as we saw in Example 2.5. Consider a finite interval I = {1, ..., n} and
a family of vector spaces {Ei}i∈I in VecK.

Our new category K related with VecK is the one with pairs (E, {ei}i∈I) with
E a vector space and each ei : E −→ Ei a linear transformation between vector
spaces. To visualize the objects of K let see the diagram

E1

E

e1

@@��������

en
��========

... F

f1

^^========

fn����������

En

here we focus on the family {Ei}i∈I and take as objects of K the objects of VecK

with their respective family of linear transformations.



3.2 Pullbacks and pushouts 9

Now if there is a morphism f : E −→ F such that the diagram

E
f //

ei ��???????? F

fi
��

Ei

is commutative for every i ∈ I then it would be on the set

MorK((E, {ei}i∈I), (F, { fi}i∈I))

Let us have a look at a terminal object in this category. A product in this cate-
gory K is the pair (∏i∈I Ei, {πi}i∈I) with ∏i∈I Ei the vector space generated by the
cartesian product of the family {Ei}i∈I , and the family {πi}i∈I are the projecctions
πj : ∏i∈I Ei −→ Ej of each Ej.
Let us see this is a terminal object. Given (H, {hi}i∈I) we have to proof the exis-
tence of h : (H, {hi}i∈I) −→ (∏i∈I Ei, {πi}i∈I) the unique morphisms between this
two objects such that the diagram

H h //

hi ##FFFFFFFFFF ∏i∈I Ei

πi

��
Ei

is commutative for every i ∈ I. Looking at first part of this section we can say that
there is a unique h defined by h(x) = (h1(x), ..., hn(x)) with x ∈ H. As we choose
(H, {hi}i∈I) arbitrarily we can say (∏i∈I Ei, {πi}i∈I) is a terminal object.

In this last example, we can see how is the translation from a "theorem" to a
definition thanks to categories. Notice that we need a terminal object (P, {pi}i∈I)

in the category K. Working with products we will say that P is a product of C
without mention the morphisms pi because these tend to be the ones that commute
the diagram.

3.2 Pullbacks and pushouts

Let us have a look at another important universal object, pullbacks and their
dual version pushouts. Let C be a category and two morphisms f : A −→ C and
g : B −→ C.

B
g
��

A
f // C
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Generate the category K in the following way: take as objects the commutative
diagrams of the form

D
β //

α
��

B
g
��

A
f
// C

with D object of C, we will name this object as [A, B, C; D]. Given 2 objects
[A, B, C; D] and [A, B, C; E] we have the set MorK([A, B, C; D], [A, B, C; E]) is con-
stitute by morphisms γ : D −→ E such that the diagram

E b //

a

��

B

g

��

D

β
??~~~~~~~

γ
``@@@@@@@@

α

��~~~~~~~~

A
f

// C

is commutative.

Definition 3.3. Let K be the category defined above. We say that [A, B, C; P] is a pullback
if it is a terminal object in K. The dual notion is known as pushout. We will say that P is
a pullback

We say C has pullbacks if for every pair of morphisms, f : A −→ C and g :
B −→ C, there exists a pullback. Let us have a look at an example.

Example 3.4. Recalling the category Set the category of all sets. Let f : A −→ C
and g : B −→ C with A, B, C three sets, and f , g two functions with the same
codomain

B
g
��

A
f
// C

We will prove the set A ×C B := {(a, b) ∈ A × B | f (a) = g(b)} is a terminal
object with the projections to sets A, B.

A×C B
πB //

πA
��

B

g
��

A
f

// C
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Let D a set and two functions α : D −→ A and β : D −→ B such that the
diagram

D
β //

α
��

B
g
��

A
f
// C

is commutative. Let see that there is a unique function d : D −→ A×C B such that
the diagram

D
β //

α

��

d

##GGGGGGGGG B

g

��

A×C B

πB

;;wwwwwwwww

πA

{{wwwwwwwww

A
f

// C

is commutative. We define d : D −→ A×C B as d(x) = (α(x), β(x)) with x ∈ D.
Let see this is a well defined function. As we have our diagram a commutative
diagram, we have f (α(x)) = g(β(x)) for every x ∈ D, this means (α(x), β(x)) ∈
A ×C B for every x ∈ D. To prove the uniqueness we assume there is another
function d′ : D −→ A×C B such that the diagram

D
β //

α

��

d′

##GGGGGGGGG B

g

��

A×C B

πB

;;wwwwwwwww

πA

{{wwwwwwwww

A
f

// C

is commutative. Looking at the diagram we figured out that for every x ∈ D
the equalities πB(d′(x)) = β(x) and πA(d′(x)) = α(x) hold. This means the
projections of d′ are d′(x) = (α(x), β(x)), and this is how we defined d, then
d′ = d.

This last example shows us that Set has pullbacks.

3.3 Other universal objects

We just saw 2 universal objects in categories. Now we will mention another 2
different universal objects that will help us to characterize categories.
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• Equalisers and coequialisers
Let C be a category and two morphisms f , g ∈ MorC(A, B). Consider the
category K with objects the commutative diagrams

X α // A
f //
g
// B

this is f ◦ α = g ◦ α. For the morphisms of K between two objects we take
the morphisms σ : X −→ Y such that the diagram

X
α

��@@@@@@@@

σ

��

A
f //
g
// B

Y
β

??~~~~~~~~

is commutative.
If there exists a terminal object T in the category K, then we will say that
T is an equaliser in the category C. Its dual notion is known as coequaliser.
We will say that category C has equalisers if, for every pair of morphisms
f , g : A −→ B there exists an equaliser.

• Intersections
To understand this universal object we need a previous concept.

Definition 3.5. Let B be an object in the category C. We say that (A,f) is a subobject
of B if A is an object of C and f : A −→ B is a left cancellable morphism, this is:

f ◦ g = f ◦ h ⇒ g = h

Now, let (Ai, fi)i∈I be a family of subobjects of an object B, indexed by the
set I. We consider the category K choosing as objects the subobjects (D, d) of
B such that the triangle

D
di //

d   @@@@@@@@ A

fi
��

B

commutes for every i ∈ I. The morphisms of this category K are the mor-
phisms α : D −→ E such that the diagram
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D
d

��????????

α

��

B

E
e

??��������

is commutative. If there is a terminal object T in the category K we say that
there is an intersection of the family (Ai, fi)i∈I of subobjects of B. We say C
has finite intersections if for every finite family of subobjects of C there is an
intersection.

After looking at the most important universal objects of categories, we can
characterize categories with the next theorem.

Theorem 3.6. Let C be a category. The following statements are equivalent:

• 1) C has finite products and equalisers;

• 2) C has finite products and finite intersections;

• 3) C has pullbacks and a terminal object.

Proof. 2) ⇒ 1) and 1) ⇒ 3) implications are proved with concepts out of this
project, so we will just show the implication 3)⇒ 2).

3) ⇒ 2) Suppose C has a terminal object T, this is for all X in C the set
MorC(X, T) = {αX}, a singleton set. Let f : C −→ A and g : C −→ A be two
morphisms of C. Since T is terminal, MorC(C, T) is also singleton, and therefore
the following diagram commutes:

C
g //

f
��

A

αA
��

B
αB
// T

As C has pullbacks, we can considerate a pullback P with morphisms pA : P −→
A and pB : P −→ B, of the pair (αA, αB). Then there is a unique morphisms
h : C −→ P such that pb ◦ h = g and pA ◦ h = f , resulting the diagram
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P
pA //

pB

��

A

αA

��

C

h
__????????

f
??��������

g

����������

B
αB

// C

Then we have that (P, pA, pB) is a product of {A, B}.
Let us see C has finite intersections. We can have a look at the definitions and
observe that if (A1, f1) and (A2, f2) are subobjects of B then an subobject (D, d) is
an intersection of (A1, f1) and (A2, f2), if and only if [A1, A2, B; D]:

D
d1 //

d2
��

A1

f1
��

A2 f2

// B

is a pullback. So from the fact C has pullbacks, we can say C has finite intersec-
tions.



Chapter 4

Functors

In the previous chapters we look at different concepts of categories, we real-
ized that objects do not have the same relevance as morphisms. Moreover, we
could think of a category C as the morphisms it is made of, this would be the cat-
egory that has as objects the identity morphisms; and morphisms the same from
category C. The point is, that most important in categories are the relations, the
morphisms. This allows us to think of how categories relate to them. We are going
to define the concept of functor which, in informal words, means a morphism be-
tween categories. Also, we will look at particular collection of functors, and even
how they relate between them.

4.1 Notion of functor

Definition 4.1. A covariant functor from the category C to category D is a prescription
that assigns to every objet A of C an object FA of D, and to every morphisms α : A −→ B
of C a morphisms Fα : FA −→ FB of D, such that

• FidA = idFA for every object A of C

• if β ◦ α is defined in C then Fβ ◦ Fα is defined in D and Fβ ◦ Fα = F(β ◦ α).

We have a similar definition for a contravariant functor, the difference from the
previous one is that every morphism α : A −→ B is assigned to a morphism
Fα : FB −→ FA. We could understand a contravariant functor as a covariant
functor from category C to the dual category of D, Dd.

15



16 Functors

A representation of these concepts could be:

A F //

α

��

FA

Fα

��

F //

B
F
// FB

is a diagram of a covariant functor. The next one is a diagram of a contravariant
functor:

A F //

α

��

FA

F //

B
F
// FB

Fα

OO

Nevertheless, when we talk of a functor we will refer to a covariant functor. Let
us have a look at some examples.

Example 4.2. A topological example of a functor would be the fundamental group
Π, the first group of homotopy. This is the functor that assigns a group to each
topological space, and each continuous map to a morphism of groups. This is
Π : Top −→ Grp goes from the category Top to the category Grp. Really, every
homotopy and homology group is a functor from Top to Grp.

Example 4.3. The forgetful functor is the functor that goes from Top to Set. Ev-
ery topological space (U, TU) is assigned to a set, the set of points U; and every
continuous application f : (U, TU) −→ (V, TV) is assigned to a function between
sets F f : U −→ V defined as F f (u) = f (u) ∈ V. What the forgetful functor
does is avoiding the topological structure and look at the topological space with-
out its topology, a set. Notice that forgetful functor could be defined over every
mathematical structure based on sets.

Example 4.4. Let us work now an example that is relevant for the next sections.
Consider the category C and a object A of C. We will define a functor of the form

MorC(A, _) : C −→ Set

This is a set valued functor, meaning that our functor goes from the category C to
the category Set. This functor assigns to each object B of C the set:

MorC(A, _) := MorC(A, B)
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Given two objects B and D from C we assign to each morphism f : B −→ D the
function MorC(A, _)( f ) := MorC(idA, f ) defined by:

MorC(idA, f ) : MorC(A, B) −→ MorC(A, D)

σ 7−→ MorC(idA, f )(σ) := f ◦ σ

This function could be visualized in the next diagram

A σ //

f ◦σ   @@@@@@@@ B

f
��

D

We will denote this functor as the right morphism functor, and to simplify notation
we denote hA = MorC(A, _). Similary we have the left morphism functor:

MorC(_, A) : Cd −→ Set

This functor assigns to each object B of Cd the set MorC(B, A); and every mor-
phism f : D −→ B of Cd is associated to the function:

MorC( f , idA) : MorC(B, A) −→ MorC(D, A)

σ 7−→ MorC( f , idA)(σ) := σ ◦ f

This function is represented in the diagram

A Bσoo

D

f

OO

σ◦ f

``@@@@@@@@

We denote the left morphism functor hA = MorC(_, A). Notice this last functor is an
example of a contravariant functor.

The advantage of using functors is that we can work in a particular category
C, if you find any result in C then you can translate this one thanks to a functor
F : C −→ D, whenever this makes sense. Another interesting curiosity of functors
is that they allow us to create the category of all categories; this is the category that
has as objects all categories, and as morphisms the functors between categories.
This last sentence allows us to think about composition between functors.

Definition 4.5. Let F : C −→ D and G : D −→ E be two functors. We denote the functor
G ◦ F : C −→ E in the following way: if A is an object of C, then G ◦ F(A) = G(FA);
also, if α is a morphism in C then G ◦ F(α) = G(Fα).
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4.2 Yoneda’s Theorem and representable functors

We just saw how to relate two different categories, it would a reasonable ques-
tion to ask for relations between functors. This question leads us to natural trans-
formations.

Definition 4.6. Let F, G be two functors from the category C to the category D. We
say a natural transformation η is a rule that assigns to each object A of C a morphism
ηA : FA −→ GA of D in such a wat that associated with every morphism f : A −→ B in
C there is a commutative diagram:

A

f
��

FA
ηA //

F f
��

GA

G f
��

B FB
ηB
// GB

Let have a look at an example:

Example 4.7. Given a category C, we consider a morphism σ : X −→ Y. Take
functors hX = MorC(_, X) and hY : MorC(_, Y), these are the corresponding left
morphism functors from Example 4.4. Let us see how we can generate a nat-
ural transformation η between these two functors, this means we would have a
commmutative diagram:

A

f
��

hX A = MorC(A, X)
ηA //

hX f
��

hY A = MorC(A, Y)

hY f
��

B hXB = MorC(B, X)
ηB
// hYB = MorC(B, Y)

We can define the natural transformation η in the following way:

ηA : hX A −→ hY A

α 7−→ ηA(α) = σ ◦ α

Resulting the triangle:
A α //

σ◦α ��@@@@@@@@ X

σ
��

Y

What really does this natural transformation is to compose the given morphism
σ : X −→ Y with any morphism α : A −→ X resulting a morphism β = σ ◦ α :
A −→ Y, looking at them in the category Set.
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Now we could consider the class of natural transformations from functor F
to functor G, the class Nat(F, G). An interesting question would be if this class
constitutes a set because if it does we could, for example, consider the category
of functors and the natural transformations as morphisms. Well, in general, this
is no longer true. Nevertheless, if we are working with a small category (i.e. its
objects are sets) then we can have an interesting result, Yoneda’s theorem.

Theorem 4.8. (Yoneda) Let C be a category, an object A of C, and a set valued functor
F : C −→ Set. Then the class Nat(hA, F) of natural transformations from hA to F
constitutes an equipotent set to FA.

Remember that functor hA refers to the right morphism functor MorC(A, _).

Proof. Let η : hA −→ F be a natural transformation, this is for every objects X and
Y of C and every morphism f : X −→ Y we have the commutative diagram

Y

f
��

hAY = MorC(A, Y)
ηY //

hA f
��

FY

F f
��

X hAX = MorC(A, X)
ηX
// FX

In particular taking Y = A and a morphism f : A −→ X we have:

A

f
��

hA A
ηA //

hA f
��

FA

F f
��

X hAX
ηX
// FX

Notice f is an object of hAX, so we can see from the diagram that

F f (ηA(idA)) = ηX(hA f (idA)) = ηX( f ◦ idA) = ηX( f )

So, we figured out that every morphism ηX is completely determined by the ele-
ment ηX(idA) of FA thanks to the morphism F f in Set. Since FA is a set, it follows
that so also is Nat(hA, f ).
We need to proof now Nat(hA, f ) being an equipotent set to FA. To see this we
consider the mapping

σ : Nat(hA, f ) −→ FA

η 7−→ σ(η) = ηA(idA)

So, our objective now is to produce an inverse mapping to σ, this is a mapping
λ : FA −→ Nat(hA, F).
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Suppose an element a ∈ FA. Given an f : A −→ X we have F f : FA −→ FX and
so we have F f (a) ∈ FX. We can therefore define a mapping

λX(a) : hAX −→ FX

f 7−→ λX(a)( f ) = F f (a)

This mapping gives rise to a natural transformation λ(a) : hA −→ F, as can be
seen in the commutative diagram

X

g
��

hAX
λX(a) //

hAg
��

FX

Fg
��

Y hAY
λY(a)

// FY

This is
Fg(λX(a)( f )) = Fg(F f (a))

λY(a)(hAg( f )) = λY(a)(g ◦ f ) = F(g ◦ f )(a) = Fg(F f (a))

So we will define our mapping λ : Nat(hA, f ) −→ FA by the prescription a 7→
λ(a).
Let us show this is an inverse of σ previously defined. Consider η in Nat(hA, F)
then

λX(ηA(idA))( f ) = F f (ηA(idA)) = ηX( f )

and so λ(ηA(idA)) = η and λ(σ(η)) = η. This shows that λ ◦ σ = idNat(hA,F). Now
for every a ∈ FA we have

σ(λ(a)) = (λA(idA)) = FidA(a) = idFA(a)

and hence σ ◦ λ = idFA.

This last result leads us to the study of the isomorphism λ generated in the
previous demonstration λ : FA −→ Nat(hA, F). This morphism assigns a natural
transformation for each set a ∈ FA, the natural transformation λ(a). The question
here is when this natural transformation λ(a) becomes a natural isomorphism.
Whenever this situation happens we will say the functor F is a representable functor
by the pair (A, a).

Example 4.9. Let us consider the forgetful functor from Example 4.3 U : Grp −→
Set. This is the functor that assigns to each group its set, and morphisms of groups
become functions between sets. We will show that U is represented by the pair
(Z, 1). Notice that 1 is being seen as an element of the set Z, not as the neutral
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element of the group Z.
We need λ(1) : hZ = MorGrp(Z, _) −→ U to be a natural isomorphism. To check
it, we suppose a morphism of groups σ : Z −→ G and we see that

λG(1) : hZG −→ UG

σ 7−→ λG(1)(σ)

is an isomorphism. This is because given an x ∈ UG = G (G as set) we have a
unique group morphism σ : Z −→ G such that Uσ(1) = x, given that every group
morphisms is completely determined by the image of the neutral element. Then
to assign every group morphism an element of G, we first calculate σ(1). So we
have an unique antiimage for every x ∈ UG = G, then we have that our function
λG(1) : hZG −→ UG is an isomorphism, and so is λ(1).

4.3 Adjoint functors

In this section, we will define a new relation between functors and we will
show the relationship between the previous concepts.

Definition 4.10. Given categories C, D, and functors F : C −→ D , G : D −→ C such
that

MorC(G_, _) ≈ MorD(_, F_)

This is MorC(GX, Y) ≈ MorD(X, FY) for every X ∈ D and every Y ∈ C. We say F is a
right adjoint of G, G is a left adjoint of F and (G,F) is an adjoint pair.

Let us see a topological example.

Example 4.11. Let U : Top −→ Set be the forgetful functor.
First, let D : Set −→ Top be the functor that assigns to each set A the discrete

topology D(A) = (A,P(A)); and each function f : A −→ B is assign to the con-
tinuous map D f : (A,P(A)) −→ (B,P(B)) defined by D f (a) = f (a) ∈ (B,P(B))
for a ∈ A.
We will show that D is a left adjoint of U; this is for every X ∈ Set and every
Y ∈ Top:

MorTop(DX, Y) ≈ MorSet(X, UY)

Let f : X −→ UY be a function, we have to assign f an unique continuous map
g : DX −→ Y. We define g in the following way:

g : DX −→ Y

x 7−→ g(x) = f (x)
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To show g is a continuous map we suppose an open V ⊂ Y, and we have to see
that g−1(V) = {p ∈ DX : g(p) ∈ V} is an open on X. Well this is true because
every subset of X is an open in DX = (X,P(X)), in particular for g−1(V).

On the other side, let T : Set −→ Top be the functor that assigns to each set A
the trivial topology TA = (A, {∅, A}); and every function f : A −→ B is assign
to a continuous map T f : (A, {∅, A}) −→ (B, {∅, B}) defined by T f (a) = f (a) ∈
(B, {∅, B}) for a ∈ A.
We will show that T is a right adjoint of U; this is for every X ∈ Top and every
Y ∈ Set:

MorSet(UX, Y) ≈ MorTop(X, TY)

Let f : UX −→ Y be a function, we have to assign f an unique continuous map
g : TY −→ X. We define g in the following way:

g : X −→ TY

x 7−→ g(x) = f (x)

To show g is a continuous map we suppose an open V ⊂ TY, and we have to see
that g−1(V) = {p ∈ DX : g(p) ∈ V} is an open on X. In this case V ∈ {∅, Y}: if
V = ∅ then g−1(V) = ∅ ⊂ X is an open; and if V = Y then g−1(V) = X, and so
it is an open.

To end, we will relate these concepts of adjoint pair and representable functors
as it can be seen in the following theorem:

Theorem 4.12. Let F : C −→ D be a functor between categories C and D. F has a left
adjoint if and only if, for every object D of D, the functor FD = hD ◦ F : C −→ Set is
representable. The dual notion of this is: F has a right adjoint if and only if, for every D
object of D the functor FD = hD ◦ F : C −→ Set is representable.

Example 4.13. Remember the forgeful functor U : Top −→ Set we saw in Example
4.11 had a left adjoint functor D : Set −→ Top, the discrete topology functor. Let
us use the theorem 4.12, this means the functor UB = hB ◦U : Top −→ Set is a
representable functor for every set B.
We have to find a pair (A,a) with A a topological space, and a ∈ UB A = (hB ◦
U)A = hB(UA) = MorSet(B, UA), so a is of the form a : B −→ UA. Let A be DB,
the discrete topological space of B; and a = idB. So we have to prove that functor
UB is represented by the pair (DB, idB). This allow us to check if the natural
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transformation λ(idB) : hDB −→ UB

X

f
��

hDBX = MorTop(DB, X)
λX(idB)//

hDB f
��

UBX = MorSet(B, UX)

UB f
��

Y hDBY = MorTop(DB, Y)
λY(idB)

// UBY = MorSet(B, UY)

is an natural isomorphism, with

λX(idB) : hDBX −→ UBX

defined by g 7−→ λX(idB)(g) = UBg(idB) = (hB ◦U)g(idB) = hB(Ug(idB)) = Ug.
Then we can say (DB, idB) represents the functor UB.

Notice that as we already knew that D was a left adjoint of U, we had the
isomorphic sets MorTop(DB, X) ≈ MorSet(B, UX) for every X topological space.
There is an isomorphism, the point is that we had to prove that λ(idB) was a
natural isomorphism.
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Chapter 5

Conclusions

To summarize, at first, we started this project without the knowledge of what
a category is. We defined them and realized that it really makes sense to categorize
mathematical structures. Moreover, as categories have their own mathematical
structure, we can have the category of categories, possible because we introduce
the notion of classes to define a category.

Moving forward, in the last section of chapter 2 and during all chapter 3 we
look at how can we take advantage of categories. This work was done when we
study particular elements in categories, and also try to use as much as we can the
notion of "turning theorems into definitions". To do it we made new categories to
find these universal objects called products, pullbacks, equalisers, and intersections.

In chapter 4 the most relevant work with categories was done. We investigate
over relations between categories, these are the functors, and how important they
are to categories, they are literally the morphisms of categories. Moreover, we
focused on relations between functors called natural transformation, and when
the class of natural transformations between two functors constitutes a set. In
Yoneda’s Theorem we realized there is one situation where the class of natural
transformations between two functors become a set. This allowed us to define
representable and adjoint functors, which are very related concepts.

We conclude the project saying that this research of categories was focused
on the relations between objects, we tried to define mathematical objects not by a
proper definition but by how it is related to other objects.

25



26 Conclusions



Bibliography

[1] T.S. Blyth (1986) Categories Longman Sc & Tech

[2] Saunders Mac Lane Springer (2010) Categories for the working mathematician
Springer-Verlag, New York

[3] Jean-Pierre Marquis (1996) Category Theory First published Fri Dec 6, 1996;
substantive revision Thu Aug 29, 2019

[4] H. B. Enderton. (1977) Elements of Set Theory. Academic Press, New York

27


