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Abstract

The main goal of this work is to introduce the local risk-minimizing strategy
that can be applied in incomplete financial markets to hedge options, together
with some applications. An option is a financial asset mainly used as an insurance
product to protect the investor from the different market risks. The major risk for
an option seller is not to be able to cover his future payments obligations with the
option price received. This is what option hedging tries to solve, finding the ideal
strategy and option price to cover the risk.

2020 Mathematics Subject Classification: 91G20 and 91G30.
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Introduction

This work is the result after six years studying the double degree in Mathe-
matics and Business Administration in the Universitat de Barcelona.

Business Administration covers a large range of areas, and two years ago I
decided that I wanted to focus my career in finance. This is why in the penultimate
semester I enrolled for a practical course on stock exchange and financial analysis
sponsored by the university. In this course I greatly increased my knowledge in
financial markets, and I came to the conclusion that I wanted my final project to
be related to this area.

However, the financial market also covers a lot of topics and I was hesitant
about which to choose. Dr. Oriol Roch suggested me to collect the different
pricing models that can be found in incomplete markets. But for this I needed the
mathematical base of financial markets, which I had not yet seen. Dr. Josep Vives
lectures a basic course in this subject and he generously borrowed me his lecture
notes so I could start my work.

During the research I realised that there was a strategy that was highly in-
teresting, and that I had enough information to just focus on it. Therefore, I
decided to just concentrate on risk-minimizing strategies, specifically in the local
risk-minimizing method. In addition, I also believed that it would be great to add
some real examples and not just focus on the theory part.

The work is divided into four parts. The first two chapters introduce the finan-
cial and mathematical theory needed to understand the main chapter of the work,
which is chapter three. In this chapter I begin introducing some strategies that can
be applied in incomplete markets, and later I concentrate on risk minimization
strategies, in particular in a variant called local risk-minimizing. Finally, in the
last chapter some examples of application of this strategy are given, together with
a couple of numerical examples.
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Chapter 1

Fundamentals

Basic financial concepts needed to understand the forthcoming chapters will
be introduced in this first chapter.

1.1 Options

Every financial transaction comes with a risk, and since the formation of the
financial market, players have always tried to find ways to mitigate it. One of the
most common methods nowadays is with the use of derivatives.

Definition 1.1. A contingent claim or derivative is a financial product whose
value is reliant on the performance of an underlying asset. It is created by means
of a legal contract, in which the conditions are previously agreed between the
seller and the buyer.

The typical underlying assets are bonds, commodities, currencies, interest rates
and stocks. Futures and options are the most common traded derivatives in regu-
lated financial markets, and are mainly used to mitigate risk and speculate thanks
to their financial properties.

A future is a derivative contract in which the buyer has both the right and the
obligation to buy a fixed amount of the underlying asset at the established price
and date. In contrast, the seller has the obligation to sell that underlying asset.

Definition 1.2. An option is a derivative contract in which the buyer has the right,
but not the obligation, to either buy or sell an arranged amount of the underlying
asset for a fixed price, also called the strike price, at a specific date called expiration
date. The execution of the right will be called exercising the option.

1



2 Fundamentals

The choice opportunity is one of the main advantages that options offer in
comparison with futures, together with an easiness to create market strategies1.
As a consequence options have been object of multiple mathematical and financial
studies.

Definition 1.3. We can distinguish between two types of options:

• Call options, which give the buyer the right to buy the underlying asset.

• Put options, which give the buyer the right to sell the underlying asset.

An agent in the financial market can either buy or sell a call or a put, giving
place to four basic strategies.

We will work from the point of view of the option seller, who has the obligation
to sell or to buy the underlying asset. Therefore he demands a premium from the
buyer at the formalisation of the contract. This premium will be also interpreted
as the market option price.

Definition 1.4. Additionally, options can be divided depending on the allowed
execution time:

• American options can be exercised any time before the end of the contract,
and even on that date.

• European options can only be exercised at the expiration date.

Deciding when is the best time to exercise the option adds complexity to the
price valuation, therefore many of the financial studies and models are centered
on European options, and so is this work.

With an European option, at the expiration day the right to buy or to sell will
only take place if the holder of the option can get a benefit from it. This means that
the holder can either exercise the option, or just do nothing, losing the premium
paid to the seller.

The options market is a zero-sum game. In other words, the wins and the losses
of both agents, the seller and the buyer of the option, get exactly balanced. And
the quantity that one agent wins is the same amount that the other part loses.

1More advantages of options over futures and other financial products can be found in [6]: chap-
ter 2, page 44.
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Example 1.5. Two simple examples of the utility of options in the real market are
given.

• An airline expects that the jet fuel price will increase in the next year and it
wants to ensure the acquisition of it at the current market price. Therefore,
the airline buys today a jet fuel call option, which gives it the right to buy the
fuel in the future at the current price. If the price does increase, the company
is not impacted by the price rise, whereas if the price decreases, the airline
doesn’t have to exercise the option and it can buy the jet fuel direct on the
market for a lower price, losing only the premium payed for the option.

• A farmer expects that the harvest will not be good this season and he is
worried that his products will have to be sold at a lower price than the
current market price. Therefore, he buys a put option for a premium amount,
which gives him the right to sell his products at the current price. If the
harvest is poor, he can sell his products at a higher price, whereas if the
harvest goes better than expected, he doesn’t have to exercise the option and
he can sell the products for the market price.

Both examples show that with the use of options agents can be secured against
uncertain and unwanted price changes from the financial market, only by paying
the option price.

1.2 Aspects of options

From the book of J.C. Cox and M. Rubinstein in 1985 [6], it can be concluded
that there are six fundamental direct determinants that can influence the option
market price prior to expiration. Their effect on the option price will differ if it is
a call or a put. We focus first on call options:

• The current market price of the underlying asset: The greater the value of
the underlying asset in the market, the higher the call value.

• The fixed or strike price of the option: The higher the strike price at expi-
ration, the lower the initial call price.

• The asset volatility2: The higher the volatility, the higher the possible future
prices. Therefore, more risk for the seller implies a higher call price.

• The time to expiration: The longer it takes to expire, the higher the volatility.
Hence, the higher the premium that will have to be payed.

2We understand asset volatility as a measure of the dispersion of possible future asset prices.



4 Fundamentals

• The interest rate: The higher the interest rate, the lower the present value of
the strike price. This implies a higher call value.

• The cash dividends from the underlying asset: Higher future dividends of
the underlying asset will lower the current call price.

For a put option the effect of the determinants work in the opposite direction,
except for the volatility, which impacts in the same way.

Remark 1.6. For this work we will consider options with underlying assets that
pay no dividend, such as stocks.

Definition 1.7. At the expiration date (T) we can differentiate three different op-
tion positions regarding the market stock price (ST) and the strike price (K):

• In the money: When ST > K for call options and ST < K for put options. In
this position the call holder can buy the underlying asset for a lower price
than the one from the market, thus he obtains a benefit from it and he will
exercise the option.

• At the money: When ST = K. The price of the underlying asset coincides
with the strike price, therefore it does not matter if the call holder buys the
asset in the market or exercises the option.

• Out of the money: When ST < K for call options and ST > K for put options.
In the case of exercising the call option, the holder would pay a higher price
than if he buys it directly in the market.

Remark 1.8. When the option is in the money, if the call holder just after exercising
the option and buying the underlying asset for a price K immediately sells the
asset back to the market for the price ST, he can obtain a positive amount of
ST − K. For market and theory simplicity we will consider that when the option
ends in the money, the seller pays this amount to the call buyer. This is the payment
or payoff of the option, and it can be denoted by (ST − K)+ := max [ST − K, 0]. On
the other hand, if the option ends out of the money the call holder will buy the
underlying asset in the market loosing the premium.

As a result, the profit that a call holder can obtain with the option is (ST − K)+−
premium. A large option price will decrease the option profit.

A similar argument holds for the put option, where the payment is denoted by
(K− ST)

+ := max [K− ST, 0].

We can determine a price relation between a call and a put option.
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Proposition 1.9. (Call-put parity for European options)
Given a call option with price Ct at time t, strike price K and expiration date T, and a

put option Pt with the same conditions. Then it satisfies

Ct − Pt = St −
K

(1 + r)t ,

where r ≥ 0 is a fixed interest rate and St is the market stock price.

Proof. Can be found in [12]: chapter 1, page 28.

Proposition 1.10. The price call Ct satisfies

St ≥ Ct ≥
(

St −
K

(1 + r)t

)+

.

Proof. The higher bound can easily be seen by contradiction and the lower bound
using the call-put parity with a positive put price.

Remark 1.11. Note that the call price is a convex function of the stock price.

Similarly, for a put option the boundaries will be(
K

(1 + r)t − St

)+

≥ Pt ≥
K

(1 + r)t .

The main difficulty that a seller encounters in the financial market is to be able
to find an appropriate selling price for the product. For this reason, this work
provides a strategy to solve this common problem.
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Chapter 2

Mathematical framework

Before introducing the central model that will help determining the option
price, mathematical concepts of the financial market have to be introduced.

The first two sections are mainly based on the lecture notes [4] and [21], and
the third section in [10]: chapter 10.

2.1 Martingales

Definition 2.1. A stochastic process X := {Xt; t ∈ T} is a sequence of random
variables defined in a probability space (Ω,F , P) and within a certain period of
time T.

We will be working with a discrete-time set T := {0, 1, ..., T}, for a certain fixed
T ∈N or T = N. We denote by t = 0 the current time.

Definition 2.2. A filtration F associated with a probability space (Ω,F , P) is a
sequence of σ-algebras F := {Ft; t ∈ T} such that

• Ft ⊆ F , for all t ∈ T,

• Ft−1 ⊆ Ft, for all t ∈ T− {0}.

A filtration Ft at time t ∈ T represents the option price information available
in the market at that time. A probability space with an associated filtration is
called a filtered probability space, (Ω, F,F , P).

Definition 2.3. The natural filtration FN of a stochastic process X is a sequence of
σ-algebras such that

Ft := σ
{

Xj, j ≤ t
}

.

This is, the σ-algebras generated by the own variables of the process.

7



8 Mathematical framework

Definition 2.4. A stochastic process X defined in a probability space (Ω,F , P) is
adapted with respect to a filtration F if Xt is Ft-measurable for any t ∈ T.

This means that given an information Ft, for every instant t ∈ T, we know the
value of Xt. And for every time j > t, we can only know its probability.

Remark 2.5. Every stochastic process is adapted to its natural filtration.

The natural filtration is the information that can be deducted from the process,
and it can be complemented with other information from the market. For now we
will consider that F = FN .

Definition 2.6. A stochastic process X is predictable with respect to a filtration F

if X0 is F0-measurable, and Xt is Ft−1-measurable for any t ∈ T− {0}.

This means that given an information Ft−1 we know the value of Xt.

Definition 2.7. We say that a process M := {Mt; t ∈ T} is a martingale with
respect to a filtration F in a probability space (Ω,F , P), if

i) M is a stochastic process adapted to F,

ii) E (|Mt|) < ∞, for every t ∈ T,

iii) E [Mt+1|Ft] = Mt, for every t ∈ T.

E [Mt+1|Ft] is called the conditional expectation of Mt+1 based on the information at
time t, and it satisfies the linear property, i.e. for a, b ∈ R

E
(
aM + bM′

∣∣Ft
)
= aE (M|Ft) + bE

(
M′
∣∣Ft
)

.

Remark 2.8. The third property says that the expected value in the next point of
time t + 1 is equal to the present value Mt. It can also be rewritten in two other
ways

• denoting ∆Mt+1 = Mt+1 −Mt and ∀t ∈ T,

E [∆Mt+1|Ft] = 0. (2.1)

• E
[
Mt+j

∣∣Ft
]
= Mt, ∀j ≥ 1 and ∀t ∈ T.

Proof. It can be seen by recursively applying the tower property of condi-
tional expectation for all j ≥ 2,

E
[
Mt+j|Ft

]
= E

[
E
[
Mt+j|Ft+j−1

]
|Ft
]
= E

[
Mt+j−1|Ft

]
= Mt.
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The tower property satisfies for j ≤ t ≤ u

E
[
E [Mu|Ft]

∣∣Fj
]
= E

[
Mu
∣∣Fj
]

, ∀t.

Remark 2.9. In a finite probability space every random variable X can be inte-
grated. This implies that its expected value is

E (X) := ∑
ω∈Ω

X (ω)P (ω) ,

which is a finite number.

Remark 2.10. A martingale can be seen as the mathematical formalization of a
zero-sum game.

We will now present some properties of martingales.

Definition 2.11. Let M be a martingale, H an adapted and bounded process with
respect to a filtration F, and M0 ∈ R a constant. The martingale transformation
of X by H is defined as

Xt := Ht ·Mt = M0 +
t

∑
j=1

Hj−1∆Mj, ∀t ≥ 1,

where ∆Mj = Mj −Mj−1.

Proposition 2.12. The martingale transformation is a martingale.

Proof. For every t ≥ 0, Mt is Ft-measurable, thus it is an adapted process. Since
H is a bounded process, Mt is integrable, and finally because H is adapted,

E [∆Xt+1|Ft] = E [Ht (∆Mt+1)|Ft] = HtE [∆Mt+1|Ft] = 0.

Proposition 2.13. Let M := {Mt, t ≥ 0} be an adapted and integrable process. M is a
martingale if and only if for every adapted and bounded process H and for every t ≥ 0, we
have

E

(
t

∑
j=1

Hj−1∆Mj

)
= 0.

Proof. Can be found in [21]: chapter 2.

Definition 2.14. Two martingales M and M′ are strongly orthogonal if their prod-
uct MM′ is also a martingale. Using Formula 2.1, this is for all t ∈ T,

E
[
∆
(

MM′
)

t+1

∣∣∣Ft

]
= 0.
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2.2 Fundamental theorems of finance

Definition 2.15. A discrete-time financial model is built on a finite probability
space (Ω,F , P) within a discrete-time period T := {0, 1, ...T}, where

• Ω is a finite set of elements and every ω ∈ Ω represents every possible
situation or scenario of the market,

• F := {Ft, t ≥ 0} is a filtration that represents the information available in
the market at time t ∈ T,

• P is a probability, such that P (ω) > 0, for all ω ∈ Ω. This means that every
state ω is possible and none can be ruled out.

Assume that the financial market is formed by d + 1 financial assets, d ∈ N.
They can be, for instance, derivatives, bonds, commodities, or currencies. The
price of each of them at time t is S0

t , S1
t , ..., Sd

t , where S0
t will be the only risk-free

asset. It is also called the investor bank account or savings account, and if we suppose
an initial saving of one monetary unit, S0

0 = 1, and a fixed interest of r ≥ 0, its
capitalized value will be S0

t = (1 + r)t at time t.
The rest of the products will be the risky assets and they can take any real

positive value, Sk
t ∈ R+, k ≥ 1. St :=

(
S0

t , S1
t , ..., Sd

t
)

will be the price array at time t
formed by random Ft-measurable variables.

Remark 2.16. We will denote in bold the complete array containing the risk-free
and risky assets.

Definition 2.17. The discounted price of an asset Sk
t , k ≥ 1, t ≥ 1 at time t is

S̃k
t :=

Sk
t

(1 + r)t =
Sk

t

S0
t

.

S̃t :=
(
S̃0

t , S̃1
t , ..., S̃d

t
)

will be the discounted price array at time t and we will denote
by S̃k :=

{
S̃k

t , t ∈ T
}

the discounted price process of the risky asset Sk.

Remark 2.18. Note that it satisfies S̃0
t = 1, ∀t, and S̃k

0 = Sk
0, ∀k ≥ 0.

The idea of how the financial model will work is the following: at the initial
time t = 0 there will be a finite number of possible values. As time evolves and as
the new information reveals, certain states could be excluded as being impossible,
and finally, at time t = T the true state ω ∈ Ω will be revealed. Hence the
evolution of the information is aligned with the definition of a filtration and its
sequence F0 ⊆ F1 ⊆ ... ⊆ FT−1 ⊆ FT as the information available increases.
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Definition 2.19. A portfolio is a combination of risky assets with a one risk-free
asset.

Definition 2.20. A trading or investment strategy at time t ∈ T is a (d + 1)-array
formed by adapted stochastic processes, such that

Ht :=
(

H0
t , H1

t , ..., Hd
t

)
.

Hk
t denotes the number of shares of the asset k held in the portfolio at time t.

Hk :=
{

Hk
t , t ∈ T

}
will be the investment strategy process of the asset Hk, and H :=

{Ht, t ≥ 0} will be the trading or investment strategy.

Remark 2.21. Note that Hk
t can be negative. This corresponds to borrowing money

from the bank in the case of the risk-free asset, or selling short1 for the risky assets.

Definition 2.22. The portfolio value or value of a portfolio at time t ∈ T follow-
ing a trading strategy Ht is the scalar product

Vt (H) := Ht · St =
d

∑
k=0

Hk
t Sk

t .

V0(H) = H0 · S0 will be the initial investment, and Ṽt (H) = Vt(H)
S0

t
will be the

discounted portfolio value at time t.

Definition 2.23. A self-financing strategy is an investment strategy such that

Ht · St = Ht−1 · St, ∀t ∈ T− {0}.

This means that the investment in the portfolio is the same for every point in
time, and that no money is added, i.e., any change in the portfolio value must be
due to a gain or a loss in the risky assets.

Proposition 2.24. (Invariability of the discount factor)
An investment strategy H is self-financing with respect to the prices St if and only if

H is self-financing with respect to the discounted prices S̃t.

Proof. ∀t ∈ T− {0},

Ht · St = Ht−1 · St ⇔ Ht ·
St

S0
t
= Ht−1 ·

St

S0
t
⇔ Ht · S̃t = Ht−1 · S̃t.

1In the financial market, short selling means borrowing an asset and selling it on the market,
planning to return it back later for less money.
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Proposition 2.25. The following are equivalent.

i) A trading strategy H is self-financing.

ii) For any t ∈ T,

Vt (H) = V0 (H) +
t

∑
j=1

Hj−1 · ∆Sj,

where ∆Sj = Sj − Sj−1.

iii) For any t ∈ T,

Ṽt (H) = V0 (H) +
t

∑
j=1

Hj−1 · ∆S̃j, (2.2)

where ∆S̃j = S̃j − S̃j−1.

Proof. Can be found in [12]: chapter 1, page 16.

Proposition 2.26. Consider Hk =
{(

H1
t , H2

t , ..., Hd
t
)

, t ∈ T
}

an adapted stochastic pro-
cess and V0 ≥ 0 a constant. Then, it exists a unique adapted process H0 such that

H =
(

H0, H1, ..., Hd
)

is a self-financing strategy with initial value V0 (H) = V0.

Proof. Can be found in [21]: chapter 3.

This proposition shows that a self-financing strategy is determined only by its
initial value and the amount of risky assets at a certain moment of time.

Definition 2.27. A self-financing strategy H is an arbitrage strategy if V0 (H) = 0
and VT (H) ≥ 0 with a strict positive probability.

In other words, an arbitrage strategy allows the opportunity to yield a positive
amount of money without taking any risk. If arbitrage opportunities existed, ev-
eryone would enter the financial market using this strategy. Hence, the financial
market would not be in equilibrium. This is why modern finance is based on the
absence of arbitrage opportunities or arbitrage-free models. We will be assuming an
arbitrage-free financial market for the rest of the work.

The law of one price states that in a financial market cannot exist two trading
strategies H and H′, such that VT (H) = VT (H′) satisfying V0 (H) 6= V0 (H′). This
means that it is not possible to have two trading strategies with same final value,
but different initial value.
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Remark 2.28. If there are no arbitrage opportunities, the law of one price needs to
hold.

We will now introduce the two fundamental theorems of the financial market.

Definition 2.29. A market is said to be viable if there are no arbitrage opportuni-
ties.

Definition 2.30. A measure of a probability P∗ is equivalent to P, P∗ ∼ P, if for
any A ∈ F , P∗ (A) = 0⇔ P (A) = 0.

This implies that they have the same sets of probability zero, and in a finite
probability space this simply reduces in P∗ (ω) > 0 for all ω ∈ Ω.

Theorem 2.31. (First fundamental theorem of finance)
A finite market is viable if and only if there exists a probability measure P∗ equivalent

to P such that the discounted prices of the risky assets, S̃k, k = 1, ..., d are martingales
with respect to P∗.

Remark 2.32. Every price probability in which the discounted price is a martin-
gale is called risk neutral probability or martingale measure. With this definition, the
theorem also says that a finite market is viable if and only if there exists a risk neu-
tral probability. Therefore, the absence of arbitrage opportunities is characterized
by the existence of martingale measures.

Definition 2.33. The set of all risk neutral probabilities will be denoted by P :=
{P∗}, which is non empty in a viable market.

Proof. ⇐ Assume that there exists a risk neutral probability P∗ ∼ P, such that the
discounted prices S̃k are martingales. Consider a self-financing strategy H. Using
Formula 2.2, we have

Ṽt (H) = V0 (H) +
t

∑
j=1

d

∑
k=1

Hk
j−1∆S̃k

j ,

where ∆S̃k
j = S̃k

j − S̃k
j−1. This is a sum of d martingale transformations because

Hk are adapted processes per definition, and are also bounded since we are in a
finite probability space. We have seen that the transformation of a martingale is a
martingale, thus we have that Ṽt (H) is a martingale under P∗. If we define E∗ as
the expected value under P∗, we obtain

E∗
(
ṼT (H)

)
= E∗

(
Ṽ0 (H)

)
.
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Taking an strategy with Ṽ0 (H) = 0, this leads to E∗
(
ṼN (H)

)
= 0. Therefore, if

the expected value is zero, having ṼT (H) ≥ 0, it necessarily has to be zero for
every ω ∈ Ω. Otherwise there would be an arbitrage opportunity and the market
would not be complete.

⇒ Suppose now that the market is complete and there cannot exist any arbi-
trage opportunity. Using Proposition 2.13, in order to see that Sk is a martingale
we have to construct P∗ in order that with a fixed T ≥ 1, k ∈ {1, ..., d} and any
adapted process Hk we have

E∗
(

T

∑
j=1

Hk
j−1∆S̃k

j

)
= 0.

Assume that there are N elements in the finite probability space. Consider Γ
as the set of all random non negative variables X such that 0 /∈ Γ. Let S ⊂ Γ be the
subset of variables in such a way that ∑ω∈Ω X (ω) = 1. S is convex and compact.

Consider the set

L :=
{

ṼT (H) : H self-financing and V0 (H) = 0
}

.

Observe that L ∩ S = ∅. In fact, L ∩ Γ = ∅, otherwise there would exist a self-
financing strategy H with V0 (H) = 0 such that ṼT (H) ∈ Γ, and that would be an
arbitrage strategy.

With the Separation theorem2:

Theorem 2.34. Given K ⊆ Rn a convex and compact set. Let V ⊆ Rn be a linear space.
Suppose that K ∩ V = ∅. Then, there exists a linear application ξ : Rn → R such that
ξ (x) > 0 for all x ∈ K and ξ (x) = 0 for all x ∈ V.

We have that there exists a linear application ξ satisfying ξ (X) > 0 for every
X ∈ S, and ξ (X) = 0 for every X ∈ L. Therefore, for any X ∈ S,

ξ (X) =
N

∑
k=1

λkX (ωk) > 0, ∀λk > 0.

For every k = 1, ..., N we can define a new probability

P∗ (ωk) :=
λk

∑N
j=1 λj

,

which is positive for every ωk, and as a result equivalent to P.

2Proof of the theorem can be found in the Annex section A.1.
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With a fixed process Sk, consider an adapted process Hk and an investment
strategy such that at every moment we have Hk

j units of assets of Sk. We can
associate that with a unique self-financing strategy with V0 (H) = 0. Hence, we
have

ṼT (H) =
T

∑
j=1

Hk
j−1∆S̃k

j ∈ L.

In consequence

E∗
(

T

∑
j=1

Hk
j−1∆S̃k

j

)
= E∗

(
ṼT (H)

)
=

ξ
(
ṼT (H)

)
∑N

j=1 λj
= 0.

And finally with Proposition 2.13 we prove that S̃k is a martingale.

Remark 2.35. Ṽt (H) is also a martingale.

Consider a FT-measurable and non-negative random variable B that represents
the payoff at time T of a financial contract.

Definition 2.36. A payoff B can be replicated if it exists a constant V0 and a self-
financing and replicating strategy H such that VT (H) = B.

A replicating strategy H is a an strategy that allows to replicate a certain value.

Definition 2.37. A market is said to be complete if every payoff can be replicated
by some self-financing and replicating trading strategy. Otherwise, the market is
said to be incomplete.

Theorem 2.38. (Second fundamental theorem of finance)
A finite and viable market is complete if and only if it exists a unique risk neutral

probability measure P∗ equivalent to P, under which the discounted prices are martingales.

Proof of the theorem can be found in the Annex section A.2.

Remark 2.39. As mentioned by S.R. Pliska in [15], the second theorem implies that
in a complete market any payoff can be replicated with a good choice of an initial
investment and strategy. In consequence, in a complete market we can always find
a way to price all type of derivatives.

In the next section we will associate the mathematical concepts with the finan-
cial market theory.
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2.3 Option pricing

Let Dt denote the value of an option at time t, where D0 represents the pre-
mium or positive initial market price. The value process Dt derives from the
underlying price process St. Thus, Dt is measurable with respect to the σ-algebra
generated by the price process. At expiration, as seen in Remark 1.8, the payoff
will be B = (ST − K)+ = DT for a call, and B = (K− ST)

+ = DT for a put.

Together with Definition 2.36, an option final value DT is replicable if there
exists a self-financing replicating trading strategy H whose portfolio value at t = T
coincides with DT, i.e.,

B = DT = VT (H) = HT · ST.

Definition 2.40. From Proposition 2.25, an option is replicable if and only if the
discounted payoff value satisfies

B̃ = ṼT (H) = HT · S̃T = V0 (H) +
T

∑
j=1

Hj−1 · ∆S̃j,

where ∆S̃j = S̃j − S̃j−1. We will say that the discounted value is also replicable.

In a viable arbitrage-free market with a set of risk neutral probabilities P =

{P∗} under which the discounted payoff B̃ of an European option is a martingale,
for each risk neutral probability we can obtain a unique positive amount called
arbitrage-free price. We denote by

Θ
(

B̃
)
=
{

E∗
[
B̃
]∣∣P∗ ∈ P

}
the set of all expected discounted prices of a payoff B̃ that can be obtained in the market.

Theorem 2.41. The set of all expected discounted prices of a payoff in an arbitrage-free
market is nonempty. The lower and upper bounds are given by

D̃inf
(

B̃
)

:= inf
P∗∈P

E∗
[
B̃
]

and D̃max
(

B̃
)

:= max
P∗∈P

E∗
[
B̃
]

.

Proof. Can be found in [10]: chapter 5, page 311.

Remark 2.42. In an arbitrage-free market the amount D̃0 = D0 of an option with
discounted payment B̃ is a price at which the option can be traded at time t = 0
without introducing arbitrage opportunities into the market. This implies, that if
the option is sold for D0, then neither of the agents can find an investment strategy
that yields an opportunity to obtain a positive gain without taking any risk.
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Remark 2.43. Consider an European call option with initial price C0 and its under-
lying asset S1

t . From Remark 1.8 we know that the option payoff is B =
(
S1

T − K
)+.

In an arbitrage-free market in which the risk-free asset satisfies S0
0 = 1, applying

Theorem 2.41 the initial discounted price satisfies

C̃0 = E∗
[
B̃
]
= E∗

[
B
S0

T

]
= E∗

[(
S1

T − K
S0

T

)+
]
= E∗

[(
S̃1

T −
K
S0

T

)+
]

.

As seen in Proposition 1.10 and Remark 1.11, the price of a call option is a convex
function always above of

(
S1

0 − K
)+. Therefore, we have that the initial price can

be bounded by

C0 ≥
(

E∗
[

S̃1
T −

K
S0

T

])+

=

(
S1

0 −E∗
[

K
S0

T

])+

≥
(

S1
0 − K

)+
.

The next theorem states that if a payoff is replicable, we are able to find an
initial value for the option, and with the options that are not replicable in an
incomplete market, we can at least identify an interval in which the value for the
time t = 0 must fall.

Theorem 2.44. Let Θ
(

B̃
)

be the set of all expected discounted prices of a payoff B̃.

i) If B̃ is replicable, this is B̃ = ṼT (H) for an strategy H, then the set Θ
(

B̃
)

consists
of the single element V0.

ii) Otherwise, then D̃inf
(

B̃
)
< D̃sup

(
B̃
)

and

Θ
(

B̃
)
=
(

D̃inf
(

B̃
)

, D̃sup
(

B̃
))

.

Proof. Can be found in [10]: chapter 5, page 315.

Definition 2.45. Consider an option and its payoff B.

• Pricing an option is to determine the price at t = 0 that will allow the holder
of the option obtain a payoff B at time t = T.

• Hedging an option is to establish an investment strategy for the seller to
cover his obligation to give a payoff B to the buyer at time t = T.

Since the work is from the point of view of the seller, we will estimate the
selling price that the option should have in order to hedge the future obligations.
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Remark 2.46. Together with Proposition 2.26, the completeness of the market en-
sures the existence of a self-financing and replicating strategy H that generates the
wanted random payoff B, such that Ṽt (H) is a martingale satisfying ṼT (H) = B̃.
Therefore, V0 (H) = E∗

(
B̃
)

is the fair price needed to be payed by the buyer at
time t = 0. If H is the trading strategy, it satisfies

V0 (H) = E∗
(

B̃
)
= E∗

(
ṼT (H)

)
.

With the information available in the market, we have for all t ∈ T

Vt (H) = S0
t E∗

[
B̃
∣∣Ft
]
= S0

t E∗
[

B
S0

T

∣∣∣∣Ft

]
=

S0
t

S0
T

E∗ [B|Ft] .

This is the amount needed at time t to replicate B at time T by following the
strategy H. Thus, at time t = 0 the seller has to sell the option for fair a price of

E∗
(

B
S0

T

)
.

Definition 2.47. Using Remark 1.8, if K is the strike price of an European option,
the fair price of an option at time t = 0 is

• for calls

C0 := E∗
(
(ST − K)+

S0
T

)
,

• and for puts

P0 := E∗
(
(K− ST)

+

S0
T

)
.

Below, the theory of two option pricing models that will be utilized in the last
chapter is introduced.

2.4 The binomial model

The binomial model is the simplest option pricing model that helps determin-
ing the strategy that an agent has to follow in financial markets. A particular
feature is that at every time t ∈ T the underlying asset can only take two possible
values. We will not deeply develop this model as it is not the purpose of the work
and it can be found in every book related to financial markets, for example in [3]
or [19]. However, we will mention the most important aspects and results that will
be needed to understand the last chapter.
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Remark 2.48. A particular case of the model is the well-known Cox-Ross-Rubinstein
model or CRR model, which was developed by J.C. Cox, S.A. Ross and M. Rubin-
stein in 1979 [5]. The equivalent model for a continuous-time framework is the
Black-Scholes model, developed by F. Black and M. Scholes in 1973 [1].

Assume a market model in a discrete and finite time period T = {0, 1, ..., T}
with only two assets; a risk-free asset with initial price S0

0 = 1 and a risky asset
St ≥ 0. Assume a fixed interest rate r ≥ 0 such that S0

t = (1 + r)t is the price at
time t of the risk-free asset.

Suppose that at every time t ∈ T the risky asset price can either increase a
certain amount u ∈ R with probability P (u) = p, or decrease a certain amount
d ∈ R with probability P (d) = 1− p, where −1 < d < u to avoid negative prices
and p ∈ [0, 1]. This means that at every moment of time we will have

St−1

St (d) = St−1 (1 + d)

St (u) = St−1 (1 + u)

Proposition 2.49. The binomial model is viable and complete if and only if d < r < u.

Proof. Can be found in [21]: chapter 4.

Corollary 2.50. The binomial model is complete.

The general method to obtain the fair initial value of an option with value Dt,
consists in a step by step backward strategy starting with the payoff B = DT and
concluding at the initial option price D0. A backward strategy is the most common
and effective approach to price products in the financial market.

Assuming a self-financing investment strategy Ht =
(

H0
t , Ht

)
, we impose

B = DT = VT (H) = H0
T−1S0

T + HT−1ST = H0
T−1 (1 + r)T + HT−1ST.

We have to solve the system formed by the next two equations:{
B (u) = H0

T−1 (1 + r)T + HT−1ST−1 (1 + u)
B (d) = H0

T−1 (1 + r)T + HT−1ST−1 (1 + d)

The unique solution is

HT−1 =
B (u)− B (d)

ST (u)− ST (d)
,
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and

H0
T−1 =

B (d) (1 + u)− B (u) (1 + d)

(u− d) (1 + r)T .

Together with Proposition 2.25, the discounted portfolio value at t = T − 1 is

ṼT−1 (H) = H0
T−1 + HT−1S̃T−1,

with a current value of

VT−1 (H) = H0
T−1S0

T−1 + HT−1ST−1.

For the next step, we take DT−1 = VT−1 (H), and we repeat the process, now
solving

VT−1 (H) = H0
T−2 (1 + r)T−1 + HT−2ST−1.

In other words, since we only know the final payoff B = DT and its states u
and d, applying this strategy one time we obtain the payoff at one step ahead of
time, DT−1. Taking this amount as the new replicable amount and repeating the
process, by iteration we will be able to obtain the initial fair price of the option,
D0.

2.5 The trinomial model

In the trinomial model there are three possible stock prices at every moment
instead of two. It is an incomplete model and in the last chapter we will see how
to price options with the method presented in chapter three.

With the same model formalism as in the binomial model, we will now intro-
duce an intermediate m ∈ R amount that satisfies u > m > d. Therefore, we will
have at each time t

St =

{ St (u) with probability P (u)
St (m) with probability P (m)

St (d) with probability P (d) ,

satisfying P (u) + P (m) + P (d) = 1.

Similarly to the binomial model, we have the next proposition.

Proposition 2.51. The trinomial model does not admit arbitrage opportunities, i.e. it is
viable, if and only if d < r < u.

Proof. Can be found in [3]: chapter 2, page 21.
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With the same financial market hypothesis as in the binomial model, we should
now solve a system formed by three equations and two variables

{ B (u) = H0
T−1 (1 + r)T + HT−1ST−1 (1 + u)

B (m) = H0
T−1 (1 + r)T + HT−1ST−1 (1 + m)

B (d) = H0
T−1 (1 + r)T + HT−1ST−1 (1 + d) ,

which in general has no exact solution.

Remark 2.52. In an incomplete market we cannot find a unique strategy H that
satisfies the conditions. Instead, we obtain an infinite number of strategies. This is
related with the definition of an incomplete market, where not every payoff can be
replicated by some trading strategy. This implies that in incomplete markets we
will have at least two risk neutral probabilities resulting in different option prices.

In the next chapter we will introduce different strategies that can be applied to
solve this problem, and we will go into more detail with one of them.
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Chapter 3

Incomplete markets

In a complete market there exists a unique martingale measure under which
the discounted option prices are martingales. This means that for each payoff in
the market we can find a replicating and self-financing strategy which replicates
exactly the payment. One method to obtain the fair initial value is, for example,
with the CRR model. However, in reality the financial market is not a complete
market, and some payoffs cannot be replicated with a both replicating and self-
financing strategy.

Incomplete markets appear when risks cannot be perfectly covered by financial
products. For example, when there are more states of nature than financial prod-
ucts, or when we add a new state to the binomial model, converting it into the
trinomial model. Also, the market is incomplete when payments are not entirely
determined by the financial market, or when there exist transaction costs. Ex-
amples of financial products include weather derivatives, catastrophe bonds and
insurance products1. As a result, the information available may not only depend
on the one from the assets, and the filtration may not always be assumed to be the
natural filtration.

The pricing problem of not being able to find a replicating and self-financing
strategy has been studied by several researchers, who have developed different
strategies. This chapter introduces some of those strategies and focus in one type:
risk minimization strategies. Specifically in a variant called local risk minimiza-
tion.

1More characteristics of incomplete markets can be found in the paper by J. Staum (2007) [20].

23
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3.1 Strategies

The study of the pricing problem in incomplete markets has lead to different
methods, which can be classified into four categories.

• Superhedging: In this category strategies are self-financing but not replicat-
ing. The objective of the strategy is to make sure that there is enough money
to pay the payoff of the option. This is by using a minimax theorem devel-
oped by F. Delbaen and W. Schachermayer in 1994 [7]. The problem with
this strategy is that it chooses its cheapest superreplicating strategy, which is
not usually the more convenient one.

• Efficient hedging: The aim is to minimize E [l (VT − D)], where l is a loss
function. Recall that VT is the portfolio value at time T and D is the deriva-
tive price. This strategy is the general case of what is known as quantile hedg-
ing, when l is a strictly positive function. It was developed by H. Föllmer
and P. Leukert in 2000 [8].

• Utility indifference pricing: The objective is to maximize the expected util-
ity of the seller’s wealth. It computes the utility indifference price, which is the
price for which the seller is indifferent between selling or not the option, and
for that it usually needs a non-linear pricing rule such us a quadratic utility
or exponential utility. More details of it can be found in the book by R. Cont
and P. Tankov from 2004 [2].

• Quadratic hedging: Collection of hedging strategies, derived from the study
of quadratic utility.

– Variance-minimizing hedging: Developed by M. Schweizer in 2001
[18], and R. Cont and P. Tankov in 2004 [2]. Strategies are self-financing
but not necessarily replicating. The objective is to minimize the ex-
pected square hedging error.

– Risk-minimizing hedging: In this approach strategies are replicating
but not necessarily self-financing. The aim is to minimize the expected
square value of the cost originated when adapting the strategy to the
market changes. M. Schweizer (1999) [16], T. Moeller (2006) [13] and H.
Föllmer (1988) [9] are some of the studies of this strategy.

From those strategies, quadratic hedging is the most used and practical one
with a varying of papers and studies. And since the main objective in financial
market is to cover the risk and minimize the cost, it seems more interesting to
focus on risk-minimizing strategies.
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3.2 Risk minimization strategy

The theory of risk minimization was first developed in a continuous-time
framework by H. Föllmer and D. Sondermann in 1986 [11]. And later in 1988
H. Föllmer and M. Schweizer introduced the model for discrete time [9]. This
strategy is a quadratic hedging strategy, which tries to find a fair price for both
the seller and the buyer with a replicating but not self-financing strategy.

In incomplete markets we are not able to find a self-financing strategy that
replicates exactly any option payoff. This means that in order to find the initial
price, money will be added to or withdrawn from the portfolio from time to time,
and these money transfers will give rise to a cost. The risk minimization strategy
aims to minimize this expected cost and helps determining a trading strategy.

3.2.1 Model framework

In a discrete-time period T = {0, 1, ..., T} we have a risk-free asset S0 = 1 and
d financial risky assets with prices St =

(
S1

t , ..., Sd
t
)

at time t. Let St =
(
S0, St

)
denote the price array. Recall that the discounted price of an asset is S̃k

t =
Sk

t
S0 ,

hence the discounted risk-free asset will be S̃0
t = 1 for each t.

We consider St and S̃t to be square integrable processes.

Definition 3.1. A stochastic process S is square integrable if

E
(
S2

t
)
< ∞, ∀t ∈ T.

We will denote St ∈ L2.

We will have a probability measure P, also called physical measure, which gives
us the randomness of the different possible values in the model. Since the market
is arbitrage-free and not complete, there exist at least two martingale measures
P∗ ∈ P equivalent to P, such that S̃k, 1 ≤ k ≤ d, is a martingale with respect to
each P∗.

Consider a probability space with a filtration F = {Ft, t ≥ 0}. We assume S0

and St to be adapted with respect to the filtration. The seller of the option follows
what is called a dynamic trading strategy, i.e. Ht =

(
H0

t , Ht
)
, where H0

t is adapted
and Ht is a predictable process. This means that at each time t the portfolio is
successively readjusted according to the information available at that time, which
is at time t− 1 for the risky assets. Thus, H0 does not exist. H0

t is the amount in
the bank account and it can be changed at the end of the time period.
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The discounted value of the portfolio at time t will be

Ṽt (H) = Ht · S̃t = H0
t + Ht · S̃t,

with V0 (H) = V0 = H0
0 the initial investment.

With new information revealed at every time t, the seller will have to adjust
the strategy buying or selling risky stocks and choosing Ht+1. The number of ad-
ditional stocks is Ht+1− Ht with a discounted cost of (Ht+1 − Ht) · S̃t. This adjust-
ment leads to a discounted gain or loss of the portfolio value of Ht+1 ·

(
S̃t+1 − S̃t

)
.

From this we can obtain the next definition.

Definition 3.2. Following an investment strategy H, the gains process G is given
by G0 = 0, and for each t we have

Gt :=
t

∑
j=1

Hj · ∆S̃j.

This is, the gains obtained by the price changes in the risky assets.

Remark 3.3. We will denote by ∆Xt the incremental of any discrete-time stochastic
process X at time t, i.e., ∆Xt = Xt − Xt−1.

Finally, the bank account can also change from H0
t to H0

t+1. Adding up, the
variation of the portfolio value at time t + 1 will be

∆Ṽt+1 (H) = (Ht+1 − Ht) · S̃t + Ht+1 ·
(
S̃t+1 − S̃t

)
+
(

H0
t+1 − H0

t
)

= ∆Ht+1 · S̃t + Ht+1 · ∆S̃t+1 + ∆H0
t+1.

Definition 3.4. The cost process or cumulative cost associated with the strategy
H at time t is the difference between the portfolio value and the gains process, i.e.

πt (H) := Ṽt (H)− Gt = Ht · S̃t −
t

∑
j=1

Hj · ∆S̃j, (3.1)

where π0 (H) = V0 is the cost of the initial investment.

In other words, the cost process reflects the changes on the value process that
are not caused by trading gains on the risky assets at time t.

Remark 3.5. Note that in a self-financing strategy, the value process is only gen-
erated by the gains process. This means, together with Proposition 2.25, that the
cost process is constant over time and equal to the initial investment.
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Consider now an European option with a final payoff B = DT. We assume the
option payoff to be an square-integrable random variable, and we will only admit
strategies where each Vt (H) is square-integrable.

We know that in an incomplete market we are not able to find a self-financing
and replicating strategy to price the option at the initial time. One possible method
would be to minimize the conditional expected value under some martingale mea-
sure P∗ of the square of the costs, taking into account ṼT (H) = B̃. In other words,
we would minimize for each t ∈ T

Rt (H) = E∗
[
(πt+1 (H)− πt (H))2

∣∣∣Ft

]
= E∗

[
(∆πt+1 (H))2

∣∣∣Ft

]
. (3.2)

M. Föllmer and M. Schweizer solved this problem in [9] via backward induc-
tion starting with RT−1: the seller at the end of the process wants to have an
amount VT (H) = B = DT. Therefore, using Formula 3.1, we want to minimize

RT−1 (H) = E∗
[
(∆πT (H))2

∣∣∣FT−1

]
= E∗

[(
B̃− ṼT−1 (H)− HT · ∆S̃T

)2
∣∣∣FT−1

]
.

This is, we want to project B̃− HT · ∆S̃T in the subset of random variables FT−1-
measurables. In this case, the optimal solution is

E∗
[
B̃− HT · ∆S̃T

∣∣FT−1
]
= ṼT−1 (H) .

Using the linearity property of the conditional expectation and that HT is pre-
dictable, the problem can be rewritten as

E∗
[
B̃
∣∣FT−1

]
= ṼT−1 (H) + HT ·E∗

[
∆S̃T

∣∣FT−1
]

,

which simply reduces in determining the best linear estimate of B̃ based on the
increment of ∆S̃T. The optimal constants HT and ṼT−1 (H) are given by the least
squares approximation leading to the solution

HT =
Cov∗

(
B̃, ∆S̃T

∣∣FT−1
)

Var∗
[
∆S̃T|FT−1

]
and

ṼT−1 (H) = E∗
[
B̃
∣∣FT−1

]
− HT ·E∗

[
∆S̃T|FT−1

]
= E∗

[
B̃
∣∣FT−1

]
,

where we used that the price is a martingale. H0
T can be found using the portfolio

definition
H0

T = B̃− HT · S̃T.

Recursively, the solution is for all t ∈ T

Ht =
Cov∗

(
B̃−∑T

j=t+1 Hj∆S̃j, ∆S̃t

∣∣∣Ft−1

)
Var∗

[
∆S̃t
∣∣Ft−1

] (3.3)
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and

H0
t = Ṽt (H)− Ht · S̃t = E∗

[
B̃−

T

∑
j=t+1

Hj∆S̃j

∣∣∣∣∣Ft

]
− Ht · S̃t, (3.4)

with

Ṽt−1 (H) = E∗
[

B̃−
T

∑
j=t

Hj∆S̃j

∣∣∣∣∣Ft−1

]
. (3.5)

This is the risk-minimizing strategy that the seller has to follow to be hedged
against the future payoff B, where the fair selling option price has to be

Ṽ0 (H) = E∗
[

B̃−
T

∑
j=1

Hj∆S̃j

∣∣∣∣∣F0

]
.

Remark 3.6. Note that solving this problem implies E∗ [∆πt|Ft] = 0, i.e. the cost
process is a martingale.

Remark 3.7. Note also that the solution from Problem 3.2 coincides with the solu-
tion of this alternative problem, consisting in minimizing at each time t

Rt (H) = E∗
[
(πT (H)− πt (H))2

∣∣∣Ft

]
, (3.6)

subject to the condition ṼT (H) = B̃.

For the equivalence of the two problems, the expected values have to be calcu-
lated with respect to the same martingale measure P∗.

Remark 3.8. As stated in the paper from T. Moeller (2006) [13], the first Problem
3.2 can also be formulated and solved by using the physical measure, this is by
replacing the expected value with respect to the martingale measure P∗ by an
expected value with respect to P. This will lead to a similar solution, but where
all expected values and variances are calculated under the objective measure. This
is known as local risk minimization, which will be covered in the next section.

However, this cannot be applied to solve Problem 3.6, also known as global risk
minimization, since the solution would still result in having to choose the optimal
martingale measure. This was proved by M. Schweizer in [17].

This is the reason why we will be focusing on the local risk minimization
method.
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3.3 Local risk minimization

This method aims to minimize the expected squared value of the incremental
cost. This is, by minimizing Problem 3.2 using the physical measure P instead of
the martingale measure P∗. The theory can be found in chapter 10 of the book by
H. Föllmer and A. Schied (2016) [10].

We assume that the discounted payoff B̃ and the discounted price process S̃t

are square-integrable with respect to the physical measure P. This is, B̃ ∈ L2 (P)
and S̃t ∈ L2 (P) , ∀t ∈ T.

Definition 3.9. A square-integrable admissible strategy for B̃ is a trading strategy
H whose value satisfies

ṼT (H) = B̃, P-almost surely2

with Ṽt ∈ L2 (P) and Gt ∈ L2 (P) for each t, where G is the gains process presented
before.

Definition 3.10. The local risk process of an L2-admissible strategy H = (H0, H)

is the process

Rloc
t
(

H0, H
)

:= E
[
(∆πt+1 (H))2

∣∣∣Ft

]
, t = 0, 1, ..., T − 1.

An L2-admissible strategy Ĥ =
(

Ĥ0, Ĥ
)

is called a locally risk-minimizing strat-
egy if, for all t

Rloc
t
(

Ĥ0, Ĥ
)
≤ Rloc

t
(

H0, H
)

, P-a.s.,

for each L2-admissible strategy H whose value process satisfies

Ṽt+1
(

Ĥ
)
= Ĥ0

t+1 + Ĥt+1 · S̃t+1.

Remark 3.11. A local risk process of an L2-admissible strategy H can also be
expressed as

Rloc
t (H) = Var (∆πt+1 (H)|Ft) + E2 [∆πt+1 (H)|Ft] .

Definition 3.12. An L2-admissible strategy is called mean self-financing if its cost
process π is a martingale measure with respect to P. This is, for all t,

E [∆πt+1 (H)|Ft] = 0, P-a.s.

2P-a.s. means almost sure with respect to a probability measure P.
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Remark 3.13. Locally risk-minimizing strategies are not self-financing, but they
are self-financing on average. This means that each additional cost is a random
variable with expectation zero.

Definition 3.14. Two adapted processes Mt and M′t are strongly orthogonal with
respect to P if the conditional covariances

Cov
(
∆Mt+1, ∆M′t+1

∣∣Ft
)

are well defined and vanish P-a.s. for t = 0, 1, ..., T − 1.

Remark 3.15. Suppose we have a strong orthogonality of two adapted processes.
If one of them is a martingale measure under P, then the conditional covariance
reduces to

Cov
(
∆Mt+1, ∆M′t+1

∣∣Ft
)
= E

[
∆Mt+1∆M′t+1

∣∣Ft
]

.

This comes from the definition of the conditional covariance of Mt and M′t:

Cov
(

Mt, M′t
∣∣Ft
)

:= E
[
Mt M′t

∣∣Ft
]
−E [Mt|Ft]E

[
M′t
∣∣Ft
]

.

The next theorem characterizes the locally risk minimizing strategies.

Theorem 3.16. An L2-admissible strategy H is locally risk-minimizing if and only if it is
mean self-financing and its cost process is strongly orthogonal to S̃t.

Proof. From Remark 3.11, we have that the local risk process can be decomposed
as

Rloc
t (H) := Var (∆πt+1 (H)|Ft) + E2 [∆πt+1 (H)|Ft] .

Since the conditional variance does not change if we add random Ft-measurable
variables, the first term turns into

Var (∆πt+1 (H)|Ft) = Var
(
Ṽt+1 (H)− Ht+1 · ∆S̃t+1

∣∣Ft
)

.

The second term can be rewritten as

E2 [∆πt+1 (H)|Ft] =

(
E
[
Ṽt+1 (H)

∣∣Ft
]
− Ht+1 ·E

[
∆S̃t+1

∣∣Ft
]
− Ṽt (H)

)2

.

We fix t and Ṽt+1 (H), and consider Ht+1 and Ṽt (H) as parameters. We want
to find the necessary conditions to minimize Rloc

t (H) with respect to those param-
eters.

Note that it is possible to change the parameters H0
t and Ht, leaving Ht+1 and

Ṽt+1 (H) unchanged, such that Ṽt (H) can take any given value and the strategy
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continues to be L2-admissible for B̃. In particular, the first term is not affected,
therefore it is necessary for the optimization that Ṽt (H) minimizes the second
term. This is the case if and only if this term is zero

E
[
Ṽt+1 (H)

∣∣Ft
]
− Ht+1 ·E

[
∆S̃t+1

∣∣Ft
]
− Ṽt (H) = 0, (3.7)

which proves the mean-self financing property because the second term satisfies

E [∆πt+1 (H)|Ft] = E
[
Ṽt+1 (H)− Ht+1 · ∆S̃t+1

∣∣Ft
]
− Ṽt (H) = 0.

Since the first term is independent of Ṽt (H) and it is a quadratic form in terms of
Ht+1, it can be minimized if and only if Ht+1 solves the linear equation

Cov
(
Ṽt+1 (H)− Ht+1 · ∆S̃t+1, ∆S̃t+1

∣∣Ft
)
= 0.

Given Formula 3.7 and using Remark 3.15, the linear equation holds if and only if

E
[
∆πt+1 (H)∆S̃t+1

∣∣Ft
]
= 0.

Thus, we have proved that an L2-admissible strategy H is locally risk-minimizing
if and only if it is mean self-financing and its cost process is strongly orthogonal
to the price process. Backward induction on t concludes the proof.

Remark 3.17. Minimizing Rloc
t (H) determines Ĥ0

t , Ĥt and Ṽt−1
(

Ĥ
)
, but we are

free to choose Ĥ0
t−1 and Ĥt−1 among all H0

t−1 and H0
t−1 that satisfy Ṽt−1 (H) =

H0
t−1 + Ht−1 · S̃t−1. It is then natural to minimize Rloc

t−1 (H) under the condition
that Ṽt−1 (H) is equal to Ṽt−1

(
Ĥ
)

previously obtained. Now the problem will be
the same type as the previous one.

The proof provides a recipe for a recursive construction of a locally risk-
minimizing strategy. This is, if Ṽt+1 (H) is given, we have to minimize

E
[
(∆πt+1 (H))2

∣∣∣Ft

]
= E

[(
Ṽt+1 (H)−

(
Ṽt (H) + Ht+1 · ∆S̃t+1

))2
∣∣∣Ft

]
with respect to Ṽt (H) and Ht+1. And this is just the same Problem 3.2 of deter-
mining the linear regression of Ṽt+1 (H) on the increment of ∆S̃t+1. This yields to
the same set of Formulas 3.3, 3.4 and 3.5 but using the physical measure.

A useful formula is when we only have one risky asset, d = 1. In that case

Ĥt+1 :=
Cov

(
Ṽt+1

(
Ĥ
)

, ∆S̃t+1
∣∣Ft
)

Var
[
∆S̃t+1

∣∣Ft
]

and
Ṽt
(

Ĥ
)

:= E
[
Ṽt+1

(
Ĥ
)∣∣Ft

]
.
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Defining Ĥ0
t := Ṽt

(
Ĥ
)
− Ĥt · S̃t, we obtain an strategy Ĥ =

(
Ĥ0, Ĥ

)
that satisfies

ṼT
(

Ĥ
)
= B̃ with an initial fair price of Ṽ0(Ĥ) = E

[
Ṽ1
(

Ĥ
)∣∣F0

]
.

To sum up, as explained in the paper from M. Schweizer (1999) [16], a locally
risk-minimizing strategy can be characterized by two properties:

• The cost process π must be a martingale, as seen in Remark 3.6. Although
the strategy is no longer self-financing, it has to still remain mean self-
financing.

• And the cost process must also be orthogonal to the price process, as seen in
Theorem 3.16.

Those two conditions translate into the next corollary.

Corollary 3.18. There exists a locally risk-minimizing strategy if and only if the dis-
counted payoff B̃ admits a decomposition

B̃ = c +
T

∑
t=1

Ht · ∆S̃t + QT, P-a.s.,

where c ≥ 0 is a constant, H is a predictable process satisfying

Ht · ∆S̃t ∈ L2,

and QT is a square integrable P-martingale strongly orthogonal to S̃t.

This decomposition is called the Föllmer-Schweizer decomposition of B̃.

Remark 3.19. Note that without the orthogonal term, the decomposition is true
for replicable options.

The local risk minimization method can be also applied to complete markets,
in which every option can be replicated by an obvious self-financing strategy.

This is the theory behind the local risk minimization method. For the Appli-
cation chapter we will be using an adapted version of it that will simplify the
process. For that, we will assume an initial portfolio value of V0 (H) = 0, and
we will denote by Vt+ (H) = Ht+1 · St the portfolio just after being readjusted,
including the risky asset, with the information available at time t.

Next proposition is an adaptation from Proposition 4.1 that can be found in
[14]: page 26, for the case of one risky asset, d = 1.

Proposition 3.20. The following are equivalent for all t = 0, ..., T − 1.
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i) Ĥ t minimizes
E
[
(∆πt (H))2

∣∣∣Ft−1

]
.

ii) Ĥ t solves
Ht ·E

[
S̃t · S̃0

t
∣∣Ft−1

]
= E

[
Ṽt (H) S̃0

t
∣∣Ft−1

]
Ht ·E

[
S̃t · S̃1

t

∣∣∣Ft−1

]
= E

[
Ṽt (H) S̃1

t

∣∣∣Ft−1

]
.

iii) The price process and the cost process are orthogonal martingales, this is

E
[
∆πt

(
Ĥ
)∣∣Ft−1

]
= 0

E
[
S̃t∆πt

(
Ĥ
)∣∣Ft−1

]
= 0.

And the fair initial price satisfies Ṽ0+(Ĥ) = Ĥ1 · S̃0.

Proof. Can be found in [14]: appendix B, page 267.

A strategy Ĥ satisfying one of these conditions is called locally risk-minimizing.
Such strategy always exists, but may not be unique.

Proposition 3.21. Let ĤX and ĤY be locally risk-minimizing strategies of the derivative
processes X and Y, respectively. Then, for a, b ∈ R it satisfies that aĤX

+ bĤY is a locally
risk-minimizing strategy of the derivative process aX + bY.

Proof. Can be found in [14]: chapter 4, page 28.

This proposition shows that an option process is actually a finite sum of op-
tions, each occurring at each time t. This means that given a portfolio we can
add each of the individual risk-minimizing strategies to find the portfolio risk-
minimizing strategy. And that there is no need to recalculate the locally risk-
minimizing strategy on the whole. Because of this, the fair price associated comes
from a linear pricing rule, implying that there exist some probability measure
P̂ ∈ P such that the fair price of an European option is given by

Ṽt+
(

Ĥ
)
= EP̂ [D̃j|Ft

]
,

for t < j. And this probability measure is the so called minimal measure.

Remark 3.22. Recall that a local risk minimization is one method of choosing one
particular measure P̂ from all the possible risk neutral probabilities in P .
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Chapter 4

Application

In this chapter we will see how the local risk minimization strategy can be
applied in binomial and trinomial models. It is based on the doctoral thesis by J.
Pansera (2008) [14].

It begins first with a couple of simple cases where there is only a riskless
asset. Later we introduce a risky asset and indicate how to apply the strategy
in a binomial and trinomial model, adding a numerical example in the trinomial
model with one period and two periods.

We will suppose that the filtration is the natural filtration, thus no external
information from the financial market will affect, and we will also assume a risk-
free asset with initial value S0

0 = 1, which results in S̃0
t = 1, ∀t.

4.1 Simple cases

For the simple cases we will assume a risk-free asset, such as a bank account.
However, it can also be applied to risk-free bonds.

4.1.1 A single asset and a single period

We have a riskless asset that expires in one period, T = 1.

From Proposition 3.20, the locally risk-minimizing strategy can be found by
solving the equation

H0
1 ·E

[
S̃0

1 · S̃0
1
∣∣F0
]
= E

[
Ṽ1 (H) S̃0

1
∣∣F0
]

,

where Ṽ1 (H) = D̃1 = B̃ because we want a replicating strategy.
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Since S̃0
1 = 1,

Ĥ0
1 = E

[
B̃
∣∣F0
]
=

1
S0

1
E [B|F0] . (4.1)

This is the number of shares of the riskless asset that the seller should hold at time
t = 0 in order to have at time t = 1 the amount B.

Thus, the fair value has to be

Ṽ0+(Ĥ) = Ĥ0
1 .

Example 4.1. For a first example, assume we have a bank account with initial value
S0

0 that in one period, T = 1, requires us to pay an amount B = 1, for example a
bank commission. We want to know at t = 0 how much do we need to have in the
bank account to be able to cover that risk.

With Equation 4.1, we estimate the amount that we need to have in the account
at t = 1:

Ĥ0
1 =

1
S0

1
E [B|F0] =

1
S0

1
.

This gives us a discounted fair bank account value of

Ṽ0+
(

Ĥ
)
= Ĥ0

1 =
1
S0

1
.

This means that in order to be able to pay an amount B = 1 in one period, we
need to have an amount Ĥ0

1 in the bank account with a discounted account value
of Ṽ0+

(
Ĥ
)
.

Note that the strategy is both replicating and self-financing, and we would
obtain the same result with a complete market strategy.

4.1.2 A single asset and multiple periods

We have a riskless asset which will be kept multiple finite periods, T > 1.

From Proposition 3.20, since S̃0
t = 1 for every t, a locally risk-minimizing strat-

egy can be found by solving

H0
t = E

[
Ṽt (H) |Ft−1

]
. (4.2)

We have seen in Proposition 3.21 that a locally risk-minimizing strategy of a
financial product process can be found by adding up the locally risk-minimizing
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strategies of each product. This means, that we can restrict the method to a single
financial asset D̃t occurring at some time t ≤ T.

First, for t = T we obtain using Equation 4.2 and ṼT (H) = B̃, the risk-free
amount needed at time T

Ĥ0
T = E

[
B̃|FT−1

]
.

With a portfolio value of
ṼT
(

Ĥ
)
= Ĥ0

T.

Since we want the locally risk-minimizing strategy to be replicating, we take
this value as the payoff value that we want to have at the prior time period. This
means that we need to impose

ṼT−1
(

Ĥ
)
= Ĥ0

T.

We repeat now the process for this new payoff solving

Ĥ0
T−1 = E

[
ṼT−1

(
Ĥ
)∣∣FT−2

]
= E

[
Ĥ0

T
∣∣FT−2

]
= E

[
E
[
B̃
∣∣FT−1

]∣∣FT−2
]

= E
[
B̃
∣∣FT−2

]
,

(4.3)

where we used the tower property of conditional expectation seen in Remark 2.8.

With this we obtain the new value ṼT−2
(

Ĥ
)
, and by iteration we compute the

local risk-minimizing investment strategy process

Ĥ0 = {Ĥ0
1 , ..., Ĥ0

T}.

Therefore, the initial fair amount needed at t = 0 to obtain a final payoff B at
t = T will be

Ṽ0+
(

Ĥ
)
= Ĥ0

1 .

Example 4.2. We take the same example as before with B = 1, but with T > 1
periods.

The local risk minimizing strategy for t = T will be

Ĥ0
T = E

[
B̃
(

Ĥ
)
|FT−1

]
=

1
S0

T
,

with a discounted portfolio value of

ṼT
(

Ĥ
)
=

1
S0

T
.
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Assuming ṼT
(

Ĥ
)

as the new payoff value that we want to replicate, we need
to calculate

Ĥ0
T−1 = E

[
ṼT−1

(
Ĥ
)
|FT−2

]
=

1
S0

T
.

By iteration we obtain that the locally risk-minimizing strategy is

Ĥ0
1 = ... = Ĥ0

T =
1

S0
T

,

with an initial fair amount of

Ṽ0+
(

Ĥ
)
=

1
S0

T
.

The locally risk-minimizing strategy for this example is to have at each time
t a constant amount Ĥ0

T in the bank account. Note that this strategy is also self-
financing and replicating.

4.2 Two assets and a single period

We will denote by St the risky asset and by Ht its strategy.

From Proposition 3.20, we must solve the system of equations(
H0

1
H1

)
·E
[(

S̃0
1

S̃1

)
· S̃0

1

∣∣∣∣∣F0

]
= E

[
Ṽ1 (H) S̃0

1
∣∣F0
]

(
H0

1
H1

)
·E
[(

S̃0
1

S̃1

)
· S̃1

∣∣∣∣∣F0

]
= E

[
Ṽ1 (H) S̃1

∣∣F0
]

,

which simplifies, when S̃0
1 = 1 and Ṽ1 (H) = B̃, to

H0
1 + H1 ·E

[
S̃1
∣∣F0
]
= E

[
B̃
∣∣F0
]

,

H0
1 ·E

[
S̃1
∣∣F0
]
+ H1 ·E

[(
S̃1
)2
∣∣∣F0

]
= E

[
B̃S̃1

∣∣F0
]

.

We solve the 2x2 system of equations by isolating H0
1

H0
1 = E

[
B̃
∣∣F0
]
− H1 ·E

[
S̃1
∣∣F0
]

,

and multiplying it for E
[
S̃1
∣∣F0
]

before replacing it in the second equation:

E
[
B̃
∣∣F0
]

E
[
S̃1
∣∣F0
]
− H1 ·E2 [S̃1

∣∣F0
]
+ H1 ·E

[(
S̃1
)2
∣∣∣F0

]
= E

[
B̃S̃1

∣∣F0
]

.
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Which solves as

H1 =
E
[
B̃S̃1

∣∣F0
]
−E

[
B̃
∣∣F0
]

E
[
S̃1
∣∣F0
]

E
[(

S̃1
)2
∣∣∣F0

]
−E2

[
S̃1
∣∣F0
] .

Applying the definition of conditional covariance and conditional variance we
obtain the locally risk-minimizing strategy similar to the one seen in the last chap-
ter

Ĥ1 =
Cov

[
B̃, S̃1

∣∣F0
]

Var
[
S̃1
∣∣F0
] , (4.4)

Ĥ0
1 = E

[
B̃
∣∣F0
]
− Ĥ1 ·E

[
S̃1
∣∣F0
]

. (4.5)

The initial discounted value is computed as

Ṽ0+
(

Ĥ
)
= Ĥ0

1 S̃0
0 + Ĥ1S̃0 = Ĥ0

1 + Ĥ1S̃0,

with an actual value of
V0+

(
Ĥ
)
= Ĥ0

1 S0
0 + Ĥ1S0.

Next, the local risk-minimization strategy is applied to the models introduced
in sections 2.4 and 2.5, where certain formulas to compute the strategy can be
obtained.

4.2.1 The binomial model

Assume that we have a bank account with an amount S0
0 and a final value of

S0
1 = S0

0 (1 + r), where r is a fixed interest rate. It satisfies S̃0
1 = 1. There is also a

stock S0 with final value

S1 =

{
S1 (u) with probability P (u)
S1 (d) with probability P (d) ,

and an European option with premium D0 and payoff B

B =

{
B (u) with probability P (u)
B (d) with probability P (d) .

We can obtain the local risk-minimizing strategy with Formulas 4.4 and 4.5:

Ĥ1 =
Cov

[
B̃, S̃1

∣∣F0
]

Var
[
S̃1
∣∣F0
] =

E
[
B̃S̃1

∣∣F0
]
−E

[
B̃
∣∣F0
]

E
[
S̃1
∣∣F0
]

E
[(

S̃1
)2
∣∣∣F0

]
−E2

[
S̃1
∣∣F0
] ,

Ĥ0
1 = E

[
B̃
∣∣F0
]
− Ĥ1 ·E

[
S̃1
∣∣F0
]

,

where:
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• E
[
B̃S̃1

∣∣F0
]
= B̃ (u) S̃1 (u) P (u) + B̃ (d) S̃1 (d) P (d),

• E
[
B̃
∣∣F0
]

E
[
S̃1
∣∣F0
]
=
[
B̃ (u) P (u) + B̃ (d) P (d)

] [
S̃1 (u) P (u) + S̃1 (d) P (d)

]
,

• E
[(

S̃1
)2
∣∣∣F0

]
=
(
S̃1 (u)

)2 P (u) +
(
S̃1 (d)

)2 P (d),

• E2 [S̃1
∣∣F0
]
=
[
S̃1 (u) P (u) + S̃1 (d) P (d)

]2.

For the numerator of Ĥ1, we have

B̃ (u) S̃1 (u) P (u) + B̃ (d) S̃1 (d) P (d)−
[
B̃ (u) P (u) + B̃ (d) P (d)

]
[S̃1 (u) P (u)

+S̃1 (d) P (d)] = B̃ (u) S̃1 (u) P (u) [1− P (u)] + B̃ (d) S̃1 (d) P (d) [1− P (d)]

−B̃ (d) S̃1 (u) P (u) P (d)− B̃ (u) S̃1 (d) P (u) P (d) .

Taking into account P (u) = 1− P (d), it reduces to

P (u) P (d)
[
B̃ (u) S̃1 (u) + B̃ (d) S̃1 (d)− B̃ (d) S̃1 (u)− B̃ (u) S̃1 (d)

]
= P (u) P (d)

(
B̃ (u)− B̃ (d)

) (
S̃1 (u)− S̃1 (d)

)
.

And for the denominator of Ĥ1, we obtain(
S̃1 (u)

)2 P (u) +
(
S̃1 (d)

)2 P (d)−
[
S̃1 (u) P (u) + S̃1 (d) P (d)

]2

= P (u)
(
S̃1 (u)

)2
[1− P (u)] +

(
S̃1 (d)

)2 P (d) [1− P (d)] + 2S̃1 (u) S̃1 (d) P (u) P (d)

= P (u) P (d)
(
S̃1 (u)− S̃1 (d)

)2 .

This leads to the locally risk-minimizing amounts

Ĥ1 =
B̃ (u)− B̃ (d)

S̃1 (u)− S̃1 (d)
,

and

Ĥ0
1 =

B̃ (d) S̃1 (u)− B̃ (u) S̃1 (d)
S̃1 (u)− S̃1 (d)

.

The discounted portfolio value will be

Ṽ0+
(

Ĥ
)
= Ĥ0

1 + Ĥ1S̃0.
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Remark 4.3. Taking the non discounted values, the initial actual value should be

V0+
(

Ĥ
)
= Ĥ0

1 S0
0 + Ĥ1S0

=
B (d) S1 (u)− B (u) S1 (d)

S1 (u)− S1 (d)
S0

0 +
B (u)− B (d)

S1 (u)− S1 (d)
S0

= B (u)
(−S1 (d) S0

0 + S0

S1 (u)− S1 (d)

)
+ B (d)

(
S1 (u) S0

0 − S0

S1 (u)− S1 (d)

)
=

S0
0

S0
1

[
B (u) P̂ (u) + B (d) P̂ (d)

]
,

where

P̂ (u) =
S0

1/S0
0 − S1 (d) S0

1/S0

S1 (u) /S0 − S1 (d) /S0
and P̂ (d) =

S1 (u) S0
1/S0 − S0

1/S0
0

S1 (u) /S0 − S1 (d) /S0

are the minimal measures of the binomial model.

Those risk neutral probabilities are aligned with the ones in the Cox-Ross-
Rubinstein that can be found in [6].

4.2.2 The trinomial model

As seen in section 2.5, the trinomial model is an incomplete model. It is also
the simplest example of an incomplete financial market.

For this model we also suppose that we have a bank account S0 and a stock S,
but now the stock can take three different and positive values

S1 =

{ S1 (u) with probability P (u)
S1 (m) with probability P (m)

S1 (d) with probability P (d) ,

where P (u) + P (m) + P (d) = 1.

The European option can also take three different payoff values

B =

{ B (u) with probability P (u)
B (m) with probability P (m)

B (d) with probability P (d) .

Like in the the binomial model, applying the local risk-minimizing strategy
with Formulas 4.4 and 4.5 we can compute

Ĥ1 =
Cov

[
B̃, S̃1

∣∣F0
]

Var
[
S̃1
∣∣F0
] =

E
[
B̃S̃1

∣∣F0
]
−E

[
B̃
∣∣F0
]

E
[
S̃1
∣∣F0
]

E
[(

S̃1
)2
∣∣∣F0

]
−E2

[
S̃1
∣∣F0
]
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Ĥ0
1 = E

[
B̃
∣∣F0
]
− Ĥ1 ·E

[
S̃1
∣∣F0
]

,

where

• E
[
B̃S̃1

∣∣F0
]
= B̃ (u) S̃1 (u) P (u) + B̃ (m) S̃1 (m) P (m) + B̃ (d) S̃1 (d) P (d),

• E
[
B̃
∣∣F0
]

E
[
S̃1
∣∣F0
]
=
[
B̃ (u) P (u) + B̃ (m) P (m) + B̃ (d) P (d)

] [
S̃1 (u) P (u)

+ S̃1 (m) P (m) + S̃1 (d) P (d)
]
,

• E
[(

S̃1
)2
∣∣∣F0

]
=
(
S̃1 (u)

)2 P (u) +
(
S̃1 (m)

)2 P (m) +
(
S̃1 (d)

)2 P (d),

• E2 [S̃1|F0
]
=
[
S̃1 (u) P (u) + S̃1 (m) P (m) + S̃1 (d) P (d)

]2.

In a similar way to the process done in the binomial model, now consider-
ing P (u) + P (m) + P (d) = 1, we can also obtain the formulas for the minimal
measures. The discounted value satisfies

Ṽ0+
(

Ĥ
)
= EP̂ [B̃∣∣F0

]
,

where the minimal measures are defined by

P̂ (u) = P (u)
[
1 +

(
S̃1 (u)−E

[
S̃1
∣∣F0
])

κ
]

,

P̂ (m) = P (m)
[
1 +

(
S̃1 (m)−E

[
S̃1
∣∣F0
])

κ
]

,

P̂ (d) = P (d)
[
1 +

(
S̃1 (d)−E

[
S̃1
∣∣F0
])

κ
]

,

with

κ :=
S̃0 −E

[
S̃1
∣∣F0
]

Var
[
S̃1
∣∣F0
] .

Remark 4.4. Note that the three minimal measures sum up to 1.

Example 4.5. Assume a bank account and a stock with a value of one monetary
unit at t = 0, this is S0

0 = S0 = 1. Assume also a fixed interest rate of r = 0.1. This
is, S0

1 = 1 (1 + 0.1) = 1.1.

The possible future stock prices and its probability at t = 1 are

S1 =

{ S1 (u) = 2.0 with probability P (u) = 0.2
S1 (m) = 1.0 with probability P (m) = 0.5
S1 (d) = 0.1 with probability P (d) = 0.3,

where u = 1, m = 0 and d = −0.9 satisfying d < r < u in order to be in an
arbitrage-free market as seen in Proposition 2.51.
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Its discounted prices are computed as:

S̃1 =
S1

1 + 0.1
=

{ S̃1 (u) = 2.0
1.1 with probability P (u) = 0.2

S̃1 (m) = 1.0
1.1 with probability P (m) = 0.5

S̃1 (d) = 0.1
1.1 with probability P (d) = 0.3.

Consider an European call option with strike price of one monetary unit, K =

1. The payoff that the buyer can obtain with it will be

B =

{ B (u) = (2.0− 1.0)+ = 1.0 with probability P (u) = 0.2
B (m) = (1.0− 1.0)+ = 0.0 with probability P (m) = 0.5
B (d) = (0.1− 1.0)+ = 0.0 with probability P (d) = 0.3,

with discounted payoffs of

B̃ (u) =
1.0
1.1

and B̃ (m) = B̃ (d) = 0.

Applying the local risk-minimizing formulas

Ĥ1 =
E
[
B̃S̃1

∣∣F0
]
−E

[
B̃
∣∣F0
]

E
[
S̃1
∣∣F0
]

E
[
(S̃1)2

∣∣F0
]
−E2

[
S̃1
∣∣F0
]

Ĥ0
1 = E

[
B̃
∣∣F0
]
− Ĥ1 ·E

[
S̃1
∣∣F0
]

,

where:

• E
[
B̃S̃1

∣∣F0
]
=

1
1.1

2
1.1

0.2 =
40
121

,

• E
[
B̃
∣∣F0
]

E
[
S̃1
∣∣F0
]
=

2
11

93
110

=
93
605

,

• E
[(

S̃1
)2
∣∣∣F0

]
=

1303
1210

,

• E2 [S̃1
∣∣F0
]
=

(
93
110

)2

,

we obtain the strategy values

Ĥ0
1 ≈ −0.2311635 and Ĥ1 ≈ 0.488473.

The minimal measures will be

• P̂ (u) = 0.2
[

1 +
(

2
1.1
− 93

110

)
κ

]
≈ 0.28304,

• P̂ (m) = 0.5
[

1 +
(

1
1.1
− 93

110

)
κ

]
≈ 0.5135814,
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• P̂ (d) = 0.3
[

1 +
(

0.1
1.1
− 93

110

)
κ

]
≈ 0.2033782,

where

κ =
1− 93

110
1303
1210 − ( 93

110 )
2
≈ 0.426843.

Finally, the discounted fair value of the option is an amount

Ṽ0+
(

Ĥ
)
= EP̂ [B̃∣∣F0

]
= B̃ (u) P̂ (u) ≈ 1

1.1
0.28304 ≈ 0.2573095.

Remark 4.6. The local risk-minimizing strategy will be as follows: at t = 0, the
seller sells the option for a price Ṽ0+

(
Ĥ
)
, borrows an amount H0

1 from the bank
and buys an amount Ĥ1 of the stock in the market. This leads to a total cost of
0.2573095− 0.488473 + 0.2311635 = 0. At t = 1, depending on the state, he will
have a total cost of B + S1Ĥ1 − Ĥ0

1 (1 + 0.1), satisfying E
[
π1
(

Ĥ
)
|F0
]
= 0.

4.3 Two assets and multiple periods

As done in section 4.1.2, we will also restrict the local risk-minimizing strategy
to a single European option D̃t occurring at some time t ≤ T.

For t = T, we must solve the system when Ṽt (H) = B̃(
H0

T
HT

)
·E
[(

S̃0
T

S̃T

)
· S̃0

T

∣∣∣∣∣FT−1

]
= E

[
B̃S̃0

T
∣∣FT−1

]
,

(
H0

T
HT

)
·E
[(

S̃0
T

S̃T

)
· S̃T

∣∣∣∣∣FT−1

]
= E

[
B̃S̃T

∣∣FT−1
]

.

We have seen that it solves as

ĤT =
Cov

[
B̃, S̃T

∣∣FT−1
]

Var
[
S̃T
∣∣FT−1

] ,

Ĥ0
T = E

[
B̃
∣∣FT−1

]
− ĤT ·E

[
S̃T
∣∣FT−1

]
.

The discounted value at t = T − 1 will be

ṼT−1
(

Ĥ
)
= Ĥ0

T + ĤT S̃T−1.

Next, we want to replicate this amount at the previous time step, thus we
assume ṼT−1

(
Ĥ
)
= Ĥ0

T + ĤT S̃T, and we must now solve the following system(
H0

T−1
HT−1

)
·E
[(

S̃0
T−1

S̃T−1

)
· S̃0

T−1

∣∣∣∣∣FT−2

]
= E

[
ṼT−1 (H) S̃0

T−1
∣∣FT−2

]
,
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(
H0

T−1
HT−1

)
·E
[(

S̃0
T−1

S̃T−1

)
· S̃T−1

∣∣∣∣∣FT−2

]
= E

[
ṼT−1 (H) S̃T−1

∣∣FT−2
]

.

This similarly solves as before and we obtain the new values

Ĥ0
T−1 and ĤT−1,

with a discounted value of

ṼT−2
(

Ĥ
)
= Ĥ0

T−1 + ĤT−1S̃T−2.

Recursively, we will get to the initial value of the strategy

Ṽ0+
(

Ĥ
)
= Ĥ0

1 + Ĥ1S̃0.

We will now apply the method again to the binomial and trinomial models.

4.3.1 The binomial model

Assume the same hypotheses as in section 4.2.1, now with T ≥ 2.

The stock price process for T = 3 can be viewed as the following binomial tree:

S0

S1 (d)

S2 (dd)
S3 (ddd)

S3 (ddu)

S2 (du)
S3 (dud)

S3 (duu)

S1 (u)

S2 (ud)
S3 (udd)

S3 (udu)

S2 (uu)
S3 (uud)

S3 (uuu)

At each period, the stock price can only move up u or down d, with d < r < u.
This is, the state space is formed by

Ω := {u, d}T.
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We will denote by Et the stock state process until the time t, thus

St+1 =

{
St+1 (Etu) with probability P (Etu)
St+1 (Etd) with probability P (Etd) ,

where Etu is the concatenation of the process Et with the up movement, and Etd
is the concatenation with the down movement.

The locally risk-minimizing strategy will be solved similarly to the one in sec-
tion 4.2.1 following a backwards method. The difference when we have different
states is that at every time t we will have to compute for each node its strategy
and discounted value.

For each t ≤ T, the system of equations solves as

Ĥt (Et−1) =
Ṽt (Et−1u)− Ṽt (Et−1d)
S̃t (Et−1u)− S̃t (Et−1d)

,

and

Ĥ0
t (Et−1) =

Ṽt (Et−1d) S̃t (Et−1u)− Ṽt (Et−1u) S̃t (Et−1d)
S̃t (Et−1u)− S̃t (Et−1d)

.

Note that Ĥt (Et−1) is the number of shares of the risky asset at the state Et−1.

The portfolio value at each node Et−1 at time t will be

Ṽ(t−1)+
(

Ĥ
)
(Et−1) = Ĥ0

t (Et−1) + Ĥt (Et−1) S̃t−1 (Et−1) .

Once the nodes of the tree are computed at time t, we have the next fair value
for t− 1 and we can repeat the strategy, until we arrive to the initial fair value.

Similarly to Remark 4.3, we could also obtain a explicit formula for the mar-
tingale measures.

4.3.2 The trinomial model

In the same way as in section 4.2.2, we assume three possible states; up, middle
and down.

For each t ≤ T and at each node, the system solves as

Ĥt (Et−1) =
Cov

[
Ṽt (Et−1) , S̃t (Et−1)

∣∣Ft−1
]

Var
[
S̃t (Et−1)

∣∣Ft−1
] ,

and
Ĥ0

t (Et−1) = E
[
Ṽt (Et−1)

∣∣Ft−1
]
− Ĥt (Et−1) ·E

[
S̃t (Et−1)

∣∣Ft−1
]

.
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The discounted value is

Ṽ(t−1)+
(

Ĥ
)
(Et−1) = EP̂ [D̃t

∣∣Ft−1
]

,

where the minimal measures are defined by

P̂ (Et−1u|Et−1) = P (Et−1u|Et−1)
[
1 + (S̃t (Et−1u)−E

[
S̃t
∣∣Et−1

]
)κt
]

,

P̂ (Et−1m|Et−1) = P (Et−1m|Et−1)
[
1 +

(
S̃t (Et−1m)−E

[
S̃t
∣∣Et−1

])
κt
]

,

P̂ (Et−1d|Et−1) = P (Et−1d|Et−1)
[
1 +

(
S̃t (Et−1d)−E

[
S̃t
∣∣Et−1

])
κt
]

,

with

κt :=
S̃t−1 (Et−1)−E

[
S̃t
∣∣Et−1

]
Var

[
S̃t
∣∣Et−1

] .

Remark 4.7. P (Et−1u|Et−1) means the probability from state Et−1 to Et−1u, and
E
[
S̃t
∣∣Et−1

]
is the expected value of S̃t at the state Et−1.

Once we have computed the locally risk-minimizing strategy and the dis-
counted value for each of the nodes at t, we follow the same strategy by taking
the discounted values as the new payoffs that we want to replicate at time t− 1.
By iteration we will obtain the initial fair value.

Example 4.8. Similar to Example 4.5, we assume a bank account and a stock with
initial value of S0

0 = S0 = 1, and a fixed interest rate of r = 0.1. We will assume
two time periods, T = 2.

The bank account will have the next two future values:

S0
1 = (1 + 0.1) = 1.1 and S0

2 = (1 + 0.1)2 = 1.21.

The possible future stock prices are given by the next trinomial tree, with u =

1, m = 0 and d = −0.9, and probabilities P (u) = 0.2, P (m) = 0.5 and P (d) = 0.3,
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S0 = 1.0

S1 (d) = 0.1

S2 (dd) = 0.01,

S2 (dm) = 0.1

S2 (du) = 0.2

S1 (m) = 1.0

S2 (md) = 0.1

S2 (mm) = 1.0

S2 (mu) = 2.0

S1 (u) = 2.0

S2 (ud) = 0.2

S2 (um) = 2.0

S2 (uu) = 4.0

with discounted prices

S̃1 =
S1

1.1
and S̃2 =

S2

1.21
.

We also assume an European call option with strike price K = 1. Therefore,
the payoff will be:

• B (uu) = 3.0 with probability p (uu) = 0.04

• B (um) = 1.0 with probability p (um) = 0.10

• B (mu) = 1.0 with probability p (mu) = 0.10,

with all the other payoffs equal to 0.

We apply the local risk-minimizing strategy. First, for t = 2 we compute the
strategy for the node E2 = u:

Ĥ2 (u) =
Cov

[
B̃ (u) , S̃2 (u)

∣∣F1
]

Var
[
S̃2 (u)

∣∣F1
] =

E
[
B̃ (u) S̃2 (u)

∣∣F1
]
−E

[
B̃ (u)

∣∣F1
]

E
[
S̃2 (u)

∣∣F1
]

E
[(

S̃2 (u)
)2
∣∣∣F1

]
−E2

[
S̃2 (u)

∣∣F1
] ,

and
Ĥ0

2 (u) = E
[
B̃ (u)

∣∣F1
]
− Ĥ2 (u) ·E

[
S̃2 (u)

∣∣F1
]

,

where:
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• E
[
B̃ (u) S̃2 (u)

∣∣F1
]
=

3
1.21

4
1.21

0.2 + ... +
0

1.21
0.2
1.21

0.3 ≈ 2.322245748,

• E
[
B̃ (u)

∣∣F1
]

E
[
S̃2 (u)

∣∣F1
]
≈ 1.39744553,

• E
[(

S̃2 (u)
)2
∣∣∣F1

]
≈ 3.559866129,

• E2 [S̃2 (u) |F1
]
≈ (1.537190083)2 ≈ 2.362953188.

This yields to the locally risk-minimizing strategy for t = 2 of

Ĥ0
2 (u) ≈ −0.278626149 and Ĥ2 (u) ≈ 0.772654645.

This means that if the stock prices go up at t = 1, the strategy to be hedged
against all possible payoffs would be to have Ĥ2 (u) units of the stock and have
Ĥ0

2 (u) units borrowed from the bank.

Next, we calculate Ṽ1+ (u) = EP̂ [B̃|F1
]
. The minimal measures are

P̂ (uu|u) = P (u)
[
1 +

(
S̃2 (uu)−E

[
S̃2
∣∣u]) κ2

]
≈ 0.2

[
1 +

(
4.0
1.21
− 1.537190083

)
κ2

]
≈ 0.234763752,

P̂ (um|u) = P (m)
[
1 +

(
S̃2 (um)−E

[
S̃2
∣∣u]) κ2

]
≈ 0.5

[
1 +

(
2.0
1.21
− 1.537190083

)
κ2

]
≈ 0.283040401,

P̂ (ud|u) = P (d)
[
1 +

(
S̃2 (ud)−E

[
S̃2
∣∣u]) κ2

]
≈ 0.3

[
1 +

(
0.2

1.21
− 1.537190083

)
κ2

]
≈ 0.203378124,

with

κ2 =
S̃1 (u)−E

[
S̃2
∣∣u]

Var
[
S̃2
∣∣u] ≈

2.0
1.1 − 1.537190083

3.559866129− 2.362953188
≈ 0.234763752.

This yields to the discounted value

Ṽ1+
(

Ĥ
)
(u) = B̃ (uu) P̂ (uu|u) + B̃ (um) P̂ (um|u) + B̃ (uu) P̂ (ud|u)

≈ 3.0
1.21

0.234763752 +
1.0
1.21

0.283040401 ≈ 1.126200477.

We repeat the process for the other two states and we obtain the following
values:
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• For E2 = m:

Ĥ0
2 (m) ≈ −0.213657399 and Ĥ2 (m) ≈ 0.493038121,

with a discounted portfolio value of Ṽ1+
(

Ĥ
)
(m) ≈ 0.233917687.

• For E2 = d:
Ĥ0

2 (d) = 0 and Ĥ2 (d) = 0,

with a discounted portfolio value of Ṽ1+
(

Ĥ
)
(m) = 0.

Note that in the down state, as there is no possibility to have a strict positive
payoff, it does not make sense to have any strategy.

For t = 1, assuming C̃1 (u) = Ṽ1+ (u) , C̃1 (m) = Ṽ1+ (m) and C̃1 (d) = Ṽ1+ (d)
we have now the payoff tree for T = 1

C̃0

C̃1 (d) = 0.

C̃1 (m) ≈ 0.2339

C̃1 (u) ≈ 1.1262

We repeat now the same process with the new three possible payoffs, obtaining
the following locally risk-minimizing strategy

Ĥ0
1 ≈ −0.328524148 and Ĥ1 ≈ 0.736955644,

with an initial fair value of the European call option of

Ṽ0+
(

Ĥ
)
≈ 0.438886783.

Remark 4.9. To summarize the strategy:

• At t = 0, the seller sells the option for a fair price Ṽ0+
(

Ĥ
)
, borrows an

amount Ĥ0
1 from the bank and buys another amount Ĥ1 of the stock in the

market.

• At t = 1, the seller changes his investment strategy to Ĥ0
2 and Ĥ2 depending

on the state that took place.

• At t = 2 the seller is hedged to every possible payment of the call.



Conclusions

The aim of this work was to introduce the local risk-minimization strategy to
price and hedge options in incomplete markets.

In order to do that, we began with the required mathematical and financial
theory to comprehend how the financial market worked, as well as understanding
the difference between a complete and an incomplete market. In the main and
third chapter we realised how common incomplete markets are, and how many
different strategies exist to price and hedge financial products. We developed the
theory behind the local risk-minimization strategy and, finally, in the last chapter,
the application of this strategy in the binomial and trinomial models has been
explained.

Although in the applications chapter we could not extend the strategy to more
complicated models, the theory applies the same way. This could be a good future
idea to investigate. Moreover, a comparison between the diverse strategies in
incomplete markets can also be further studied.

The financial market and, in particular, the derivative market offers an im-
mense range of financial products. It has been interesting to realise how many
studies have been published related to this financial area, and how important it
is to being able to price this products. At university I did not have the chance
to explore in so much detail the financial market, and this work has helped me
understanding the theory behind it.

After finishing this work I feel more confident about continuing my studies in
this area and pursuing a master in finance.
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Appendix A

Annexes

A.1 First fundamental theorem of finance

The next two theorems are needed to proof Theorem 2.31.

Theorem A.1. (Hyperplane separation theorem)
Let C ⊂ Rn be a convex and closed set such that 0 /∈ C. Then there exists α > 0 and

a linear application ξ : Rn → R such that for all x ∈ C

ξ (x) ≥ α > 0.

Proof. Consider λ > 0 and a closed ball B̄λ (0) with center in the origin and radius
λ. The intersection with the convex C is immediate with a sufficient big radius.
We have A = B̄λ (0) ∩ C 6= ∅. A is closed because it is an intersection of closed
sets, and it is also enclosed for definition. Thus we have that it is a compact set
and we can define the norm function

x ∈ Rn → ‖x‖ ∈ R,

which is continue. And every continuous function in a compact space has a max-
imum and a minimum, therefore

∃x0 ∈ A such that ‖x0‖ ≤ ‖x‖, ∀x ∈ A.

In addition, for every x ∈ A we have ‖x‖ > λ. And ‖x0‖ ≤ ‖x‖, ∀x ∈ C. Suppose
x ∈ C, x 6= x0 and a real number t ∈ (0, 1]. Given that C is convex, we have that
(1− t) x0 + tx ∈ C. Therefore the minimum x0 satisfies

‖x0‖ ≤ ‖ (1− t) x0 + tx‖ = ‖x0 + t (x− x0) ‖

⇔ ‖x0‖2 ≤ ‖x0 + t (x− x0) ‖2
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⇔ ‖x0‖2 ≤ ‖x0‖2 + t2‖x− x0‖2 + 2tx0 · (x− x0)

⇔ t2‖x− x0‖2 + 2tx0 · (x− x0) ≥ 0

⇔ t‖x− x0‖2 + 2x0 · (x− x0) ≥ 0

which is true for all t ∈ (0, 1] and if and only if

x0 · (x− x0) ≥ 0⇔ x · x0 ≥ ‖x0‖2.

If we choose ξ(x) := x · x0 and α := ‖x0‖2 we finish the proof.

Theorem A.2. (Separation theorem)
Given K ⊆ Rn a convex and compact set. Let V ⊆ Rn be a linear space. Suppose that

K ∩ V = ∅. Then, there exists a linear application ξ : Rn → R such that ξ(x) > 0 for
all x ∈ K and ξ(x) = 0 for all x ∈ V.

Proof. Define the set

C := {x ∈ Rn|x = y− z, y ∈ K, z ∈ V}.

We will prove that it is closed, convex and does not include the 0.

• It is convex because of K.

• It does not contain the 0 because if it does, there should be an element
x = y− y, y ∈ K ∩V. But we supposed that the intersection is void.

• To prove that it is closed, we consider a succession xn ∈ C convergent to
x ∈ Rn. For definition, xn = yn− zn, yn ∈ K and zn ∈ V, where K is compact
and V is closed. Because K is compact, there exists a partial succession ynk

which converges to an element y ∈ K. Therefore, xnk = ynk − znk . Given that
the successions xn and ynk have a limit, we can say that z := y− x is the limit
of znk , and because V is closed and z ∈ V, we have that x = y− z ∈ C. This
is, the limit of the convergent succession is inside the set, therefore the set is
closed.

Now we can apply the Hyperplane separation theorem and we have that there
exists α > 0 and a linear application ξ such that

ξ(y− z) = ξ(y)− ξ(z) ≥ α > 0, ∀y ∈ K, z ∈ V.

We can write z = ‖z‖ z
‖z‖ = ‖z‖z̃ = λz̃, with z̃ an element of V with the unit norm.

Therefore,

ξ(y)− ξ(z) = ξ(y)− λξ(z̃) ≥ α > 0, ∀y ∈ K, z̃ ∈ V, λ > 0.
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If ξ(z̃) < 0 we can write

ξ(y)− ξ(z) = ξ(y) + λ|ξ(z̃)| ≥ α > 0, ∀y ∈ K, z̃ ∈ V, λ > 0.

In general, we have

ξ(y)− ξ(z) = ξ(y)− λ|ξ(z̃)| ≥ α > 0, ∀y ∈ K, z̃ ∈ V, λ ∈ R.

Given that y ∈ K, K a compact set, we have that ξ(y) has an upper level, which
implies that it is necessary ξ(z̃) = 0. And we have

ξ(y) ≥ α > 0, ∀y ∈ K.

A.2 Second fundamental theorem of finance

Theorem A.3. (Second fundamental theorem of finance or asset pricing)
A finite and viable market is complete if and only if exists a unique risk neutral proba-

bility measure P∗ equivalent to P, under which discounted prices are martingales.

Proof. ⇒ If a market is complete we have to see that P∗ is the unique risk neutral
probability. Let P∗1 and P∗2 be two risk neutral probabilities with E∗1 and E∗2 the
respectively expected values under P∗1 and P∗2 . Consider B a payoff. Because the
market is complete, it exists V0 ≥ 0 and a self-financing strategy H such that

B = V0 +
T

∑
j=1

Hj−1 · ∆Sj = VT (H) ,

where ∆Sj = Sj−Sj−1. As P∗1 and P∗2 are risk neutral, the discounted value of B is
the final value of a martingale with respect to this two probabilities and it satisfies

E∗1
(
ṼT (H)

)
= E∗2

(
ṼT (H)

)
= V0,

therefore
E∗1 (B) = E∗2 (B) .

Since B is any strict positive and FT-measurable value, we have that P∗1 = P∗2 in
FT = F .

⇐ Consider P∗ the unique risk neutral probability in a viable market. Assume
that the market is not complete and that there exists H a payoff that cannot be
replicated. Let Γ be the set of all discounted replicated payoffs and consider Λ
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the set of all random variables in the finite probability space. In this set we can
consider the scalar product 〈X, Y〉 = E∗ (X, Y). Observe that H̃ ∈ Λ− Γ. Then
we can choose a random variable X 6= 0, orthogonal to Γ. We define

P∗∗ (ω) :=
(

1 +
X (ω)

2‖X‖∞

)
P∗ (ω) ,

where ‖X‖∞ is the maximum norm. Per definition P∗∗ (ω) > 0 for all ω ∈ Ω and
given that E∗ (X) = E∗ (X · 1) = 0, we have

∑
ω∈Ω

P∗∗ (ω) = E∗
(

1 +
X

2‖X‖∞

)
= 1 +

E∗ (X)

2‖X‖∞
= 1.

And it is clear P∗∗ ∼ P∗.

Finally we just have to see that P∗∗ is risk neutral. Given a discounted process
S̃k, an adapted process Hk, and any T, we have

E∗∗
(

T

∑
j=1

Hk
j−1 · ∆S̃k

j

)
= E∗

(
T

∑
j=1

Hk
j−1 · ∆S̃k

j

)
+

1
2‖X‖∞

E∗
(

X ·
T

∑
j=1

Hk
j−1 · ∆S̃k

j

)
,

which is equal to zero because S̃ are martingales with respect to P∗ and

T

∑
j=1

Hk
j−1 · ∆S̃k

j ∈ Γ.

Thus, with Proposition 2.13 we have that P∗∗ is also a risk neutral probability,
which is a contradiction with the hypothesis of P∗ being the only risk neutral
probability.
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