
Universitat de Barcelona

Fundamental Principles of Data Science Master’s
Thesis

Twitter engagement model for RecSys
Challenge 2021

Author:
Marcos Moreno Blanco
Adrià Torralba Agell

Supervisor:
Dr. Santi Seguí Mesquida

Pere Gilabert Roca

A thesis submitted in partial fulfillment of the requirements
for the degree of MSc in Fundamental Principles of Data Science

in the

Facultat de Matemàtiques i Informàtica

July 1, 2021

http://www.ub.edu
http://mat.ub.edu

iii

UNIVERSITAT DE BARCELONA

Abstract
Facultat de Matemàtiques i Informàtica

MSc

Twitter engagement model for RecSys Challenge 2021

by Marcos Moreno Blanco
Adrià Torralba Agell

Recommendation systems is an interesting and wide field of research and it is present
in a huge amount of different areas in our daily life. The RecSys ACM conference
is the most important conference in the recommendation area and every year they
organise a competition: the RecSys Challenge. The work presented here aims to solve
the RecSys 2021 Challenge which consists of giving a probability to two Twitter users
that interact. In this project we have worked in the development of a model which
uses the power of Gradient Boosting Trees to combine multiple hand-crafted features
in an aim to represent the interaction between the users. Our team reached the 14th
place in the overall challenge leaderboard and is placed between the 7th and the 9th
place in terms of Like overall performance.

HTTP://WWW.UB.EDU
http://mat.ub.edu

v

Acknowledgements
To our project managers Santi and Pere for their dedication in this work and interest
in the competition.

To our family and friends for the support and confidence in the realisation of this
project.

vii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 Introduction . 1

1.1.1 Recommender Systems . 1
1.1.2 Types of Recommender Systems 1

1.2 RecSys Challenge 2021 . 2
1.3 Motivation . 2

1.3.1 Goals . 2
1.3.2 Document Structure . 3

2 Background 5
2.1 RecSys Challenge 2020 . 5
2.2 Classifiers . 6

2.2.1 LightGBM . 6
2.3 Natural Language Processing . 7

2.3.1 BERT tokenization . 7
2.4 Encodings for categorical features . 8

2.4.1 One-Hot Encoding . 9
2.4.2 Target Encoding . 9

3 RecSys Challenge 2021 Dataset 11
3.1 Subsampling . 12

3.1.1 Distribution of the sub-sampled training dataset 13
3.2 Validation data . 14

3.2.1 Distribution of the validation data 14
3.2.2 Train-validation-test split . 15

4 Model Architecture 17
4.1 Limitations . 17

4.1.1 Local limitations . 17
4.1.2 Submission limitations . 17

4.2 Architecture . 18

5 Text Based Model 19
5.1 Feature Set . 19
5.2 Problems and limitations encountered 20
5.3 Results . 21

5.3.1 Evolution of the text models 21
5.3.2 Best text model . 21
5.3.3 Feature importance of the best text models 22

viii

6 Non-Text Based Model 23
6.1 Feature Set . 23
6.2 Problems and limitations encountered 25
6.3 Results . 25

6.3.1 Evolution of the models . 25
6.3.2 Best non-text based features model 26
6.3.3 Feature importance of the best non-text based models 26

7 Results 27
7.1 Evaluation . 27

7.1.1 AP . 27
7.1.2 RCE . 28
7.1.3 Fairness . 28

7.2 Mixed features . 29
7.3 Final Results . 29

7.3.1 Comparison with text only and non-text only models 30
7.3.2 Feature importance of the Mixed Model 31

7.4 Competition Leaderboard . 33

8 Conclusions and Future Work 35
8.1 Conclusions . 35
8.2 Future Work . 36

A Source code 37

B Feature importance of Mixed Model 39
B.1 Feature importance of the Text Based Model 39
B.2 Feature importance of the Non-Text Based Model 41
B.3 Feature importance of the Mixed Model (RT) 43
B.4 Feature importance of the Mixed Model (NRT) 46

C Distribution of work 49

1

Chapter 1

Introduction

1.1 Introduction
During the past decades mankind has evolved so rapidly that the amount of data and
information we generate has become impossible to manage as we used to. Streams
and rivers of data flow into seas and oceans of immeasurable size, causing an overload
of information in which more data does not necessarily mean an improvement of the
system. Too much information can sometimes mean less sales, and companies know
that: according to Forbes, there are 2.5 quintillion bytes of data created each day and
more than 3.7 billion humans use the internet. On average, Google processes more
than 40000 searches every second, and Spotify adds 13 new songs every minute to its
platform. In a world with so much information available at any time, the need for
an external tool that helps downsize the amount of information we need to deal with
has grown exponentially.

1.1.1 Recommender Systems

Due to the reasons stated above, there has been a rising interest in the so called
recommender systems, the goal of which is to predict users’ preferences to help filter
the most suitable items for them . They were first mentioned in a technical report in
1990 ([1]), and then implemented at a large scale during the whole decade (e.g. [2]
and [3]). Nowadays however, they can be found in a large number of domains, ranging
from music or film services, to social media apps and online stores. From Amazon,
to Spotify, Twitter and Booking, recommender systems are now everywhere, and if
there is someone to ’blame’ for, that is Netflix. From 2006 to 2009, the company
organised the Netflix Prize, a competition with a prize of $1,000,000 to a team that
could improve the accuracy of their own recommender system. This competition
is believed to have been a turning point that increased the momentum of research
on recommender systems, that today revolves around all kinds of topics: from bias,
fairness, bubbles and ethics of recommender systems, to security and privacy, and
economic models and the consequences of recommender systems.

1.1.2 Types of Recommender Systems

Recommender systems can be formulated mainly as two types of problems: prediction
and ranking problems. In prediction problems, recommender systems aim to predict,
be it the score a user would give to a film after inferring the user’s tastes, be it whether
a user will like a certain song or tweet or not (binary classification). Ranking problems
consist in returning a list of the top-k items available instead.

At the same time, recommender systems can be classified into non-personalised
methods if they provide the same results to all users, collaborative filtering methods
if they build a model based on the users’ previous decisions or content-based methods

https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/?sh=6afa657b60ba

2 Chapter 1. Introduction

if they use features of the different items to make recommendations, among others.
However, nowadays it is common to see hybrids of the aforementioned methods rather
than single approaches.

1.2 RecSys Challenge 2021

The ACM Conference on Recommender Systems (RecSys) is an international event
in which the most advanced techniques, results and systems in terms of recommender
systems are presented. It is considered the most important conference at global level
in the field of recommender systems research. Each and every year the convention
revolves around an unique theme or role, being it this year “A place to meet and
exchange”. In addition, every year an international company partners with the event
to organise a challenge that focuses in solving a real-world task within the scope of
recommender systems.

The RecSys Challenge 2021 is organised by Politecnico di Bari, ETH Zürich,
Jönköping University, and the data set is provided by Twitter. The challenge focuses
on the practical task of tweet engagement prediction in a dynamic environment. In
particular, the challenge implies predicting four different engagement types: Likes,
Retweet, Quote, and replies. The goal is to predict the probability of the different
engagement types of a target user for a set of tweets based on heterogeneous input
data while at the same time providing fair recommendations.

1.3 Motivation
Doing this project we can apply first hand all the knowledge gathered during this
last year course in which we have completed the Fundamentals Principles of Data
Science MSc. At the same time, we see this as an opportunity to face and overcome
obstacles that can only appear when working in real-world problems and datasets;
and participating in a top international competition like this one is enough of a reason
to wanting to try our best. It is an unique and enriching opportunity to culminate
the masters in the best possible and practical way.

1.3.1 Goals

The main objective of this project is to develop a complex recommendation system
to solve the problem proposed. For instance, we want:

• To extract general features from the given dataset.

• To extract text features from the given dataset.

• To create a Non-text related model using some State-of-the-Art techniques.

• To create a Text Model using some State-of-the-Art model that works in the
multilingual case.

• To create a powerful model where we join all the hand-crafted features.

• To submit regular solutions to the RecSys Platform and compete with top
teams.

Since one of the requirements for the RecSys Challenge 2021 is fairness, we are
also interested in build a fair model in our implementation.

1.3. Motivation 3

1.3.2 Document Structure

This document has the following structure:

• Chapter 1: Introduction to the present topic.

• Chapter 2: Background. Here we introduce all the theoretical insights needed
to follow the outline of the project.

• Chapter 3: Dataset. Here we explain and analyse the given dataset.

• Chapter 4. Model Architecture. Here we present the problems encountered
and we explain how we have sorted them. Additionally, we present here the
architecture of the implemented model.

• Chapter 5: Text Model. All the features regarding the text of the Tweet are
explained here.

• Chapter 6: Non-Text Model. All the non-text related features and models are
explained here.

• Chapter 7: Results. Here we explain the embedding created in order to improve
the particular scores of the two different models.

• Chapter 8: Conclusions. In this last Chapter, we summarize and conclude our
project and suggest ideas for further work.

5

Chapter 2

Background

2.1 RecSys Challenge 2020
Last year RecSys Challenge was very similar to this one. In fact, the goal was the
same: to predict whether if two different Twitter users interact or not, and if they
interact, which interaction they will yield. The main difference between this year’s
challenge and last years is that this year we have an additional requirement about
Fairness. (See Section 7.1.3 for details).

Figure 2.1 shows the competition leaderboard of the participants from last year
challenge.

Figure 2.1: Competition Leaderboard RecSys 2020 Challenge.

6 Chapter 2. Background

2.2 Classifiers

After the revision of the results from last year RecSys Challenge [4], we have decided
to use LightGBM [5]. Which is a well known classification algorithm based on the
Gradient Boosting technique.

2.2.1 LightGBM

In order to define what LightGBM is, we need to define two different other concepts:
Decision Trees and Gradient Boosting.

Figure 2.2: Decision Tree

On one hand, a decision tree is a common structure used in Machine Learning
that serves as a classifier. You can see in Figure 2.2 an example of a decision tree:
it creates a sequence of chained splits in order to classify a sample of the training
dataset into a defined category. Furthermore, each leave node of the tree corresponds
to a label that you aim to correctly classify. Its relative simplicity enhances this
method interpretability provided by the fact that one can express any data sample
by a combination of its features or characteristics.

On the other hand, we have Gradient Boosting and in particular Gradient Boost-
ing Decision Trees (GBDT). The main idea behind them is that instead of considering
one tree each time, there are multiple trees considered simultaneously in order to make
our prediction. Thus, through many iterations the data is fit to the trees and a se-
lected loss function is minimised. In terms of training, this kind of models follow a
rather simple approach: they split the data if the splitting improves the performance
of the model(i.e., it minimises the loss function). Due to its nature, this method
can easily lead us to an overfitted model. Nonetheless, a good way to prevent this
from happen is to limit the number of splits each node can have. Doing so, we are
minimising the risk of our model to overfit. When expanding and building a tree, one
can consider two different strategies:

1. Level-wise: in this case we expand by levels. This method yields a balanced
tree in which the search time is minimal.

2. Leaf-wise: in this case we expands the node that optimises the most. In this
setting, the resulting tree is more likely to be overfitted to the training dataset.

2.3. Natural Language Processing 7

However, this usually provides faster training time and better performance when
the dataset grows horizontally.

Figure 2.3: Comparison between XGBoost and LightGBM. Source:
[6]

Figure 2.3 shows a comparison between these two approaches.
LightGBM splits the data at each point by grouping the data characteristics and

using this grouped features instead of the original ones. Doing so, the algorithm is
significantly faster.

2.3 Natural Language Processing
Another important topic in order to do this project is Natural Language Processing.

Natural Language Processing is the field inside Machine Learning that provides
with algorithms for processing languages and text in general. There are plenty of inter-
esting problems and topics in this field such as Optical character recognition (OCR),
Speech recognition and synthesis, Sentiment Analysis and Named Entity Recognition
(NER). In our particular case, we are interested in the BERT tokenization.

2.3.1 BERT tokenization

The BERT Model, which stands for Pre-training of Deep Bidirectional Transformers
for Language Understanding, [7] is a text model developed by Google. A text model
helps encode words into tokens, and vice versa. It was presented in 2018 and gathered
a lot of attention in a very short span of time. It was trained using Wikipedia and
BookCorpus [8], and there were released many versions of it. To be precise, the BERT
variant of our interest is the Bert-Multilingual-Base-Cased.

The functioning of the BERT model is pretty straightforward: it uses 12 fully-
connected layers combined with 12 represent patterns. These patterns capture con-
textual information, such as interaction between a word and the previous or the
posterior one, the grammatical function words develop in different contexts, or how
the words are correlated to punctuation marks. The result of this setup is a network
with more than a hundred interacting patterns, to help encode and decode words in
the most precise and accurate way. Figure 2.4 shows the structure and architecture
of the BERT model.

To input the text from the tweets into the version of BERT of our choosing, first
it is important how the input format of the sentences is structured: they always
begin with the token [CLS] and end with [SEP], indicating the start of a new line and
the end of the current line, respectively. Additionally, there is another special token
([UNK]) that is used whenever the BERT decoder find an unknown token or word.

8 Chapter 2. Background

To encode the words into tokens, a conversion using three different embeddings is
used:

1. Token embeddings, in this phase transformations are made in order to find
the root of the verbs and other transformations in order to reduce the word
complexity.

2. Segment embeddings, in this phase we determine the number of segments we
need for each sentence. We will have only one segment in case the input is only
one sentence and two segments if the task requires two input sentences.

3. Position embeddings, in this last embedding we encode the position of the word
within the sentence.

Figure 2.4: BERT model. Source: [9]

2.4 Encodings for categorical features
Categorical variables are those that contain two or more categories. These variables
can be either nominal, with no intrinsic ordering to its categories, or ordinal, with
a clear order. As many Machine Learning algorithms are unable to operate on cate-
gorical data but are able to learn from it, it is common to convert it to a numerical
form. Since the data set contains a number of categorical features, such as type or
media, here we explain only the two main types of feature encoding we have explored
when implementing our models.

2.4. Encodings for categorical features 9

2.4.1 One-Hot Encoding

One-hot encoding consists in creating a new feature for each category, in which we
place a 0 or 1 depending if the category is present in each sample or not. This is one
of the most common types of encoding categorical variables and that is an advantage
when implementing it: most libraries can provide a fast working function even for
large data sets. Figure 2.1 shows this type of encoding.

Color Red Yellow Blue
Red 1 0 0
Red 1 0 0
Yellow 0 1 0
Blue 0 0 1
Yellow 0 1 0

Table 2.1: One-hot encoding of a variable into three different ones

2.4.2 Target Encoding

Target encoding is a bit more complex: for each distinct category in the starting
feature we compute the average of the corresponding values in the targeted label.
Then, each value is replaced by the mean of its corresponding category. This method
has the downsize that it can lead to overfitting very easily, specially in small data
sets, when it could translate badly to a bad performance in the test set. Figure 2.1
shows this type of encoding.

Color Target Encoded Color
Red 1 0.5
Red 0 0.5
Yellow 0 0
Blue 1 1
Yellow 0 0

Table 2.2: Target encoding of a variable

11

Chapter 3

RecSys Challenge 2021 Dataset

The data available for the challenge consists in a public dataset of close to 1 billion
data points, making roughly 40 million each day over 28 days.

Let us explain the different columns for each data point. They can be grouped in
four different groups.

• Tweet features: Those columns contains the data of the tweet itself with all
its related important information, such as a list with the hashtags existing in
the tweet, the type of the tweet and the timestamp of the creation of the tweet,
among others.

• Author features: Those columns contains information of the author of the
tweet, such as the follower and following count of the account or if the user is
verified, among others.

• Reactor features: Those columns contains information of the reactor of the
tweet, such as the follower and following count of the account or if the user is
verified, among others.

• Engagement features: In this group we have the columns that we aim to
predict with the implementation of our recommender system. In particular it
contains four different columns; one for each interaction we aim to predict; that
contains a timestamp if a particular action was triggered by the reactor user. In
addition to this, it also contains a columns with a flag indicating if the author
of the tweet follows the account of the reactor user.

See Table 3.1 to see the complete details for each column.
The dataset was released in the following way:

1. First, on March 30th, the validation server opened and data from Week 1-3 was
released, adding up to a total of ' 270 GB.

2. Later, on June 9th, the test server opened, and data corresponding to Week
4 (validation data) was released, composed of two files of ' 6.5 GB each, one
with labels (part-00000) and another one without them (part-00001 (1)).

12 Chapter 3. RecSys Challenge 2021 Dataset

Feature Name Feature Type Feature Description

Tweet
Features

Text Tokens List[Long] Ordered list of Bert ids corresponding
to Bert tokenization of Tweet text.

Hashtags List[String] Tab separated list of hashtags
(identifiers) present in the tweet.

Tweet id String Tweet identifier

Present media List[String] Tab separated list of media types.
Media types can be Photo, Video or Gif.

Present links List[String] Tab separated list of links
(identifiers) included in the tweet.

Present domains List[String] Tab separated list of domains
included in the tweet (e.g. twitter.com)

Tweet type String Tweet type, can be either
Retweet, Quote, Reply or Toplevel.

Language String Identifier corresponding to
the inferred language of the tweet.

Timestamp Long Unix timestamp, in seconds
of the creation time of the tweet.

Author User
Features

User id String User identifier.
Follower count Long Number of followers of the user.
Following count Long Number of accounts the user is following.
Is verified? Bool Is the account verified?

Account creation time Long Unix timestamp, in seconds,
of the creation time of the account.

Reactor User
Features

User id String User identifier.
Follower count Long Number of followers of the user.
Following count Long Number of accounts the user is following.
Is verified? Bool Is the account verified?

Account creation time Long Unix timestamp, in seconds,
of the creation time of the account.

Engagement
Features

Does author
follows reactor? Bool Does the author account

follows the reactor account?

Reply timestamp Long If there is at least one, unix
timestamp in seconds, of one of the replies.

Retweet timestamp Long
If there is one, unix timestamp
in seconds, of the retweet of the
tweet by the reactor user.

Retweet with comment
(Quote) timestamp Long

If there is at least one, unix
timestamp in seconds,
of one of the retweet with
comment of the tweet by the reactor user.

Like timestamp Long If there is one, unix timestamp
in seconds, of the like.

Table 3.1: Details for the different columns of the dataset

3.1 Subsampling

At a first stage, due to the huge size of the released dataset (from Week 1-3), we
were forced to train and validate our models with a subset of samples of smaller size

3.1. Subsampling 13

(' 4.11GB) filtering the dataset by the English language.

3.1.1 Distribution of the sub-sampled training dataset

Figure 3.1 shows the distribution of the positive and negative samples over the afore-
mentioned sub-sampled training dataset.

We can clearly see that, except in the case of the Like, we have a small class
problem. Indeed, the hardest problem to predict here is the Quote, since it has less
than 1% of positive samples.

(a) Reply (b) Retweet

(c) Like (d) Quote

Figure 3.1: Distribution of positive and negative samples for the 4
different targets in the sampled train set

Figure 3.2 shows the same distribution as in Figure 3.1 but grouped by the day
of the week.

(a) Reply (b) Retweet

(c) Like (d) Quote

Figure 3.2: Distribution of positive and negative samples for the 4
different targets grouped by the day of the week in the sampled train

set

14 Chapter 3. RecSys Challenge 2021 Dataset

3.2 Validation data
Later on, validation data from Week 4 was released. As we have commented before,
the size of this second dataset is much more manageable, being it divided into two
files of ' 6.5 GB each.

3.2.1 Distribution of the validation data

Figure 3.3 shows the distribution of the positive and negative samples over the released
validation dataset.

We can see here as well the small class problem for the Reply, Retweet and Quote.

(a) Reply (b) Retweet

(c) Like (d) Quote

Figure 3.3: Distribution of positive and negative samples for the 4
different targets in the validation set

Furthermore, on Figure 3.4 we can see tha same distribution as in Figure 3.3 but
grouped by the day of the week.

(a) Reply (b) Retweet

(c) Like (d) Quote

Figure 3.4: Distribution of positive and negative samples for the 4
different targets grouped by the day of the week in the sampled train

set

3.2. Validation data 15

3.2.2 Train-validation-test split

As stated in Section 3.1, we have considered two different data sets in order to train
and evaluate the models locally. In each of them we have performed two splits, the
first one related to the training and test sets, and the second one to the training and
validation sets:

• Training subsampling: In the training subsampling, we focused in obtaining
the best performing model targeting Like engagement splitting the data set with
sklearn’s train_test_split function set as

df_train, df_test = train_test_split(df, test_size=0.5, random_state=17)

with a fixed random state for reproducibility. After that, due to the limitations
of our personal computers, we would also downsize the data sets with pandas’
sample function

df_train = df_train.sample(frac=0.4, replace=True, random_state=1)

with again a fixed random state, and the fraction varying depending on the
memory we had available and how much would the transformations applied
to the data increase its size. Since the data is made up of tweets shown to
reacting users over a period of time, we faced several problems when validating
our models:

– A time series is a series of data points ordered in time. In our case, tweets
can be shown to different users at different points of time, meaning the
tweet’s popularity can fluctuate over time, and also, that the majority of
tweets are repeated many times in the data set.

– Due to the nature of social media, some topics can have a huge importance
in recommendations one week and be completely irrelevant the next week.
Thus, we decided to split our training and validation set making emphasis
on its temporal properties, in particular, splitting according to a specific
date that would return us a training set of ' 80% its original size, and a
validation set of ' 20% of the original training set size.

– That way we could see if our models would perform well in both predicting
engagement over the same training period, and in short term engagement
prediction.

• Validation released set: For the case of the validation released set, aside
from the aforementioned splits we incorporated a new one in which we splitted
training and test set with the condition that no tweet could be in both sets at
the same time. This approach helped us establish a threshold for our models,
since the data set in which they were going to be tested in the competition was
of the same exact period of time, but we did not know how the splits had been
done. If the splits had taken into account a similar approach our models would
perform as expected and, if not, our models would perform better because they
would have already seen the evaluated tweets at different moments of time.

17

Chapter 4

Model Architecture

In this chapter we explain how we have decided to structure our model and the
reasoning behind it.

4.1 Limitations
In the realisation of this project, we faced several issues and limitations.

4.1.1 Local limitations

On one hand, all the trained models for the submissions have been trained on premise
using our personal computers.

In particular, we have used an MSI GS66 Stealth 10SE-616XES (Intel Core i7-
10875H, 32GB RAM, 1TB SSD, Nvidia RTX 2060-6GB) under a Windows 10. In
addition to this, we have been using an ASUS ZenBook UX410 (Intel Core i7-7500U,
256 GB SSD, Mesa Intel HD Graphics 620 (KBL GT2)) under Pop!_OS. Furthermore,
since the RAM of this last laptop was pretty low for some of the models, we used
Google Colab with a specific setup that allowed for 25 GB of usable RAM instead of
the usual 12.5 GB.

Our main limitation in order to process the data was the RAM memory. As we
have mentioned earlier, we have been working over a sample in the training dataset
for weeks 1 to 3 due to a lack of memory when processing the dataset.

4.1.2 Submission limitations

On the other hand, we have faced important issues and limitations when trying to
place a submission on the challenge.

To be precise, they defined the way to submit results as follows. Instead of
downloading the test dataset, transform it, evaluate it and submit the predictions
from local, they have set up instances on Google Cloud Platform (e2-highmem-16
[10] instances) in which we have submitted our results and we have run our models
from this computer on the cloud. Moreover, you can not access the Internet from this
remote computer.

To be precise, the submission should contain the following:

• A path to a docker image from Docker Hub that should contain all the required
packages you have been using in order to load, process and store the results.

• A run file (without extension) that is the entry point of the Docker image. I.e.
this is the file that is executed once the instance is up.

• All the needed files and models in order to process and evaluate the test data.

https://colab.research.google.com/

18 Chapter 4. Model Architecture

The test data of the submission has approximately 10 millions rows.
Furthermore, the main limitations of this models have been the memory limit

of 64GB of RAM and the execution time limit of 24 hours. Additionally, each user
participating in the challenge had one chance to run a submission every 24 hours.

Finally, let us state that in the submission environment we did not had any GPU
in order to speed up the data processing. For this reason, we had to dismiss using
complex trained models such as sentiment analysis for feature creation over the test
data.

4.2 Architecture
Since this is a team project, we needed to find the most optimal way to split the
different tasks that at the same time would help us achieve the best possible results
in the competition. We concluded that:

• Due to the size of the dataset and the complexity of the problem, we should
focus on a simpler problem to start optimising. As one of the most spoken
languages in the world, and also one of the most representative languages of
the data set, we decided to focus our efforts in training and testing models with
tweets only in English.

• Another way of simplifying the problem was to, instead of focusing in improving
our models’ performance in all four engagement prediction types, to pay more
attention to one of them in particular. Thus, with Like being the target label
with the best positive and negative samples proportion, we chose to optimise
those predictions.

• Besides, our main intention was to extract all the possible information from
the starting feature set. In order to do so, we split the starting set into text
and non-text features: this would allow us to get the most out of each subset
so in the end we could ensemble our best models and maximise the predictive
power of the model we could achieve. With each of us focusing on a particular
problem, we could end up with far more powerful models rather than if we
worked on the same problem.

With this reasoning, Adrià worked in a Text Based Model, which is explained in
Chapter 5, and Marcos worked in a Non-Text Based Model, which is explained in
Chapter 6.

After working in both models with the subsampling from the training data re-
leased, when the validation labelled set was released we started working in a Mixed
Model that Incorporated the best features from each of our best models. The results
of the ensemble can be found in Chapter 7.

19

Chapter 5

Text Based Model

This Chapter is devoted to explain the features implemented in the classifier using
only the encoded tweet and its timestamp. Moreover, we introduce and explain the
problems and issues found during the implementation of those features, how we have
solved the problems and finally we present the results obtained using only this model.

5.1 Feature Set
In this section we explain the set of features we have implemented and designed in
order to take advantage of the text of the tweet to improve the metrics of our trained
models.

The following list groups and explains the different features we have designed.

• Counts

– length_tweet: counts the number of words the tweet has.
– num_unique_words: counts the number of unique words the tweet has.
– number_of_punctuations: counts the number of punctuation symbols are

in !"#$%&’()*+,-./:;<=>?@[\]_̂‘{|}˜

– number_of_UNK: counts the number of UNK tags the tweet has. See Section
2.3.1 for details.

– num_of_keywords: counts the number of "keywords" present in the tweet.
To be precise, it checks if a word has length greater than 2 characters and
if the word is not in a list of common English words [11].

– num_of_keywords_bis: this is a modification of the previous feature that
only takes into account if the a word is not in the list of common English
words.

• Statistics about tokens and words

– max_token_len: computes the max between all the tokens in the BERT
column.

– min_token_len computes the min between all the tokens in the BERT
column.

– mean_token_len computes the mean between all the tokens in the BERT
column.

– token_len_2: counts the number of tokens that has length 2.
– token_len_3: counts the number of tokens that has length 3.
– token_len_4: counts the number of tokens that has length 4.

20 Chapter 5. Text Based Model

– token_len_5: counts the number of tokens that has length 5.
– token_len_6: counts the number of tokens that has length 6.
– mean_token_value_as_int: mean value of the tokens of a tweet as inte-

gers (e.g. ’106’ as 106).
– max_token_value_as_int: maximum value of the tokens of a tweet as

integers.
– min_token_value_as_int: minimum value of the tokens of a tweet as

integers.
– mean_token_char_value_as_int: mean of the tokens of a tweet as a sum

of the numbers that form them (e.g. transforming ’106’ to 7).
– max_token_char_value_as_int: maximum value of the tokens of a tweet

as a sum of the numbers that form them.
– min_token_char_value_as_int: minimum value of the tokens of a tweet

as a sum of the numbers that form them.
– huge_words: following the procedure of transforming the tokens of a tweet

to the sum of the numbers that form them, number of tokens the trans-
formation of which adds up to a larger value than 35.

– big_words: following the procedure of transforming the tokens of a tweet
to the sum of the numbers that form them, number of tokens the transfor-
mation of which adds up to a value larger than or equal to 20 but smaller
than 35.

– medium_words: following the procedure of transforming the tokens of a
tweet to the sum of the numbers that form them, number of tokens the
transformation of which adds up to a value larger than or equal to 10 but
smaller than 20.

– small_words: following the procedure of transforming the tokens of a
tweet to the sum of the numbers that form them, number of tokens the
transformation of which adds up to a value smaller than 10.

• Flags

– contains_worst_words: flag to check if the tweet contains one of the
worst words. Find more information on [12].

– contains_best_words: flag that checks if the tweet contains some word
that is very likely to have a retweet. Find more information on [12].

– contains_reply: flag that checks if the tweet contains the char ’@’.

• Ratios

– ratio_unique_words: num_unique_words divided by length_tweet.
– ratio_of_UNK: number_of_UNK divided by tweet_length.
– ratio_of_punctuations: num_of_punctuations divided by length_tweet.

5.2 Problems and limitations encountered
The features explained in the previous section were the ones that we used in the final
submission.

5.3. Results 21

Due to the limitations explained in Section 4.1, we were forced to optimise the
amount of resources the creation of these features needed, especially RAM usage.

To be precise, originally we had another additional column with the decoded text
using the BERT tokenizer explained above. However, holding on memory all this
information was very demanding. So, in order to relax the memory requirements,
we have implemented the aforementioned features decoding the tokens on-the-fly.
Moreover, those features that needed to compare two different words are implemented
in a way that we compare the two items in the token format. So, we do not need
to transform them into a string format and then compare it wasting memory and
computation time.

Finally, we have implemented an additional feature that we could not include in
the final submission due to lack of RAM memory in the submission environment.

• tf_idf: computes the sum of the TF-IDF [13] algorithm, sum its columns and
normalises the result using the MinMaxScaler [14].

5.3 Results
In this section we present the results obtained using only text features to predict the
4 different targets proposed in this challenge.

In particular, we have evaluated the trained models following the instructions
explained in Section 3.2.2.

5.3.1 Evolution of the text models

Figure 5.1 shows the evolution of the results obtained on the text model.
It is important to state that models from v1 to v5 where trained using the sub-

sampling training data (See Section 3.1) while the rest of the reported scores were
obtained from the released validation set (See Section 3.2).

Nonetheless, all of them were trained splitting the data using sklearn’s train_test_split
(see Section 3.2.2). We can see a slow improvement with the sampling of the training
set.

Finally, we can see that the version 6 of the text models (the one trained using
the validation dataset) with the addition of some additional text features we can see
a huge improvement in the case of the Retweet, a moderate improvement in Like and
Quote models and a small decrease in the score of the Reply model. However, we
have applied hyper-parametrization tuning over the Reply model in order to adjust
it and minimise the loss of score.

5.3.2 Best text model

The results of the best Text Model can be found on Table 5.1.

AP
Reply

RCE
Reply

AP
Retweet

RCE
Retweet

AP
Like

RCE
Like

AP
Quote

RCE
Quote

Text model v6 0,0411 4,9756 0,1896 5,9755 0,5572 7,2771 0,0085 1,1683

Table 5.1: Results for the best text models implemented.

22 Chapter 5. Text Based Model

(a) Reply (b) Retweet

(c) Like (d) Quote

Figure 5.1: Evolution of the text models.

5.3.3 Feature importance of the best text models

The feature importance of the best text model for the four different targets can be
found in Appendix B (Figure B.1 to B.4).

We can see that the best feature for all the models (except the Like) is the
mean_word_len. While the best feature for the Like model is the ratio_of_keywords.

After the top ones we find usually that the ratios are really relevant in the pre-
diction and that min_word_len, contains_worst_words and contains_best_words
are usually the worst ones.

23

Chapter 6

Non-Text Based Model

In this chapter we discuss the features and models created from the remaining ones of
the initial set i.e., all of them except for the tweet content. We also comment on the
different limitations we have had to deal with and show the evolution of the models’
performance.

6.1 Feature Set
From the initial set of features we created some more of them, here we describe the
ones we ended up using on our final models as they helped the model predict and
score best on all metrics.

• Ratios

– EWUF_follow_ratio: ratio between people number of people followed and
number of followers of the engaged with user.

– EWUF_follow_ratio: ratio between number of people followed and number
of followers of the engaging user.

– cross_ratio1: ratio between number of people followed by the engaged
with user and followers of the engaging users.

– cross_ratio2: ratio between number of people followed by the engaging
user and followers of the engaged with user.

– cross_follower_ratio: ratio between number of followers of the engaged
with user and number of followers of the engaging user.

– cross_following_ratio: ratio between number of people followed by the
engaged with user and number of people followed by the engaging user.

– ratioxratio: product between the ratio of followers of the engaged with
user and the ratio of followers of the engaging user.

• Features from timestamps

– hours: hour of the creation of the tweet.
– weekday: weekday of the creation of the tweet.
– hoursweekday: time of the week of the creation of the tweet (value from

0 to 1, as a proportion).
– EUF_time_from_creation: time in minutes since the creation of the ac-

count of the engaged with user.
– EWUF_time_from_creation: time in minutes since the creation of the ac-

count of the engaged with user.

24 Chapter 6. Non-Text Based Model

– EUF_time_from_creation: time in minutes since the creation of the ac-
count of the engaging user.

– diff_from_creation: difference in minutes between the time of creation
of the account of the engaging user and the creation of the account of the
engaged with user.

• Number of elements

– numHashtags: number of hashtags inside the tweet.
– numLinks: number of links inside the tweet.
– numDomains: number of domains inside the tweet.
– numMedia: number of media inside the tweet.
– numVideo: number of videos inside the tweet.
– numPhoto: number of images inside the tweet.
– numGIF: number of GIFs inside the tweet.

• Top categorical data

– topHashtags: encoding of whether the tweet contains at least one of the
N most counted hashtags or not.

– topHashtagsInternet: encoding of whether the tweet contains at least
one of the hashtags stored in a list that contains the most useful hashtags
to better engagement according to some sites (see [12].).

– topLinks: encoding of whether the tweet contains at least one of the N
most counted links or not.

– topDomains: encoding of whether the tweet contains at least one of the N
most counted domains or not.

– topLanguage: encoding of whether the tweet contains at least one of the
N most counted languages or not.

– nottopLanguage: encoding of whether the tweet contains at least one of
the N least counted languages or not.

• Relevance

– EUF_verified: whether the engaging user is verified or not
– EWUF_verified: whether the engaged with user is verified or not.
– relevance: whether both interacting users are verified or not.
– engagee_follows_engager: whether the author of the tweet follows the

reactor or not.

Aside from the aforementioned features, the models in their distinct versions in-
corporated either one-hot or target encoding of some of the initial features, such as
type or media.

6.2. Problems and limitations encountered 25

6.2 Problems and limitations encountered
The features exposed in Section 6.1 are the ones that have been used as a part of the
final mixed model of the competition, but a number of them were discarded before
due to different types of limitations:

• We tried to apply a one-hot type of encoding to some categorical values such
as hashtags, domains and links. Our intention was to create features for the
most frequent hashtags and domains, but even if we could make it work for the
training of the models in our computers, the size of the competition test set
would make our submissions throw a memory usage error, exceeding the 64 GB
limitation.

• In a similar fashion we tried performing the same transformation on the hashtags
from topHashtagsInternet, but we encountered the same problem as before.

• Another transformation we experimented with was standardise the data, but
we did not see any significant improvement in performance and we ended up
dismissing it.

• Finally, we also dismissed the use of target encoding in our final submissions for
most of the categorical variables. Although it was useful that the competition
test set was from the same period of time than the validation set released; it did
not improve significantly our models’ performance compared to one-hot coding
and was significantly slower. Since we were focusing on reducing computation
time of the text features, we chose not to incorporate that method.

6.3 Results
In this section we present the evolution of the performance of the 4 type of engagement
models built from the features explained in Section 6.1 and Section 6.2.

6.3.1 Evolution of the models

In particular, Figure 6.1 displays the results obtained from the different models.
From Submission 1 to Submission 5’, the models were trained with the subsampling
training data, while Submission 6 was trained with the released validation set, all of
them splitting the data using sklearn’s train_test_split (see Section 3.2.2). As it
can be seen, all of them improved gradually when working with the subsampling of
the training set, and both Reply and Quote did worse with the validation set and
Like and Retweet saw an improvement with the change. However, this could easily
be solved with some parameter tuning, which we actually did after mixing models,
so the decay does not need to be considered as something significant.

26 Chapter 6. Non-Text Based Model

(a) Reply (b) Retweet

(c) Like (d) Quote

Figure 6.1: Evolution of the Non-Text Based Features models.

6.3.2 Best non-text based features model

The results of the non-text based model can be found on Table 6.1. These results
correspond to Submission 5’. As it can be seen, in general AP is complicated to
predict and our model fails to obtain significant results. RCE is relatively high in
Reply and Like when comparing to Retweet and Quote. It seems only natural that
we obtain the worst results for Quote, since it constitutes the most difficult problem,
and that we obtain optimal results for both AP and RCE in Like, which we were
specifically targeting.

AP
Reply

RCE
Reply

AP
Retweet

RCE
Retweet

AP
Like

RCE
Like

AP
Quote

RCE
Quote

Submission 5’ 0,1012 11,9622 0,1627 5,5503 0,5866 10,2959 0,0167 3,452

Table 6.1: Results for the best non-text features model implemented.

6.3.3 Feature importance of the best non-text based models

The feature importance plot of all four engagement types of the best Non-text Based
Model can be seen in Appendix B. For all four models we observe a dominance of
ratios and features created from timestamps, specially the ones encoding the age of
the account, and the ones encoding information about the point in time of creation
of the tweet during the day or during the week. Number of elements features from
Hashtags, media and Domains also seem to contribute to good predictions, in addition
to the one-hot encoding features from type. Finally, relevance features seem to have
low predictive power in all models, probably due to verified users being a minority in
the data set.

27

Chapter 7

Results

This Chapter is devoted to explain the final mixed implemented model used in the
final submission of the challenge as well as the results obtained both locally and in
the submission environment.

7.1 Evaluation

The submissions are evaluated against two metrics: Average Precision (AP) and Rel-
ative Cross-Entropy (RCE). Both are implemented in a metrics_recsys_2021.py
file, available in the official page of the challenge.

7.1.1 AP

The first of the metrics used to evaluate the predictions resulting from the models
is the Average Precision. The AP is a useful metric when dealing with imbalanced
classes, and as we have seen when taking a look at the dataset it fits this problem
perfectly. It is defined as the area under the Precision-Recall curve, which is the curve
that shows the trade-off between precision and recall for different thresholds:

• The binary predictions of a system can fall into 4 categories: true positive if
the sample was predicted as positive and its label was indeed positive, false
positive if the sample was predicted as negative but its label was positive, false
negative if the sample was predicted as positive and its label was negative, and
true negative if both the label and prediction were negative.

• Precision is defined as the number of true positives over the number of total
real positives (true positives plus the number of false positives):

P =
Tp

Tp + Fp

• Recall is defined as the number of true positives over the number of total pre-
dicted positives (true positives plus the number of false negatives):

R =
Tp

Tp + Fn

• Varying the threshold of a classifier, different values of Precision will be ob-
tained, while Recall does not depend on the threshold. The relationship be-
tween both variables can be visualised in a plot featuring the Precision-Recall
curve.

https://recsys-twitter.com/code/snippets

28 Chapter 7. Results

The Average Precision condenses the results of the Precision-Recall curve, being
it the weighted mean of the Precision achieved at each threshold with the increase in
Recall from the previous threshold as weight:

AP =
∑

n

Pn(Rn −Rn−1)

In this case, the sklearn implementation of the AP is used to evaluate the sub-
mitted models’ predictions.

7.1.2 RCE

For this problem, the second one of the metrics they use to evaluate the resulting
predictions is the Relative Cross-Entropy. It is a variation of the Cross-Entropy or
log loss function, commonly used to measure the performance of a model predicting
a probability value between 0 and 1, which is defined as

CE = −
∑

n

ynlog(pn)

for n classes where yn are the labels and pn the predicted probabilities. For the
case of binary classification, and averaging along N the samples,

CE = − 1
N

∑
n

[yn log(pn)− (1− yn) log(1− pn)]

would be the correct expression. At the same time, with a similar structure, the
Strawman Cross-Entropy (SCE) can be defined as

SCE = − 1
N

∑
n

[yn log(ctr)− (1− yn) log(1− ctr)]

where ctr is the constant true rate i.e., the fraction of positive labels. With both
the CE and the SCE, the RCE can be expressed as

RCE = 100(1− CE

SCE
).

7.1.3 Fairness

One of the innovations that this year’s RecSys Challenge brings, is its approach to
the ranking and evaluation system. Although the most frequent methods focus on
accuracy and the ranking of the results, this year they wanted to emphasise the
concept of fairness. As they state, their objective was to:

• introduce the concept in an easy way,

• but at the same time making it a concrete and real problem,

• without adding any extra data external to the dataset.

In order to achieve so, they suggest using as a popularity-based metric the number
of followers the author of a tweet has. Doing so, they want to reflect on how the
popularity of a user should not influence how good the recommendations of the system
are, and definitely should not produce worse recommendations for a less popular user
than for a popular one. Specifically, what they do is dividing the authors of tweets

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html

7.2. Mixed features 29

into 5 categories according to their number of followers (according to the quantiles of
said feature) and compute the RCE and AP across each of the groups. Averaging of
those metrics along the groups ends up providing the final score. To help participants
check how do their models perform in this aspect, they do in fact provide them with
a fairness.py with a coded implementation.

In Table 7.1 we can see how our model predicts with similar success for the first
three popularity groups, with no significant difference, but does better for groups 4
and 5. It could be argued that we are providing fair recommendations for the first
groups, but unfair recommendations when including groups 4 and 5, since having
more followers apparently benefits them.

AP (RT) RCE (RT) AP (NRT) RCE (NRT)
Group 1 0,5934 10,8526 0,5927 10,8218
Group 2 0,5759 9,5229 0,5676 9,5388
Group 3 0,5919 10,1866 0,5909 10,0789
Group 4 0,6273 11,5873 0,6275 11,6936
Group 5 0,6754 15,4138 0,66042 14,3485

Table 7.1: AP and RCE for Like engagement and for each popularity
group in both Mixed Model (RT) and Mixed Model (NRT).

7.2 Mixed features
In order to improve the results from the two separated implemented models, we have
created another model combining the features from both sides: text features and
non-text features under the same type of classifier (LightGBM).

In particular, we have trained it using the following parameters:

parameters = {
’max_depth’: 10,
’objective’:’cross_entropy’,
’metric’: ’None’,
’is_unbalance’: ’true’,
’boosting’: ’gbdt’,
’num_leaves’: 45,
’learning_rate’: 0.05

}

In this setting, we limit the max depth of the trees to 10, we configure the objective
as the cross entropy function, we set to true the parameters that indicates to the model
that the data is unbalanced and we set to 45 the maximum number of splits each
node can make.

7.3 Final Results
As stated in Section 3.1, the easiest target to predict was the Like, since the distri-
bution positive and negative samples is more or less equally distributed.

For this reason, and due to our lack of resources, we decided to focus our efforts
in try to design features and models in order to aim to perform in this target really
well.

https://recsys-twitter.com/code/snippets

30 Chapter 7. Results

Table 7.2 shows the results obtained with the final model, both running predictions
locally and submitting it to the evaluation environment of the RecSys Challenge.

AP
Reply

RCE
Reply

AP
Retweet

RCE
Retweet

AP
Like

RCE
Like

AP
Quote

RCE
Quote

Mixed Model Locally (NRT) 0,0819 10,9759 0,2295 9,6399 0,6118 11,4207 0,0116 3,3076
Mixed Model Locally (RT) 0,0817 11,1817 0,2311 9,7273 0,6165 11,6347 0,0119 3,3074
Mixed Model Submission 0,0969 11,9062 0,2633 11,6541 0,6015 11,3440 0,0132 3,6431

Table 7.2: Results of the final model, where RT refers to the results
training and testing in a split that allows repeated tweets, and NTR

stands for not repeated tweets.

As aforementioned in Section 3.2.2, we trained and tested models following two
different approaches, one in which we performed a split in which tweets could be
repeated in both the training and the test set (RT), and one in which we did not
allow for tweets to be in both subsets. The first approach would then serve as an
estimation of the best result (higher bound) we could achieve when submitting and
evaluating in the competition data set, and the second one as the worst result we could
achieve (lower bound). As Table 7.2 shows, both Reply, Retweet and Quote exceeded
our expectations, while Like was the engagement type that we did best estimate. It
was something to be expected since it was the target that we knew better and around
which our models revolved most of the time.

7.3.1 Comparison with text only and non-text only models

In Figure 7.1 and 7.2 we want to reflect on the spike in performance that the models
manifested after mixing both models and training with the validation set with the not
repeating tweets approach (NTR). As it can be seen in Figure 7.1 the performance
of all text models increases drastically. Although all non-text models also see an
improvement, Retweet is the most benefited, in particular its RCE.

(a) Reply (b) Retweet

(c) Like (d) Quote

Figure 7.1: Transition of the Text Based Model into the Mixed
Model.

7.3. Final Results 31

(a) Reply (b) Retweet

(c) Like (d) Quote

Figure 7.2: Transition of the Non-Text Based Model into the Mixed
Model.

7.3.2 Feature importance of the Mixed Model

The feature importance plot of all four engagement types of both Mixed Model (RT)
and Mixed Model (NRT) can be seen in Appendix B.

From the plots, it becomes apparent that both versions of Mixed Model make
great use of timestamp features, such as the time of creation of the accounts or the
time of creation of the tweet. They also value greatly ratios relative to both the
author of the tweet and the reactor followers, and to the content of the tweet, like
the ratio of punctuations, the ratio of keywords and the ratio of unique words. Some
of the most valued features overall are:

• Timestamp features: EWUF_time_from_creation, EUF_time_from_creation,
diff_from_creation, hoursweekday, hours.

• Ratios: EWUF_follow_ratio, cross_following_ratio, cross_ratio1, cross_ratio2,
ratio_of_keywords, ratio_of_punctuations.

On a second tier, there are features describing the overall properties of the tweet’s
content, as the number of tokens of a specific length, the features classifying tokens
into four big categories (huge, big, medium and small) and the features counting the
number of hashtags or media elements in the tweet:

• Content of the tweet: token_len_3, token_len_4, token_len_5, token_len_6,
length_tweet, contains_reply.

• Number of elements: num_of_keywords, numHashtags, numMedia, numDomains,
num_of_keywords, kinda_num_of_keywords, number_of_UNK

Finally, in the last third of the classification, there are features such as the ones
indicating if the tweet contains some specific words that should be good or bad
towards engagement, verified features and features indicating whether or not the
tweet contains one of the most frequent hashtags, domains or links. Moreover, features
counting the number of specific media elements, as the number of GIFs or videos do
not seem to contribute much neither:

32 Chapter 7. Results

• Verified: EUF_verified, EWUF_verified.

• Contains words: contains_best_words, contains_worst_words.

• ’Top’ Features: topHashtagsInternet,topHashtags, nottopLanguage, topLinks,
topDomains.

• Number of media elements: numPhoto, numVideo, numGIF.

• Intrincate token properties: min_token_char_value_as_int, min_token_value_as_int,
max_token_len.

7.4. Competition Leaderboard 33

7.4 Competition Leaderboard
June 23rd was the last day of the challenge to submit solutions to the proposed
problem. Some days later they updated the leaderboard and the results can be seen
on Figure 7.3.

We have obtained the 14th place in this competition. However, targeting Like
engagement we are in a better overall position: our models AP can compete with the
7th submission, and RCE also lays between the 7th and 9th position.

Figure 7.3: Result of our team in the RecSys2021 Challenge Leader-
board.

The reader can find the complete list of participants on https://recsys-twitter.
com/competition_leaderboard/latest.

https://recsys-twitter.com/competition_leaderboard/latest
https://recsys-twitter.com/competition_leaderboard/latest

35

Chapter 8

Conclusions and Future Work

8.1 Conclusions
In this project we have created a model capable of performing reasonably well in
the proposed challenge. We consider we have accomplished most of our established
objectives from Section 1.3.1:

• We have been able to extract interesting and useful features from timestamp,
categorical and numerical features related to different aspects of the problem.
We have explored a variety of different feature engineering techniques, such as
binning, standardisation, the creation of interaction features and some types
of categorical variables encoding that allowed us to enhance our model’s per-
formance. We faced many problems due to working with a real-world data set
that helped us learn and overcome barriers we could not have faced otherwise.

• We have also developed features from the tweets’ content, with techniques learnt
in courses such as Machine Learning, Recommender Systems and Natural Lan-
guage Processing. We have managed to solve technical difficulties of working
with limited environments, both in our personal computers and in the submis-
sion server, which restricted our options.

• We have created an optimal performing model based on non-text features, and
successfully tuned it using State-of-the-Art techniques, using binary RCE as a
loss function and trying to avoid overfitting through early-stopping and tuning
regularisation parameters, the number of leaves and the maximum depth of the
models.

• We have built a State-of-the-Art model using text features and introduced minor
and major changes to successfully decrease its required computation time and
memory usage. We have been able to extract a significant predictive power from
difficult to work feature that has had a big impact in the resulting final model.

• We have been able to merge our crafted models into one better performing and
improved mixed model, successfully grouping our best working features.

• We have tested our models in a top international competition in the field and
have achieved significant results according to our expectations and limitations,
performing competitively in Like engagement which was our main objective. We
managed to climb into top positions after a difficult start with poor submissions,
improving with every model and familiarising ourselves with the data set.

• We have created fair models in order to fulfil the fairness requirements proposed
in the challenge.

36 Chapter 8. Conclusions and Future Work

8.2 Future Work
Since the competition was only opened for a limited amount of time in addition to the
technical limitations and difficulties suffered, we could not implement all the things
we would liked in order to improve the performance of the models.

For instance,

• Implement and apply a sentiment analysis model to the decoded text in order
to have a better understanding of what is going on in the tweet could improve
the metrics proposed.

• Use the BERT model in more profound and wide aspects, analysing the most
present languages in the data set and extracting information about the factors
that influence engagement in each of them.

• Analyse better the importance of each of our created features and encodings
applied, in order to combine them in a more powerful way. Since we could not
spend much time studying minor changes in every model, we did not exploit
some facets to its maximum capabilities.

• Work specifically with each engagement type. Due to time limitations we had
to focus on only one type of engagement and we would have pr eferred to devote
more resources to improving specifically the other three models.

• Implement a Deep Neural Network in order to perform feature extraction and
use the last dense layer as the input for a further classifier.

37

Appendix A

Source code

The reader can find the source code with the implementation explained in this doc-
ument in

https://github.com/adry26/RecSys2021.

There are three files uploaded to the github repository, which are:

• Mixed_Model.ipynb: a notebook with all the code necessary to load, train and
test the final Mixed Model (NRT) and (RT), along with code used to perform
feature importance plots.

• Text_Based_Model.ipynb: a notebook with all the needed code to load, train
and evaluate the final Text Model. In addition to this, it provides the needed
code to show the feature importance of the models and save and load trained
models.

• Non_Text_Based_Model.ipynb: a notebook with all the code necessary to load,
train and test the final Non-Text Based Model, along with code used to perform
feature importance plots. It can be run sequentially or starting at either Train
or Test sections.

https://github.com/adry26/RecSys2021

39

Appendix B

Feature importance of Mixed
Model

Here you will find the feature importance plots of the Text Based Model, the Non-
Text Based Model, and the Mixed Model, both the one trained and tested without
restrictions on repeated tweets, and the one with the restriction that tweets cannot
be in both subsets.

B.1 Feature importance of the Text Based Model

Figure B.1: Feature importance for the Reply engagement in the
Text Based Model.

40 Appendix B. Feature importance of Mixed Model

Figure B.2: Feature importance for the Retweet engagement in the
Text Based Model.

Figure B.3: Feature importance for the Like engagement in the Text
Based Model.

Figure B.4: Feature importance for the Quote engagement in the
Text Based Model.

B.2. Feature importance of the Non-Text Based Model 41

B.2 Feature importance of the Non-Text Based Model

Figure B.5: Feature importance for the Reply engagement in the
Non-Text Based Model.

Figure B.6: Feature importance for the Retweet engagement in the
Non-Text Based Model.

42 Appendix B. Feature importance of Mixed Model

Figure B.7: Feature importance for the Like engagement in the Non-
Text Based Model.

Figure B.8: Feature importance for the Quote engagement in the
Non-Text Based Model.

B.3. Feature importance of the Mixed Model (RT) 43

B.3 Feature importance of the Mixed Model (RT)

Figure B.9: Feature importance for the Reply engagement in Mixed
Model (RT).

44 Appendix B. Feature importance of Mixed Model

Figure B.10: Feature importance for the Retweet engagement in
Mixed Model (RT).

Figure B.11: Feature importance for the Like engagement in Mixed
Model (RT).

B.3. Feature importance of the Mixed Model (RT) 45

Figure B.12: Feature importance for the Quote engagement in Mixed
Model (RT).

46 Appendix B. Feature importance of Mixed Model

B.4 Feature importance of the Mixed Model (NRT)

Figure B.13: Feature importance for the Reply engagement in Mixed
Model (NRT).

B.4. Feature importance of the Mixed Model (NRT) 47

Figure B.14: Feature importance for the Retweet engagement in
Mixed Model (NRT).

Figure B.15: Feature importance for the Like engagement in Mixed
Model (NRT).

48 Appendix B. Feature importance of Mixed Model

Figure B.16: Feature importance for the Quote engagement in Mixed
Model (NRT).

49

Appendix C

Distribution of work

The reader can find in this Appendix the distribution of work between each member
of the project group.

• Marcos: He has implemented and developed non-text related features as well
as trained different models using different classifiers and hyper-parameters. In
addition to this, he has implemented memory optimisations to the text model.
He has written Chapter 6 of this document.

• Adrià: He has implemented and developed almost all text-related features of
the Text Model as well as trained different models using different classifiers and
hyper-parameters. He has written Chapter 5 of this document.

• Marcos and Adrià: They have implemented and arranged the mixed final
model used in the final submission.

The rest of the Chapters of this document have been written collaboratively by
both authors of this document.

51

Bibliography

[1] Jussi Karlgren. An algebra for recommendations. Syslab Working Paper No
179, 1990. URL https://jussikarlgren.files.wordpress.com/1990/09/
algebrawp.pdf.

[2] Will Hill, Larry Stead, Mark Rosenstein, and George Furnas. Recommending and
evaluating choices in a virtual community of use. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’95, page 194–201,
USA, 1995. ACM Press/Addison-Wesley Publishing Co. ISBN 0201847051. doi:
10.1145/223904.223929. URL https://doi.org/10.1145/223904.223929.

[3] Jussi Karlgren. Newsgroup clustering based on user behavior - a recommendation
algebra. Technical Report T94:04, SICS, 1994.

[4] Acm recommender systems. URL https://recsys.acm.org/recsys20/.

[5] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,
Qiwei Ye, and Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting
decision tree. Advances in neural information processing systems, 30:3146–3154,
2017.

[6] Alireza Rezazadeh. A generalized flow for b2b sales predictive modeling: An
azure machine-learning approach. Forecasting, 2:267–283, 08 2020. doi: 10.
3390/forecast2030015.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding, 2019.

[8] Yukun Zhu, Ryan Kiros, Richard Zemel, Ruslan Salakhutdinov, Raquel Urtasun,
Antonio Torralba, and Sanja Fidler. Aligning books and movies: Towards story-
like visual explanations by watching movies and reading books, 2015.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding, 2019.

[10] Machine types | compute engine documentation | google cloud. URL https:
//cloud.google.com/compute/docs/machine-types#e2_high-memory_
machine_types.

[11] Shayna. The 100 most common words in english, Mar 2012. URL https:
//www.espressoenglish.net/the-100-most-common-words-in-english/.

[12] Jerry LowJerry Low is the a professional blogger who is passionate about SEO
and web development. He writes helpful web development guide. 10 easy
ways to get more retweets, Jul 2017. URL https://www.crazyegg.com/blog/
get-more-retweets/.

[13] Tf-idf, Dec 2019. URL https://es.wikipedia.org/wiki/Tf-idf.

https://jussikarlgren.files.wordpress.com/1990/09/algebrawp.pdf
https://jussikarlgren.files.wordpress.com/1990/09/algebrawp.pdf
https://doi.org/10.1145/223904.223929
https://recsys.acm.org/recsys20/
https://cloud.google.com/compute/docs/machine-types#e2_high-memory_machine_types
https://cloud.google.com/compute/docs/machine-types#e2_high-memory_machine_types
https://cloud.google.com/compute/docs/machine-types#e2_high-memory_machine_types
https://www.espressoenglish.net/the-100-most-common-words-in-english/
https://www.espressoenglish.net/the-100-most-common-words-in-english/
https://www.crazyegg.com/blog/get-more-retweets/
https://www.crazyegg.com/blog/get-more-retweets/
https://es.wikipedia.org/wiki/Tf-idf

52 BIBLIOGRAPHY

[14] sklearn.preprocessing.minmaxscaler¶. URL https://scikit-learn.org/
stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html.

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html

	Abstract
	Acknowledgements
	Introduction
	Introduction
	Recommender Systems
	Types of Recommender Systems

	RecSys Challenge 2021
	Motivation
	Goals
	Document Structure

	Background
	RecSys Challenge 2020
	Classifiers
	LightGBM

	Natural Language Processing
	BERT tokenization

	Encodings for categorical features
	One-Hot Encoding
	Target Encoding

	RecSys Challenge 2021 Dataset
	Subsampling
	Distribution of the sub-sampled training dataset

	Validation data
	Distribution of the validation data
	Train-validation-test split

	Model Architecture
	Limitations
	Local limitations
	Submission limitations

	Architecture

	Text Based Model
	Feature Set
	Problems and limitations encountered
	Results
	Evolution of the text models
	Best text model
	Feature importance of the best text models

	Non-Text Based Model
	Feature Set
	Problems and limitations encountered
	Results
	Evolution of the models
	Best non-text based features model
	Feature importance of the best non-text based models

	Results
	Evaluation
	AP
	RCE
	Fairness

	Mixed features
	Final Results
	Comparison with text only and non-text only models
	Feature importance of the Mixed Model

	Competition Leaderboard

	Conclusions and Future Work
	Conclusions
	Future Work

	Source code
	Feature importance of Mixed Model
	Feature importance of the Text Based Model
	Feature importance of the Non-Text Based Model
	Feature importance of the Mixed Model (RT)
	Feature importance of the Mixed Model (NRT)

	Distribution of work

