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Forecasting is a common use case in the field of Predictive Analytics and one of the
key building blocks of any Supply Chain. This relevance is even magnified in the
pharmaceutical industry, where a stock-out does not merely carry a monetary im-
pact but might also tragically affect people’s health.

In light of the aforementioned, this thesis has a twofold aim. Firstly, improving
Sourcing Operations’ forecasting process in terms of both accuracy, standing at 59%,
and efficiency, currently a 5-day process. Secondly, helping to shed some light on
the univariate-multivariate debate in the forecasting realm.

Attaining these goals required uncovering the best methods in the forecasting realm
by scouring the existent literature; both univariate and multivariate applications
were eventually pursued. With respect to the former, classic techniques such as sim-
ple average, Autoregressive Integrated Moving Average and Exponential Smooth-
ing were chosen. These were also combined in an ensemble in order to leverage each
model’s strengths and keep each other in balance.

Amongst the several multivariate techniques available, the choice fell upon Gaus-
sian Process Regression and its capability to model complex functions by means of
kernels. Identifying these complex structures also required combining such kernels,
and given the sheer amount of time series, a mechanical greedy search strategy op-
erating as a forward selection method was devised.

Results showed how a multivariate approach (68%) outperformed the univariate
models (63%), albeit the former (18 hours) was much slower than the latter (30 min-
utes). Finally, combining the "best of both worlds" enhanced accuracy up to 71%.

With respect to the first goal, these outcomes increase accuracy by 12 percentage
points and slash forecasting time to less than a day. In terms of the second goal,
these results seem to argue in favor of multivariate methods, demonstrating that
these perform better since they can leverage external information; yet, the best-of-
both-worlds approach also shows the lack of a clear-cut answer on the matter: each
class of models might outperform the other under certain conditions.
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Chapter 1

Introduction

1.1 Introduction

It has only been in the past few decades that advances in technology - increased data
storage, more powerful processors, faster internet connections - have reached a stage
capable of supporting Artificial Intelligence applications (Walch, 2019). The removal
of previous constraints has in fact allowed computers to process the sheer amount
of data created nowadays, thereby facilitating — if not enabling altogether — Machine
Learning (ML) exploitation. As a result, real-life applications that appeared tremen-
dously complex or computationally expensive to solve are now within companies’
reach (Usuga Cadavid, Lamouri, & Grabot, 2018).

This growing combination of resources and tools has also carried profound implica-
tions in the field of Supply Chain (SC) management (Waller & Fawcett, 2013). The
term SC Analytics is an umbrella term referring to the application of advanced ML
in SC and encompasses three main branches (Souza, 2014; Tiwari, Wee & Daryanto,
2018):

* Descriptive Analytics (DA) deal with the question of “what has happened, what is
happening, and why” by generating reports that provide historical insights;

e Predictive Analytics (PredA) deal with the question of “what is likely to happen”
by exploring data pattern using statistics, simulation, and programming;

e Prescriptive Analytics (PresA) deal with the question of “what should be happening
and how to influence it” by driving decisions based on DA and PredA through
mathematical optimization.

Forecasting - the focus of this thesis - is a common use case in the field of PredA
(Usuga Cadavid et al., 2018) and one of the key building blocks of any SC (Chopra
& Meindl, 2013, p.178; Heizer, Render & Munson, 2017, p. 147).

By providing several benefits such as bullwhip effect ! mitigation, efficient produc-
tion capacity planning, inventory control and reduction of stock shortages or over-
supply costs (Chopra & Meindl, 2013, p.178-179; Heizer et al., 2017, pp. 147-148), it
forms the basis of all managerial decisions in SC. This relevance is even magnified
in the pharmaceutical industry, where a stock-out does not merely carry a mone-
tary impact but might also tragically affect people’s health (Merkuryeva, Valberga &
Smirnov, 2019).

I The bullwhip effect is a concept for explaining inventory fluctuations or inefficient asset allocation
as a result of demand changes as you move further up the supply chain. As such, upstream manu-
facturers often experience a decrease in forecast accuracy as the buffer increases between the customer
and the manufacturer
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A variety of forecasting methods have been developed, and amongst the many avail-
able, traditional models (TM) and Explanatory Models (EM) emerge as the most
relevant (Hyndman & Athanasopoulos, 2018). The former, based on statistical tech-
niques, are applied under the hypothesis that past demand can statistically estimate
the future demand. This means that they look at past data patterns and attempt to
predict the future based upon these underlying patterns.

The latter, on the other hand, assume that the variable being forecasted does not
uniquely depend on its own past values but is also related to other variables in the
environment. Methods belonging to this family normally include other endogenous
and exogenous variables, allowing for a more comprehensive representation of re-
ality. In this vein, ML itself could be considered as explanatory modeling® (Usuga
Cadavid et al., 2018).

Both methods are largely implemented considering the SC as a whole (Chopra &
Meindl, 2013, p.180) as well as in the specific domain of pharma (Merkuryeva et al.,
2019). Each carries its own advantages and limitations. TM are easy to apply and
typically serve as an adequate starting point. They offer huge advantages in terms of
simplicity as they can perform demand forecasting in a matter of seconds for several
SKUs (Stock Keeping Units).

TM, however, struggle when demand also depends on exogenous factors that are
not effectively represented by its own lagged values. This situation is where ML
helps to fill the gap, albeit at a considerable computational price.

The literature has not yet returned a clear-cut verdict on the most suitable approach
(Huber & Stuckenschmidt, 2020). Regardless of the technique, however, it is funda-
mental to bear in mind that forecasting is "a prophecy, estimate, or prediction of a
future happening or condition" (Mirriam Webster, n.d.). Intrinsic in its definition,
thus, resides the concept that neither method can perfectly predict the future.

In light of the aforementioned, the goal of this piece of work is twofold>:

1. Firstly, to improve the forecasting process of Sourcing Operations (SoOP), a
specific department belonging to Novo Nordisk, the pharmaceutical company
object of the study;

2. Secondly, to a lesser extent, help shedding some light on the method debate.

The rest of this thesis is organized as follows. The remainder of Chapter 1 intro-
duces the reader to the company and the specific department object of the study,
also presenting the forecasting setup currently in place. Chapter 2 aims at providing
an overview of the different techniques that scholars have implemented to predict
demand, thereby offering a review of methods. Chapter 3, based on the literature
review findings, describes the chosen techniques from both univariate and multi-
variate methodologies. Chapter 4 presents the dataset and the processes required in
order to make it suitable for the different analyses carried out. Chapter 5 analyses
the findings of both methodologies and compares their results. Finally, Chapter 6
summarizes the findings of this thesis.

2Please bear in mind that unless some causal-aware techniques are implemented, ML models of
this sort can only predict what will happen and not why it happens (thanks Professor Pujol for raising
this point).

3The code used to achieve it can be found in the private repository at the following address:
https://bitbucket.org/mattia_tonelli/forecasting/src/master
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1.2 Novo Nordisk, the Sourcing Operations Department and
its Forecasting Process

Headquartered in Denmark, Novo Nordisk is a global healthcare company with a
strong leadership in diabetes care and expertise in obesity, growth disorders and
haemophilia, marketing its products in more than 170 countries (Who we are, 2020).
The Sourcing Operations (SoOp) department is instrumental in enabling Novo Nordisk
to help people defeat such serious chronic conditions: by managing "the global
inbound supply chain to deliver packaging and raw materials to production [...]"
(Sourcing Operations, 2020), it guarantees a timely and cost-efficient drug manufac-
turing.

1.2.1 The Forecasting Process

The current forecasting process is run twice a year, namely in October and February,
and its output covers a period ranging from M+1 until the first half of Y+2*, split
into three prediction buckets. In both instances, an initial version is produced, serv-
ing as the baseline upon which inputs from subject matter experts, such as supply
planners and consuming sites, will be incorporated. The resulting refined forecast
then becomes the final version.

Depending on some criteria, different forecasting methods are implemented. These
are presented below together with the corresponding percentage out of the total
forecasted raw materials:

* Manual: Each production site relies on its experience and own forecasting tools,
that could be as advanced as an optimization software or as simple as manu-
ally checking each single time series in an Excel file (19%);

* Production Planning System: The Advanced Planner and Optimizer (APO) soft-
ware plans production quantities by taking into account many complex vari-
ables, such as the delivery schedule of raw materials and productions cycles
(50/0);

* Predictive Models: The time series are loaded into Alteryx, a self-service ana-
lytics tool, where a host of common, preset ML models are automatically and
"blindly" run on each series (25%);

* Historical Consumption: The demand for a future prediction bucket is simply
assumed to be equal to the past year’s consumption in the same bucket (51%).

The current baseline accuracy stands at 59% across time series, calculated as:
1 n
—Y 1— MAPE
ni3

5-

where MAPE stands for Mean Absolute Percentage error

MAPE will be introduced more in detail in a dedicated section, but for now it is

4M stands for current month whereas Y for current year. For example, if we were in July 2018, M+1
would refer to August 2018, whereas Y+2 to year 2020.

5In this thesis, the terms MAPE and accuracy will be used "interchangeably", that is, "MAPE of 30%"
might as well be mentioned as "accuracy of 70%".
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sufficient to bear in mind that its selection reflects the nature of the time series. In
fact, their units of measure spans from grams and kilos, to milliliters and liters. Thus,
the unit-of-measurement-free nature of MAPE enables meaningful comparisons and
aggregations.

item M#+1 NM+2 M+3 M+d M+5 M#6 M+7 M+8 M+#5 M+10 M+11 M+12 yearly sum actuals accuracy
1 5 6 6 15 28 15 6 3 28 96.84

13 2 17 27 217 284 30

FIGURE 1.1: For every time series, the monthly predicted values (red)
are aggregated into a yearly sum (green) and used with the yearly ac-

tuals ( ) to calculate the MAPE and subsequently the accuracy.
Eventually, the baseline accuracy is computed (violet). Source: own
creation

Figure 1.1 helps understanding more in detail how the accuracy is assessed. Per each
item taken singularly, monthly predictions are aggregated into a yearly sum. To-
gether with the year’s actuals, these quantities are employed to compute the MAPE
- and subsequently its accuracy. The rationale behind the evaluation being carried
out at a year level resides in the fact that SoOp purchases quantities with an annual
horizon.

Summing up, the depicted situation clearly highlights the importance of achieving
the first goal of this thesis, quantified by the SoOp team as increasing forecast accu-
racy to at least 70% and reducing significantly the manual intervention®.

The next chapter will touch upon the different methods and techniques through
which this can be achieved, by presenting an overview of their usage in the litera-

ture.

®Despite there are no official figures availables, S0OOp team estimates that currently the forecasting
process takes about 5 days



Chapter 2

Literature Review

The previous chapter has already acquainted the reader with the relevance of the
forecasting process in SC as well as with the different methods at disposal and the
difficulties that come in tow. This chapter will walk the reader through researches in-
vestigating demand forecasting in an attempt to offer an exhaustive overview about
forecasting methods from a scientific standpoint. Related works will include de-
mand forecasting within SC in general or, in other words, regardless of the industry.

The topic already boasts several attempts at classifying papers along various per-
spectives. Wang et al. (2016) scour the existing literature and categorize researches
based on the application of the different SCA branches on demand forecasting. Usuga
Cadavid et al. (2018) retrieve the most relevant papers which make use of ML appli-
cations in order to spot new ML trends and techniques applied in the domain; from
these, pieces of work comparing ML performance to TMs are then extracted. Finally,
Wenzel, Smitt & Sardesai (2019) present a snapshot of the current state by mapping
applied ML methods to the different areas composing SC, showing that different ML
techniques can be applied to solve a common goal.

For this thesis, the selected approach reflects largely Usuga Cadavid et al.’s (2018) as
deemed more in line with its goals and identifies an additional grouping, leading to
a total of three broad categories.

The first group encompasses studies pitting TM against ML results. Somehow pi-
oneering this stream of research, in 2001 Alon, Qi & Sadowski decide to compare
Neural Networks (NN) and TMs — including exponential smoothing (ETS), Autore-
gressive Integrated Moving Average (ARIMA), and linear regression (LR). This com-
parison is carried out on aggregate monthly retail sales time series containing both
trend and seasonal patterns, thereby providing a valuable testing ground for fore-
casting evaluations. Further, the authors validate the robustness of the alternative
forecasting methods by splitting the time series into two time periods, each featur-
ing different economic conditions. The data suggest that during turbulent economic
times, NNs generally provide superior forecasts over the traditional methods, but
the ARIMA and ETS remain formidable competitors, especially when conditions are
relatively stable.

NNs also represent the ML model of choice for Gutierrez, Solis & Mukhopadhyay
(2008). In the context of intermittent demand forecasting, their performance is re-
lated to three TMs — namely, ETS, Croston’s, and the Syntetos-Boylan approxima-
tion. Based on the results, the academics conclude that NN models prove to be
superior to the TMs on all the error measures evaluated.

Carbonneau, Laframboise & Vahidov (2008) seek to investigate the applicability of
non-linear ML techniques — such as NNs, Recurrent NNs (RNN) and Support Vector
Machines (SVM) — to forecast demand in the peculiar context of extended supply
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chains. Their performance is pitted against traditional approaches including naive
forecasting, moving average, and LR models. Findings reveal a slightly greater ac-
curacy obtained by ML techniques. Yet, the authors warn that these marginal gains
should be weighed against the conceptual and computational simplicity of the tra-
ditional approaches.

In an initial study, Kandananond (2012a) first indicates that SVM achieves greater
accuracies than NN models in forecasting consumer product demand. The study
is then (2012b) extended to also encompass ARIMA. Findings confirm SVM as the
most accurate model, also outperforming the selected TMs.

Huber & Stuckenschmidt (2020) address the challenges connected to demand fore-
casting on special days (public holidays, the days before and after, etc..), where daily
demand diverges sharply from regular days as customers modify their daily rou-
tines. The scholars opt for NN, RNN and Gradient-Boosting techniques. These ML
approaches provide more accurate predictions than LR and ETS since the sales his-
torical series can be enriched with external information reflecting special calendar
events.

A second stream of research focuses on applying uniquely ML models to solve fore-
casting problems. Ahmed, Atiya, Gayar, & El-Shishiny (2010) compare a variety of
ML methods on monthly time series, including NNs, BNNs, kernel regression, K-
nearest neighbour regression, CART regression trees, SVM, and Gaussian Processes
(GP). Their study shows significant differences between these models, with NNs and
GPs ranking as best models.

Sarhani & El Afia (2014) seek to overcome the main drawbacks linked to SVM pa-
rameter tuning in highly non-linear spaces, namely, computational expensiveness
and unguaranteed convergence to the globally optimal solution. In their quest,
the researchers employ monthly retail sales data finding how leveraging optimiz-
ing algorithms can efficiently find optimal or near-optimal solutions in large search
spaces, thereby improving SVM’s performance.

Ampazis (2015) presents an approach integrating data from various sources of infor-
mation to advanced ML algorithms for lowering uncertainty in forecasting supply
chain demand. In trying to predict DVD movie rental demand during a critical pe-
riod for sales, such as Christmas holidays, the academic utilizes NNs and SVMs.
The analysis supports how including relevant features improves the performance of
both ML models.

Yang & Sutrisno (2018) attempt at forecasting short-term sales to fine-tune the daily
replenishment strategy of a Chinese bakery chain. In this study, LR models are
judged against NNs, with the latter attaining more accurate predictions on actual
sales than the former due to its flexibility, capable of modelling the sales daily fluc-
tuations.

A third and final group of studies concentrates its focus on combined approaches
that involve different techniques, thereby leveraging their respective strengths. Aburto
& Weber (2007) aim at improving the forecasting capabilities of a Chilean supermar-
ket chain by means of a hybrid model. By training NNs on the residuals of the
ARIMA model, results exhibit how the former outperforms the latter. Finally, Ad-
hikari et al. (2017) propose a revised ensemble technique. The authors generate two
forecasts: one stemming from a selection of TMs, and another resulting from sev-
eral classical ML regression-based models. These are subsequently pooled into an
ensemble and, based on historical performances, different weights are allocated in
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order to penalize algorithms deviating from the actual sales. The forecast combina-
tion outstrips each of its component taken singularly since it evens out over- and
under-forecasted values, thus bringing the aggregated predictions near to the actu-
als.

Summing up, this chapter hinted at how ML models outperform traditional models,
findings also corroborated by the literature review found in Usuga Cadavid et al.
(2018).

Yet, there is no shared consensus around this. Much debate surrounds the relative
performance of TM and ML methods, and it is difficult to draw general conclusions
about their efficacy. TMs have in fact been successfully applied to many forecasting
problems, and there is no definite evidence about their inferiority compared to ML
methods (e.g. Ahmed et al., 2010; Makridakis, Spiliotis & Assimakopoulos, 2018).
Perhaps, truth lies in the middle, where each class of models might outperform oth-
ers under certain conditions (Crone, Hibon & Nikolopoulos, 2011).

This literature outline will serve as the basis for the next chapter, which will in-
troduce the different methods implemented to solve this business case.



Chapter 3

Methods

In this chapter the findings from the literature review will translate into concrete
decisions. Equipped with the consideration that each class of models might outper-
form others under certain conditions, the following sections will present the chosen
techniques from both sides and offer a brief description of their "engine room".

But first, MAPE - the chosen metric briefly mentioned in Chapter 2 - will be de-
scribed in more detail, followed by some common potential time series pitfalls, and
how to avoid them.

3.1 Metrics

The goodness of the generated forecasts will be evaluated via MAPE:

1 & | Actualsy — Forecasted,
n g Actuals;

The absolute value in this calculation is summed for every forecasted point in time
and divided by the number of fitted points n. Multiplying by 100 makes it a percent-
age error.

There are several reasons that brought to the decision of implementing MAPE as
metric. Firstly, it is already used by the SoOp department, thereby enabling a "fair"
performance comparison. Secondly, it comes under percentage errors which are
scale independent, thus allowing to compare series with different units of measure.
Lastly, because of its wide popularity in the forecasting literature (Alon et al., 2001;
Hyndman & Koehler, 2006).

MAPE also carries along some limitations though (Hyndman & Koehler, 2006). As
all measures based on percentage errors, MAPE is undefined if the actuals are zero
or can take on huge values - thus larger than 100% - if the actuals are very close to
zero. Finally, they also have the disadvantage of placing a heavier penalty on nega-
tive errors than on positive errors.

Despite these shortcomings, Hyndman & Koehler (2006) still consider MAPE as the
preferred metric, in particular in situations like this one, where all data are positive.

Before delving into both univariate and multivariate methods, the next section will
introduce two critical concepts in ML time series, namely cross-validation and data
leakage.
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3.2 Time Series-related Problems

3.2.1 Cross Validation

Applying ML to time series forecasting, like any other ML application, also requires
a model evaluation aiming at estimating the model performance on unseen future
data. And as any other ML application, it is crucial to prevent - or at least mitigate -
the randomness involved in the train-test split from generating ‘lucky” predictions,
that is, prediction results depending on pure coincidence.

However, the “traditional” cross-validation approach cannot be directly employed
with time series data. The rationale behind this limitation stems from the intrinsic
nature of a time series, setting it apart from a “classic” ML regression problem: its
sequential nature. The time dimension of observations, in fact, impedes a random
split since this would assume the absence of a relationship between observations.

Time Present
P

Pass 1 [N
Pass2 [N

Pass 3

Pass 4 R

Pass 5

Dropped - Training Test

FIGURE 3.1: A fixed-size training window (dark grey) slides over the
entire time series horizon and is repeatedly tested against a test set
( ), while older data points dropped ( ). Source: here

In light of what just described, the evaluation of time series models requires another
approach, the so-called backtesting, which applies a cross validation logic while ac-
counting for the temporal order in which values were observed.

For this endeavour, the type of backtesting employed is the sliding window, depicted
in Figure 3.1. This process is iterative and applies a rolling forecast evaluation by
splitting a time series over multiple time points. At each splitting point, the time
series is divided between training and test sets, both of constant size: as usual, the
model trains on the former and the resulting forecasted values are compared with
the actuals obtained from the latter.

Each of the splits, thus, yields a specific MAPE per each forecasting technique. Once
all the time splits have been performed, an overall MAPE is calculated by averaging
each technique results over time (Figure 3.2). This averaged MAPE can be inter-
preted as an estimation of the generalisation error associated with each model in
production, thereby serving as a model selection instrument.


https://eng.uber.com/omphalos/
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2018 2019 overall MAPE
ARIMA 069 021 062

ETS .88 062 069 061
MEAN 96 059 057 0.1
ENSEMELE 042 0.75| |0.48

FIGURE 3.2: The rectangle enables a MAPE comparison by

model over the same year. However, the best model is chosen by cal-

culating an overall MAPE across years (in red). This is simply the

average of the MAPEs within the green rectangle. Source: own cre-
ation.

3.2.2 Data Leakage

Time series problems are prone to introduce data leakage, if carefulness is not em-
ployed when designing the ML model. In the case of introducing data leakage in
time series, we allow our model to use both past AND future data, for predicting
today’s value.

This phenomenon can happen in a time series context for the following reasons. The
first reason has been just explained in the above subsection and consists of employ-
ing a random split neglecting the temporal nature of the data to validate the model,
instead of using the backtesting approach.

A second one involves adding explanatory features that were not "legitimately"
available during the actual target value generation. Let’s hypothesize that item_A
is used as raw material in the manufacturing of med_A and med_D; this entails that
leveraging the medicines sales numbers would represent a great help in trying to
figure out the amount of item_A required for a month. However, since the total sales
would only be available at the end of the forecasted month, including sales_med_A
and sales_med_D in the training phase would leak information.

To combat this potential issue, the features entering the multivariate model have
been carefully selected. These will be introduced in the chapter 4.

Now, this chapter moves onto explaining the chosen techniques from univariate and
multivariate methods.

3.3 Univariate

The term univariate implies that forecasting is based on a sample of observations
of the dependent variable without taking into account the effect of other variables.
The underlying concept bolstering this methodology is that the effect of exogenous
variables is embodied in, and reflected by, the actual behaviour of the dependent
variable. The data and the computational requirements of these models are nor-
mally smaller than in the case of multivariate models.

The three univariate time series techniques chosen are simple average (or MEAN),
ETS and ARIMA, belonging respectively to the averaging methods, the smoothing
methods and time series decomposition (Moosa, 2000). Further, a "selective" ensem-
ble is built based on the combination of the aforementioned.

Their implementation is enabled in R through the packages fable and fabletools which,
more importantly, support automatically selected ETS and ARIMA models. The next
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subsections will present them in more detail, following the order they were intro-
duced here.

3.3.1 MEAN

The simple average is an extremely simple, yet a surprisingly effective technique
(Hyndman & Athanasopoulos, 2018). It is obtained by extracting the mean com-
puted from all the actual observations and then using it as an input for the forecast
of the next point in time.

The forecast (F) for time t + 1 is the average of the actuals (A), thereby assuming
equal relevance for each observation over the period extending between 1 and t.

_ 1t
Fryr =521 A

When the forecast is required for points in time beyond t + 1, as actuals are not
available for these, previous forecast values become an input to calculate the simple
average. The forecast for t + 1, thus, is calculated from a sample of t 4+ n — 1 obser-
vations consisting of the t actuals and the n — 1 forecasts for the period between t + 1
and t+n—1.

Fron = i (S A+ X0 By )

In this case, the forecast quantity will be the same regardless of the forecasting hori-
zon since the forecast values are used. In other words, adding to a sum its mean
does not change the mean value itself.

Despite being incredibly simple to implement, a drawback of this method is its ap-
propriateness only if the observed time series has no trend nor seasonality (Moosa,
2000). The next two techniques enable overcoming this shortcoming.

3.3.2 ETS

ETS is based on averaging (i.e. smoothing) past values of the dependent variable
in an exponentially decreasing manner. The principle behind smoothing is that de-
mand observations that are in temporal proximity are likely to be similar in value.
Forecasts produced using ETS are thus weighted averages of past observations, with
the weight relevance decaying exponentially as the observations come from a further
distant past. In other words, the more recent the observation the higher the associ-
ated weight.

Its simplest application, exactly like the MEAN, does not assume any systematic
structures in the data. However, its extensions render ETS a forecasting technique
suited to handle a time series with trend and/or seasonal component. By consider-
ing variations in the combinations of the trend and seasonal components, nine meth-
ods are identified'. These can be broadly be grouped into three main ETS families
(Hyndman & Athanasopoulos, 2018):

I Their detailed explanation goes beyond the aim of this thesis. The interested reader can found a
comprehensive overview in Hyndman et al. (2008).
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e Single ETS (or Simple ETS) is suitable for forecasting data with no clear trend or
seasonal pattern. It represents a middle way between those forecasting meth-
ods assigning all the weight to the last observation (naive) and those allocating
equal importance to all observations (mean);

* Double ETS (or Holt's Linear Trend) extends single ETS to allow the forecasting
of data with a trend. It supports trends that change in different ways: additive
or multiplicative, depending on whether the trend is linear or exponential, re-
spectively. Its forecasts display a constant trend (increasing or decreasing) in-
definitely into the future, which is a rather unrealistic assumption. For longer
forecast horizons, then, it can be useful to dampen the trend over time, that is,
reduce the trend to a flat line at some point in the future;

e Triple ETS (or Holt-Winters ETS) builds on top of the double ETS to capture
also seasonality. The seasonal component may be also be modeled as either an
additive process, when seasonal variations are roughly constant through the
series, or multiplicative when these variations change proportionally to the
level of the series.

This framework generates reliable forecasts quickly and for a wide range of time se-
ries, which is a great advantage and of major importance to applications in industry
(Hyndman & Athanasopoulos, 2018).

The next subsection will present another widespread and powerful methodology in
the forecasting industry, ARIMA.

3.3.3 ARIMA

The ARIMA methodology is appropriate if the observations of a time series are sta-
tistically dependent on each other. Models belonging to this family are based on the
idea of transforming the time series to achieve stationarity by means of a differenc-
ing process, thereby rendering its statistical properties (mean and variance) constant
over time.

Its acronym is self explanatory, embodying the key elements of the model itself:

* Autoregression (AR) since it uses a linear combination of past values of the de-
pendent variable, indicating that it is a regression of the variable against itself.

e Integrated (I) since it differences raw observations (e.g. subtracting an observa-
tion from another at the previous time step) in order to make the time series
stationary. A time series that requires differencing is said to be an "integrated"
version of a stationary series.

* Moving Average (MA) since it uses past forecast errors in a regression-like model.

Each of these components are respectively expressed in the standard notation ARIMA(p,d,q),
where integer values substitute the parameters to quickly indicate the specific ARIMA
model: in other words, a linear regression model constructed including the specified
number and type of terms. If necessary, before applying the regression, the data is
prepared by one, or more, degree of differencing.

In short, the ARIMA equation for a time series is a linear equation in which the input
consists of lags of the dependent variable along with lags of the forecast error.
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3.3.4 Ensemble

Ensemble methods combine predictions from multiple forecasting techniques to im-
prove the accuracy of a simple prediction and avoid possible overfitting by reducing
the impact of any specific model. Diversity among the individual components of en-
sembles is in fact known to be the key element that makes ensemble a successful
model.

There are many ways in which allocating the importance to each model inside the
ensemble. Yet, simple average of these forecasts represents a standard approach.
It is easy to implement, relatively fast to compute, and often provides an excellent
forecast (Hyndman, 2018).

n

1 Z model

n model=1

In this work, a "selective" ensemble has been coupled to a classic, "all-inclusive" one.
The logic behind the selective is that a model, in order to become part of the en-
semble, must achieve a determined performance. This threshold has been set to an
accuracy of 60%, decision driven by the desire to at least beat the current baseline.
However, if only one model makes it past the threshold, then a selective ensemble
simply becomes the model itself. In this case, a classic ensemble including the three
basic models is constructed instead. Figure 3.3 helps better understanding this ap-
proach.

year ARIMA ETS
0.63 0.79
0.71 059
0.06 0.34

0.54 0.41

0.1 0.77

FIGURE 3.3: The ensemble selection process. For every year the mod-

els that have made it past the accuracy cut are marked in red. Their

count over time is marked in green at the bottom and serves to iden-

tify the components of the selective ensemble for the whole time hori-
zon. Source: own creation.

For this specific time series, the accuracy results are reported for each of the three
base models. If the score was above the threshold, it is marked in red. For example,
in 2015 and 2019, where respectively three and two models scored above the selec-
tive threshold, a selective ensemble will be constructed using such models. Further,
their presence will be counted in order to keep track of the number of times a model
entered a selective ensemble.

On the other hand, in 2017 and 2018, where respectively one and no models quali-
fied to enter the selective ensemble, the calculated ensemble will include all of the
models. However, the selective ensemble counter will not be updated to reflect their
inclusion.

Regardless of the ensemble type, the usual backtesting approach is employed to
obtain the overall MAPE. If the ensemble happens to provide the best performance,
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then the issue of selecting a general ensemble for the whole time horizon arises. In
fact, most likely, every year the ensemble will be composed by different models.
The solution lies in the selective counter. Bringing the attention back to Figure 3.3,
it can be noted how the MEAN enters the selective ensemble three times, followed
by both ARIMA and ETS tied at two. If there were two - or more - models tied at
the first place, the ensemble will include these. Since in this instance there is only
one model, then the ensemble will include such a model plus whichever model(s)
ranked second.

Obviously, if no model made it past the threshold at any point in time (i.e. selective
counter equals to zero for every model), then the ensemble would simply be a classic
one.

Now that has been shown how the several univariate techniques somehow compen-
sate for each other’s limitations (MEAN, ETS, ARIMA) and even can enhance their
strengths if aggregated (ensemble), the next section will introduce the multivariate
part of the thesis.

3.4 Multivariate

A multivariate time series encompasses more than one time-dependent variable, and
each of these variables does not exclusively depend on its past values but also fea-
tures a certain degree of dependency on the others. Such a dependency is used
for forecasting future values. Thus, techniques belonging to this family typically
introduce other endogenous and exogenous variables in order to model the actual
behaviour of the target function.

In this vein, multivariate time series could be solved as a supervised ML problem.
But before ML can be employed, time series forecasting problems must be re-framed
as supervised learning problems. The first subsection will exhibit how the original
time series have been modified in order to enable the application of the chosen ML
method, namely GP. Then, the selected forecasting strategy is presented, followed
by a large section about GP and its peculiarities. Finally, the search strategy selected
in order to maximize the performance of the GP models is explained.

All multivariate tasks will be carried out in Python, in order to leverage the well-
equipped package scikit-learn.

3.4.1 Problem Re-framing

The two figures below clearly exhibit the result of the transformation from a long
(3.4) to a wide (3.5) format. Since we set the training window size to 12, the first
row comprising the first twelve observations - marked in red - become the input
to predict the target observation, which is the 13", Then, in the second row, the
window slides forward by one month so that observations from the 2°¢ to the 13t
are used to predict the new target, namely the 14th observation, and so forth.
Important to note is that the temporal order between the observations is preserved.
However, the re-framing entails the "loss" of one year of observations, namely 2015,
which exclusively participates as input to predict the months of 2016.

3.4.2 The Multi-Step Forecasting Strategy

A multiple-step forecasting strategy fits this thesis’” goal for several reasons. First,
multiple time steps ahead must be predicted as per business requirements by SoOp
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demand consumption_month

item id
1000012-2044 | 8 2015-01-01
1000012-2044 | 9173220000 | 2015-02-01
1000012-2044 | 9093151900 | 2015-03-01
1000012-2044 | 98501.70000 | 2015-04-01
1000012-2044 | 3003080000 | 2015-05-01
1000012-2044 | 1 2015-06-01
1000012-2044 | 46381.00000 | 2015-07-01
1000012-2044 | 4591150000 | 2015-08-01
1000012-2044 | 159473.10000| 2015-09-01
1000012-2044 | 3550400000 | 2015-10-01
1000012-2044 10.50000| 2015-11-01
1000012-2044 | 67 50000 | 2015-12-01
1000012-2044 | 0.00000 2016-01-01
1000012-2044 7: | 2016-02-01
1000012-2044 0.50000 2016-03-01
1000012-2044 36413.00000 2016-04-01
1000012-2044 387378.00000 2016-05-01
1000012-2044 92 2016-06-01
1000012-2044 6046380000 2016-07-01
1000012-2044 55468 75000

1000012-2044 49393 00000

1000012-2044 7709350000 2016-10-01
1000012-2044 0.00000 2016-11-01
1000012-2044 117888.20000 2016-12-01

FIGURE 3.4: The long format required for univariate forecasting. The

variable of interest is reported chronologically from oldest to newest

date. In green are the observations of the whole 2015, whereas in red
the observation of January 2016. Source: own creation.

team. Compared to the more "classic" one-step forecast, the Multiple Input Multiple
Output (MIMO) technique involves developing a single model capable of predicting
the entire forecast sequence in a one-shot fashion, where the predicted value is no
more a scalar quantity but a vector of future values of the time series.

Second, when a long term horizon is at stake like in this specific instance, the mod-
eling of a single-output mapping neglects the existence of stochastic dependencies
between future values (e.g. between y;,1 and y;2), consequently biasing the pre-
diction accuracy. On the contrary, MIMO avoids the simplistic assumption of con-
ditional independence between future values made by the Direct strategy, where a
specific model is developed to predict each of the different time points within the
forecast horizon.

Third, it does not suffer from the accumulation of errors plaguing the Recursive
strategy, where the forecasted values become the input for the subsequent predic-
tions. In fact, the model has a tendency to accumulate errors and therefore forecast-
ing accuracy may drop significantly as the forecasting horizon increases.

In sum, MIMO fits our forecasting goal as well as overcomes the limitations of the
Direct and Recursive strategies (Bontempi, Ben Taieb, Le Borgne, 2013).

Having defined the "technical” aspects linked to multivariate forecasting, the next
subsection presents the chosen ML technique.
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M-12 M-11 M-10 M-9 M-8 M-7 M-6 M-5 M-4 M-3 M-2 M-1 target
Wan 2016 | 202252 917823 909315 935017 200308 1062229 463810 450115 1504731 855040 12386105 672285{ 0.0
Feb 2016 91782: 909315 935017 200308 62220 463810 450115 1504731 855040 0 37228 730942
Mar 2016 909315 985017 200308 10 9 463210 450115 1594731 25504.0 28610 739942  180650.5

Apr 2016 925017 300302 9 463810 450115 1504731 855040 1 0. 37228 it 2 1806505 26413.0

May 2016 20030.8 1062220 463810 450115 150473.1 85504.0 105 730942 1806505 26413.0
Jun2016 1062220 463310 450115 150473.1 85504.0 0. 730042 1806505 864130 873780
Jul2016 463810 450115 150473.1 85504.0 610.5 67228 739942  180650.5 92594.4
Aug 2016 459115 1504731 85504.0 0.5 67228 > 1806505 86413.0

Sep2016 150473.1 855040 1286105 67 730942 1806505 864130 873780 8
Oct2016 85504.0 128610.5 672285 1808505 86413.0 873780 92504.4 49893.0
Nov 2016 128510.5 5 730942 180650.5 864130 873780 025044 604638 5! 498030 770935
Dec 2016 672285 730942 180650.5 26413.0 87372.0 025044 60463.8 55468.8

Jan 2017 730942 180650.5 86413.0 87378.0

Feb 2017 739942 1806505 26413.0 87373 925944 604638

FIGURE 3.5: The wide format required to apply multivariate fore-

casting. Each line now is composed of 12 observations, in green, and

the variable of interest, in red, is the target. As we try to predict the

next month’s value, the observations shift backwards by one step un-

til they do not belong to the the required one-year horizon anymore
( ). Source: own creation.

3.4.3 Gaussian Process Regression

GP regression is a non-parametric method that generates predictions by finding a
distribution over the possible functions, consistent with the observed data, through
Bayesian inference. Each of these functions is allotted a probability and the weighted
average of this probability distribution then represents the most probable function
underlying the set of data points at hand.

Starting with an assumed prior distribution, the training set enables the incorpo-
ration of additional information into our model. This lets us first form the joint
distribution P(train N test) between the test and the training points, resulting in a
multivariate normal distribution spanning the space of all possible function values
for the target function.

Such a joint distribution is then instrumental to obtain the posterior P(train|test),
which is also distributed normally. The key importance linked to this step is that the
resulting set of functions is forced to precisely pass through each training point.

Just as a multivariate normal distribution is completely specified by a mean vector
and covariance matrix, a GP is fully specified by a mean function and a covariance
function.

f(x) ~ GP(m(x), k(xi x;))

Configuring m is straightforward since it is common practice to assume it equal to
0, whereas setting the covariance matrix is a bit more intriguing.

This matrix is determined by its covariance function k — also called kernel — which
receives pairwise combinations of all available points as an input and returns a sim-
ilarity measure between each couple as a scalar. Since the kernel describes the simi-
larity between the values of the function, it therefore controls the possible form the
predicted function can assume by determining which type of functions, from the
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space of all possible functions, are more probable.

To sum up, for a given training set, there are potentially infinitely many functions
that fit the observations. GPs identifies a posterior distribution over the most prob-
able functions that represents the training set as close as possible.

Making a prediction using a GP, thus, eventually boils down to drawing samples
from this distribution, and such a probabilistic approach also enables to integrate
the confidence of the prediction into the regression results.

In this section, we had a glimpse on how the GP regression can model diverse func-
tions by just defining a covariance function. More details about the most common
covariance functions and their combinations to model complex functions will be dis-
cussed in the next paragraph.

3.4.3.1 Common Kernels and their Combinations

The previous subsection has already presented how the covariance function mea-
sures similarity between two points and determines which functions are likely under
the GP prior - subsequently determining the generalization properties of the model.
In other words, selecting a kernel entails making an implicit assumption about the
shape of the function to be encoded with the GP. This belief could for instance regard
the smoothness of the function or its periodicity.

In this thesis, four "basic" kernels will be employed. These are:

* Radial Basis Function (RBF) assumes that the underlying function is smooth and
infinitely differentiable;

e Periodic (Per) enables modeling periodic functions by producing perfectly re-
peating patterns;

e Rational Quadratic (RQ), unlike the RBF kernel, does not assume that the func-
tion is smooth. This makes the RQ kernel appropriate to model a non-smooth,
rough function;

* Linear (Lin) simply models linear functions.

Appendix A explains these kernels more in detail by introducing their parameters,
and Figure A.1 graphically depicts some samples from these common kernels priors
at varying parameters.

These so-called basic covariance functions are powerful in their own right. In many
cases, however, the true data structure might not be represented by any known ker-
nel singularly. To fill this gap, Duvenaud (2014) presents a comprehensive "tuto-
rial" on modelling a more complex time series structure by combining several ker-
nels together through two operations, addition and multiplication. The unique con-
straint placed upon these combinations is maintaining the necessary positive semi-
definiteness property intact in the resulting covariance matrix.

ksum (i, %) = k1(xi, %)) + ka(xi, x;)

kproduct(xi/ xj) = kl (xir xj) : kZ(xi/ xj)

Addition and multiplication create two distinct effects on the resulting kernel. In the
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addition process, the characteristic of two added kernels is retained, and both traits
are strongly apparent in the resulting structure.

In the multiplication process, unlike the former, the two kernels actually merge their
peculiarities and only show their joint effect. Table 3.1 exhibits an overview of the
the different combinations utilized in this thesis - on top of the four basic kernels -
and the time series peculiarity they seek to model”.

TABLE 3.1: Relevant Kernel Combinations

Expressed Structure Kernel Combination

Locally Periodic RBF x Per

Increasing Variation RBF x Lin

Growing Amplitude Lin x Per

Periodic Trend Lin + Per

Periodic Noise RBF + Per

Linear Variation RBF + Lin

Slow-Fast Variation RBF(long length scale) + RBF(short length scale)

Handcrafting the kernel combination is a perfectly applicable strategy to identify
the true underlying structure. Yet, its feasibility on this specific problem encounters
some obstacles. Firstly, there is a lack of deep knowledge on kernel combinations
- and their properties - by the thesis” author. Secondly, the sheer amount of time
series to be analyzed renders the manual task almost impossible. In light of the
aforementioned, it sounds a reasonable approach to mechanically search amongst
all kernel combinations in an efficient manner.

The next paragraph will present different search strategies available and, eventually,
the chosen one more in detail.

3.4.3.2 Search Strategy

Automating the kernel composition selection can be likened to a search problem. Its
ambition is identifying the most suitable kernel combination - according to a metric
- out of all possible combinations. The search space of possible kernels can be de-
picted as a search tree (Figure 3.6).

There are three search strategies that could be implemented to scour the ideal kernel
combination: the exhaustive, random, and greedy search strategies, each with its
own strengths and weaknesses. The exhaustive search assesses every single node
of the search tree as a candidate model. It offers the guarantee of finding the opti-
mal combination, but at the cost of generating an enormous search space - especially
when the tree level is deep - making the search very expensive.

Exactly on the other end of the strategy spectrum lies the random search strategy.
This method randomly samples 7 nodes to be evaluated, clearly not providing any
guarantee to find the ideal model.

At a middle ground stands the greedy strategy (Figure 3.7). Proposed by Duve-
naud et al. (2013), this method identifies the local optimum choice at every iteration

These combinations are graphically shown in Appendix A (Figures A.2 and A.3). For their de-
tailed explanation the reader is advised to consult Duvenaud’s (2014) chapter Expressing Structure with
Kernels.
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FIGURE 3.6: The tree structure that graphically represents the ker-
nel search space. Source: own creation inspired by Duvenaud et al.
(2013).

- or level. It starts by evaluating each single kernel out of all base kernels and the one
returning the best metric score is chosen. In the next step, each of the base kernels
taken individually is once added and once multiplied to the current best model. The
optimal combination becomes the basis for the next level, and so forth.

In other words, the greedy search selects only a single branch to continue the search
iteration - corresponding to the best kernel - and disregards the remaining branches.

Similarly to the random search, this approach is sub-optimal. There is in fact no
guarantee that the chosen candidates will lead to the optimum solution because this
might actually reside in one of the pruned branches. On the other hand, the com-
putational complexity of the greedy technique is much lower than the exhaustive
search, since the number of candidates to evaluate is significantly trimmed.
Because it explores a large number of combinations at a reasonable computational
cost, the greedy search represents a valid trade-off, thereby becoming the chosen
search strategy.

As a final step, this search strategy requires a stopping criterion to decide when
to terminate the exploration. In this endeavor, the stopping criterion relies on the
overall MAPE obtained by means of backtesting; specifically, the difference between
the lowest MAPE of the current search level and the lowest MAPE of the previous
search level. If such a differential has not decreased below a certain threshold, or
stayed the same - thereby not showing an improvement that justifies the more com-
plex kernel combination - the search will stop.

In this thesis, the differential is set at 1%, since the driving logic is to gain as much
benefit as possible.

Before moving onto chapter 4, the next and last subsection will clarify a potential
misunderstanding by differentiating between what optimal kernel means in terms of
parameter selection and in terms of model selection.
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FIGURE 3.7: The greedy search selects a local optimal node at every

iteration, denoted by the rectangles. The other branches at the

same level are pruned. Source: own creation inspired from Duvenaud
et al. (2013).

3.4.3.3 Optimal Kernel

Distinguishing between the parameter selection of a GP model and the model se-
lection in our search strategy is of crucial relevance. The former finds the optimal
parameters of the covariance functions by maximising the marginal likelihood of a
GP model, thereby achieving the right match between the capacity of a model and
its fit to the data. In other words, different parameter combinations - all belonging
to the same kernel - are compared.

On the other hand, once the optimal parameters for each of several kernel combi-
nations are found, the latter aims at finding the optimal kernel in terms of prediction
accuracy. The yearly predicted values are used to calculate the overall MAPE by
means of backtesting, and the kernel combination achieving the lowest becomes the
optimal kernel for a specific level of the tree. Doing so forces the model selection to
focus on the forecasting performance.

Otherwise, comparing kernel combinations by the maximum likelihood value ob-
tained after optimizing their parameters, all else being equal, will favor larger num-
bers of free parameters - and consequently more complex models (Duvenaud, 2014).

Unfortunately, finding the optimal parameter values is not a convex optimization
problem and many local optima can be present. Overcoming this obstacle is per-
formed in two ways. First, when searching for the optimal kernel combination, the
parameter optimization process is repeated several times (20, in this case) attempt-
ing different initializations to maximize the likelihood of any given model.

Second, the logic behind the greedy search procedure also serves as a tool to provide
reasonable initializations. In fact, the optimal parameters of the best kernel combi-
nation at a specific level are kept, so that the search at the next level will start the
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optimization from this set of parameters; only newly introduced parameters are ini-
tialized randomly. Such a procedure is a commonly used heuristic when seeking to
model residuals (Duvenaud, 2014).

Summing up, with respect to univariate techiniques MEAN, ARIMA and ETS are
chosen. These are also combined in an ensemble in order to leverage each model’s
strengths and keep each other in balance. Amongst the several multivariate tech-
niques available, GP regression and its capability to model complex functions by
means of kernels has been selected. Identifying these complex structures requires
combining such kernels, and given the sheer amount of time series, a greedy search
strategy has been devised.

Operating with time series also implied handling some context-specific challenges.
For one, a forecasting strategy must be defined that takes into account the business
goal. Another involves the sequential nature of its observations, which impedes a
classic cross-validation application since this would assume the absence of a rela-
tionship between observations. Overcoming this issue necessitates implementing a
backtesting approach. Further, applying ML in this context also demands adapting
the data format from long to wide, so that previous demand observations can be-
come features.

The next chapter introduces the data set and the data preprocessing.
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Chapter 4

Dataset

This section presents the database object of the study, briefly explaining the variables
that compose it. It also introduces the pre-processing actions required as well as the
features engineered to provide additional information in the multivariate approach.

4.1 Data Preprocessing

The datatset is extracted by the SoOp team from SAP, Novo Nordisk enterprise re-
source planning software. It originally contained 3690 unique raw materials - each
presenting monthly observations from January 2015 to August 2020 - and 11 fea-
tures. Their overview begins by introducing the core variables, that is, the ones used
in both univariate and multivariate:

e item_id: the specific raw material identifier, composed of three parts. For in-
stance, 1019508-2040-CMC can be destructured into 1019508 (the item itself),
2040 (the purchase group) and CMC (the Senior Vice President (SVP) area);

* demand: the amount consumed of a given raw material during the whole month.
This is our target variable;

* consumption_month: the month and year combination (e.g., 05-2017) referring
to month the feature values were recorded;

With a mental exercise, the rest of the dataset can be divided into “dynamic” and
“static” features. Features whose values modify within the same raw material are
treated as dynamic. On the other hand, the statics might actually show dynamism
between one item and another. However, once the item_id is singled out, these fea-
tures display a constant value throughout the whole forecasting horizon, thereby
not helping to pick up differences between months in the multivariate forecasting.
The following variables are considered to be dynamic:

* apo_demand: the planned demand according to APO, Novo Nordisk produc-
tion optimizer;

e stock_level: the level of stock available. This value is actually reflecting the stock
level at the end of the previous month (M-1), thereby showing the amount at
disposal at the beginning of the month object of the prediction.

On the other hand, among the "statics" can be found:

* purchase_group: the unique number that identifies each specific planner. Every
item is purchased solely and exclusively by a determined planner;

e planning_category: the way a product is reordered, for instance manually or
automatically after reaching a certain stock level;



Chapter 4. Dataset 23

* purchasing_category: groups of products that share aspects within the purchas-
ing process;

* purchasing_subcategory: a sub-group of the above that further increase com-
monalities shared within a group;

* sup_area: the SVP area, or basically the company section whose activities con-
sume the product;

e plant: the sourcing location.

Traditional data polishing tasks were performed, such as setting the right format-
ting, assigning the correct data type and sorting the observations in a chronological
order, just to name a few. Further, it is worth mentioning that there were no missing
values since the data was pre-cleansed by the SoOp team.

Yet, a two-round filtering proved necessary in order to identify what we have de-
fined as the "unpredictables”, that is, material with the count of non-zero demand
observations below an arbitrary threshold.

First and foremost, item_ids with all zero observations were removed. After this
action the number of unique items dropped to 1989. The second round aimed at
actually targeting the presence of a minimum number of non-zero demand observa-
tions in each year taken singularly. The logic supporting this is the idea that to make
a prediction, as a bare minimum, at least two points are needed to draw a line. The
cleaning slashed the data set by half, keeping 891 unique item_ids.

consumption_month DAPI OTHER CMC  aggregate

item_number

1010042 2015-01-01 816049.0000 660.0000 380.0000

1010042 2015-02-01 1129244.0000 460.0000  300.0000

1010042 2015-03-01 1714437.0000 940.0000 360.0000 1715737.0000
1010042 2015-04-01 1090490.0000 500.0000 400.0000 1091390.0000
1010042 2015-05-01 1054005.0000 100.0000 1100.0000 1055205.0000
1010042 2015-06-01 1177486.0000 240.0000 80.0000  1177806.0000
1010042 2015-07-01 447726.0000 4400000 120.0000 448286.0000
1010042 2015-08-01 865828.0000 480.0000 0.0000 866308.0000
1010042 2015-09-01 1275330.0000 480.0000 480.0000 1276290.0000
1010042 2015-10-01 1043545.0000 1220.0000 340.0000 1045105.0000
1010042 2015-11-1 1374709.0000 1460.0000 120.0000 1376289.0000
1010042 2015-12-01 620848.0000 200.0000 220.0000 621268.0000

FIGURE 4.1: The demand generated by each svp_area (DAPI, OTHER,

CMC) for the same item_number is summed horizontally according to

the month and its result is stored in column aggregate. Source: own
creation.

Another "trick" applied has sought to leverage the centrality of purchases made by
SoOp. Raw materials are in fact bought as a unique entity, and then the different
svp_area will consume them from a shared stock. Therefore, in order to enhance the
information available relative to raw materials employed in more than one SVP ar-
eas, their value was grouped along these areas. Figure 4.1 exhibits it neatly.
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Harmonizing the dataset, then, implied the application of this approach to another
quantitative variable requiring such an aggregation level, namely apo_demand. On
the contrary, stock_level is already reported as a whole, and not split according to the
SVP area.

Further, the reader can recall the problem re-framing carried out in subsection 3.4.1,
also belonging to data pre-processing. Linked to this, considering our backtesting
fixed-window of twelwe months and that 2020 was not over yet, its available eight
months did not participate in the backtesting. This choice therefore made 2019 the
last available year for training purposes.

Having leveraged the existing features, the next section will show how some ad-
ditional features were extracted from the the aforementioned in order to enhance
the predictive capability of GP.

4.2 Feature Selection and Engineering

After selecting the suitable features for the multivariate part, new variables were
devised in an attempt to provide the algorithm with an additional help in its quest
to uncover patterns.

These features - dynamic as intend it in this thesis - aim at capturing the existence of
a clear periodicity:

* order_gap: cumulative count of months with zero demand between two obser-
vations with non-zero demand. For example, four months all with non-zero
demand would obtain a value of zero. On the other hand, if between the first
and the fourth month there are two zero-demand observations, then these four
months would receive a value of zero, one, two and three, respectively;

* month_number: the number of the month being predicted.

Other variables could have been engineered as well. However, due to computational
constraints!, they were not included to avoid an additional burden. For instance:

* holidays: if the month includes many holiday days, production would reduce,
at least in theory;

* quarter of the year: in a similar way to the above feature, depending on the
business quarter, more output could be produced or less. For example some
production plants might step up their quantity produced in order to achieve
some Key Performance Indicators when the current year is about to close;

* consumption-to-stock: the ratio between consumption and the stock. This fea-
ture could help understand if there is a clear pattern between the amount of a
material consumed and its stock level.

To sum up, the selected variables are: each month all the way to the same month
of the previous year (cfr. subsection 3.4.1), apo_demand, stock_level, order_gap and
month_number.

At this point, models from both methods are ready to be run. Their results will
be presented in the next chapter.

1 As of January 2021, there are no cloud computing solutions in place at Novo Nordisk. This has
been the major constraint in terms of trying out different variable and hyperparameters combinations.
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Chapter 5

Results

This chapter will simply present the results according to the method. These will
be dissected in order to extrapolate relevant information such as which model per-
formed better in the univariate, and empirically assess whether the greedy search
actually brought improvements.

5.1 Univariate

The univariate forecasting scores a 63% accuracy across series, corresponding to a 4
percentage point improvement with respect to the baseline accuracy. Table 5.1 ex-
hibits the split in terms of number of times the technique was chosen, as well as both
its average and maximum accuracy. These numbers are graphically shown in Figure
5.1.

TABLE 5.1: Univariate Count

Techniques Count Average Accuracy Max Accuracy
MEAN 250 59% 94%
ETS 287 66% 95%
ARIMA 182 61% 96%
Ensemble 172 64% 97%

ETS ranks first as the most used technique as well as the most accurate. Despite
being the least utilized, the ensemble methodology is second in terms of average ac-
curacy. Digging a bit deeper, we can also retrieve such values for the "all-inclusive"
and the "selective" types. The former represents 97 of the ensemble models em-
ployed, achieving an accuracy of 63%, whereas the 75 models belonging to the latter
attains 65%. Their performance differential is not as striking to justify the selec-
tive approach; perhaps, setting the threshold (subsection 3.3.4) higher might actu-
ally make this type of ensemble perform better.

With respect to the two remaining techniques, ARIMA performs perfectly in line
with the whole lot, and MEAN, albeit the simplest model, proves to be almost as
effective as the other techniques.

Finally, a note on the whole script efficiency. From data preparation to forecast gen-
eration took about 30 minutes, an astounding improvement compared to the pre-
viously required 5 days. Further, human’s decisions relying on "gut feeling" are
limited to basically none.

In the next section, the multivariate results are presented.
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FIGURE 5.1: Boxplot of univariate accuracy by model. The red line
is the median, whereas the violet dotted line represents the mean.
Source: own creation.

5.2 Multivariate

Applying GP Regression enables achieving an overall accuracy of 68%, only 1 per-
centage point short of the target accuracy - set at 69%. Running the whole script took
roughly 18 hours, with the time being affected by the number of random parameter
starts - to avoid local maxima - and the number of forward selection rounds, which
entails fitting more parameters at each new iteration.

A key aspect to assess, now, is whether the model forward selection (FS) imple-
mented by means of greedy search actually proved valuable. The number of FS
pushed beyond 1 round is 418, accounting for roughly 47% of the total. Table 5.2
presents many interesting statics, grouped according to the number of FS completed,
and Figure 5.2 depicts it in a boxplot.

TABLE 5.2: Forward Selection

Rounds Count Average Accuracy Max Accuracy Average Gain Max Gain
1 473 67% 99% NA NA
2 285 70% 98% 6% 42%
3 99 68% 95% 10% 37%
4 23 72% 95% 15% 47%
5 8 66% 90% 16% 29%
6 3 84% 94% 31% 45%

First of all, it can be noted that the number of rounds are inversely proportional
to number of series that required such additional rounds. In other words, as more
complicated models are trying to be built, an ever smaller number of series secure
an accuracy improvement that justifies this additional level of complexity.

Some other general statistics of interest are the maximum gain reached, namely 47%,
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and the maximum accuracy achieved equal to 99%.

FIGURE 5.2: Boxplot of multivariate accuracy by forward selection
rounds. The red line is the median, whereas the violet dotted line
represents the mean. Source: own creation.

Delving into the different groupings, except for the last one which somehow sticks
out from the rest, FS rounds exhibit rather similar figures in terms of average and
largest accuracy (Figure 5.2).

Finally, what actually assumes a great importance is the average gain, since it further
empirically supports the usefulness of FS. In fact, as neatly depicted in Figure 5.3,
it can be seen how the average (and median) gain surges as the number of rounds
increases.

Another characteristic of crucial relevance in a multivariate setting is evaluating fea-
ture importance. Figure 5.4 reports these findings'. The counts reported under each
column refers to the number of times a feature has obtained a relevance score of 1 -
that is, maximum relevance - calculated per each time series. Overall, the four ex-
ogenous features jointly accumulate 67% of the total relevance. Three of these stand
on the podium. The first is apo_demand. Being APO an optimizer, it could be specu-
lated that this feature actually represents a proxy for the effect of variables such as
delivery schedules, lead times, productions cycles and other production constraints.
Second comes order_gap. It seems that this feature manages to pick up recurring con-
sumption patterns by counting the number of months without consumption prior to
a month with consumption. Finally, stock_level completes the podium. The rationale
behind its relevance reasonably seems to be linked to the fact that a raw material
consumption is upper bounded by its quantity in stock.

In the next and last section a quick one-to-one comparison between the two methods
is carried out, in order to further investigate their performances.

IFeature importance has been calculated relying on an adapatation of Paananen, Piironen, Ander-
sen & Vehtari’s (2019) code to fit scikit-learn’s GP library.
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FIGURE 5.3: Boxplot of multivariate accuracy gain by forward selec-

tion rounds. The red line is the median, whereas the violet dotted line

represents the mean. Round 1 is not reported, since it is the base upon
which calculate gains. Source: own creation.

5.3 Results Comparison

A last angle to be investigated remains drawing a comparison at time series level.
Comparing the accuracy attained by both methods, it emerges that GP outperformed
the univariate models for 581 series, whereas the opposite happened 310 times.
This hints at the fact that there is a margin to further improve the accuracy of the
overall forecasting process. In fact, selecting the "best of both worlds", regardless of
the method, enables reaching an accuracy of 71%.

In conclusion, this thesis” results are in line with literature findings that argue in
favor of multivariate methods, demonstrating that these perform better since they
can leverage external information.

At the same time though, it also stresses the fact that each method could outperform
the other depending on the time series.

M-12 M-11 M-10 M9 M8 M7 M6 M5 M4 M3 M-2 M1 order gap stock level month number apo demand

45 43 38 35 20 21 21 26 15 14 16 27 207 68 27 363

FIGURE 5.4: The count, across time series, of how many times a fea-
ture was the most relevant. Source: own creation.
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Chapter 6

Conclusions

This thesis had a twofold aim. First, improving SoOp’s forecasting process in terms
of both accuracy and efficiency. Second, helping to shed some light on the univariate-
multivariate debate in the forecasting realm. It has started by briefly introducing
Novo Nordisk, SoOp department and its current forecasting process setup, charac-
terized by a heavy reliance on human decisions. Another distinctive peculiarity of
this forecasting process is dealing with time series spanning many different unit of
measurements, thereby requiring the adoption of MAPE. Based on this metric, the
current baseline accuracy stood at 59% and the goal was to achieve at least a 10 per-
centage point improvement.

Attaining a larger accuracy required uncovering the best methods in the forecast-
ing realm by scouring the existent literature. The review outcome has largely leaned
in favor of ML applications. Yet, it has also shown the lack of a clear-cut answer on
the matter: each class of models might outperform the other under certain condi-
tions.

In light of these findings, both univariate and multivariate applications have been
pursued. With respect to the former classic techniques such as MEAN, ARIMA and
ETS were chosen. These were also combined in an ensemble in order to leverage
each model’s strengths and keep each other in balance. Amongst the several mul-
tivariate techniques available, GP regression and its capability to model complex
functions by means of kernels was selected. Identifying these complex structures
required combining such kernels, and given the sheer amount of time series, a me-
chanical greedy search strategy operating as a forward selection method was de-
vised.

Operating with time series also implied handling some context-specific challenges.
The sequential nature of its observations impedes a classic cross-validation appli-
cation since this would assume the absence of a relationship between observations.
Overcoming this issue required implementing a backtesting approach, in other words,
a rolling forecast evaluation that splits a time series over multiple time points. Fur-
ther, applying ML in this context also demanded adapting the data format from long
to wide, so that previous past demand values could enter the model as features.

This problem re-framing was only one of the actions taken during the data pre-
processing phase. Besides the usual tasks, worth of mention has been aggregating
demand regardless of the company area that consumed the product. This enabled
leveraging SoOp’s centralization of purchases, thereby enhancing the information
available. In this vein, additional features aimed at picking up periodicity were en-
gineered.
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Results have shown how a multivariate approach (68%) outperformed the univari-
ate models (63%), albeit the former (18 hours) being much slower than the latter (30
minutes). Additional analysis were carried out, dissecting the results of both meth-
ods. Important to note, in particular, is that the four exogenous features actually
were the most relevant predictors 67% of the times. Finally, combining the "best of
both worlds" enhanced accuracy up to 71%.

To sum up, by converting these findings into answers to our research goals, it can be
claimed that:

1. Accuracy has been improved by 11 percentage points and the forecasting pro-
cess time drastically reduced from 5 days to less than one;

2. GP regression delivers better overall results than traditional statistical models,
since the former leverages additional information carried out by features other
than demand itself.

Yet, it seems clear that each class of models might outperform the other de-
pending on the time series at hand.
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Appendix A

Kernels

A.1 Basic Kernels

In Chapter 3 paragraph 3.4.3.1 some basic kernel functions were briefly introduced.
These are explained here more in detail (Duvenaud, 2014) and displayed in Figure
ALl

A.1.1 Radial Basis Function

A Radial Basis Function (RBF) kernel - also known as Squared Exponential - is given
by:

d ir )2
k(xi, x;) = o?exp (—(3;;2(]) )

This kernel exhibits two parameters. The noise variance, a2, shapes the vertical scale
changes, whereas the length scale parameter A? determines function changes along
the horizontal scale.

The latter is actually more interesting since it plays an important role in shaping our
prior belief about how the underlying function would look like. A small length scale
causes a more rapidly changing, suitable for rapidly varying functions. In contrast,
a large length scale implies a slow change, thereby creating a very smooth function.

Notably, a RBF kernel assumes that the underlying function is smooth and infinitely
differentiable.

A.1.2 Periodic

A periodic kernel is given by:

-2 . .
k(xi, xj) = o%exp <—Zsm (ni(;"x])/p))

Such a kernel enables modeling functions repeating themselves exactly. Its 2 and A
parameters carry out the same effect as in the RBF kernel, whereas the p is responsi-
ble of determining the distance between repetitions of the function.

A problem of the Periodic kernel is that generates an exactly repeating structure.
Since repeating patterns in real world data usually do not have precise oscillations,
this limitation can be overcome by multiplying with an RBF kernel. Their combi-
nation adds some flexibility, enabling the repeating part of the function to vary its
shape over time.
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A.1.3 Rational Quadratic

A rational quadratic (RQ) can be seen as an infinite sum of RBF kernels with multiple
length scales (Rasmussen and is given by:

d(xi,x)2\ "
2 (2]
k(xi,xj) =0 (1 + BCYSVE )

Unlike the RBF kernel, an RQ kernel does not assume the function underlying to be
smooth. Besides the noise variance, 02, and the length scale parameter A, this kernel
boasts an additional parameter compared to the RBF, the the power parameter «.
The long-term variation is controlled by A as in the RBF, whereas a enables control-
ling for the rapidity of the local variation: the greater its value the quicker the such
a variation.

A.14 Linear

The linear kernel is given by:
k(xi, x]) = 0’2 + Xx; - x]-

Perhaps the simplest kernel, where the only parameter is the noise variance ¢?,

which shapes the vertical length scale of the function. It is commonly combined
with itself to achieve a desired level of exponentiation.
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A.2 Samples from Basic Kernels Priors

FIGURE A.1: Random samples from selected basic covariance func-
tions. Each row represents a specific kernel and each column features
a different parameter set. Source: own creation.
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A.3 Common Kernels Combinations

Lin + Per SE + Per SE + Lin SEleng) 4 gp(short)
T vuth T —1 “1th r=1)

MMNW

periodic plus trend periodic plus noise linear plus variation slow & fast variation

FIGURE A.2: Examples of structures expressible by adding kernels.
Source: Duvenaud (2014).

SE x Per Lin x SE Lin x Per
r — T Wlth r'=1) vuth ¥=1)

WMM

locally periodic  increasing variation growing amplitude

FIGURE A.3: Examples of structures expressible by multiplying ker-
nels. Source: Duvenaud (2014).
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