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Embryo selection is a critical step in assisted reproduction (ART): a good selection
criteria is expected to increase the probability of inducing pregnancy. In the past,
machine learning methods have been used to predict implantation and to rank the
most promising embryos. Here, we study the use of a probabilistic graphical model
that assumes independence between embryos’ individual features and cycles char-
acteristics. It also accounts for a third source of uncertainty attributed to unknown
factors. We present an empirical validation and analysis of the behavior of the model
within real data. The dataset describes 604 consecutive ART cycles carried out at
Hospital Donostia (Spain), where embryo selection was performed following the
Spanish Association for Reproduction Biology Studies (ASEBIR) protocol, based on
morphological features.

The performance of our model is evaluated with different metrics and the pre-
dicted probability densities are examined to obtain significant insights about the
process. We assemble an experimental setup consisting of alternative and simpler
methods as a basic reference point to compare against. They are built in an incre-
mental way in order to test different aspects of our probabilistic graphical model.
We show the benefits of using an EM algorithm and the importance of the cycles
characteristics. Special attention is given to the relation between the models and
the ASEBIR protocol. We validate our model by showing that its predictions show
correlation with the ASEBIR score when the score is not provided as a feature. How-
ever, once the selection based on this protocol has taken place, our model is unable
to separate implanted and failed embryos when only embryo individual features
are used. From here, we can infer that ASEBIR score provides a good summary of
morphological features.
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Chapter 1

Embryo selection for IVF

1.1 Introduction

Assisted reproductive technologies (ARTs) are a set of invasive medical techniques
that attempt to induce a pregnancy, used mainly to address infertility. Each trial
of a reproduction treatment applying a suitable ART is known as a cycle. When a
woman undergoes a cycle, she follows a treatment of ovarian stimulation for several
weeks in order to induce the development of multiple follicles with a large number
of oocytes. Then, oocytes are retrieved and fertilized, and the resulting embryos
are cultured for several days. Afterwards, the most viable embryos are selected to
transfer to the uterus. After transference, the occurrence of embryo implantation
determines the process of the cycle. However, for a transfer, current techniques are
able to determine the number of embryos that implanted, but unable to identify
individually which ones implanted.

The probability of pregnancy could be increased by transferring a larger num-
ber of embryos (Engmann et al., 2001), but this leads to higher multiple-birth rates,
which is considered risky for both mother and the developing fetuses (Engmann et
al., 2001; Report, 2001). In fact, in many countries there are legal restrictions limiting
the number of embryos transferred (e.g., Spanish law limits it to 3). Therefore, the
selection of the most viable embryos is a critical step to optimize the probability of
pregnancy.

Embryo selection is a complex and partially subjective task. The evaluation
of embryos is based mainly on their morphological features. Initially, the lack of
consensus in this assessment made it impossible to compare results across centres
(Cuevas-Sáiz et al., 2018). A unified criteria was created to address this problem: the
ASEBIR protocol (Ardoy and Calderon, 2008). This method classifies embryos into
a categorical scale (A,B,C,D) using morphological criteria.

In recent years, machine learning techniques have been used to assist clinicians
in embryo selection and pregnancy prediction (Corani et al., 2013; Guérif et al., 2007;
Hernández-González et al., 2018; Kragh et al., 2019). Most of them rely on super-
vised classification, meaning that only the embryos whose outcome is known (all
embryos in the cycles were implanted or none were) are used for training. However,
novel methods (Hernández-González et al., 2018) try to benefit from cycles with par-
tial implantation (not all the transferred embryos were implanted).

In this work we consider the model proposed by Valls Murcia (2021), which ex-
pands on the idea of using partial implantation. The presented probabilistic graph-
ical model works under the assumption of independence between embryos and
cycles, and accounts for a third source of uncertainty corresponding to unknown
factors. An EM algorithm is used to learn the hyperparameters in the context of
partially observed data and latent variables.
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Our main goal is to perform a thorough experimental validation of the model
using real data. In our experimental setting, we compare our model with a set of
alternative baseline models which were created in an incremental way in order to
test the different properties of the model. A special part of our attention is devoted to
the ASEBIR score and its relationships with our model and the alternative baselines.
This quality grade is given as a feature in the dataset and we test whether our model
is able to learn from the available data or just relies on this key feature.

The performance of the models is tested using suitable metrics, which is a non-
trivial task because of the partially observed nature of the problem. We use measures
that work in different evaluation settings and that may assess different benefits of
the model. In particular, AUC-ROC is evaluated using only embryos with known
outcome, which provides a measure of the predictive power of the model for these
specific cases. We also compute the negative log-likelihood which is appropriate to
consider partially implanted cycles. All the code used in this project can be found in
a GitHub repository.

The document is organized as follows. Next, we present the state of the art. In
Chapter 2 we describe the dataset of our case study. In Chapter 3, the model is
presented as well as the learning algorithm. In Chapter 4 the experimental setup is
explained, introducing the different probabilistic classifiers, the baseline methods to
compare against and the used metrics. Then, their results are shown and discussed
in Chapter 5. Finally, in Chapter 6 conclusions are drawn and a few open lines for
future work are presented.

1.2 State of the art

ART techniques and, in particular, IVF treatments present complex processes in-
volving a large number of variables, providing an ideal context for the application
of machine learning and artificial intelligence techniques. Since the popularization
of infertility treatments, there have been many approaches to the problem of pre-
dicting the outcomes of the procedures and the selection of the most promising
embryos (Siristatidis et al., 2011; Fernandez et al., 2020). The field has advanced
in parallel to the methods and computational innovations: from classical statistical
techniques to more complex ML techniques such as Bayesian Networks (Morales et
al., 2008; Corani et al., 2013; Hernández-González et al., 2018), Support Vector Ma-
chines (Uyar, Bener, and Ciray, 2014) and recently deep learning methods (Kragh
et al., 2019).

The traditional approach to predict implantation uses morphological character-
istics of embryos and clinical information about the treatment, female patient and
male patient. Many techniques have been used to model this data and improve
success rates. In Morales et al. (2008) embryo selection is addressed using different
Bayesian classifiers with diverse subsets of variables. They find that the most signif-
icant subset of variables is indeed the one used by embryologists in normal practice.

Most of the techniques applied to ART use supervised classification, where the
models learn from previous labeled examples. However, current medical techniques
are able to know the number of embryos predicted in a cycle, not their identity. This
presents a problem for the usual supervised framework. In Morales et al. (2008) this
issue is addressed joining all embryos in a cycle as a single instance and dealing
with the problem at a batch level. However, the corresponding classes are just 1 or
0 depending on whether there was an implantation on the cycle. Much information
is lost regarding the number of embryos implanted. In other cases the embryos with

https://github.com/adriantorres7/PFM-PGM_for_IVF
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unknown outcome are completely disregarded (Debón et al., 2013; Racowsky et al.,
2009; Kragh et al., 2019).

In Hernández-González et al. (2018) a set of Bayesian Networks is proposed as
probabilistic classifiers taking full advantage of the weakly supervised data. The
models learn not only from the embryos with known outcome but also from those
in partially implanted cycles through their label proportions.

Another widespread approach is the embryo-uterine model (EU), introduced by
Speirs et al. (1983) and later extended by Zhou and Weinberg (1998), which assumes
that, for a pregnancy to happen both a receptive uterus and viable embryo are neces-
sary. This model is formed by two separate components (embryo [E] and uterus [U])
and the predicted probability of implantation is the product of both outputs. More-
over, the model is also compatible with multiple transferred embryos, assuming in-
dependence between them. However, this approach faces once again the problem of
partial observability. In this context even for cases where no embryo implanted, we
have unknown latent variables. If that is the case, we do not known if the embryos
were not viable, if the uterus was not receptive or both. In Roberts (2007) this is
addressed via the Expectation-Maximization (EM) algorithm. In Corani et al. (2013)
a Bayesian network is trained with an averaging approach as an alternative to MAP
estimation. In this case the set of variables used for both embryos and cycles is very
reduced.

In Valls Murcia (2021). an extended probabilistic graphical model is presented.
This model also deals with cycles with partial implantation, under the assumption
of independence between embryos and cycles. Moreover it takes into account a third
source of uncertainty corresponding to external or unknown factors. To deal with
the appearance of latent variables, it employs an EM algorithm as learning method.

The other completely different approach to the problem consists in obtaining
the embryo characteristics directly from images. In Patrizi et al. (2004) a pattern
recognition algorithm is presented which is able to classify embryos into a number
of classes. This procedure was recognized (Manna et al., 2004) to obtain better results
than the judgement of experts.

Recently, the advance of computational processing has enabled Deep Learning
techniques, which are able to explore complex nonlinear patterns and extract high-
level features, hence its importance in image analysis. In particular, convolutional
neural networks have been used in ART, analyzing not only static but time-lapse
imaging. In Kragh et al. (2019) a deep learning method is proposed which is able to
predict inner cell mass (ICM) and trophectoderm grades (TE) with a convolutional
neural network. Moreover a recurrent neural network is applied on top of that to ac-
count for the temporal information provided by the multiple frames obtained during
the whole process in which embryos are cultured.
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Chapter 2

Data

The database, originally studied in Hernández-González et al. (2018), was collected
by the Unit of Assisted Reproduction of the Hospital Donostia (Spain) throughout
18 months (January 2013 - July 2014). It contains 604 cycles of an ART treatment and
3125 associated embryos. Each cycle has a certain number of embryos associated,
only some of which were actually transferred (see Figure 2.1). Cycles are described
by 25 features related to the female patient, the sperm donor, the stimulation pro-
cedure and summary attributes about associated embryos. Embryos are described
by 20 features, out of which 13 summaryze different morphological characteristics of
different stages of development (up to 48 hours after fertilization, when transference
was carried out).

2.1 Data Exploration

The main problem when dealing with real data from ART is that we face partially
observed data. Since we are not able to know the identity of the implanted embryos
in multiple transfers, we do not know their actual outcome; in many cases we only
know the proportion of embryos implanted in the corresponding cycle.

Out of the 604 cycles, 192 resulted in a pregnancy with 253 embryos implanted.
Of these successful cycles, in 57 of them all the transferred embryos were implanted
(108 embryos). In total, the outcome of 947 embryos is known (all embryos im-
planted in a cycle or none), for 307 we have only the label proportions (in cycles
with not all embryos implanted), and for the rest, 1871 embryos, we do not have any
information (not transferred embryos). These counts can be seen in Figure 2.2.

In this work we devote a large portion of our attention to the grade given by the
ASEBIR protocol to each embryo and how the models interact with it. This grading

FIGURE 2.1: Distribution of cycles depending on the number of asso-
ciated embryos (left) and transferred embryos (right).
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FIGURE 2.2: Number of cycles depending on their outcome. Simi-
larly, for embryos: implanted, transferred but unknown (in partially

implanted cycle), not implanted or not transferred.

system assigns to each embryo a category based on its morphological characteristics.
The grading scale has four different categories ranging from A (the most promising
embryos) to D (the embryos with the poorest quality). Figure 2.3 shows that this
quality score is a decisive factor in the selection process performed by embryologists.

FIGURE 2.3: Number of embryos transferred or not for each ASEBIR
grade.

Ideally, there should be a clear difference in the implantation rates between the
different graded embryos. Naturally, this data is only available for transferred em-
bryos and, as it is intended, there are many more good quality embryos transferred
than those of poor quality. To provide a clear comparison between the different
classes we display in Figure 2.4 the fraction of transferred embryos of each quality
that had each cycle outcome: fully implanted, partially implanted (we do not know
if the considered embryo was indeed implanted) and not implanted. The implan-
tation rates are also shown in Table 2.1 to have a clearer representation of the slight
differences.

The most noticeable feature of the implantation rates is the fact that none of the
D quality embryos were unequivocally implanted, although some could have been
in partially implanted cycles. Moreover, the proportion of embryos not implanted is
considerably higher than for better quality scores. This fact, along with the high pro-
portion of implanted embryos with A quality, are positive indicators regarding the
effectiveness of the ASEBIR protocol. Lastly, there does not seem to be a significant
improvement in implantation rates from C to B quality embryos.
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FIGURE 2.4: Fraction of transferred embryos with each outcome for
each ASEBIR score.

ASEBIR Score Implanted Partial Not Implanted
A 0.12 0.25 0.63
B 0.06 0.26 0.68
C 0.08 0.23 0.69
D 0.00 0.22 0.78

TABLE 2.1: Fraction of transferred embryos with each outcome for
each ASEBIR score.

2.2 Features and preprocessing

The full set of collected features for each ART cycle is shown in Figure 2.2. These
features describe characteristics of different components of the cycle: the female pa-
tient, the male patient and the stimulation procedure. Moreover, a general summary
of the associated embryos is provided.

Similarly, Figure 2.3 shows the features collected for each individual embryo.
They are mainly morphological characteristics at different stages of embryo devel-
opment. The outcome of the embryo is described by three variables. Transfer repre-
sents whether the embryo was selected to transfer. Vitrificado represents whether the
embryo was frozen because of a surplus of embryos in the cycle. If the embryo was
indeed transferred then implantation is partially encoded in the TasaExito variable
from its associated cycle. Only where this variable is 0 (no embryos implanted in
the cycle) or 1 (all embryos implanted) we know unequivocally the outcome of the
embryo. This is due to the aforementioned inability to identify implanted embryos.

The first step in the preprocessing of the data was to correct some mistakes in
the summary of the embryos of certain cycles. Some cycles displayed a number of
associated or transferred embryos that did not coincide with the true values.

Both datasets have many categorical features alongside numerical ones. Some
probabilistic classifiers are able to work directly with heterogeneous data but we
want to provide a standardized dataset so all methods described in the experimental
setup (Chapter 4) work under the same conditions. Therefore, all binary categori-
cal variables are transformed into numerical features. Then, for all multi-categorical
variables we use a one-hot encoding strategy, creating new variables for each possi-
ble category.

To deal with the relation between cycles and embryos we created general vari-
ables that record which embryos belong to each cycle and which were transferred.
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TABLE 2.2: Features collected for each ART cycle.

Variable Possible values Description

Codigo Numeric Identifier of the cycle
TEsteril Numeric Time since infertility was detected
Indicac endometriosis, fracasoia,

tubarico, masculino,
mixto, desconocido

Indication of the cycle

Features related to female patient

Edad Numeric Age
IMC Numeric Body mass index
EmbPrev No, Yes Has she ever got pregnant?
AboPrev No, Yes Has she ever aborted?
FSH Numeric Quantity of follicle-stimulating hormone
CiclosPrevios Numeric Number of previously undergone cycles
AMH Numeric Quantity of anti-mullerian hormone
folAntral Numeric Nomber of antral follicles
E2 Numeric Quantity of estradiol
P4 Numeric Quantity of progesterone
lEnd Numeric Endometrial thickness

Features related to male patient

caSemen A, N, O, OA, OAT Quality of the semen
REM Numeric Total pregressive sperm recovery

Features related to stimulation

Protocol PC, PL Stimulation protocol
Estimul FSH+Lhrec, FSHrec,

FSHrec+hMG, FSHur,
FSHur+hMG, hMG

Stimulation treatment

dEst Numeric Number of days of stimulation
unidFSH Numeric Units of FSH
unidLH Numeric Units of LH

Summary of embryos

nEmbObten Numeric Number of embryos
TasaFertil Numeric nEmbObten /

Number of mature oocytes (MII state)
nEmbTrans Numeric Number of transferred embryos

Outcome

TasaExito Numeric
Number of implanted embryos/

nEmbTrans
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TABLE 2.3: Features collected for each individual embryo.

Variable Possible values Description

CodigoCiclo Numeric Identifier of the cycle
CodigoOvoc Numeric Identifier of the embryo
Tecnica IVF, ICSI Fertilization technique

Features related to oocytes

Vac No, Few, Many Presence of vacuoles
REL No, Yes Presence of smooth endoplasmic

reticulum clusters
EPV Normal, Augmented Description of the perivitelline space
CP Normal, Abnormal Description of the first polar body
PN Numeric Tesarik and Greco’s pronuclear grade

Features at D+1

CP.1 Numeric Number of polar bodies
Z Z1, Z2, Z3, Z4 Scott’s pronuclear grade

Features at D+2

nCel+2 Numeric Number of cells
frag+2 Numeric Percentage of cell fragmentation
simet+2 No, Yes Are the blastomeres symmetric?
ZP+2 Normal, Abnormal Zona pellucida
vac+2 No, Few, Many Presence of vacuoles
multiNuc+2 No, Yes Presence of multi-nucleation in a cell
CALIDAD+2 A, B, C, D ASEBIR quality grade

Outcome

Transfer No, Yes Embryo selected for transference
Vitrificado No, Surplus Surplus’ embryos to froze
TasaExito Numeric TasaExito of the associated cycle

Moreover, they also encode implantation information. These variables are only used
for internal work when creating the model and executing the learning algorithm. Of
course, they are not actually provided to the probabilistic classifiers.

Then we can remove all variables from the datasets that record either identifiers
or outcomes. In the cycles dataset we also remove the nEmbTrans variable (because
it is already encoded in the internal variables) and the AMH variable (because it has
many missing values).

After all this process we are left with 36 features for cycles and 25 for embryos.
Both datasets are then standardized (centered and scaled to unit variance) and ready
to be fed to the probabilistic classifiers.
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Chapter 3

Method

In this work we employ a probabilistic graphical model originally presented in Valls
Murcia (2021) that uses the available information from both cycles and individual
embryos, and considers a third source of uncertainty related with unknown fac-
tors (Coughlan et al., 2015).

3.1 Introduction to PGM

Probabilistic Graphical Models (PGM) is a framework that provides structure to rep-
resent and manipulate complex joint distributions in a compact way. General prob-
abilistic models may face complex systems where the number of random variables
is too large to compute a joint distribution if no assumption is made (the complexity
grows exponentially with the number of variables). PGM combines the knowledge
from probability theory and graph theory. They use a graph-based representation as
the basic structure to encode all the probability distributions.

This type of structure allows for an explicit representation of the domain knowl-
edge to be directly applied on the model. The framework provides a really efficient
way to perform inference. Many probability based operations (marginalization, con-
ditioning, belief propagation, etc.) are prepared to work directly on the graph struc-
ture and are generally much faster than manipulating the joint distribution directly.
Regarding the learning process, PGMs are able to use the provided data to not only
learn the parameters of the distributions but also construct the model according to
the connections found between variables. It is also relevant to our purpose to point
out that often the learning algorithms use inference as a recurrent part of their pro-
cess (e.g., EM algorithm).

There are two main types of structures to represent the probability distribution:

• Directed acyclic graphs (DAG): Bayesian Networks. The graph represents the
set of conditional independence assumptions (edges) over the several random
variables (nodes). The associated parameters are the conditional probability
distributions needed to obtain the joint distribution.

• Undirected graphs: Markov Networks. The graph provides a skeleton (based
on independence assumptions) for factorizing a distribution.

Each structure may be useful depending on the problem at hand. Markov Net-
works can be applied to express certain dependencies that Bayesian Networks can-
not. However Bayesian Networks are usually easier to interpret (because of direc-
tionality) and do not need to compute a normalization term.

In this work we focus on the models provided by Bayesian Network. Let us
define first the concept of DAG.
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Definition. Let V = {1, . . . , n} be a set of vertices and E = {(u, v) : u, v ∈ V, u 6= v}
a set of edges between those vertices. A directed acyclic graph (DAG) G is a pair
(V, E), where there are no directed cycles. This is, there are no directed sequences of
edges where the starting vertex of the first edge equals the ending vertex of its last
edge.

Then a Bayesian Network is defined in the following way.

Definition. A Bayesian Network is formed by a DAG G = (V, E) and a set of pa-
rameters Θ = (θ1, . . . , θn). Each vertex i ∈ V is associated with a random variable Xi
and its corresponding conditional probability distribution is p(xi|pai; θi), where pai
is the set of vertices with an edge towards Xi.

The complete joint probability distribution of a Bayesian Network M is the prod-
uct of the conditional probabilities given by the graph, which in fact is just a simpli-
fication of the chain rule:

pM(x1, . . . , xn) =
n

∏
i=1

p(xi|pai; θi) (3.1)

Example. Consider the DAG in Figure 3.1. The corresponding Bayesian Network’s
decomposition is:

pM(x) = p(x1)p(x2|x1)p(x3|x1)p(x4|x2, x3)p(x5|x2)p(x6|x4, x5) (3.2)

Note that this expression is much simpler than the one obtained using directly the
chain rule on the joint probability distribution. This DAG encodes many conditional
independence assumptions, such as X6 ⊥⊥ X2 | X4, X5 or X3 ⊥⊥ X2 | X1.

1 2

3 4 6

5

FIGURE 3.1: Representation of a DAG with 6 nodes.

In Bayesian Networks, when a variable or group of variables repeat several times
a plate model representation is often used to simplify the graphs. That is, if there is a
group of variables that repeat together sharing the same set of attributes and under
the same probabilistic model for each repetition, then we use a plate to represent
them altogether. This is particularly useful in problems with recurring structures
such as temporal scenarios or language models (e.g, Latent Dirichlet Allocation).

Example. Consider a class with N students and S subjects. Each subject has a spe-
cific difficulty Ds and each student has a specific intelligence In. Both difficulty of the
subject and intelligence determine the grade Gsn of the corresponding student. We
assume that the intelligence is general and is independent from the subject. Then,
the Bayesian Network is represented by the plate model in Figure 3.2.

3.2 General Probabilistic Model

The main assumption of the model is that the probability of an embryo being will-
ing to implant given its own features is independent of the corresponding cycle’s
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Ds

Gsn

In

n ∈ N
s ∈ S

FIGURE 3.2: Example of a plate model assuming general intelligence.

features. Similarly, the probability of a cycle being willing to let embryos implant
given its own features is independent of the embryos’ individual features. Hence
embryos and cycles are modeled independently. Moreover, the main novelty is that
our model accounts for unknown factors that affect ART success (Coughlan et al.,
2015) which cannot be explained by the available data. This third source of possible
error is included in the model as a Bernoulli distribution with parameter θ1. The
probability of implantation of a high-quality embryo within a cycle willing to let
embryos implant is θ1. If the available information were capable of perfectly pre-
dicting the outcome of the process (i.e., no unknown factors), this parameter would
be θ1 = 1. If one of the components (embryo or cycle) is not deemed as good enough
to allow implantation then the probability of implantation is directly 0.

Let xc
e be the characteristic features of embryo e included in cycle c. Denote by wc

e
a boolean random variable that represents whether the embryo is willing to implant.
This variable wc

e is modeled by the probability distribution

p(wc
e | xc

e ; α), (3.3)

where α is the hyperparameter of such distribution.
Similarly, let vc be the features of cycle c. Denote by rc a boolean random variable

that represents whether cycle c is willing to let embryos implant, modeled by the
probability distribution

p(rc | vc; β), (3.4)

where β is the hyperparameter of such distribution. Both wc
e and rc are modeled

using probabilistic classifiers. Then we use the output predicted probabilities for
each class as p(wc

e | xc
e ; α) and p(rc | vc; β).

Let sc
e be an observed variable that tells whether embryo e is transferred in cycle c.

Denote by ic
e a boolean random variable that represents whether embryo e implants

in cycle c, modeled by a Bernoulli distribution

ic
e ∼ Bernoulli(θwc

e ·rc·sc
e), (3.5)

given wc
e, rc and sc

e. That is, θwc
e ·rc·sc

e is only θ1 when all three variables are positive.
Finally, let yc be an observed variable that tells the number of embryos implanted

in a cycle. It is just the sum of the ic
e variables modeling embryo implantation (deter-

ministic),
yc = ∑

e∈Ec

ic
e, (3.6)

where Ec is the set of embryos associated to cycle c.
Figure 3.3 shows the complete graphical representation of the model. The shad-

owed variables are the observed ones (features, embryo selection and final number
of implantations per cycle), and θ, α and β are the hyperparameters of the three prob-
ability distributions that we are modeling. The other three white nodes wc

e, ic
e and
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wc
e ic

e rc

xc
e sc

e vcα

β

θ

yc

e ∈ Ec

c ∈ C

FIGURE 3.3: Graphical description of the proposed model. Shadowed
nodes represent observed variables. Double line denotes a determin-

istic variable.

rc represent latent variables, which generally need to be inferred. In some cases the
value of yc is enough to deduce the value of these variables. For example, if yc > 0
then we know that this cycle is willing to let embryos implant (rc = 1). However, if
yc = 0 we do not know which was the actual cause of failure: the embryo, the cycle
or an unknown factor. The complete joint probability is

p(x, w, v, r, s, i, y; α, β, θ) = p(w|x; α)p(x)p(r|v; β)p(v)p(s)p(y|i)p(i|w, r, s; θ)
(3.7)

Since the model assumes independence among instances given the characteris-
tics of the cycles and embryos we can decompose the probability even further:

p(w|x, α) =
B

∏
c=1

∏
e∈Ec

p(wc
e | xc

e ; α) (3.8)

p(r|v, β) =
B

∏
c=1

p(rc | vc; β), (3.9)

where B is the total number of cycles.

The relation between y and i is actually deterministic. We can reduce the proba-
bilities to only terms where i is compatible with the selections {sc

e} and the known
outcomes {yc}. This set of vectors is denoted by Is,y. E.g., in a cycle with 4 embryos,
where only the first and third are selected and only one of them was implanted, the
possible vectors are [1, 0, 0, 0] and [0, 0, 1, 0]. If i /∈ Is,y then p(y|i)p(i|w, r, s; θ) = 0.

The goal of the learning algorithm is to estimate the set of hyperparameters pa-
rameters θ, α and β that maximize the conditional probability:

p(y|x, v, s; α, β, θ) = ∑
r

p(r|v; β) ∑
ĭ∈Is,y

∑
w

p(ĭ|w, r, s; θ)p(w|x; α) (3.10)

3.2.1 An EM algorithm to learn the parameters of our model

In the presented model there are latent variables (wc
e, ic

e and rc) whose value is gen-
erally unknown. We use an Expectation-Maximization (EM) algorithm (Dempster,
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Laird, and Rubin, 1977) to learn in this scenario, combining the completion (expec-
tation) of these latent variables with the estimation of the hyperparameters θ, α and
β maximizing the log-likelihood.

In a general setting, EM algorithms aim to find maximum likelihood estimations
of parameters when unobserved variables are present. Let X be the observed vari-
ables in the model and Z the unobserved latent ones. The complete log-likelihood
is l(θ; X, Z), where θ are the parameters which we want to estimate maximizing the
likelihood.

The E-step consists in computing the conditional expected value of the log-likelihood
given the observed variables and the current estimations of the parameters θt:

Q(θ; θt) :=EZ∼p(z|X;θt)[l(θ; X, Z)]

=
∫

l(θ; X, z)p(z|X; θt)dz,
(3.11)

where p(z|X; θt) is the conditional probability distribution of the unobserved vari-
ables Z conditioned to the observed variables X and the current fit of the parameters
θt.

Then the M-step consists in finding the parameters θ that maximize the condi-
tional expectation found in the E-step. This is,

θt+1 := argmaxθ Q(θ; θt). (3.12)

In our case, the latent variables are r, w and i. The observed variables are y (num-
ber of embryos implanted in each cycle), x, v and s. Then the conditional probability
of the latent variables given the observed variables and the hyperparameters is

p(r, w, i|y, x, v, s; α, β, θ) =
p(y|i)p(r, w, i|x, v, s; α, β, θ)

p(y|x, v, s; α, β, θ)
(3.13)

where the denominator is given by Equation 3.10 and the numerator is equal to

p(y|i)p(i|w, r, s; θ)p(w|x; α)p(r|v; β) (3.14)

With this equation we compute the weights corresponding to each cycle c, em-
bryo e and configuration i that define the conditional distribution. Note that with
Equations 3.8 and 3.9 we can decompose the probability into individual instances
easily. For a given cycle c we have:

p(yc|ic)p(ic|wc, rc, sc; θ)p(wc|xc; α)p(rc|vc; β) (3.15)

For each cycle c we consider a pair of weights q(rc = r) associated to the two
possible values of rc, r ∈ {0, 1}. These weights are computed as the likelihood of
obtaining rc = r taking into account the whole model, not just the features of the
cycle. This is, we use Equation 3.15 and marginalize out the latent variables w and
i. Since the denominator does not depend on any latent variable we can use just the
numerator and then normalize. We obtain the following expression:

q(rc = r) ∝
(

∑
ic∈Isc

: ,yc

∏
e

∑
wc

e

p(ic
e |wc

e, rc = r, sc
e; θ)p(wc

e|xc
e ; α)

)
p(rc = r|vc; β). (3.16)

Similarly, for each embryo e in the cycle we compute the weights corresponding
to the two values of wc

e, w ∈ {0, 1}. In this case we marginalize out rc, wc
e′ for any
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e′ 6= e and i.

q(wc
e = w) ∝ ∑

rc

(
∑

ic∈Isc
: ,yc

p(ic
e |w, rc, sc

e; θ)p(w|xc
e ; α)·

∏
e′ 6=e

∑
wc

e′

p(ic
e′ |wc

e′ , rc, sc
e′ ; θ)p(wc

e′ |xc
e′ ; α)

)
p(rc|vc; β) (3.17)

Finally, the weights associated to each possible combination (i ∈ Isc
: ,yc ) for ic are:

q(ic = i) ∝ ∑
rc

(
∏

e
∑
wc

e

p(ie|wc
e, rc, sc

e; θ)p(wc
e|xc

e ; α)
)

p(rc|vc; β) (3.18)

Note that if i /∈ Isc
: ,yc then p(yc|i)p(i|wc, rc, sc; θ) = 0 and the corresponding weight

would be zero too.
Then the M-step consists in finding:

argmaxα,β,θ E(w,r,i)∼q log p(r, w, i, y|x, v, s; α, β, θ), (3.19)

where q denotes the conditional probability described by the weights defined in
Equations 3.16, 3.17 and 3.18. This conditional expectation has the following form:

∑
c

∑
ic′∈Isc

: ,yc

q(ic′)

[
∑
rc′

q(rc′)
[

log p(rc′ |vc; β)+

∑
e

∑
wc

e′

q(wc
e′)
[

log p(ic
e′ |wc

e′ , rc′ , sc
e; θ) + log p(wc

e′ |xc
e ; α)

]]]
.

(3.20)

Our algorithm starts with the initialization, where the weights are randomly as-
signed and normalized (to sum up to 1). If the real value of the variable is known,
these values are fixed (e.g., if yc > 0 then q(rc = 1) = 1 and q(rc = 0) = 0). Then, it
repeats iteratively:

Expectation: The unfixed weights are updated with Equations 3.16, 3.17 and 3.18,
using the current fit of the model (α̂, β̂, θ̂1).

Maximization: Hyperparameters (α, β, θ1) are re-estimated For α and β, we re-train
the probabilistic classifiers with the new weights obtained from the previous
E-step. For θ1, we maximize the conditional expectation of the log-likelihood
given in Equation 3.19. The resulting maximum likelihood estimator is:

θ̂1 =
∑c ∑ic′∈Isc

: ,yc
∑e q(ic′)q(rc = 1)q(wc

e = 1)ic
e′

∑c ∑ic′∈Isc
: ,yc

∑e q(ic′)q(rc = 1)q(wc
e = 1)

(3.21)

The method iterates until the stopping condition is met (maximum number of
iterations or convergence of weights). It is run multiple (10) times with different
initializations to mitigate the local-maximum problem of EM algorithms.
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Chapter 4

Experimental setup

The main goal of this project is to analyze the general probabilistic model proposed
in Chapter 3 and compare the performance with different probabilistic classifiers. In
particular, we study the effect in our model of the ASEBIR quality score (Ardoy and
Calderon, 2008), and whether both our model and this score agree on the embryo
selection. Moreover we use a set of alternative simpler models as a basic reference
point to compare against.

In this chapter we explain all the details regarding the experimental setup used
in our work. Special attention is given to the different probabilistic classifiers used
in the models, the set of baseline models to compare and the evaluation procedure.

4.1 Probabilistic classifiers

Our model uses probabilistic classifiers to predict the probability that an embryo
is willing to implant, p(w|x; α), and that a cycle is willing to let embryos implant,
p(r|v; β). Different classifiers may perform differently depending on the context. In
order to make a fair comparison between the various methods, we use four different
probabilistic classifiers:

• Logistic Regression (LR). Linear model that is based on maximum likelihood
principles and whose predicted probabilities are modeled by a logistic func-
tion. Let (x, y) be a pair of features and label, then the predicted probability
is:

p(y = 1|x) = 1
1 + e−(θ0+θT x)

, (4.1)

where θ0 and the vector θ are the parameters to estimate. The fitting process
is performed maximizing the likelihood of the model for a training set. It is
usual to apply regularization procedures, in particular we use an L2 loss with
the strength parameter C, which results in the following optimization function:

minθ0,θ
1
2

θTθ + C ∑
i

log (1 + e(−1)yi (θ0+θT xi)). (4.2)

• Random Forest (RF200). Decisions Trees are a non-parametric supervised learn-
ing strategy that predict the value of a target variable learning simple decision
rules on the input features. The basic idea is to partition the space into patches
(using axis-orthogonal hyperplanes) and fit the model in those patches. This
method is simple and easy to interpret but it is also prone to overfitting and
very non-robust. Random Forest is an ensemble learning technique that cre-
ates many decision trees for different samples from the training set drawn with
replacement (bootstrap samples). Furthermore, in each split only a random
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subset of features is selected. Finally, the trees are aggregated and the predic-
tions decided by majority voting. The two sources of randomness (bagging
and feature selection) helps to decrease variance and overfitting and improve
diversity.

• Extra-trees classifier (ETREES). Extremely Randomized trees add a further step
of randomness with respect to Random Forests. As in RF, ETREES selects only
a subset of candidate features. However, in the split for each candidate feature
it does not only select the most discriminant threshold. Instead it draws ran-
dom thresholds from the empirical distribution of the feature in training and
the split with highest score is chosen.

• Gradient Boosting (GBOOST). Boosting techniques are also ensemble algo-
rithms that use weak learners (such as shallow decision trees) to create stronger
and more robust ones. Instead of optimizing all the learners at each step it uses
a stage-wise approximation: the model up to current time is fixed and a new
learner is added and optimized with respect to the data and the current model.
Gradient Boosting allows for the optimization of any arbitrarily differentiable
loss function. In particular we use a log loss as optimization function.

4.2 Baseline methods

To compare with our complete probabilistic model, we consider four different alter-
native methods. All of them use the probabilistic classifiers described in the previ-
ous section as direct predictors of whether an embryo will implant in the given cycle.
The differences between them arise from the treatment of the unlabeled samples and
the use or not of the cycles’ features. These methods are designed in an incremental
way, starting from a simple model where all unknown outcomes are fixed as nega-
tive to a more sophisticated one where the proportion of partially implanted cycles
are used to infer information in the EM algorithm.

Method Features EM algorithm
Baseline_0 Embryo No
Baseline_cycles Embryo + Cycle No
Naive EM Embryo Yes
EM w LP Embryo Yes (with label proportions)

4.2.1 Baseline_0 and Baseline_cycles

The first baseline method is the simplest both in terms of features and learning al-
gorithm. Baseline_0 uses a probabilistic classifier to predict implantation just from
the features of the embryos. This is in fact very similar to the embryo module of
the general probabilistic model, which predicts the probability of the embryo being
willing to implant: p(wc

e | xc
e ; α). However, in this case the model predicts directly

implantation since we use the implantation labels to train the model. Therefore we
will compare it with the final outcome of the complete probabilistic model.

Similarly, the Baseline_cycles method uses a probabilistic classifier to predict im-
plantation based on both the embryos and cycles features. Both sets of features are
concatenated and fed to the model directly, hence no independence assumption is
made in advance (unlike in our general probabilistic model). Nevertheless, note that
some classifiers may assume independence by its own, such as Logistic Regression.
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Both baseline models assume that all embryos with unknown label (those that
were not transferred or whose cycle presented only partial implantation) belong to
the negative class. Figure 4.1 shows the resulting partition of embryos regarding
their label.

FIGURE 4.1: Labels of all the embryos in the dataset for the Baseline
0 and Baseline Cycles models.

With this assumption we obtain an even more severe class imbalance, with only
a minute portion of embryos being labeled as positive (implanted). This could cause
the model to predict a quite low general probability of implantation.

4.2.2 Naive EM

The second step in the incremental building of the methods is to incorporate an
EM algorithm to account for the unlabeled or partially labeled embryos. In this
model we use a simple EM algorithm where all embryos with unknown outcome
are used in a semi-supervised procedure independently if they were transferred or
not (Figure 4.2).

FIGURE 4.2: Labels of all the embryos in the dataset for the Naive EM
model. Label -1 accounts for all the embryos with unknown outcome.

Let Ce be the random variable describing whether the embryo implants or not
(Ce = 1 or Ce = 0). Then we define a pair of weights for each embryo q(Ce =
d) corresponding to the two possible values. These weights are computed as the
conditional probability of obtaining Ce = d given the model and features: p(Ce =
d | xe; α), where xe are the features of the embryo and α is an hyperparameter. Then
the learning algorithm is initialized with random weights for the unknown labels
and the following two steps repeated iteratively:

Expectation: The unfixed weights are updated using the current fit of the model (α̂).

Maximization: The hyperparameter α is re-estimated retraining the classifier with
the new weights obtained in the Expectation step.

The main drawback of this model is that all embryos with unknown outcome
are treated equally. That is, embryos in partially implanted cycles are following the
same learning process as non-transferred embryos. In other words, we are not using
the whole information available.
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4.2.3 EM with label proportions

In this last baseline method we add the information of label proportions in partially
implanted cycles to the learning algorithm. Now the transferred embryos are con-
sidered in groups corresponding to each cycle. The number of implanted embryos is
known for all cycles. For fully implanted cycles and failed cycles, this strategy does
not add anything new since their associated embryos already knew their outcome.
However, for embryos in partially implanted cycles it provides relevant informa-
tion not considered before. Figure 4.3 shows how the embryo dataset is partitioned
depending on their label.

FIGURE 4.3: Labels of all the embryos in the dataset for the Naive EM
model. Label -1 accounts for unlabeled embryos (Naive EM). Label
-2 accounts for partially labeled embryos: only the label proportion is

known.

For the non-transferred embryos the learning strategy is the same as in the Naive
EM case. However, for the partially implanted embryos we compute the weights as
the conditional probability of each class (given the features, the number of embryos
implanted in the cycle and the hyperparameter). Let yc be the number of embryos
implanted on cycle c and ic the vector describing the combination of embryos im-
planted (ic = [0, 1, 0, 1] denotes that the second and fourth embryos implanted).
Then we have:

p(ic|x; α) = ∏
e∈Sc

p(Ce = ic
e |xe; α) (4.3)

where Sc is the set of embryos transferred in cycle c. Then the weights for an embryo
e ∈ Sc are computed as:

q(Ce = d) =
∑ic∈Iyc

p(ic|x; α)1[ic
e = d]

∑ic∈Iyc
p(ic|x; α)

(4.4)

where Iyc is the set of vectors compatible with the observed number of implanted
embryos. That is, the combinations of implanted embryos in the cycle that result in
yc implantations.

4.3 Evaluation

Because of the weakly supervised nature of the problem (Hernández-González, Inza,
and Lozano, 2016), the evaluation of the models is not trivial and needs to be prop-
erly addressed in order to make a fair comparison. For instance, a large fraction of
embryos in the dataset were not actually transferred; hence they are not labeled as
implanted or not. We use them for learning but they cannot be used to assess model
performance. Moreover, a part of the transferred embryos have no label: when only
some of the embryos in their cycle were implanted. However, for these, we do know
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the proportion of the embryos that were implanted. This information should be used
to take full advantage of the data.

Also the interpretation of the predictions needs proper consideration. For in-
stance, the full model gives the probability of implantation of an embryo in a certain
cycle assuming independence between embryo and cycle. In fact, we can compute
the probability of both embryos and cycles of being appropriate for ART directly
with the respective probability classifier. This means that, if we only want to rank
a set of embryos according to their quality, we could use just the embryo classifier
trained within the whole model.

To test the performance of the model and obtain relevant metrics and probability
densities, we use 5-fold cross validation. The resulting measures are averaged to
obtain a final evaluation metric. Most of the metrics used here need the probability
of implantation of an embryo in a cycle, which is given by:

p(ic
e = 1|xc

e , sc
e, vc; α, β, θ) = p(ic

e = 1|wc
e = 1, sc

e, rc = 1; θ)p(wc
e = 1|xc

e ; α)p(rc = 1|vc; β).
(4.5)

where p(ic
e = 1|wc

e = 1, sc
e, rc = 1; θ) = θ1 · sc

e. Remember that if sc
e = 0, p(ic

e =
1|wc

e, sc
e = 0, rc; θ) = 0. This is the reason why the evaluation is only performed with

embryos which were transferred (sc
e = 1). The other two terms in Eq. 4.5 are given

by the probabilistic classifiers.

4.3.1 Performance metrics

Performance is assessed in terms of different metrics. Most of them are standard
measures but require a particular interpretation of the results, since they are used in
different context.

AUC-ROC

To test the ability to predict embryo implantation, we use only the embryos whose
fate is known (i.e., those belonging to completely implanted cycles or failed cycles)
and measure the AUC-ROC (Fawcett, 2006).

A Receiver Operating Characteristic (ROC) curve plots the true positive rate
(TPR) against the false positive rate (FPR). It depicts the relative tradeoffs between
TPR and FPR as the discrimination threshold is varied. A classifier with a very low
threshold will predict as positive most of the instances, which results in a high TPR
but also a high FPR. The ROC curve shows these different pairs of (FPR,TPR), known
as operating points.

The advantage of ROC curves is that it gives a representation of the predictive
performance of the classifiers independently of the threshold. From these curves
we can obtain useful metrics such as the Area Under the Curve (AUC). This metric
summarizes well the ROC behaviour since it accounts for the intuitive fact that for a
given FPR we want the TPR to be as high as possible (higher curve). Moreover it has
an important statistical property: the AUC score is equal to the probability that the
classifier will rank a randomly chosen positive instance higher than a negative one.
It is indeed a value between 0 and 1, and a higher score suggests a better classifier.
Note that no realistic classifier should obtain a value less than 0.5 since this is the
score obtained by a completely random classifier which is not able to distinguish
positive and negative classes. This is represented by a diagonal line in the ROC
curve (Figure 4.4).
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FIGURE 4.4: Example of a ROC curve.

LP-loss

To account also for the partially implanted cycles, we use the label proportion loss
(LP-loss) and the negative log-likelihood. LP-loss measures how close the real and
predicted label proportions are. For each cycle, the difference between the number
of embryos predicted as implanted and the actual number of implanted embryos is
taken in absolute value. The LP loss is the mean value of these differences.

Let Nc be the number of transferred embryos in cycle c, and yc the number of
implanted ones. Then the LP-loss is

LP(Y; α, β, θ) = − 1
B ∑

c

|yc − ŷc|
Nc

, (4.6)

where ŷc is the number of implanted embryos predicted for cycle c and B the number
of cycles.

Negative log-likelihood

Similarly, we might want to consider how confident is the model in predicting each
of these labels. For that matter, we use the negative log-likelihood. As most of the
embryos do not have a true label to compare with, we compute this measure cycle
by cycle, calculating the likelihood of the real number of implanted embryos within
the learnt model.

Let Nc be the number of transferred embryos in cycle c, and yc the number of
implanted ones. The negative log-likelihood is

L(Y; α, β, θ) = − 1
B

B

∑
c=1

Nc

∑
j=0

1[yc = j] log p(yc), (4.7)

where p(yc), the probability of cycle c having yc implanted embryos, is,

p(yc) = ∑
ic∈Iyc

∏
e
[ic

e p(ic
e = 1) + (1− ic

e)p(ic
c = 0)] (4.8)

where p(ic) is given by Eq. 4.5 and Iyc consists of the possible joint assignment of
value (vector) to all the {ic

e}e∈Ec , as explained in the context of Eq. 3.10.
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Chapter 5

Results

In this chapter we show the results obtained for the different experiments performed:
with our complete probabilistic model and with the baseline models. The section is
divided in two main parts. In the first one (Section 5.1) we explore the results of the
main probabilistic model and give special attention to its relation with the ASEBIR
score. In particular we show the effect of including this score as a feature in the
model. Then the behaviour of the model is further analyzed with the help of the
predicted probability densities; we study the separation of the output depending
on three factors: implantation of the pair embryo-cycle, transfer of the embryo and
ASEBIR score of the embryo. In the second part (Section 5.2) we compare the results
of the probabilistic graphical model with the ones obtained for the baseline models.
Not only the performance of all models is addressed but also the aforementioned
predicted probability densities.

5.1 Probabilistic graphical model and effect of ASEBIR

A relevant point is whether our model agrees with the ASEBIR score. In our dataset,
we have this score as a feature, as well as all the factors used to compute it. To study
the agreement, we trained the model in two different ways: with and without this
quality score included as a feature of embryos.

In Table 5.1 we show the metrics obtained for each probabilistic classifier and for
both models (with and without ASEBIR score feature). Observe that there are no
significant differences between the two different models. The model seems not to be
directly using the feature as a discriminant for implantation. It must be gathering
that information from the other features in the dataset which are, in fact, the ones
used in their protocol (Ardoy and Calderon, 2008).

In terms of performance, GBOOST and RF seem to be the best according to AUC-
ROC and negative log-likelihood. ETREES and LR classifiers are both similar re-
garding AUC-ROC but their log-likelihood values are rather different. A critical
difference between these two measures is that they use a different set of embryos for
evaluation. AUC-ROC is calculated using only embryos whose outcome is known,
whereas log-likelihood uses all transferred embryos, evaluating cycle by cycle the
proportion of implanted embryos. Thus, ETREES perform relatively well in a pure
classification task (implantation or not), but it fails on estimating the probability of
more uncertain cases.

Table 5.2 shows the mean estimation of the parameter θ1 obtained with each clas-
sifier and model, over the different CV folds. The standard deviation is quite low for
all the classifiers, implying a consistent estimation. This parameter is the probability
that a good embryo will actually get implanted in a good cycle. It represents the
third source of failure for implantation of our model, and accounts for all unknown
factors.
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TABLE 5.1: Metrics and control measures obtained using 5-fold cross
validation

Model Classifier AUC lp_loss loglikelihood

Full Model

ETREES 0.64± 0.07 0.54± 0.05 1.45± 1.59
GBOOST 0.71± 0.04 0.72± 0.03 0.45± 0.05
LR 0.63± 0.08 0.60± 0.05 0.51± 0.10
RF 0.71± 0.05 0.80± 0.05 0.42± 0.07

Full Model
(Hidden quality)

ETREES 0.64± 0.05 0.54± 0.05 1.27± 1.57
GBOOST 0.73± 0.07 0.73± 0.07 0.43± 0.06
LR 0.62± 0.08 0.64± 0.07 0.52± 0.10
RF 0.71± 0.05 0.80± 0.05 0.42± 0.07

TABLE 5.2: Estimated parameter θ1 for the three different classifiers.

Model Classifier θ1 Model Classifier θ1

Full Model

ETREES 0.60± 0.04
Full Model
(Hidden quality)

ETREES 0.58± 0.04
GBOOST 0.49± 0.00 GBOOST 0.49± 0.01
LR 0.52± 0.01 LR 0.51± 0.00
RF 0.48± 0.01 RF 0.48± 0.01

For the GBOOST, LR and RF classifiers, the mean value of θ1 is close to 0.5. This
means that these models, even when the classifiers consider that both embryo and
cycle are promising, expect that only half of these pairs will succeed. The ETREES
classifier estimates a noticeably higher θ1 = 0.58. This might suggest that this model
has a higher confidence on the judgement of its embryo and cycle classifiers. Unfor-
tunately, this confidence does not translate into better results (see Table 5.1).

To fully grasp the behaviour of the models, we also analyze the different pre-
dicted probability densities output by them. Figure 5.1 displays the densities, sepa-
rated for successful and failed cycles, of (i) whether the embryo is willing to implant,
(ii) whether the cycle is willing to accept embryos, and (iii) whether the ART treat-
ment is leading to a pregnancy (whole model).

The ideal classifier would separate clearly the curves of each class for the third
case (right column). The results of all classifiers are quite similar: Although intersec-
tion between both densities is considerable, the mode of the density for successful
treatments (pregnancy) is clearly to the right regarding that of the failed treatments.
This means that, on average, the models predict the actual implanted embryos as more
likely to implant than the failed ones.

In the first column of Figure 5.1, the probability of deeming an embryo as willing
to implant is practically the same for successful and failed treatments. At a first sight,
one could think that embryos are not relevant to predict a pregnancy. Nevertheless,
it is noteworthy that the embryos employed in this study are only the ones that were
transferred. And, transferred embryos are usually the best embryos as selected by
the embryologists (see Figure 2.3), that is, all the embryos that we observed were
considered as good-quality ones by the specialists. Instead, most of the predictive
power seems to come from the cycle. In the middle column of Figure 5.1, it can be
observed that the classifier gives a higher probability of being a cycle willing to be
implanted to those treatments that induced a pregnancy. All this could mean that the
protocol followed by the embryologists performs well in selecting the best embryos based on
the morphological features. Our model is not able to further discriminate the embryos
based on this data (the same they used) alone.



Chapter 5. Results 23

FIGURE 5.1: Density of the predicted probabilities for an embryo to be
willing to implant, for a cycle to be willing to let embryos implant and
for the pair embryo-cycle to actually induce pregnancy. The figure
shows the different probability densities depending on the true out-
come of each embryo-cycle pair (induce pregnancy or not). Each row
corresponds to a different probabilistic classifier (ETREES, GBOOST,

LR and RF).

Figure 5.2 shows, in a similar way, the probability densities for each embryo-
cycle pair separating on whether the embryos were transferred. The left column in-
dicates that transferred embryos are predicted to have a higher probability of being
willing to implant. This means that the model agrees with the selection for trans-
fer. The middle column shows that in pairs where the embryo is not transferred
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the probability of the cycle being viable is slightly larger. It is important to note
that this probability is independent of the actual individual embryo; the probability
of a cycle being viable is the same for all embryos associated to it (transferred or
not). However, there is a bias inducing factor to consider. The number of embryos
created in a cycle is thought to be correlated with the fertility of the uterus: viable
cycles produce more embryos. The number of transferred embryos is similar for all
cycles but the number of not transferred ones is larger for those cycles with many
embryos. This means that there are more not transferred embryos corresponding to
fertile uterus, which results in the aforementioned bias. This also causes the right
column (probability of implantation) to be biased.

Likewise, Figure 5.3 displays different probability densities separating on the
ASEBIR score of the involved embryo. For this experiment, we hide the ASEBIR
score feature from the model. Under the independence hypothesis, the quality of
an embryo should not affect the probability that a cycle is in good conditions and,
for the most part of it, we observe that the embryo information has not leaked into
the cycle classifier. However, with ETREES there is a slight disparity in favor of
treatments using embryos of good quality.

Embryo quality has the highest impact on the probability of considering an em-
bryo as willing to implant. All classifiers separate quite well the best (A) and worst
(D) quality embryos. ETREES and GBOOST seem not to differentiate embryos of
medium quality (B and C) completely, while LR does separate them slightly. How-
ever, for the RF classifier the quality of the embryo does not seem to be a decisive
factor. We can see in this case that the probability of an embryo being good has a
strange two-peak relation with quality but it does not actually translate into a rele-
vant separation for the final prediction. For the other classifiers, the embryo quality
does translate well into the final prediction of implantation. Note that this does not
validate the model regarding implantation, but it implies that the model mostly agrees
with the ASEBIR score in the selection of the most promising embryos based on this set of
features.
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FIGURE 5.2: Density of the predicted probabilities for an embryo to be
willing to implant, for a cycle to be willing to let embryos implant and
for the pair embryo-cycle to actually implant. The figure shows the
different probability densities depending on whether the embryo was
transferred or not. Each row corresponds to a different probabilistic

classifier (ETREES, GBOOST, LR and RF).



Chapter 5. Results 26

FIGURE 5.3: Density of the predicted probabilities for an embryo to
be willing to implant, for a cycle to be willing to let embryos implant
and for the pair embryo-cycle to actually implant. The figure shows
the different probability densities depending on the ASEBIR quality
score given to the embryo (A, B, C or D). Each row corresponds to a

different probabilistic classifier (ETREES, GBOOST, LR and RF).
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5.2 Comparison with baseline methods

In this part we compare the performance of our full probabilistic model with the
baseline methods described in Section 4.2. Table 5.3 shows the metrics computed for
all methods with the different probabilistic classifiers. All the models were trained
without the ASEBIR score feature.

TABLE 5.3: Metrics obtained using 5-fold cross validation for the
probabilistic graphical model and the baseline models.

Method Classifier AUC lp_loss loglikelihood

Baseline_0

ETREES 0.64± 0.07 0.20± 0.05 ∞
GBOOST 0.62± 0.05 0.21± 0.05 0.67± 0.26
LR 0.58± 0.06 0.21± 0.05 0.63± 0.18
RF 0.61± 0.06 0.20± 0.05 0.62± 0.18

Baseline_cycles

ETREES 0.62± 0.05 0.20± 0.05 ∞
GBOOST 0.72± 0.05 0.20± 0.05 0.64± 0.12
LR 0.63± 0.07 0.20± 0.05 0.70± 0.25
RF 0.74± 0.06 0.20± 0.05 0.58± 0.15

Naive EM

ETREES 0.50± 0.08 0.27± 0.04 ∞
GBOOST 0.61± 0.08 0.21± 0.05 0.51± 0.12
LR 0.56± 0.06 0.20± 0.05 0.51± 0.11
RF 0.55± 0.07 0.20± 0.05 0.46± 0.11

EM w LP

ETREES 0.50± 0.09 0.28± 0.04 ∞
GBOOST 0.60± 0.08 0.21± 0.05 0.44± 0.05
LR 0.56± 0.06 0.20± 0.05 0.47± 0.05
RF 0.58± 0.08 0.20± 0.05 0.42± 0.06

Full PGM

ETREES 0.64± 0.05 0.54± 0.05 1.27± 1.57
GBOOST 0.73± 0.07 0.73± 0.07 0.43± 0.06
LR 0.62± 0.08 0.64± 0.07 0.52± 0.10
RF 0.71± 0.05 0.80± 0.05 0.42± 0.07

In terms of AUC-ROC score, both the Baseline_cycles and the full PGM obtain
the best performance. As mentioned in the last section, the AUC-ROC is calculated
using only embryos whose outcome is known. Therefore it gives a measure of how
well the models perform in situations where either all embryos implanted or none
did. In that sense, it is reasonable to think that in those cases the cycle is the criti-
cal factor for the outcome (it is in general but more so in these cases). Indeed, the
Baseline_cycles and Full PGM are the only models that use the cycles’ features.

For the LP-loss, the best results are the ones obtained by the baseline models.
However, the numbers are a bit misleading. If a model predicts all instances as
failures it would already get a 0.20 LP-loss. This is the case for most of the baseline
models, which predict quite low probabilities of implantation for all embryos. If
the classification threshold on the probabilistic classifier is not taken properly, all
the predictions are negative, resulting in an apparently good LP-loss. Therefore this
metric does not provide much relevant information about the predictive power of
the models.

Instead, the negative log-likelihood uses directly the output probability of im-
plantation, which is independent of any threshold. Moreover, it takes into account
the confidence of the model in the predictions. In this metric, we do not only use
the embryos with known outcome: the partially implanted cycles are also taken into
account. This is the reason why the models with an EM learning algorithm perform
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better for this metric. Baseline_0 and Baseline_cycles completely disregard the infor-
mation provided from partially implanted cycles (they are directly assigned to the
negative class). Meanwhile, the EM models use this partially labeled cycles to learn.
In the Naive EM case they are only used in a semi-supervised strategy, as if no in-
formation was actually available from the number of embryos implanted. However,
in the EM with Label Proportions model the partial labels of the cycles is used in
a weakly-supervised context. In fact, this extra information provides better results,
comparable to the ones obtained by the full PGM.

5.2.1 Probability distributions

As in the last section, we show the output predicted probability densities separated
depending of three factors: (i) the true label (implanted or not), (ii) whether the em-
bryo was transferred and (iii) the embryo quality given by the ASEBIR score. It is
important to note that most of the baseline methods use only the embryo features.
Although it may seem that they are the equivalent to the embryo module of our Full
PGM, these models are actually trying to predict implantation and not just viabil-
ity of the individual embryo. The difference resides on the target variables. In the
baseline methods we use directly the labels to train the model, which define embryo
implantation. However, in the PGM we used the latent variable we which accounts
for whether the embryos is willing to implant.

Figure 5.4 shows the probability densities for the Baseline_0 model. Here we see
that for all the classifiers the predictions are extremely pessimistic. In fact, none of
them gives a positive predicted probability even close to 0.5. This means that the
predicted labels are all negative, hence the high result in the LP-loss (see Table 5.3).
Nonetheless we see some signs of learning, even if the values are low. For instance,
true positives are predicted to implant with slightly more probability in most of the
classifiers, especially in the ETREES case. We can see even clearer that embryos with
quality A are predicted with higher probability than the rest of embryos. In fact,
quality D embryos are almost always predicted with probability 0. The ETREES
classifier seems to predict the A quality embryos with higher probability than the
rest of classifiers. However it does not show significant increases for middle quality
embryos with respect to the poorest quality ones. Instead, LR and RF classifier do
show some improvements for B and C quality embryos.

Similarly, Figure 5.5 shows the probabilities for the Baseline_cycles model. In this
case the densities are smoother, but present a similar behaviour. With this model,
the density of true negative embryos is clearly peaked close to 0 for all classifiers.
Even though the mode of the true positive class is also close to the same value, we
see many more of those embryos that are predicted with higher probability. This
is enough to obtain a significantly higher AUC score than the Baseline_0 model, as
seen in Table 5.3. For the separation by transfer, we observe a similar behaviour,
with the non-transferred embryos being concentrated close to 0 and the transferred
ones more spread to higher probabilities, although not as much as in the left column.
The last column also shows some bias in favor of quality A embryos. Here we see
more noticeable discrepancies between classifiers. For instance, RF does not present
as much dispersion in the probabilities as the other classifiers. In general, the differ-
ences between embryo qualities are not as clear as in the Baseline_0 method. This
may be due to the addition of the cycles features, which may have diluted the effect
of the embryo morphological characteristics.

With the implementation of the EM strategy we start to see some relevant differ-
ences, even in the Naive version. Figure 5.6 shows the probabilities for the Naive
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EM method. We can see that the predicted probabilities are a bit higher than in the
previous cases. It is specially noteworthy the densities depending on the ASEBIR
quality (right column). With this model we can see a more evident difference in the
treatment of different quality embryos (recall that this score is not directly given to
the classifiers). It is clear that the model predicts with higher probability the qual-
ity A embryos, while quality D embryos are predicted with less probability. This is
specially visible for the LR and GBOOST classifiers. RF presents a similar behaviour
but with less separation between qualities. However, the ETREES classifier has a
strange behaviour regarding D quality embryos, which are predicted with higher
probability than all the other ones. Looking at the middle column, we see that many
non-transferred embryos are predicted positive with high probability. Moreover, re-
call from Chapter 2 that almost all of the quality D embryos were not transferred.

Finally, Figure 5.7 shows the predicted probability densities for the EM with la-
bel proportions model. The results seem to be more refined specially considering
the separation by embryo quality. For the GBOOST and LR classifiers, we observe a
clear difference between the highest quality A, the middle qualities B and C (which
seem to be somewhat mixed) and the poorest quality D. However, there is still a
strange behaviour in the ETREES classifier, giving considerable higher probability
to implant to D quality embryos. Similarly, non-transferred embryos are predicted
with higher probability than transferred ones. The rest of classifiers appear to sep-
arate well the embryos by transfer, especially GBOOST. This is also the case in the
separation by the true label (left column), where GBOOST shows the best separation.

In general, we see that the implementation of the EM strategy helps to separate
embryos depending on the ASEBIR quality, although not as much as the embryo
module from our full probabilistic model. The baseline methods with this learn-
ing algorithm obtain considerably higher predicted probabilities and better nega-
tive log-likelihood (see Figure 5.3). Of course, the simplification of assuming all
unknown outcomes as negative resulted in quite low probabilities. Nonetheless, the
AUC score was not too affected by this. In fact, with the inclusion of the cycles fea-
tures Baseline_cycles obtained similar scores to our full probabilistic model. Regard-
ing the different classifiers, GBOOST and RF obtained the best performance metrics.
However, in terms of separation by probability distributions, GBOOST presented
much promising results, with significant differences for all the separation factors,
especially for the EM with LP method.
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FIGURE 5.4: Density of the predicted probabilities for the Baseline_0
model. They are separated depending (i) on the true label (left col-
umn), (ii) on whether the embryo was transferred (middle column)

(iii) and on the the embryo ASEBIR quality (right column).
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FIGURE 5.5: Density of the predicted probabilities for the Base-
line_cycles model. They are separated depending (i) on the true la-
bel (left column), (ii) on whether the embryo was transferred (middle
column) (iii) and on the the embryo ASEBIR quality (right column).
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FIGURE 5.6: Density of the predicted probabilities for the Naive EM
model. They are separated depending (i) on the true label (left col-
umn), (ii) on whether the embryo was transferred (middle column)

(iii) and on the the embryo ASEBIR quality (right column).
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FIGURE 5.7: Density of the predicted probabilities for the EM with
LP model. They are separated depending (i) on the true label (left
column), (ii) on whether the embryo was transferred (middle column)

(iii) and on the the embryo ASEBIR quality (right column).
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Chapter 6

Conclusions

In this work, we address the problem of embryo selection for ARTs using a proba-
bilistic model that assumes independence between embryos and cycles. Using mor-
phological data for each individual embryo and characteristics about the cycle, the
model is able to predict implantation. The performance of the model is tested using
different classifiers which evaluate the goodness of the embryos and cycles. Gradi-
ent Boosting and Random Forrest classifiers showed the best results both in terms of
AUC-ROC and negative log-likelihood.

The probability densities obtained from the predictions provided helpful insights
to understand the behaviour of the model. We studied the effect of the ASEBIR em-
bryo quality score within our model. We have not observed differences between
models learnt with and without the ASEBIR score directly as a feature. The prob-
ability densities grouped by this quality feature show a clear separation between
groups (especially between the best and worst grades), using both models. We have
observed that, once embryologists made their selection, the model does not provide
more information about individual embryos. This might indicate that the protocol
followed by the embryologists is already extracting most of the value out of the mor-
phological data.

The performance of the model was further validated by an extended experimen-
tal setup where alternative, simpler baseline models were used to test different prop-
erties of the model. For instance we saw that the inclusion of the characteristic of the
cycle is a key factor to predict implantation, especially in definitive cases (where
either all embryos in a cycle implanted or none implanted). On another note we
showed the benefits of implementing an EM strategy for the learning process. This
was helpful to predict the actual number of implanted embryos in every cycle, even
if the identity of the individual embryos is unknown. This resulted in a good sepa-
ration of embryos by quality based on the predicted probability to implant.

Our complete probabilistic model brings together all these good properties while
also providing some helpful features. For instance, it allows to assess the quality of
individual embryos extracting the embryo module directly. We saw that this module
predicted clearly that embryos with good quality score would implant with more
probability than worse quality embryos. Moreover we obtained an estimation of
the uncertainty originated from unknown, external factors. Most of the classifiers
predicted than even when the embryo is deemed as willing to implant and the cycle
as viable, there is only around 50% probability of actually inducing pregnancy.

6.1 Further Research

There are different research lines open after this exploration of the behaviour of our
model in relation to the ASEBIR protocol. The experimental setup could be fur-
ther increased considering other baseline models which, for instance, combine the
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EM algorithm also with the cycles characteristics. Another direction would be to
conceive new, maybe simpler, models to test the assumptions of our current model
(independence between embryos and cycles, awareness of a third source of error,
etc.). Moreover, the treatment of the classifiers could be improved to obtain better
predictive power. In this work we only used standard versions of them, without any
tuning, since the objective was to compare different models with a simple setup.
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