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a b s t r a c t 

Understanding the spatial interactions between the elements of the tumor microenvironment -i.e. tumor 

cells. fibroblasts, immune cells- and how these interactions relate to the diagnosis or prognosis of a tu- 

mor is one of the goals of computational pathology. We present NaroNet, a deep learning framework that 

models the multi-scale tumor microenvironment from multiplex-stained cancer tissue images and pro- 

vides patient-level interpretable predictions using a seamless end-to-end learning pipeline. Trained only 

with multiplex-stained tissue images and their corresponding patient-level clinical labels, NaroNet un- 

supervisedly learns which cell phenotypes, cell neighborhoods, and neighborhood interactions have the 

highest influence to predict the correct label. To this end, NaroNet incorporates several novel and state-of- 

the-art deep learning techniques, such as patch-level contrastive learning, multi-level graph embeddings, 

a novel max-sum pooling operation, or a metric that quantifies the relevance that each microenvironment 

element has in the individual predictions. We validate NaroNet using synthetic data simulating multiplex- 

immunostained images where a patient label is artificially associated to the -adjustable- probabilistic inci- 

dence of different microenvironment elements. We then apply our model to two sets of images of human 

cancer tissues: 336 seven-color multiplex-immunostained images from 12 high-grade endometrial cancer 

patients; and 382 35-plex mass cytometry images from 215 breast cancer patients. In both synthetic and 

real datasets, NaroNet provides outstanding predictions of relevant clinical information while associating 

those predictions to the presence of specific microenvironment elements. 

© 2022 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

The histopathology and phenotype of a tumor guide its diagno- 

is, prognosis, and help to predict its response to conventional or 

mmune-based anticancer treatments. Indeed, cancers are graded 

ased on tumor architecture and cellular morphology (histopathol- 

gy), while the expression of relevant cancer biomarkers (phe- 

otype) is used to stratify patients, predict their prognosis and 

ustomize their treatment. Automating these tasks using machine 

earning (ML) is the goal of a novel field known as computational 

athology. 
∗ Corresponding author. 

E-mail address: codesolorzano@unav.es (C. Ortiz-de-Solórzano). 
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.1. Computational pathology 

Two main computational pathology strategies exist to automate 

he analysis of the histopathology of a tumor or its phenotype: 

eakly supervised deep learning (WSDL) and single cell analysis 

SCA). WSDL builds on the widespread availability of whole slide 

maging (WSI) to blindly extract prominent histopathological tu- 

or features from large amounts of raw or weakly annotated im- 

ges of H&E stained tissue sections. Trained only with patient-level 

abels, WSDL automatically associates these architectural tumor 

eatures with clinical labels ( Veta et al., 2019; Srinidhi et al., 2021; 

an der Laak et al., 2021 ), eliminating the need for manual and 

xtensive pixel-level annotations ( Bulten et al., 2020 ). WSDL uses 

atches containing several cells as the basic unit of interpretability, 

o saliently localize tumor-specific regions. This strategy has been 

hown very effective, often outperforming human experts’ predic- 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. Scheme of NaroNet’s learning and discovery protocol. a. The input data consists of multiplex cancer tissue images with associated clinical and pathological information. 

b. The patch contrastive learning module divides images into patches and embeds each patch in a 256-dimensional vector using a CNN unsupervisedly trained to assign 

similar vectors to patches containing similar biological structures. c. An enriched graph of patches is generated that contains the spatial interactions between tissue patches. 

d. The graph of patches is fed to NaroNet: an interpretable ensemble of neural networks that learns phenotypes (e), phenotype neighborhoods (f), and areas of interaction 

between neighborhoods (g) to classify patients (i) based on the abundance of those tumor microenvironment elements (h). Legend. CNN: convolutional neural network; MLP: 

multilayer perceptron; GNN: graph neural network. 
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ive ability. For instance, WSDL has been effectively used for tumor 

ubtyping, patient grade classification, or lymph node metasta- 

is detection without pathologist’s intervention ( Campanella et al., 

019; Boehm et al., 2021; Bilal et al., 2021; Lu et al., 2021; Pinck- 

ers et al., 2020; Cheng et al., 2021; Diao et al., 2021; Longo et al.,

021 ). 

SCA emerged in the context of the research for novel cancer 

iomarkers, i.e., specific proteins that are expressed by tumor cells, 

efining their particular phenotype. This laborious task requires se- 

ecting potential targets from in silico data and validating these 

argets in situ to confirm that they are reliably related to a spe- 

ific biological effect. Traditionally, this has been done one or a 

ew markers at a time. Recently, the development of highly mul- 

iplexed tissue imaging technologies, such as imaging mass cytom- 

try (IMC) or multiplex immunofluorescence (MI), allows simul- 

aneous staining of tissue sections with a high number ( > 20) of 

iomarkers ( Hao et al., 2021; Stopsack et al., 2020 ). These com- 

lex biomarker signatures provide a comprehensive visualization of 

he tumor microenvironment and the spatial relationship between 

ts elements, which could be related to the biology and progno- 

is of the tumor ( Rendeiro et al., 2021; Ji et al., 2020 ). However,

he complexity of the patterns of expression and the spatial rela- 

ionships between multiple markers exceeds the capabilities of the 

uman brain. SCA methods ( Schapiro et al., 2017 ) approach this 

ask by first segmenting the cells in the tissue and quantifying 

heir morphology and intensity of marker expression. This infor- 

ation is then used to find clusters of cells with similar pheno- 

ypes, as well as higher-order interactions or ‘neighborhoods’ be- 

ween phenotypes ( Schürch et al., 2020 ). To this end, SCA meth- 

ds build topological networks containing cell phenotype interac- 

ions, and apply graph-based clustering ( Blondel et al., 2008 ) to as- 

ign groups of cells to different neighborhoods. Since SCA methods 

se the cell as the basic unit of tissue representation, they pro- 
2

2 
ide a high level of interpretability. However, SCA methods are se- 

uential and not learning-based, meaning that the phenotypes and 

eighborhoods extracted are inferred ignoring which were the clin- 

cal questions at hand, and therefore the quantified microenviron- 

ental features are not necessarily optimal to differentiate patient 

ypes ( McQuin et al., 2018 ). This is especially true when analyzing 

ighly heterogeneous data, affected by technical non-linear vari- 

bilities caused by autofluorescence and/or low expression of some 

ntigens ( Jackson et al., 2020; Schürch et al., 2020 ). 

.2. Aim of the study 

The aim of this study is to combine SCA (cell-level interpretable 

uantification of the tumor microenvironment) and WSDL (patch- 

ased end-to-end learning of tumor histopathology) to automate 

he in situ discovery of tumor microenvironment elements (TMEs) 

hat are relevant for a specific clinical predictive task. To this end, 

e have developed NaroNet, a multilevel, interpretable deep learn- 

ng ensemble, which learns the most relevant TMEs from multi- 

lex immunostained tissue sections while performing a classifica- 

ion task, using only patient-level labels. NaroNet assigns patches 

o TMEs at three levels of spatial complexity: local cell phenotypes, 

ellular neighborhoods, and interactions between neighborhoods 

hat we name as tissue areas. The concept and main elements of 

aroNet are illustrated in Fig. 1 . 

To validate NaroNet in a controlled way, i.e. having a ground 

ruth, we first analyzed synthetic sets of multiplex images that 

imulate situations that can be found in real samples. Then we 

pplied our model to learn relevant TMEs while predicting clini- 

ally relevant parameters from two real datasets: 336 7-plex im- 

ges from 12 patients with high-grade endometrial cancer and a 

ublicly available imaging mass cytometry dataset ( Jackson et al., 

020 ) consisting of images from 215 breast cancer patients. 
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Fig. 2. Synplex (synthetic simulator) default configuration. Eight cell phenotypes 

are defined by the expression of 6 markers (a), each of them having a specific cell 

size (b) and eccentricity (c). Four neighborhoods are defined based on the rela- 

tive abundance of the phenotypes -please note that the color of neighborhood sec- 

tions refer to the different phenotypes, as in pannels b and c- (d) and interaction, 

i.e. attraction/repulsion rules between phenotypes (e). These neighborhoods in turn 

are organized based on their frequency and interaction rules (f-g.). 
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.3. Methodological contributions 

Besides the main conceptual novelty of discovering TMEs while 

erforming clinical predictions from multiplex immunostained 

ancer tissues, NaroNet integrates novel and state-of-the-art ML 

pproaches. In particular, the main methodological contributions of 

aroNet are: 

• The development of patch contrastive learning (PCL), a self- 

supervised learning algorithm that encodes high-dimensional 

pixel information into enriched patch-embeddings. 
• The modelling of the tumor microenvironment in three levels 

of increasing complexity: local phenotypes, cellular neighbor- 

hoods and areas of interaction between cellular neighborhoods. 
• A novel max-sum pooling operation that transforms TME 

learned annotations into patient-level vectors where each value 

specifies the incidence of TMEs. 
• Two novel regularization loss terms that prevent NaroNet from 

producing spurious local minima: patch entropy loss and pa- 

tient entropy loss. 
• The optimal selection between several dataset-dependent ar- 

chitectural variations (e.g. multiple TME assignment, leverag- 

ing patch relevance, global reasoning unit, etc.). This is compu- 

tationally feasible thanks to the dimensionality reduction pro- 

vided by our PCL module. 
• A BioInsights interpretability module that automates the asso- 

ciation between patient types and TMEs, based on a novel pre- 

dictive influence ratio (PIR) metric that quantifies the relevance 

that TMEs have in individual predictions. 

The structure of the rest of this paper is as follows: 

ection 2 describes the synthetic and real datasets used, and de- 

cribes the proposed methodology. Section 3 contains the exper- 

ments used to test the performance of NaroNet and reports the 

esults obtained. Section 4 provides in-depth analysis of the pro- 

osed methods. Finally, we discuss the results in Section 5 , and 

nd with our conclusions in Section 6 . 

. Materials and methods 

.1. Datasets 

A. Synthetic patient cohorts. An in-house developed multiplex 

mmunostained tissue simulator ( Jiménez-Sánchez et al., 2021 ), 

as used to create patient cohorts. Each patient of the cohort 

as represented by a 80 0x80 0 multiplex image that contained 8 

ell phenotypes (Ph1-Ph8), defined by the (tunable) probabilistic 

evel of expression of 6 fluorescently labeled markers (Mk1-Mk6) 

 Fig. 2 a), the cell size ( Fig. 2 b), and shape ( Fig. 2 c). Four types of

ell neighborhoods (Nb1-Nb4) were also defined based on the (ad- 

ustable) probabilistic abundance of the 8 cell phenotypes ( Fig. 2 d), 

nd the (adjustable) interactions between them ( Fig. 2 e). Each 

eighborhood had a predefined prevalence in the tissue ( Fig. 2 f) 

nd could interact with other neighborhoods ( Fig. 2 g) defining one 

rea of interaction. 

We simulated 7 patient cohorts. Each cohort contained 240 pa- 

ients, distributed in 3 groups (type I, II, and III) of 80 patients 

ach, defined by the variation of the default configuration param- 

ters shown in ( Fig. 2 ), simulating different disease paradigms in- 

pired on real scenarios: 

Phenotype Marker Intensity (PMI). In these patient cohorts, 

he cells of phenotype Ph6, located in neighborhood Nb3, displayed 

ifferent relative intensity of Mk6 marker expression in each group 

f patients: 25% (type I), 50% (type II), or 75% (type III) (Supple- 

entary Fig. 1). Two cohorts were created with different levels of 

omplexity. In cohort PMI1, the relative abundance of Ph6 cells in 
3 
b3 was set to 15% (moderately present), whereas in PMI2 the rel- 

tive abundance of Ph6 was set to 0.25% (rarely present). 

Phenotype Frequency (PF). We simulated two patient cohorts 

here each group of patients displayed different abundance of cell 

henotype Ph6. In PF1 (moderate presence) the relative abundance 

f Ph6 cells in neighborhood Nb3 was set to 0% (type I), 30% (type 

I), and 60% (type III) (Supplementary Fig. 2). In PF2 (rare pres- 

nce), the relative abundance of Ph6 in Nb3 was set to 0% (type I), 

.12% (type II), and 0.25 (type III)%. 

Cell-Cell Interactions (CCI). We simulated two patient cohorts 

here cell phenotypes Ph4 and Ph5 that belong to neighborhood 

b2 repel (type I), show no interaction (type II), or attract (type 

II) (Supplementary Fig. 3). In cohort CCI1 (moderate presence) the 

elative abundance of both Ph4 and Ph5 in Nb2 was set to 5%; in 

CI2 (rare presence), the relative abundance of both Ph4 and Ph5 

as set to 1%. 

Neighborhood-Neighborhood Interactions (NNI). We simu- 

ated one patient cohort displaying different interactions between 

ellular neighborhoods, related to patient type. In this cohort 

NNI1), Nb2 and Nb3 repel (type I), show no interaction (type II), 

r attract (type III). The relative abundance of both Nb2 and Nb3 

as set to 15% (Supplementary Fig. 4). 

B. Endometrial carcinomas. Tissue sections from twelve 

ormalin-fixed, paraffin-embedded (FFPE) high-grade endometrial 

arcinomas were stained with a seven-color multiplex panel tar- 

eting key elements of the immune environment: CD4 and CD8 

 cell membrane receptors, the transcription factor FOXP3, the 

ona fide T cell activation marker CD137 (4-1BB), the programmed 

ell death-1 (PD-1), cytokeratin (CK), and DAPI (counterstaining). 

36 1876x1404x7 pixel images were obtained from the 12 tissue 

ections, using a Vectra-Polaris Automated Quantitative Pathology 

maging System (Perkin Elmer Inc., Waltham, MA, USA). Clinico- 
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Fig. 3. Visualization of Patch Contrastive Learning method description. Step-by-step 

illustration of Patch Contrastive Learning strategy. 
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athological patient-level information was available for these tu- 

ors ( León-Castillo et al., 2020 ), including the microsatellite in- 

tability (MSI) subclass, genomic copy number variation, and POLE 

utation variants. A detailed description of this dataset, including 

he staining protocol and relevant clinicopathological information 

s included in Supplementary Materials: Appendix A. High grade 

ndometrial carcinomas. 

C. Breast cancer. A publicly available image dataset ( Jackson 

t al., 2020 ) was used, consisting in 381 images from the same 

umber of IMC (CyTOF) stained tissue sections, obtained from 215 

reast cancer tumor biopsies. Tissue sections were stained with a 

5-plex antibody panel staining clinically established breast can- 

er targets like oestrogen receptor (ER), progesterone receptor (PR), 

nd HER2, as well as relevant oncogenes, signalling, and epigenetic 

elated proteins. 

.2. Methodology: Patch Contrastive Learning (PCL) (Fig. 1b) 

The goal of the first step of our pipeline is to convert each high-

imensional multiplex image of the cohort into a more manage- 

ble list of low-dimensional embedding vectors. To this end, each 

mage is divided into patches -our basic units of representation of 

he local tissue microenvironment, or phenotype-, and each patch 

s converted by the PCL module -a properly trained CNN- into a 

ow-dimensional vector that embeds both the morphological and 

pectral information of the patch. 

The PCL module is trained iteratively. In each iteration, illus- 

rated in Fig. 3 , the PCL module is unsupervisedly trained to learn 

mbeddings of a random set of patches, by maximizing the agree- 

ent between augmented views of highly overlapping patches, 
4 
nd minimizing the agreement between augmented views of dis- 

ant patches, using a contrastive loss function. The choice of the 

mage patch size S L is critical as it determines the extent to which 

iological structures can be captured, and their context. It also de- 

ermines the size of the graph that is used to predict the outcome 

f the patient (see next section). This value was chosen consider- 

ng that: i. a patch should be large enough to contain between zero 

nd two cells, thus guaranteeing the interpretability of the model 

t the level of single cell or small cell environments; ii. the entire 

et of patches extracted from the images of one patient should fit 

n a single GPU, to efficiently generate patient predictions. 

The steps required in each training iteration are described next: 

A. Image crop selection. A set { x } 1 .B L is created made of B L im-

ge crops of size (S L ∗ ∝ L ) × (S L ∗ ∝ L ) × B obtained at random po-

itions of R random images chosen from the entire pool of N im- 

ges of the cohort ( Fig. 3 a-b). Note that B is the number of spectral

hannels of the image. 

B. Data augmentation. An image patch set { ̃  x } 1 .B L ∗2 
is created 

ontaining two augmented views, ˜ x j1 and 

˜ x j2 of each image crop 

 j of { x } 1 .B L . To this end, our data augmentation module ( Fig. 3 c)

pplies the following sequence of simple transformations to each 

mage crop x j : i. two random crops of size S L ; ii. one random ro-

ation ; and iii. a random cutout consisting of masking out random 

 . 15 × S L sized sections of the patch. 

C. Patch embedding generation. The entire set of augmented 

atches { ̃  x } 1 .B L ∗2 
is fed to a ResNet-101 ( Fig. 3 d), to obtain a set

f g = 256 - dimensional vector representations or embeddings of 

he patches { h } 1 .B L ∗2 
, being each patch, h jk = ResNet( ̃  x jk ) , k = 1 , 2

here h jk ∈ R 

g . Then, a multilayer perceptron (MLP) maps each 

epresentation h jk to a 128-dimensional vector z jk . 

D. Network parameter update. Finally, a contrastive loss func- 

ion is applied to { z} 1 .B L ∗2 
to create similar embeddings for patches 

ontained in the same crop (i.e, z j1 and z j2 ) -possibly correspond- 

ng to the same biological structure-, while forcing dissimilar em- 

eddings for patches contained in different image crops (i.e. z ik 
nd z ql , being i � = q ) -possibly corresponding to dissimilar biological 

tructures- ( Fig. 3 g). Let sim (u, v ) = u T v / ‖ u ‖‖ v ‖ denote the cosine

imilarity between two vectors u and v . The loss function applied 

o any given pair of patches that belong to the same image crop is 

efined as: 

 j 1 , j 2 = − log 
exp 

(
sim 

(
z j1 , z j2 

)
/τ

)
∑ B L −1 

q =1 ,q � = j,l=1 , 2 
exp 

(
sim 

(
z jk , z ql 

)
/τ

) (1) 

here τ is a temperature parameter set to 0.5. 

This iterative ( A-D ) process is repeated until convergence to 

rain the PCL module, which is next used to create vector em- 

eddings of all the images of the cohort. To this end, each high 

imensional multiplex image i ∈ R 

i x ×i y ×B is divided in patches of 

ize S L × S L × B , and each image patch is then introduced into the 

CL module to obtain a patch embedding h j ( Fig. 3 e). This way the

CL module converts each image into a list of patch embeddings 

 

h } 1 .L . The resulting embedded image has reduced dimensionality, 

.e. i ∈ R 

i x ×i y ×B → R 

L ×g , where L = 

i x i y 

S L 
2 is the number of patches of

he image, and g is the number of features contained in the new 

atch embedding, in our case 256. This strategy reduces the image 

ataset size by approximately one order of magnitude. 

.3. Methodology: Patch-graph generation (Fig 1c) 

A graph is then created that contains all the embedded patches 

f each tissue/image capturing cellular neighborhoods, i.e., local 

henotypes that are spatially associated ( Fig. 1 c). This graph is G = 

 

Z, A ) , where Z ∈ R 

Lxg is a matrix that contains all the embeddings 

f the image { h } 1 .L , and A ∈ 0 , 1 LxL is an adjacency matrix that con- 

ains the connectivity between patches. To reduce the expensive 
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emory burden of storing complete adjacency matrices, we ‘spar- 

ify’ A as A 

′ ∈ Z 

Ex 2 , being A 

′ a list of edges (i.e., connections) be-

ween patches, extracted from the non-zero values of the original 

 , where E is the number of edges present in the graph. There- 

ore, graph G = ( Z, A ) , is converted into graph G ′ = 

(
Z, A 

′ ). Since we

onnect each patch to its 4 adjacent neighbors, i.e., E = L × 4 , the

emory required to store A 

′ increases linearly with L , as opposed 

o A , which increases exponentially. 

.4. Methodology: NaroNet (Fig 1d) 

Being D = ( G 1 , y 1 ) , ( G 2 , y 2 ) , . . . , ( G M 

, y M 

) , a cohort of patients, 

here M is the number of patients, and each patient is represented 

y a graph G m 

∈ G, and a patient-level label y m 

∈ Y , the goal of

aroNet is to learn a mapping G f −→ Y that relates patient informa- 

ion with patient labels, or predictions ( Fig. 1 d). The architecture of 

aroNet is divided in two consecutive networks G 
f 1 −→ (P, N , A ) 

f 2 −→
, trained end-to-end using the patient labels, where P ∈ R 

P is 

he abundance of local phenotypes ( Fig. 1 e), N ∈ R 

N is the abun-

ance of neighborhoods (or phenotype interactions) ( Fig. 1 f), and 

 ∈ R 

A is the abundance of areas (or neighborhood interactions) 

 Fig. 1 g). Note that P , N, and A are the number of phenotypes,

eighborhoods or areas, respectively. We therefore model the tis- 

ue microenvironment using three levels of increasing spatial com- 

lexity. For the sake of consistency, we refer globally to P, N , A 

s tumor microenvironment elements (TMEs). The first section of 

aroNet, f 1 ( Fig. 1 e-h), is an ensemble of three parallel networks 

hat assigns nodes to distinct P , N , A values. The second section, 

f 2 , assigns patient’s predictions from the learned TMEs ( Fig. 1 i). 

o learn the tumor microenvironment, the three neural networks 

f 1 = ( f 1 P , f 1 N , f 1 A ) are trained in parallel from individual patient 

ata and later pooled to obtain the abundance of each TME, as de- 

cribed in the following paragraphs: 

A. Phenotype learning. Each image patch, h l ∈ Z m 

, is assigned 

o a phenotype vector using f 1 P , i.e.: 

 P = f 1 P ( Z m 

) ∈ R 

L ×P (2) 

here f 1 P is an 8-layer MLP with skip connections, with P phe- 

otypes in the last layer. Therefore f 1 P takes the patch represen- 

ations of image Z m 

and generates a patch assignment matrix S P , 

hose values represent the probability that each patch is assigned 

o P phenotypes. 

B. Neighborhood learning. Likewise, each image patch, h l ∈ Z m 

s assigned to a neighborhood f 1 N , i.e.: 

 N = f 1 N 
(
Z, A 

′ ) ∈ R 

L ×N (3) 

here f 1 N is a Graph Neural Network (GNN) followed by a 1-layer 

LP which has an output dimensionality N. Therefore, f 1 N uses Z m 

atch representations and the adjacency matrix A 

′ to produce a 

atch assignment matrix S N . Here, the GNN captures relationships 

etween connected patches of a graph. To that end, it performs K

terations of a trainable weighted sum of each graph node (in our 

ase patch h l ∈ Z m 

) and its connected neighboring nodes, generat- 

ng a new feature vector at the next hidden layer of the network 

 Hamilton et al., 2017; Kipf and Welling, 2017; Jimenez-Sanchez 

t al., 2020; Pati et al., 2020 ). 

C. Area learning. Each neighborhood that resulted from the 

revious GNN, h l ∈ Z m 

( K ) is assigned to areas using a second 

N N ( f 1 A ) . To this end the following trainable assignment matrix 

s used: 

 I = f 1 A 
(
S N 

T Z ( K ) , S N 
T A 

′ S N ) ∈ R 

N×A (4) 

his GNN learns the higher order interactions between the N

eighborhoods of the original graph. For this purpose, f 1 A is fed 

ith the embeddings from N neighborhoods S T Z ( K ) ∈ R 

N×H and 
N 

5 
he interactions between neighborhoods S N 
T A 

′ S N ∈ R 

N×N . f 1 A accu- 

ulates feature vectors of neighborhoods that are close to each 

ther. As in the previous section, the GNN is applied K iterations 

r hops, this number indicating the extent to which the patch em- 

eddings can capture information of their neighbors. 

D. Max-sum pooling. After applying f 1 P , f 1 N , f 1 A , each row of

 P contains the probability that each patch of the image contain 

ach of the P phenotypes, each row of S N contains the probability 

hat a patch of the image contain each of the N neighborhoods, 

nd each row of S A contains the probability that a neighborhood 

f the image contain each of the possible A areas. The final step of 

f 1 is a max-sum pooling operation that captures the abundance of 

ach TME: 

 = 

∑ 

1 .L 

max 
1 .P 

( sof tmax ( S P ) ) ∈ R 

P (5) 

 = 

∑ 

1 .L 

max 
1 .N 

( sof tmax ( S N ) ) ∈ R 

N (6) 

 = 

∑ 

1 .L 

max 
1 .A 

( sof tmax ( S A ) ) ∈ R 

A (7) 

here S P , S N , S A (eqs. 5, 6, 7) are the assignment matrices whose

alues correspond to neuron activations, where the softmax acti- 

ation function transforms them into probabilities in a row-wise 

ashion. The max operator function is applied row-wise so that 

nly the maximum values of each row are kept, while the others 

re set to zero. The sum operator is applied column-wise to obtain 

he abundance of each TME. The resulting ( P , N , A ) are the TME

bundances that represent each patient. 

The TME abundance vector ( P , N , A ) ∈ R 

P+ N+ A is fed to the sec-

nd’s network section ( f 2 ), consisting in a 1 layer MLP, i.e., y ′ =
f 2 ( P, N , A ) ∈ R 

O , where y ′ is the prediction between O possible 

atient-outcomes. A cross entropy loss is used to train the pa- 

ameters of both f 1 and f 2 . The strategy used to implement f 1 
an produce spurious local minima where all patches are assigned 

o a single microenvironment element. This local optimal solution 

raps the gradient-based optimization, and reduces NaroNet’s per- 

ormance. To prevent this, we use two regularization loss functions. 

E. Patch entropy loss. Patch entropy loss is used to regularize 

he probabilities given by eqs. 5, 6, 7. After initialization, the as- 

ignment of patches to TMEs is uncertain and the entropy of the 

atches is high. During the training process, we aim at knowing 

he assignment of patches to TMEs, obtaining a sparse matrix as- 

ignment. To this end, we propose to reduce patch entropy for each 

ME using a loss function: 

 = 

1 

L 
∗

∑ 

l=1 .L 

−sum (sof tmax (S) ∗ log (sof tmax (S)) ) (8) 

here S is any of the matrices S P , S N , S A , and the function generates

 � ep , � en , � ea ) losses, respectively. The final loss is restricted to R ∩
 

0 , 1 ] where the lower the value the most certain it is that a patch 

elongs to a specific TME. The final, combined loss is regularized 

y a λ parameter. 

 e = (λep ∗ � 
ep 

+ λen ∗ � en + λei ∗ � ei ) / 3 (9) 

here λep , λen , λei regularize how much the weights are adjusted 

o each ( P , N , A ) TME. This is a specific learning rate that is chosen

ased on the tumor microenvironment complexity. 

E. Patient entropy loss. Patient entropy loss is used to avoid 

raph pooling collapse in ( P , N , A ) TMEs.: 

 pp = sum (P ∗ log (P ) (10) 

 pn = sum (N ∗ log (N ) ) (11) 

 pa = sum (A ∗ log (A ) ) (12) 
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Table 1 

NaroNet performance: synthetic experiments. NaroNet’s classification accuracy (and 95% confidence interval) and interpretabil- 

ity calculated as the intersection of the most relevant extracted TME and the ground-truth of each synthetic experiment. 

Legend. PMI: phenotype marker expression; PF: phenotype frequency; CCI: cell-cell interaction, and NNI for neighborhood- 

neighborhood interaction. Index 1 refers to moderate presence, and index 2 to rare presence. 
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here ( P , N , A ) are the TME abundances and the vector 

 � pp , � pn , � pa ) contains the calculated losses, their values be-

ng restricted to R ∩ [ −1 , 0 ] . As done for the patch entropy 

oss, the final loss is also regularized using a λ parameter, 

 p = lambda pp ∗ � pp + λpn ∗ � pn + λpa ∗ � pa ) / 3 . Notice that the

ower the value of l p the most spread out is the abundance of 

he TMEs. This strategy is less restrictive than the orthogonal loss 

 Bianchi et al., 2020 ) since the regularization term does not force 

lusters to have the same size. 

In order to provide the highest predictive and interpretabil- 

ty performance, NaroNet’s parameters and architecture variations 

Supplementary Materials: Appendix C. Architectural variations) 

re optimally selected by an architecture search algorithm (Sup- 

lementary Materials: Appendix B. Architecture search). 

.5. Methodology: BioInsights interpretability module 

Besides generating predictions, NaroNet identifies the elements 

f the tumor landscape that relate to a specific predictive task. This 

an be done a posteriori through the analysis of the TMEs ( P , N , A ),

btained by NaroNet while classifying patients. That is the goal 

f the BioInsights module, that is done through the identification 

f global cohort-differentiating features (differential TME analysis), 

nd relevant TMEs in individual predictions (predictive influence 

atio). 

A. Differential TME analysis. NaroNet’s f 2 network maps TME 

bundances to patient-outcomes, i.e., Y = f 2 ( P, N , A ) 1 .M 

. There- 

ore, (P, N , A ) 1 .M 

are the coefficients or covariates of the model,

nd the patient’s predictions are made solely using the relative 

bundance of specific TMEs. We use regression analysis to inter- 

ogate which TMEs were more important to perform patient pre- 

ictions. Specifically, to evaluate whether a specific TME is sig- 

ificant to perform patient predictions, a leave-one-out strategy 

s used, where a TME t is extracted from the set of all patient 

ME abundances (P, N , A ) 1 .M 

obtaining a new set of TMEs de-

ned as (P, N , A ) t 
1 .M 

. The model is evaluated with the entire pa-

ient cohort, and new prediction probabilities are obtained. Then, a 

ruskal-wallis test is used to compare the prediction performance 

f the original TMEs with that of the leave-one-out model. If the 

ull hypothesis is accepted, the extracted TME is considered to 

ave predictive value. 

B. Predictive influence ratio (PIR). The differential TME anal- 

sis finds global patterns in patient cohorts but ignores the het- 

rogeneity existing between patients/tissues. To address this, we 

ntroduce the predictive influence ratio (PIR), which quantifies the 

nfluence that each TME has on the prediction accuracy of a pa- 

ient m ∈ 1 − M: 

 IR m,t = 

f 2 (P, N , A ) m 

f 2 (P, N , A ) 
t 
m 

(13) 

here P IR m,t is the predictive influence ratio for a patient m and a 

ME t , and f 2 ( P, N , I ) t m 

is the leave-one-out model performance. 

he higher the value of P IR m,t the most important the TME t is for 

he classification of patient m . 
6 
. Results 

.1. Synthetic experiments 

Seven patient cohorts, 240 patients each, were simulated (see 

ection 2.1.A), representing four disease paradigms (PM, PF, CCI and 

N) in which either the moderate (1) or rare (2) presence of a 

pecific TME differs between each of the three patient types (I, 

I or III). Seven different experiments were carried out, in which 

aroNet was trained to predict the correct patient type for all pa- 

ients of a cohort, while learning the TMEs that were relevant for 

hat prediction. With these experiments we wanted to validate the 

bility of NaroNet to correctly classify each patient, and also to 

dentify the relevant TME that defines each paradigm, in a prop- 

rly controlled, quantifiable fashion (Supplementary Materials: Ap- 

endix D. Interpretability performance measure). In all 7 experi- 

ents, 120 patients of the cohort (40 patients of each type) were 

sed for training and validation of NaroNet, including PCL and 500 

uns of architecture search, and the remaining 120 patients were 

sed for testing. Three train-test runs were made and averaged to 

eport the final performance values. 

The results obtained in each of these 7 experiments, in terms 

f NaroNet’s predictive accuracy, i.e. how accurately NaroNet pre- 

icted the patient type, and interpretability, i.e. the correspon- 

ence between the TME found more relevant by NaroNet and the 

ME that actually defined the disease paradigm, are shown in 

able 1 . Overall, the model predicts remarkably well all disease 

aradigms, even in those experiments involving rare cell popula- 

ions. 

Illustrative example: CCI1. Now we illustrate NaroNet’s 

ethodology, results and interpretability using one of the synthetic 

xperiments (CCI1) consisting of a patient cohort where cell phe- 

otypes Ph4 and Ph5, coexisting in neighborhood Nb2, repel, show 

o interaction, or attract each other in patient types I, II, and III, re- 

pectively ( Fig. 4 a,b). The PCL module was trained to generate 256- 

ong vector embeddings of 10x10 pixel patches with 52.8% con- 

rastive accuracy, which was comparable to state-of-the-art semi- 

upervised learning setups ( Chen et al., 2020b ) ( Table 1 ). Next, we

sed the training image set (120 patients) to calculate the optimal 

rchitecture (Supplementary Tables 1 and 2, Supplementary Figs. 5 

nd 6 ) and train the model. Then the test image set (120 patients)

as used to calculate the classification performance. The receiver 

perating characteristic (ROC) curves, confusion matrix, and train- 

ng and test accuracy curves obtained are shown in Supplementary 

ig. 7. As shown in Table 1 , the overall accuracy achieved for ex- 

eriment CCI1 was 98.6% with a 95% confidence interval (CI) of 

97.7,99.5] 

Regarding the interpretability of the results, our global dif- 

erential TME analysis revealed that, amongst all the neighbor- 

oods detected by NaroNet (Supplementary Figs. 8,9), four neigh- 

orhoods -in order of statistical significance: N3, N7, N9, and N1- 

ere most responsible for NaroNet’s predictions (Supplementary 

ig. 10a). We also found that N3 and N7 are the most abundant 
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Fig. 4. Graphical description of synthetic experiment CCI1. a. Ground truth: Schematic description of the interactions between cell phenotypes Ph3, Ph4, and Ph5 (located 

in neighborhood Nb2) that define each patient type (I-III). b. Marker expression levels for the three relevant cell phenotypes. c. Z-scored mean expression of all markers in 

the neighborhoods learned by NaroNet. d. Relative abundance of learned neighborhood N7 in the three patient groups. e. Representative patches assigned to N7. f. Relative 

abundance of learned neighborhood N9 in the three patient groups. e. Representative patches assigned to N9. h. Example of patient correctly classified as Type I (i.e. 

displaying Ph4-Ph5 repulsion), with squares showing patches assigned to learned neighborhood N7, located in ground truth neighborhood Nb2 (marked in red). i. Example 

of patient correctly classified as Type III (Ph4-Ph5 attraction), with squares showing patches assigned to learned neighborhood N9, located in ground truth neighborhood 

Nb2. ( ∗∗∗ p < 0.001; ∗∗∗∗ p < 0.0 0 01). 
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eighborhoods in type I patients (repulsion between Ph4 and Ph5 

ells)(Supplementary Figs. 10b-c), N9 is the most abundant neigh- 

orhood in type III patients (those displaying attraction of Ph4 and 

h5 cells)(Supplementary Figs. 10b-d), and N1 is the most abun- 

ant neighborhood in type II patients (no interaction between Ph4 

nd Ph5 cells) showing an equilibrium between attraction and re- 

ulsion (Supplementary Figs. 10e). The combination of these four 

eighborhoods overlaps 92.8% with ground truth neighborhood 

b2 ( Table 1 and Fig. 4 a). Therefore, NaroNet has correctly iden- 

ified, and weighted in the classification, the tissue regions where 

he patient-defining TMEs are located. 

We can next analyze the content of these four neighborhoods to 

onfirm this finding: N7 contains high expression of markers Mk3 

nd Mk5, corresponding to cell phenotypes Ph3 and Ph5 ( Fig. 4 b,c). 

n type I patients, the abundance of N7 is statistically higher than 

n type III patients ( Fig. 4 d). If we look at N7 in type I tissues

 Fig. 4 e), we can confirm that it contains Ph3 and Ph5 cells, but not

h4, meaning that there is physical repulsion between Ph4 and Ph5 

s expected for this disease paradigm. The behaviour of N3 is simi- 

ar to that of N7. N9 contains high expression of markers Mk3, Mk4 

nd Mk5, which correspond to cell phenotypes Ph3, Ph4, and Ph5 

 Fig. 4 b,c) and is significantly more abundant in type III patients, 

ompared to patient types I and II ( Fig. 4 f). If we go back to the
 a

7 
issues of type III ( Fig. 4 g), it can be confirmed that N9 contains

patially related cells with phenotypes Ph4 and Ph5, as expected 

n this disease paradigm. Therefore, we have shown that the TMEs 

earned by NaroNet capture the specifics of the underlying disease 

aradigm and lead to a successful classification. 

To interpret why an individual image/patient was classified as 

 certain patient type, we calculated the predictive influence ra- 

io (PIR) value for each TME. This strategy, applied to CCI1 shows 

Supplementary Fig. 11a) that for most type I patients, the abun- 

ance of neighborhood N7 was the most determinant classification 

actor. Conversely, N9 was highly predictive for type III patients, 

nd N1 was highly relevant to successfully classify type II patients. 

e illustrate this with examples of individual predictions: a pa- 

ient classified as type I with prediction confidence of 97.75% and 

 PIR value of 2.28 for N7 ( Fig. 4 h), and a patient classified as type

II with prediction confidence of 94.36% and a PIR value of 1.61 for 

9 ( Fig. 4 i). 

.2. Endometrial carcinomas 

We first asked NaroNet to learn TMEs associated to four 

atient-level labels: the somatic POLE mutation, copy number vari- 

tion (CNV), DNA mismatch repair (MMR) deficiency, and two tu- 
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Fig. 5. Association of high-grade endometrial carcinomas with patient-level labels. a. ROC curves showing the classification performance of NaroNet for the four tissue 

characteristics learned. b. Neighborhood composition of learned area A1. c. Violin-plot showing relative abundance of learned area A1 as a function of POLE mutation status. 

d. Heatmap showing interactions between the local phenotypes learned by NaroNet. e,f. Patches assigned to neighborhoods N7 and N2, and their corresponding abundance 

across patient-types. g. Heatmap showing the mean marker expression, for the phenotypes learned by NaroNet. h,i Patches assigned to phenotype P2 and its corresponding 

abundance across patient types. j,k. Images of WT and POLE mutated patients that were classified due to phenotype P2 abundance. White squares represent patches assigned 

to P2. 
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or histology types (endometrial carcinoma or serous-like carci- 

oma) from 382 images of 12 high-grade endometrial carcinomas. 

he PCL module was trained to generate 256-dimensional embed- 

ings of 15x15 pixel image patches, obtaining a high contrast ac- 

uracy of 81.11%. A 10-fold nested cross validation strategy was 

hen used to optimize NaroNet’s parameters and hyperparame- 

ers. Using this strategy, the architecture search is repeated ten 

imes (outer loop) using a 10-fold partition of the data. In each 

nner loop, 50 runs of the architecture search are implemented 

rom 90% of the image dataset (344 images). The best architecture 

onfiguration (Supplementary Table 3) was then evaluated on the 

orresponding test fold of the outer loop (38 images), providing 

mage-level predictions with average accuracy of 93.75% with 95% 

I [91.16,96.33] ( Fig. 5 a and Supplementary Fig. 12) for the four 

atient-level labels. 

As an example of the global interpretability of the results, we 

ext analyze the interpretability of the model while predicting the 

OLE mutation status: NaroNet unsupervisedly learned 26 TMEs 

Supplementary Figs. 13 and 14). Our differential TME com posi- 

ion analysis revealed that area A1 (p-value: 2.56x10 -9 ) is the most 

redictive TME when making patient predictions. Particularly, A1 

s significantly more associated to tumors harboring POLE mu- 

ations than to POLE wild type (WT) tumors ( Fig. 5 c). Area A1
8 
ontains neighborhoods N2 and N7 ( Fig. 5 b and Supplementary 

ig. 14d) which in turn contain local phenotype interactions be- 

ween P2-P7 and P4-P9, respectively ( Fig. 5 d). N7 contains CK+ tu- 

or cells (P4) and intratumoral cells expressing CD4 and CD8 (P9), 

nd by itself is not associated with POLE mutation ( Fig. 5 e). By

ontrast, N2 contains non-infiltrating cells that express CD8, PD1 

nd FoxP3 (P2) associated to tumor CK+ cells (P7), and is asso- 

iated with POLE mutated patients ( Fig. 5 f). Furthermore, P2 by 

tself was significantly more abundant in POLE mutated patients 

p-value: 2.80x10 -10 ) compared to patients carrying the wild type 

ersion of the gene ( Fig. 5 g-i). All these findings are consistent 

ith the literature as CD4, CD8, FoxP3, and PD1 are inflammation 

arkers, and POLE-mutated endometrial carcinomas, usually with 

 better prognosis than POLE WT, with higher abundance of A1 ar- 

as, are described to have large lymphocyte populations ( Li et al., 

019b ). In summary, area A1 contains cellular neighborhoods re- 

ated to high immunological activity, and points at the existence of 

nteractions between specific immune phenotypes in POLE vs. non 

OLE mutated cancers that could be further explored, as could be 

one with other TMEs selected by NaroNet. 

To illustrate the individual interpretability of our results we 

rovide two examples of images in which phenotype P2 was 

he most relevant TME selected by NaroNet. The first image was 
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Fig. 6. Association of spatially-resolved 35-plex of breast cancer tissues with patient long term survival. a. Histogram plot of patient overall survival in months, colored by 

risk classes. b. AUC prediction performance of NaroNet for four training strategies: image-wise or patient-wise, and using the cell segmentation provided with the image 

dataset or using the proposed PCL method. c. Heatmap showing the mean marker expression, for all neighborhoods learned by NaroNet. d. Violin-plot showing the relative 

abundance of learned neighborhoods N8 and N16 as a function of risk group, RI and RIII (p-values were adjusted with Bonferroni correction). 
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orrectly classified as POLE WT with a prediction confidence of 

5.45%, and PIR value of 1.49. It shows a cold tumor landscape 

low P2 abundance - that is associated with POLE WT patients 

 Fig. 5 j). This is consistent with the global cohort-level findings 

 Fig. 5 h). The second image was correctly classified as a POLE mu- 

ated with a prediction confidence of 99.24%, and a PIR value of 

.38. It shows a hot tumor landscape with high P2 abundance 

 Fig. 5 k), being also consistent with global cohort-level findings. 

Comparison with single cell analysis: Qupath. To further vali- 

ate NaroNet, we quantified the phenotype that NaroNet identified 

s the most discriminative between patient types (P2, i.e. high ex- 

ression of CD8, PD1, and FoxP3), using QuPath ( Bankhead et al., 

017 ), a widely used open source software for computational 

athology (Supplementary Materials: Appendix E. Image analysis 

ith Qupath). For each image of the cohort, we first quantified 

he level of expression of CD8, PD1, and FoxP3 from the cell seg- 

entation masks obtained using the DAPI -counterstained- chan- 

el. Then we calculated the number of CD8+PD1+FoxP3+ cells and 

orrelated this number with the number of patches that NaroNet 

ssigned to P2, obtaining positive correlation (R 

2 = 0.63) (Supple- 

entary Fig. 15b). Moreover, the respective violin-plots (Supple- 

entary Fig. 15c-d) showed both QuPath and NaroNet are able to 

obustly distinguish patient-types based on CD8+PD1+FoxP3+ phe- 

otype abundance, the outstanding difference being that NaroNet 

nfers it without human supervision. 

Patient-wise quantification. Finally, to test NaroNet’s predic- 

ive power classifying subjects, i.e. patients and not individual im- 

ges, based on the POLE mutation, we performed a leave-one-out 

xperiment: iteratively, 11 patients (represented by all their im- 

ges) were used to train the model and one patient was used 

or testing. Patient-wise predictions were calculated as the mean 
9 
rediction value of all images that correspond to the test patient, 

chieving an overall accuracy of 83.33% with a 95% CI [63.02–

0 0.0 0%], and an AUC of 0.67 with a 95% CI [0.32-1]. 

.3. Breast cancer cohort 

NaroNet was trained to associate TMEs with patient survival 

isk ( Jackson et al., 2020 ). 215 patients were clustered by k-means 

nto three risk groups (RI, RII, RIII) based on their long-term sur- 

ival ( Fig. 6 a): RI contained 48 patients that survived more than 

20 months, RII contained 107 patients that survived between 54 

nd 119 months, and RIII contained 60 patients that survived less 

han 53 months. The PCL module produced 18x18 pixel patch em- 

eddings for all the images of the cohort, with a high contrast ac- 

uracy of 82.50%. As more than one image was acquired per pa- 

ient, images from the same patient were combined in one single 

ata structure (i.e., graph) and fed to NaroNet. A 10-fold nested 

ross validation was used to optimize NaroNet’s parameters and 

yperparameters (Supplementary Table 4) as explained for the en- 

ometrial carcinoma experiment in Section 3.2 . NaroNet predicted 

I vs. RIII patients with an accuracy of 70.37% with 95% CI [61.81- 

8.92] and an AUC of 0.73 with 95% CI [63.15-82.00] (Supplemen- 

ary Fig. 16). 

As an example of how to make use of its global interpretabil- 

ty, NaroNet learned 57 distinct spatial patterns of TMEs able to 

redict the patient risk group ( Fig. 6 c and Supplementary Fig. 17). 

sing our differential TME composition analysis we found that a 

ombination of two neighborhoods (N8 and N16) was significantly 

redictive (p-value < 0.05) when distinguishing between RI and RIII 

atients. N8 is a neighborhood that contains tumor cells (cytok- 

ratin AE1/AE3 and cytokeratin 7 positive), and high presence of 



D. Jiménez-Sánchez, M. Ariz, H. Chang et al. Medical Image Analysis 78 (2022) 102384 

Table 2 

Ablation study on the synthetic and real experiments. Bold-faced results highlight the best performing result. AUCs are listed 

for the experiments with real patient cohorts. The synthetic experiments list the accuracy values. 
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bronectin. This neighborhood is more abundant in risk III pa- 

ients ( Fig. 6 d). Fibronectin is a key component of the extracel- 

ular matrix. In particular, as seen in the literature, fibronectin is 

ighly present in the remodeled tumor extracellular matrix, form- 

ng a barrier for the infiltration of immune cells. Consistent with 

ur findings, fibronectin was associated with poorer patient sur- 

ival ( Fernandez-Garcia et al., 2014 ). Moreover, the abundance of 

eighborhood N16, consisting of tumor cells expressing p53, was 

lso associated with bad prognosis ( Fig. 6 d). The tumor suppressor 

ene p53 is one of the most commonly mutated gene in human 

ancers. TP53 gene mutation is generally associated with a strong 

nd diffuse immunoexpression of p53. Consistent with our find- 

ngs, TP53 mutation has been shown to be a poor prognostic factor 

n various cancer types ( Li et al., 2019a ). 

Besides N8 and N16 there are other TMEs whose abun- 

ance is significantly different across patient types (Supplemen- 

ary Fig. 17c). Working in ’discovery’ mode, these TMEs could 

e used to obtain insights on cohort-differentiating microenviron- 

ent features. For instance, neighborhood N4 was associated with 

oor survival (p-value < 0.0 0 01) and contained Sox9 positive cells, 

ox9 having been previously described as an oncogene ( Aguilar- 

edina et al., 2019 ). 

We next evaluate NaroNet’s ability to capture the heterogene- 

ty of the 35-plex breast cancer cohort by showing the individual 

nterpretable prediction of two patients. The first patient, who sur- 

ived 33 months, was correctly classified as high risk (RIII) with a 

rediction confidence of 98.98%. Such prediction was mainly driven 

y the presence of N4 (i.e., Sox9+, PIR value 1.91) that is highly 

bundant in this patient (9.07% of the tissue) compared to the av- 

rage presence of N4 found in the whole patient cohort (1.49%). 

his is consistent with our global findings that indicate that high 

isk patients are associated with Sox9 oncogene expression (i.e., 

eighborhood N4). The second patient, who survived 174 months, 

as correctly classified as low risk (RI) with a prediction confi- 

ence of 93.15%, being the prediction mainly driven by the absence 

f N8 (i.e., extracellular fibronectin, PIR value 1.84) as its relative 

bundance is low (0.01%) compared to the average N8 mean abun- 

ance (2.21%). Therefore, for this patient, NaroNet correctly quan- 

ified a low presence of N8, and associated it to high survival, as it 

as previously observed cohort-wise ( Fig. 6 d). 

Effect of the data input format. We finally analyzed NaroNet’s 

bility to predict patient risk subtypes as a function of the input 

sed. On the one hand, as cell segmentation masks are provided 

long with the public image dataset, cell features were extracted as 

one in the original reference paper ( Jackson et al., 2020 ). Briefly, 

 graph of interconnected cells (37-element vectors) was fed to 

aroNet, where each cell vector consists of the average expression 

f the 35 markers plus the cell size and eccentricity. This approach 

s compared to our proposed strategy based on the use of graphs 

f patch embeddings. On the other hand, as more than one image 

as acquired for some patients, we compared the strategy of feed- 

ng NaroNet using one graph per image or feeding it with a graph 

hat combines all the images of the patient. We used the same hy- 

erparameters for all the experiments (Supplementary Table 4). 

p

10 
Fig. 6 b shows the area under the curve (AUC) for all experi- 

ents. As shown, NaroNet achieves the highest prediction perfor- 

ance using a graph containing PCL patches instead of cell masks, 

nd works better when all images of the same patient are com- 

ined into a single graph. 

. In depth analysis 

In this section, we describe additional experiments that were 

arried out to provide an even more comprehensive understanding 

f the proposed methods (i.e., NaroNet and PCL). All experiments 

ere conducted using the training protocols introduced in the Re- 

ults section. 

.1. Ablation studies 

We examined how NaroNet’s performance varies when selected 

odules are removed from the original network, specifically phe- 

otype, neighborhood, or area learning. Therefore, we repeated all 

xperiments done with real and synthetic datasets, removing se- 

uentially the phenotype, neighborhood, or area learning modules. 

he results of the ablation studies are shown in Table 2 . Over- 

ll, NaroNet performs best when using the three modules. As ex- 

ected, its performance varies greatly depending on which element 

f the tumor microenvironment is driving the disease paradigm at 

and. For instance, in CCI1, where patient types show distinct cell 

o cell interactions, the neighborhood learning module is crucial, 

nd when removed, NaroNet is unable to capture cellular interac- 

ions, its performance dropping dramatically. 

.2. Comparison with other methods 

NaroNet is the first WSDL method fully adapted to multiplex 

maging. In contrast with other imaging modalities like H&E stain- 

ng, where WSDL methods can be evaluated in public datasets, e.g., 

amelyon16 challenge ( Bandi et al., 2018 ), there is a lack of pub- 

ic multiplex image datasets to objectively evaluate multiplex im- 

ge analysis frameworks. However, in order to compare NaroNet 

ith other existing approaches that could be applied to multiplex 

maging, we adopted two state-of-the-art WSDL methods used to 

lassify H&E tissue sections, adapting them for the analysis of mul- 

iplex images from our real cohorts (i.e., Endometrial carcinomas 

nd Breast Cancer cohort). 

A. CLAM ( Lu et al., 2021 ) As most WSDL methods, CLAM is 

ased on a two-step strategy. In the first step, the image is di- 

ided into image patches (i.e., hundreds of cells) which are fed to 

 ResNet50 pretrained on ImageNet. In the second step, attention 

cores are assigned to patch representations considering their rele- 

ance in the patient-level classification task at hand. To adapt this 

ethod to multiplex imaging, it is necessary to use an alternative 

atch feature extraction strategy because it is not possible to in- 

ut multiplex image patches to a RGB-based ResNet50 pretrained 

n ImageNet. Instead, we used our proposed PCL strategy. To this 

nd, output patch representations from our PCL module were in- 

ut to CLAM. To choose the size of the image patch we took into 
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Table 3 

Comparison of NaroNet with other WSDL methods. AUC scores obtained using three 

weakly-supervised methods over a 10 fold cross validation, for the endometrial car- 

cinomas and breast cancer datasets. A small patch size corresponds to 15x15 and 

18x18 pixels, and a large patch size is 90x90 and 100x100 pixels in the endometrial 

carcinomas and breast cancer datasets, respectively. 

Table 4 

Study of the effect of the image crop size for PCL. 
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onsideration how CLAM models patches: CLAM does not try to 

apture physical interactions between patch representation, but in- 

tead models the tumor microenvironment from the information 

xisting within each patch. Therefore, it requires relatively large 

atch sizes. For this reason, we evaluated CLAM’s performance us- 

ng two patch sizes, the first following our strategy where one im- 

ge patch contains one or two cells, and the second, more simi- 

ar to the original CLAM’s strategy, following the strategy used in 

 Lu et al., 2021 ) where one image patch contains dozens of cells. 

B. Neural Image Compression (NIC) ( Tellez et al., 2019 ) NIC 

s also a two-step strategy. In the first step, the image is divided 

nto image patches that are used to train a CNN unsupervisedly. 

n the second step, feature vectors are arranged to create a com- 

ressed image, which is then fed to another CNN (ResNet50) that is 

rained supervisedly to predict patient-level labels. As done before, 

e used our PCL strategy to extract features at the cellular level. 

s NIC is based on a CNN to make patient predictions, thus cap- 

uring interactions between patches, we used a small image patch 

ontaining one or two cells. 

Performance results are provided in Table 3 . Compared to CLAM 

nd NIC, NaroNet achieves the best performance in terms of AUC 

cores. Please note that, besides achieving higher prediction values, 

ur method is inherently interpretable at three levels of complex- 

ty (i.e., phenotypes, neighborhoods, and areas). 

.3. PCL parameter evaluation 

The PCL module learns cellular features from two augmented 

iews of one image crop. Here, as the image crop is ∝ L times big-

er than the augmented views, the subsequent generated image 

atches (or views) do not necessarily contain the same pixel infor- 

ation, but can capture information from neighboring pixels. We 

valuated NaroNet’s performance using different ∝ L values. From 

he result ( Table 4 ) we can conclude that NaroNet performs better 

hen using a value of ∝ L higher than 1. This means that introduc- 

ng in the learning pipeline information from neighboring pixels is 

eneficial to extract cellular features. 

. Discussion 

Our working hypothesis is that relevant elements of the tumor 

icroenvironment can be blindly identified and associated with 
11 
atient-level tumor information from multiplex imaging data. To 

his end, we have developed NaroNet, an end-to-end deep learning 

ramework that proves this hypothesis true, as it accurately per- 

orms patient predictions from local phenotypes, neighborhoods, 

nd areas that were blindly identified from multiplex immunos- 

ained histological data. NaroNet takes advantage of, and improves 

lements of the two main state-of-the-art computational pathology 

pproaches. From SCA methods, NaroNet inherits the use of graphs 

o capture phenotype interactions, extending this idea by using 

NNs to actually ’learn’ the most relevant interactions between el- 

ments of the tumor microenvironment ( Kipf and Welling, 2017 ). 

rom WSDL, NaroNet uses the concept of learning deep features 

rom patches without the need of manual annotations using only 

atient-level labels, and applies it to multiplex immunostained 

ections instead of H&E histological images. Furthermore, instead 

f being a black-box approach ( Rudin, 2019 ), NaroNet is inherently 

nterpretable as it makes predictions based on the abundances of 

iscovered phenotypes, neighborhoods and areas, thanks to the 

se of a novel max-sum pooling operation. During the learning 

rocess, NaroNet’s parameters are trained to assign patches into 

ever seen TMEs, whose abundances would eventually differenti- 

te patient types. For this reason, NaroNet can be used in ‘dis- 

overy mode’ to research new biomarker signatures of the tumor 

iology, or to answer clinically relevant questions, e.g. which tu- 

or features are more predictive of the tumor type or the out- 

ome of the patient. Furthermore, using validated biomarker sig- 

atures , NaroNet can be trained to provide clinicians with inter- 

retable clinical decisions, since predictions are based on TME an- 

otations which can be mapped back onto the original images. 

o facilitate individual interpretable predictions, we developed a 

ew metric called predictive influence ratio (PIR) that measures 

ow each tumor microenvironment element contributes to the fi- 

al prediction. 

One of the major bottlenecks in developing high-performance 

achine learning classifiers for computational pathology is the low 

umber of available labeled tissue images. This is even a greater 

roblem in the case of multi-spectral images, as the use of multi- 

le markers dramatically increases the complexity of the annota- 

ion. To address this, we propose a data-efficient contrastive learn- 

ng loss preprocessing step (PCL). This is a similar strategy to the 

ne followed in state-of-the-art semi-supervised learning frame- 

orks ( Chen et al., 2020a; 2020c ). These methods learn enriched 

mage representations from large numbers of unlabeled images us- 

ng an unsupervised deep neural network. Later, a supervised clas- 

ifier can be trained to obtain outstanding image predictions from 

mall numbers of these enriched, labeled image representations. 

n our case, all available patient tissue information is divided in 

atches, i.e., tiles, containing up to two cells, and are introduced 

n a convolutional neural network to create self-supervised low- 

imensional enriched embeddings of these patches. These embed- 

ings allow for comprehensive discrimination of pixel-level fea- 

ures such as, cell morphology, marker intensity, marker colocaliza- 

ion, etc. thus reducing the inherent heterogeneity existing within 

nd between tissues. We hypothesized that the use of these proto- 

ypical enriched representations extracted from the images might 

elp with the classification of low number of patients represented 

y them. Furthermore, the volume of data space is decreased so 

hat NaroNet’s computational time is reduced allowing the use of 

rchitecture search algorithms that would ultimately increase pre- 

ictive performance. 

We have validated NaroNet using both synthetic and real data. 

sing a novel multiplex tissue image simulator we created real- 

stic patient cohorts with tunable presence of specific TMEs, pro- 

iding an ideal objective benchmark to test the performance of 

he system. Indeed, our extensive validation using synthetic data 

uccessfully confirms that NaroNet can learn relevant TMEs - lo- 
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B

al phenotypes, cell-interaction neighborhoods, and neighborhood- 

nteraction areas -, even when their presence in the tissue is rare. 

sing a high-grade endometrial carcinoma patient cohort, NaroNet 

ound, among other TMEs that could be explored, a local pheno- 

ype expressing CD8, PD1, and FOXP3 whose high abundance was 

ssociated with the POLE mutation, while achieving a prediction 

ccuracy of 93.75%. This finding is in accordance with what has al- 

eady been described in the literature. Moreover, we confirmed us- 

ng a semi-automated computational pathology software (QuPath), 

hat the abundance of this specific phenotype correlates positively 

ith the one found by NaroNet. This nicely shows that NaroNet 

an be a useful tool in research environments, as it can help to 

lindly identify novel TMEs that are related to the biology of the 

umor. Using a public breast cancer dataset, NaroNet found TMEs 

hat were associated with the patient’s survival achieving an AUC 

f 0.73. Strikingly, NaroNet did not require human supervision to 

earn, from a pool of millions of cells stained by 35 markers, deci- 

ive neighborhoods consisting of cells expressing Sox9 and extra- 

ellular fibronectin, respectively, that were related to the survival 

f the patient. In addition, we show that NaroNet performs better 

hen fed with an enriched graph created from image patches than 

hen using cell features obtained from cell segmentation masks. 

his shows that NaroNet is able to learn relevant tumor microenvi- 

onmental information without the highly demanding task of seg- 

enting all cells in the tissue. We also prove that using graphs 

o represent patients is more advantageous than using images, as 

atient’s stained tissue sections can be combined together into a 

ingle, disjoint graph providing NaroNet with more information to 

ake better predictions. 

Finally, we have presented an ablation study that shows that 

he three levels of spatial complexity used by NaroNet to model 

he tumor microenvironment (i.e., local phenotypes, neighborhoods 

nd areas) contribute individually to achieve better predictions. 

oreover, a comparison with two state-of-the-art WSDL methods 

hows that NaroNet is able to achieve more accurate predictions 

hile providing an inherent interpretability of the reason behind 

hose predictions that the rest of the methods lack. 

. Conclusion 

We have presented NaroNet, and ensemble of networks that 

nsupervisedly identifies and annotates relevant TMEs that drive 

atient outcomes. Since we have shown that NaroNet is able learn 

n situ highly predictive TMEs that confirm the existing litera- 

ure, it is possible to affirm that the analysis of new predictive 

MEs discovered by NaroNet could provide novel insights into the 

echanisms of disease progression. This could be used in clini- 

al settings, and more importantly, it makes NaroNet a valuable 

esearch tool for the discovery of novel biomarkers. Furthermore, 

he fact that NaroNet’s clinical predictions are directly based on 

he annotations of TMEs results in an important breakthrough in 

omputational pathology, as it contributes to the whitening of 

L black-boxes. Indeed, our model allows clinicians to understand 

hich TMEs drive the prediction of each patient safely and reliably 

ince DL neuron activations are related to specific biological struc- 

ures that can be mapped back into the original images. Therefore, 

aroNet could be an optimal solution for the rapid clinical transla- 

ion of biomarker discovery signatures , where DL models trained to 

uantify relevant TMEs are then applied to new incoming patients 

y providing clinicians with interpretable predictions. 

mplementation details 

Patch contrastive learning is implemented in Python 3.7.3 us- 

ng Tensorflow 1.14.0. NaroNet is implemented in Python 3.7.3 us- 

ng PyTorch 1.4.0. Architecture search was performed using ray 
12 
.0.0 ( Liaw et al., 2018 ) and hyperpopt 0.2.3. Synthetic datasets 

ere generated in MATLAB v2019b. Python libraries that were also 

sed include imgaug 0.4.0, tqdm 4.48.2, scipy 1.5.4, numpy 1.18.2, 

klearn 0.23.2, seaborn 0.11.0, and pandas 1.1.1. All the experi- 

ents were carried out using a server with 16 Intel(R) Xeon(R) E5- 

623 v3 @ 3.00GHz CPUs, a RAM of 256 GBs, and 4 GeForce RTX 

080 Ti GPUs of 11GBs. For use as a framework, NaroNet’s source 

ode is available on GitHub ( https://github.com/djimenezsanchez/ 

aroNet ). 

All 3 datasets used in this study are publicly available and can 

e accessed online. All synthetic patient cohorts (including multi- 

lex images, ground-truth masks, and patient data) and high-grade 

ndometrial cancer cohorts (including multiplex images and pa- 

ient data) are available at Zenodo ( https://doi.org/10.5281/zenodo. 

596337 ). Breast cancer cohort is publicly available from the orig- 

nal authors ( Jackson et al., 2020 ) at Zenodo ( https://doi.org/10. 

281/zenodo.3518284 ). 
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