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Deep Learning to Count Fish in Sonar Images

by Penny TARLING

Counting fish in underwater imagery is a time-consuming task but gives invaluable
information to biologists, conservation practitioners, and fishery managers. Deep
learning can be deployed to automate this process. We demonstrate its effective-
ness in the context of a rare cooperative foraging system between wild Lahille’s bot-
tlenose dolphins (Tursiops truncatus gephyreus) and artisanal net-casting fishers who
forage together to catch migrating mullet fish (Mugil liza). The benefits in terms
of foraging success accrued by interacting fishers and dolphins remains unclear,
mostly because the murky waters complicate the estimation of mullet availability.
Given that data from commercial fisheries indicate a rapid decline in the regional
mullet stock, and that population monitoring indicate that the frequency at which
dolphins and fishers interact has also been decreasing, it is imperative to understand
the foraging benefits to both predators before this unique socio-ecological system
collapses. In using underwater sonar imagery, we overcame the low water visibility
when recording mullet schools. However, the resolution of these images is inher-
ently lower than those of an underwater camera, making the task of training a ma-
chine learning model to estimate fish abundance more challenging. Thus, beyond
the biological and conservation relevance for this traditional fishing practice, au-
tomatically and accurately estimating fish density in low-resolution sonar imagery
comes with its own technical challenges and methodological merits.

Here we trained a convolutional neural network (CNN) with a new dataset of
500 annotated underwater sonar images to directly regress a sample image to a cor-
responding density map, which is then integrated to give a count estimate of the
number of mullet. This technique is widely adopted in other counting tasks but has
rarely been used in wildlife counting. One reason being due to the severe lack of
labelled data. Inspired by works in crowd-counting, we address this challenge, with
a multi-task network which learns to simultaneously rank unlabelled pairs of sam-
ple images according to number of mullet in a self-supervised task, and regresses
a labelled sample to produce an estimated fish count. To account for the substan-
tial noise in our images and the difficulties in counting fish when there are many
occlusions and overlaps between individuals, we incorporate aleatoric uncertainty
regularization into our approach. This both improves the accuracy in the model’s
predictions as well as giving the user an estimated "uncertainty" score of a given
sample. Experimental results show that deep learning is effective for counting fish
in sonar images, and the techniques we adopt improve the accuracy in our model
predictions as well as other comparable state-of-the-art approaches: In samples con-
taining between 0-438 mullet, our network predicted the count with a mean absolute
error of 6.48, a decrease in the mean absolute error by 4.61 from our base model.
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Chapter 1

Introduction

Recent years have seen a surge in interest in computer vision, and specifically deep
learning, to gain a high-level understanding of images. Analysing natural images
with computer vision expedite a number of important tasks, including image clas-
sification (Pham et al., 2021), facial recognition (Yan et al., 2019), object detection
(Ren et al., 2015) and instance segmentation (He et al., 2017). Since these are com-
mon, time-consuming and labour intensive tasks, they have drawn much cross-
disciplinary research attention.

Object counting is another example with its wide ranging applications: In Biol-
ogy, technological advances in non-invasive sampling techniques has led an increas-
ing demand for analytical tools that can automatically count natural ‘objects” in an
ever-growing volume of image and video data. Microbiologists, for example, can
now rely on computer vision tools to count cells in microscopic images (Falk et al.,
2019). There has also been progress towards conservation ecologists and agricul-
tural managers being able to automatically count crops, plants and trees in aerial or
satellite images (Ammar and Koubaa, 2020), and population ecologists being able to
automatically quantify livestock (Xu et al., 2020). Often these problems have been
addressed by object detection and image segmentation, whereby "regions of interest"
are located to identify different objects. In some contexts, for example cell counting,
where cells are overlapping and clumped together, these methods are not as effec-
tive. Xie, Noble, and Zisserman, 2018 overcame this by directly regressing images
of cells to a cell spatial density map. The ability to automatically process a large vol-
ume of natural images, using relatively cheap and non-invasive approaches, is an
enormous benefit of using computer vision to tackle old problems in Biology.

To address these problems, one can look to other well-developed applications of
computer vision research, such as vehicle counting for traffic management (Ofioro-
Rubio and Loépez-Sastre, 2016) and crowd counting for security and surveillance
(Gao et al., 2020). The latter in particular has been the focus of extensive research
and where we have drawn much inspiration from. The common approach in crowd
counting now is with the use of deep convolutional neural networks (CNNs) which
directly regress an image to its corresponding density map (e.g. Cao et al., 2018; Liu,
Weijer, and Bagdanov, 2018) . This density map can then be integrated to produce
a final count estimate of the number of people and has the advantageous of only
needing point annotations in labelling, instead of bounding boxes. In population
and conservation biology, such techniques for crowd counting should be particu-
larly useful for processing natural images with thousands of “objects” of interest,
such as plants and animals. Providing a rapid and accurate estimate of individu-
als of different species in large volumes of images is of invaluable importance for
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distributed swimming compactly and fishing net

FIGURE 1.1: Underwater sonar images from our dataset: here we see
a range of scenarios which our model needs to be adaptable to

improving biological monitoring and inform decision-making in biological conser-
vation (Lamba et al., 2019).

While there has been recent advances in the use of deep learning for biological
monitoring in terrestrial habitats (e.g. Norouzzadeh et al., 2018), comparatively less
effort has been given to marine and freshwater systems. Underwater imagery anal-
ysis can expand and facilitate biological monitoring of underwater ecosystems and
fisheries stock assessments. Despite a growing interest in using deep learning for
this, the main focus of research has been on the task of species detection and classifi-
cation (e.g. Moniruzzaman et al., 2017; Salman et al., 2019), rather than counting fish
and estimating its abundance directly. In addition, this research effort typically uses
images generated by single lens reflex cameras and therefore is restricted to habitats
with good underwater visibility. Sonar imaging systems have become an increas-
ingly common tool for capturing underwater images where visibility is a constraint,
such as at night and in deep and very turbid waters (e.g. Boswell, Wilson, and
Cowan Jr., 2008; Lankowicz et al., 2020). This is because sonar technology does not
rely on light, but instead use sound energy to generate real-time digital underwa-
ter images from the returning echoes. However, the resolution of these images is
inherently lower than that of underwater cameras; therefore, the task of counting
aquatic animals in sonar images comes with additional challenges. It can be diffi-
cult, even for the human eye, to distinguish between “objects” which are captured
without details in the sonar images (Figure 1.1). An automated counter needs to be
able to accurately count the number of target species in images of very few numbers
to very high, as this can vary dramatically. Furthermore, labelled, annotated data is
severely limited and costly to acquire from the needed human input.

This thesis aims to solve the task of estimating fish abundance in turbid envi-
ronments in a unique context (Figure 1.2): during the traditional fishing between
artisanal net-casting fishers and wild dolphins targeting migrating mullet schools, in
southern Brazil (e.g. Simdes-Lopes, Fabidn, and Menegheti, 1998; Peterson, Hanazaki,
and Simoes-Lopes, 2008; Cantor, Simdes-Lopes, and Daura-Jorge, 2018). To do so,
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we develop a deep learning model and provide a new dataset using images that
have been selected and manually annotated from 105 hours of sonar video footage
recorded in this unique natural setting (Cantor M, unpublished data). Beyond the
technical merit and relevance in solving the task of processing low-resolution sonar-
based underwater footage, there is also a practical and conservation relevance in the
ability to automatically and accurately count mullet fish at the spatial scale that mat-
ters for the dolphin-fisher interaction.

(a) (b) (c)

dolphin cues dolphin dives fishers retrieve nets

- fishers in line . fishers cast nets

FIGURE 1.2: The traditional cooperative foraging between wild dol-
phins and artisanal net-casting fishers targeting migrating mullet.
For over a century, Lahille’s bottlenose dolphins have been seen herd-
ing mullet schools towards the edge of the estuarine canal in La-
guna, southern Brazil, where artisanal fishers wait in shallow waters.
Since the estuarine waters are murky, fishers cannot track the mullet
schools but they can track the dolphins” behaviour. (a) Fishers wait
in line at the edge of the canal for the dolphins’ foraging cues (here, a
sudden dive near the coast) which (b) fishers interpret as the right mo-
ment and place to cast their nets, presumably on top of (c) the passing
mullet schools. Drone images by M. Cantor, A.M.S. Machado; Pho-
tographs by D.R. Farine, E.M. Ehrhardt, EG. Daura-Jorge.

These fisher-dolphin foraging interactions are thought to represent one of the
few remaining cases of human-wildlife cooperation. In certain estuaries in northern
Argentina and southern Brazil, wild Lahille’s bottlenose dolphins (Tursiops truncatus
gephyreus) herd migrating mullet schools (Mugil liza) towards the coast where a line
of artisanal fishers wait for stereotyped foraging behaviours by the dolphins, which
they interpret as the right moment to cast their nets (Simdes-Lopes, Fabian, and
Menegheti, 1998). Although the traditional fishing practice between dolphins and
fishers has been around for over a century (Simdes-Lopes, 1991) and considered as
mutually beneficial for both predators (e.g. Simdes-Lopes, Fabian, and Menegheti,
1998; Daura-Jorge et al., 2012; Cantor, Simdes-Lopes, and Daura-Jorge, 2018), the
foraging benefits both predators accrued remains to be properly understood and
quantified. The turbid waters complicate the estimation of the abundance of prey,
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thus requiring a reliable method such as the sonar-based underwater imaging sys-
tem for assessing the mullet schools in the estuarine waters with very low visibility
in real-time.

To properly evaluate the speculative benefits of this interaction, the first steps
are quantifying precisely both the (i) availability of mullet schools at the very lo-
cal scale at which the dolphin-fisher interaction takes place; and (ii) the proportion
of the mullet available that is caught by fishers and dolphins when interacting and
when foraging independently (Cantor, In Prep.). Quantifying these benefits for in-
teracting dolphins and fishers is crucial to determine whether their interactions are
indeed mutual and, if so, to determine the minimum conditions of prey availability
at which this traditional, century-old interaction can persist (Cantor, In Prep.) and
remain resilient in face of the global trend of decline fisheries seen at local, regional
and global scales (e.g. Worm, 2009; Pauly and Zeller, 2016; Hilborn, Amoroso, and
Anderson, 2020). Given the real concern that the mullet stocks in southern Brazil are
in decline (Sant’Ana et al., 2017) and causing a decline in the frequency of dolphin-
fisher interactions, evaluating whether these changes can collapse this unique socio-
ecological system becomes imperative (Cantor, In Prep.).

The underwater sonar images from this system pose further challenges for the
automatic counting of mullet. For instance, these images can vary substantially
from containing zero to several hundred mullets; dolphins and casting fishing nets
can also be seen, making it difficult to distinguish between the target fish and these
other “noisy objects”. Here, for the first time, we combine self-supervised learning
and an uncertainty regularization to count fish numbers in sonar images. Our results
show an improvement in accuracy from our base model, with the implementation
of these methods:

We have thus addressed the constraint of limited available labelled data by in-
corporating a self-supervised task into our framework and leveraging unlabelled
data. Inspired by Liu, Weijer, and Bagdanov, 2018 work on crowd counting, we have
generated pairs of images, where one image in the pair is a sub-section of the parent
image. Thus it is known that the parent image must contain a greater or equal num-
ber of fish to its respective comparative image. It is then possible to train a Siamese
network to rank these images according to fish abundance. This task is used to
improve the training of the traditional supervised task of counting fish in labelled
image data. We then trained these two tasks together in a multi-task network which
simultaneously learns to rank the unlabelled data and count the number of fish in
labelled data.

Particularly important in this context is the issue of noise in data as well as the
difficulties for a human to accurately count the number of fish in densely populated
images. Figure 1.1(B) shows an example image with a dense school of fish. The
fish are seen simply as blue blobs with no detailed features, making it difficult to
decipher the number present when they swim close together or even overlap. This
will likely lead to inaccuracies, even inconsistencies, when manually annotating the
data. To date, to the best of our knowledge, the handful of deep learning models ap-
plied to directly counting fish, output a point estimation only. Inspired by the recent
work of Oh, Olsen, and Ramamurthy, 2020 who adopted the approach in crowd
counting, we have trained our network to simultaneously produce an uncertainty
measure alongside each point prediction. Not only do our results show this leads to
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a higher level of accuracy, but it also provides the user with an understanding of the
uncertainty surrounding a given result. The user is then able to examine these sam-
ples further or treat them with caution. When considering the application of these
methods for aquatic monitoring and conservation, or fisheries and aquaculture man-
agement, over or underestimating populations could lead to adverse consequences
such as biased decisions. Therefore, a greater understanding of how much a predic-
tion can be depended on is crucial.

To the best of our knowledge, only one other study has applied deep learning
to count fish in the same type of sonar images (i.e. multi-beam sonar cameras that
can record moving objects): Liu et al., 2018 incorporated a regularizing technique
to increase the weight of less common samples in their dataset, i.e. those with high
numbers of fish. This in turn increased the overall accuracy of the network’s predic-
tions, particularly for this subgroup of samples. We experimented with this regular-
izing approach in our methodology, testing it with and without the self-supervised
task and uncertainty regularization for comparison. Our results show that our novel
ways to solving this task, improves upon this state-of-the-art approach.

In summary the main contributions of our work are:

* A new labelled dataset of 500 images taken in a natural environment along
with >Imillion additional unlabelled images from 105hours of video

¢ A self-supervised task leveraging unlabelled data, to improve the supervised
counting task, to the application of fish counting

* Uncertainty estimating applied to fish counting, shown also to also improve
accuracy in count predictions

¢ An improvement in results from the existing state-of-the-art work applying
deep learning to counting fish in comparable sonar images
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Related Work

Here we review the related studies to our work. We have taken much inspiration
from research using computer vision to count people in images of crowded scenes.
Thus, in what follows we explain how crowd counting has evolved in recent years
and the techniques that we found especially appropriate for our task. Next, we
review examples of studies on counting animals, and in particular fish, however
this line of research is far less explored than that of crowd counting.

2.1 Crowd Counting

Machine learning for crowd counting firstly evolved from traditional handcrafted
and detection based methods (e.g. Leibe, Seemann, and Schiele, 2005), to regression
based methods, which relied on manual feature extraction (e.g. Chen et al., 2012).
For a more detailed review, we refer our reader to Loy et al., 2013. Finally, as with
other computer vision tasks, in recent years deep CNNs have outperformed these
earlier approaches. One reason is the severe limitation with former methods in the
lack of spatial and local feature information used in the training process, crucial in
crowd scene analysis. Density based methods are now the common approach for
this reason, with CNNs directly regressing an image to its corresponding density
map.

Wang et al., 2015 was one of the first papers to introduce deep CNNs to crowd
counting, with a focus on learning to ignore non-person noisy objects in images.
From this seminal work, research has progressed to overcome other challenges posed
by images of crowd scenes by improving the scale and context awareness of models.
Zhang et al., 2016 built a multi-column network to adapt to the variation of scale
present within and between images. Cao et al., 2018 advanced the computational
efficiency of this approach with the use of an Inception (Szegedy et al., 2014) like ar-
chitecture. Subsequently, Liu, Salzmann, and Fua, 2019 improved performance and
generalisation by adaptively learning the scale of contextual information of patches
within images. For a more comprehensive summary of CNN based methods, we
refer the reader to Gao et al., 2020.

2.1.1 Self-supervised learning

Despite the increasing popularity, there are still a limited number of labelled crowd
scene datasets. It is very time consuming to meticulously annotate an image with
the location of each person, particularly in dense scenes with thousands of people.
As a result, datasets tend to contain only several hundred images. To access more
data in training, Liu, Weijer, and Bagdanov, 2018 leveraged unlabelled data from
Google searches of crowd scenes and simultaneously trained a self-supervised task
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to improve the training of the supervised crowd counting task. Pairs of unlabelled
data were generated by taking a crop of one image and training a network to rank
the 2 images in terms of number of people present. The crop must contain the same
or fewer number of people compared to the original and so this can be carried out
as a self-supervised task without the need for any additional labelling. The authors
found that training these tasks in a multi-task network produced more accurate re-
sults than first training the model on unlabelled data and then fine tuning with the
smaller labelled dataset, as is commonly seen when self-supervised tasks are com-
bined with supervised tasks.

2.1.2 Uncertainty

A limitation with all CNN methods discussed so far is that their output is solely
a point estimation, without any understanding of how certain this prediction is.
The need to model uncertainty in computer vision was highlighted by the work
of Kendall and Gal, 2017 and these ideas were incorporated into the task of crowd
counting in Oh, Olsen, and Ramamurthy, 2020. Uncertainty in predictions can arise
from both:

¢ Epistemic uncertainty: This is uncertainty in the model due to lack of knowl-
edge. One approach to quantify this is by placing a prior over the model’s
parameters and determining how much these parameters will vary depending
on training data. High epistemic uncertainty would result in a broad posterior
distribution over the parameters. Epistemic uncertainty can theoretically be
explained away with infinite data.

* Aleatoric uncertainty: This is uncertainty in the data and arises from genuine
observational noise. No matter how much data we have, there will always be
a degree of uncertainty in the prediction of noisy images. To quantify this in
regression problems, the noise parameter also needs to be learned alongside
the model weights.

In the task of crowd counting, where labelled data is limited, genuine noise and
occlusions occur and there are likely inaccuracies in manually annotated images in
dense scenes, it is important to have an understanding of uncertainty. This was
the motivation behind the work of Oh, Olsen, and Ramamurthy, 2020 and for our
application of it to fish counting. We have focused solely on heteroscedastic aleatoric
uncertainty (the assumption that observational noise varies with the input data) but
propose exploring epistemic uncertainty as further work.

2.2 Counting fish and other animals

Estimating fish abundance has traditionally relied either on intrusive field methods,
indirect methods such as estimates of catch per unit effort from fisheries, or genetic
or observational methods, such as tissue sampling and underwater surveys (e.g.
Pope, Lochmann, and Young, 2010). Among the more recent non-invasive methods
are the use of multimedia data, such as underwater imagery. However, a major bot-
tleneck faced by researchers working with multimedia sampling is processing large
volumes of data, which quickly become laborious and time-consuming to process
manually. There have been an increasing number of research papers thus using ma-
chine learning to handle this task. Formerly, these involved hand crafted techniques
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such as blob detection (Toh, Ng, and Liew, 2009) or the manual extraction of features,
such as edge detection (Fabic et al., 2013), to then be used in regression techniques.
These methods are however limited in a wild setting and/or in deep water, where
occlusions are common and fish will naturally overlap each other in images. Deep
learning can overcome these limitations. Zhang et al., 2020 deployed a hybrid CNN
based on a multi-column CNN and dilated CNN to count farmed Atlantic salmon
fish. This is somewhat different to our task, in that natural images were used and so
fish present more distinct features. Data was also collected in an enclosed maricul-
ture net cage so it is unlikely other noisy objects were present.

One key challenge in fish counting is the large variation in numbers between im-
ages. This is made more challenging by likely imbalances in image data generated
in a wild setting. To count fish from sonar images, Liu et al., 2018 incorporated a
regularizing term to address this issue and to overcome the commonly seen result
in crowd counting works where numbers are underestimated and overestimated in
dense and sparse crowds respectively. There is also a distinct lack of available la-
belled datasets to use in training. Schneider and Zhuang, 2020 used a variety of
techniques to augment thousands of "side scan" sonar images from a small starting
dataset to count the number of fish and dolphins, up to 34 and 3 respectively per
image. Note, side scan sonars are different from the sonar camera used to collect
data for this study: side scan sonars only image static non-moving targets but the
camera can be attached to a moving object.

There are a few examples where deep learning methods have been used to di-
rectly count populations of other animals, although still surprisingly few given the
benefit this could bring to biological research and conservation. The difficulty in
obtaining labelled data is likely a limiting factor. Arteta, Lempitsky, and Zisserman,
2016 overcame this by citizen-science approaches, that is using online volunteers
to annotate thousands of images of a penguin population in Antarctica. Penguins
were counted with a multi-task network which predicted foreground-background
segmentation to aid the direct counting task. Predictive uncertainty could also be
modelled from the annotation discrepancies within an image as a consequence of
multiple labellers.

Thus, there is still huge scope for further exploratory work in this area to address
the constraint of available data and to deal with images captured in the wild being
potentially challenging to work with. (For example, due to image quality, images
being of low resolution, there being significant variation between images and the
likely presence of occlusions and noise.) We have sought to make advancements in
overcoming these challenges through publishing a new labelled dataset and with
our multi-task network which incorporates both an auxiliary self-supervised learn-
ing task. This trains on more abundant unlabelled data, and gives an estimation of
uncertainty to help identify particularly noisy data samples where predictions may
be less reliable.
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Dataset

How we outline how the data were collected in the wild, and explain the prepro-
cessing steps to acquire our labelled dataset along with some important descriptive
statistics of it. Finally, we briefly summarise the extraction of unlabelled data, a far
more straight forward procedure.

3.1 Data collection in the wild and sonar technology

Sonar-based underwater videos were recorded to quantify the availability of mullet
schools (Mugil liza; figure 3.1(e)) during the cooperative foraging interactions be-
tween Lahille’s bottlenose dolphins (Tursiops truncatus gephyeus) and artisanal net-
casting fishers (Cantor, M. unpublished data). The videos were recorded in Laguna,
southern Brazil (figure 3.1(a)), at the main dolphin-fisher interaction site, the Tesoura
beach (figure 3.1(b)), a 100-m length beach at the inlet canal connecting the Laguna
lagoon system to the Atlantic Ocean (e.g. Cantor, Simdes-Lopes, and Daura-Jorge,
2018). The interaction site was sampled during 18 days in May-June 2018, from
09:00 to 17:00, during the peak of the mullet reproductive migration (e.g. Lemos et
al., 2016), resulting in a total of 105h of underwater footage.

Since the water transparency at the lagoon canal is very low (from 0.3 to 1.5m
visibility; Secchi disk, collected in situ), mullet schools were recorded by deploy-
ing an Adaptive Resolution Imaging Sonar, ARIS 3000 (Sound Metrics Corp, WA,
USA; figure 3.1(c)). Such sonar imaging systems are efficient for generating real-
time underwater images in conditions of zero visibility, and so it can be used to
detect aquatic biota at night, or in deep, turbid and/or murky waters (e.g. Boswell,
Wilson, and Cowan Jr., 2008; Lankowicz et al., 2020). The system uses 128 sound
beams to emit pulses from frequencies between 1.8 MHz and 3 MHz and convert
returning echoes into digital, bird’s-eye view images (figure 3.1(d), figure 3.2). The
sonar model and omitting frequencies were chosen specifically so they did not inter-
fere with the dolphins, lower frequencies would overlap with their audible range.
We deployed the sonar at the edge of the canal, along the line of artisanal fishers aim
towards the inlet channel (figure 3.1(c,d)). Videos were recorded at 3 FPS, and the
images ranged between 3-7 and 3-20 meters from the line of fishers toward the canal
(figure 3.1(d)), depending on the emission frequency used. A summary of the data
collection details can be found in Table 3.1
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FIGURE 3.1: Field sampling of mullet schools during the foraging
interactions between wild dolphins and artisanal net-casting fish-
ers. (a) Study site in the canal that connects the lagoon complex adja-
cent to Laguna, southern Brazil, to the Atlantic Ocean. (b) The sonar
camera, Adaptive Resolution Imaging System (ARIS 3000), used to
generate real-time underwater videos of the passing mullet schools
at the spatial scale (c) relevant for the interacting dolphins and fishers
(6-20m). (d) Still from a sonar video depicting the bird’s-eye view of
a passing mullet school in front of the line of fishers. (e) Example of a
typical mullet fish caught by the fishers. Sonar images by M. Cantor;
Drone images by A.M.S. Machado; Photographs by D.R. Farine.

3.2 Labelled dataset

The ARIS video files obtained equate to over 1 million still frame images. For our
study, 500 images were selected for labelling. These were carefully chosen to in-
clude a wide range of possible sample types, from low to high fish counts and from
minimal to substantial noise. Because our labelled dataset is small and we wanted
to maximise the chance of our model adapting to these varying observations, our
dataset was not a representative sample of the field data collect. For example, we
estimate substantial noise is present in < 5% of images collected in the wild, but
>30% of samples out of the 500 annotated, contained substantial noise. We estimate
~25% of wild images contain no objects at all, but they make up just a handful of
our labelled dataset as we expect this will be enough for training. Conversely, a
higher proportion of the labelled dataset contain images with large, dense schools
of fish compared to the true distribution, as we believe these images will require
more data samples for training to achieve accurate predictions. Figure 3.4 shows the
distribution of fish abundance in our labelled dataset. By training our model on the
most challenging images, we can expect it to be more adapted to these. Importantly,
however, without compromising on its ability to estimate abundance in straight for-
ward images, i.e. images with limited noise and / or with sparsely disbursed and
low numbers of mullet: fewer images of this type should be required for training.
Testing our model with a challenging representation of the wild data will also give
us more confidence to the extent it can be applied to biological research. Table 3.2
summarises the entire data collected and the annotated subset.
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FIGURE 3.2: Schematic of the digital images generated by the Adap-
tive Resolution Imaging System. The sonar imaging system uses 128
beams to emit sound pulses and to convert their returning echoes into
a digital image. Note that the sonar projects a wedge-shaped volume
of acoustic energy and that the perspective is a bird’s-eye view of the
object (in this example a tire). These images were reproduced from
the ARIScope Software User Guide v2.6.3 (©SoundMetrics Coorp)..

Sonar Sound Water
Date Location Camera Frequency Visibility Range
21/05/18 - Laguna, 1.8MHz -
07/06/18 Brazil ARIS 3000 3MHz 0.3m - 1.5m 3m - 20m

TABLE 3.1: Details on data sampling in the wild

Total | Annotated Images
Hours Frame No. No. Mean Range
Recorded Rate Images Images (Fish) (Fish)
105 3 FPS >1million ‘ 500 41 0-438

TABLE 3.2: Summary of the whole dataset and descriptive statistics
on the labelled subset.

As the videos taken were filmed at different ranges, the 500 images were cropped
to show a geographical area of 4x9m? and all the same distance from the camera,
thus biological population sampling will be comparable between input samples.
The images were then all resized to the average using bilinear interpolation to 320
x 576 pixels (576 x 320 model input size). These images were annotated using the
Visual Geometry Group Image Annotator (VIA). A point annotation was used the
mark the coordinates of a fish (as close to the centre as possible) and a bounding box
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was drawn around any noise (Figure 3.3). The point annotations of fish can then be
used to derive corresponding ground truth density maps (Chapter 4). The bounding
boxes to label noise were used for subsequent data augmentation, explained in the
following Chapter 4 and Table 4.1.

FIGURE 3.3: Example of a sample and its corresponding anno-

tations. The large bounding box marks where the image will be

cropped so all input samples represent a consistent size of geograph-

ical area and at a consistent distance from the camera. The smaller

bounding boxes mark where noise is present. Each point marks the
location of a fish.

60%
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Number of fish

Percentage of samples in labelled dataset

FIGURE 3.4: Distribution of labelled dataset by number of fish. This
subset of data is skewed towards samples with low numbers of fish.
This distribution is even more exaggerated in the complete dataset.

3.3 Unlabelled dataset

Unlabelled data can be extracted simply by choosing videos at random, cropping
these to the same geographical area as above and resizing to 320 x 576 pixels. Subse-
quent crops within each sample image were then generated following the algorithm
explained in Chapter 4 and Table 4.2.
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Chapter 4

Method

The steps in our final methodology were firstly to augment the labelled dataset to in-
crease training samples from 500 to 5,672. One branch of the network is thus trained
on a supervised task, regressing the images to corresponding density maps. We
then built a multi-task network to include the Siamese architecture to simultane-
ously train the self-supervised task with our unlabelled data. Finally, we added
an additional layer to our output so our model learns to predict the noise variance
within each labelled sample. This entire framework is shown in Figure 4.1. All code
for this can be found in our GitHub repository: https://github.com/ptarling/
Deep-Learning-to-Count-Fish-in-Sonar-Images

Mini-batch =10

Predicted noise variance
\

Labelled data: \‘
Input i which has a 576 18 18 :I
corresponding Conv2D Loss: Lc +Lu
ground truth ResNet-50 1x1x 2 m
2048

density map

2
3 L 10 7o

Density map

Unlabelled data: 576 .,w g
Conv2D
[ — | ResNet-50
1x1x 2
2048
10

2
710
.

320 1
Density map St — | Lossitr
Py - Py ;

;
Unlabelled data: 576 '8 ConvaD J8
P, ——»| ResNet-50 1x1x 2
2048 2

3 10 710

Density map

Parameters = 23,587,712 Parameters = 4,098 Parameters = 0

FIGURE 4.1: Pipeline of our final network. The multi-task network is
trained end-to-end to simultaneously regress labelled images to cor-
responding density maps and rank the unlabelled images in order of
fish abundance. All parameters are shared (represented by the orange
arrows) thus incorporating the self-supervised task adds no param-
eters to the base model. The inclusion of an additional layer in our
output to estimate noise variance only adds a further 2k parameters,
equivalent to 0.01% of the total number.

4.1 Base model

The input to our network is a whole image (cropped and standardized in size to
represent a consistent geographical area as explained in Chapter 3. As is common
practice in crowd counting studies, we train our model to regress to a corresponding
density map. Ground truth density maps were generated from original images using
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a Gaussian Kernel with standard deviation 1, as seen in many related works (e.g.
Cao et al., 2018; Liu, Weijer, and Bagdanov, 2018). Density maps can thus be simply
integrated to give an estimated fish count. We can then train our base model directly
on fish count using a simple L; absolute loss function which we refer to as L. to
distinguish the "count" loss hereinafter. For a single image i:

Le, = [ci — ¢ (4.1)

where ¢; is the count from the ground truth density map and ¢; is the predicted count
from the predicted density map.

The backbone of the base model is ResNet-50 (He et al., 2015). A deep archi-
tecture, but with identity short cut connections to improve gradient flow, and is
advantageous in that weights can be initialized with those from training on the Im-
ageNet dataset (ImageNet). Using pre-trained features in neural networks has been
proven to improve results (Liu, Weijer, and Bagdanov, 2018). We remove the fully
connected layer (FC-1000) and in its place a 1 x 1 convolutional layer is added to
produce the corresponding 2D density map, 1 layer in depth (without uncertainty
regularization).

4.2 Regularising: data augmentation

Starting from a relatively small dataset for training deep networks of 350 labelled
images, we used a variety of techniques to multiply this. Following the work of
(Schneider and Zhuang, 2020) we augmented 5,322 images believing this would be
sufficient for the model to distinguish between dolphin and mullet. We propose ex-
perimenting with a greater number of synthetic images as further work. From initial
exploratory experiments, we knew particular challenges to overcome in model per-
formance were distinguishing between noise and fish and counting fish accurately in
dense images (where they are seen swimming compactly and there is a high degree
of overlap). Thus data augmentation was mainly generated from original densely
populated images and images containing noise. Because the sonar camera used here
captures objects from a "birds-eye view" (Figure 3.2), fish in images will be seen as
the same relative size regardless of distance (in length) from the camera. (Depth of
swimming will cause differences in scale but it does not result in great variations
here.) Scale-awareness is therefore not a key factor to consider when training the
network. Hence, it does not make sense to enlarge or reduce the scale of images so
all crops are placed on a new blank background, similar to Schneider and Zhuang,
2020, or superimposed onto a different image. Table 4.1 shows an example of one
augmentation algorithm in greater detail and some high level techniques used are
listed here:

¢ Random crops then random placement on blank background

¢ Random crops of dolphin(s), which were then randomly translated and super-
imposed on to other non-noisy images

* Random small rotations between -20 and 20 degrees - rotations greater than
this is not a realistic representation

¢ Horizontal flips
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TABLE 4.1: Example algorithm for data augmentation

Algorithm 1: Superimpose dolphins onto non-noisy images

Input: Image with dolphin(s), number of augmented images per original
Step1:  Crop to bounding box(s) of dolphin (this can be outside image bound-
ing box)

Step 2: Randomly choose new left location(s) of dolphin: from le_bb to ri_bb -
width of dolphin bounding box
Step3: Randomly choose new upper location(s) of dolphin: from up_bb to
up_bb + 3(height of image) - height of dolphin bounding box. Dolphins not
usually seen nearer to camera
Step4:  for number of augmented images per original:
i) Randomly choose non-noisy image
iii) Superimpose dolphin(s) on to image
iv) Get corresponding coordinates for fish still visible in frame
end for
Output: New image sample containing noise (dolphin(s))

Where “up_bb”, "lo_bb", "le_bb", "ri_bb" are the upper, lower, left and right edge
locations of original image bounding box.

* Random crops of fishing net(s), which were then randomly vertically trans-
lated (slightly and randomly superimposed with other non-noisy images

4.3 Regularizing: self-supervised task

To leverage the vast number of unlabelled image samples in our dataset, and com-
pensate for the relatively small labelled training dataset, we followed the work of
(Liu, Weijer, and Bagdanov, 2018) to incorporate a self-supervised task to build a
multi-task network. The multi-task network simultaneously learns to rank unla-
belled pairs which are generated according to alogrithm 2 (Table 4.2) as well as es-
timate the count of fish (Figure 4.1). Even with limited unlabelled data (which is
not a constraint here), it is possible to generate 3+2+1 = 6 pairs of new data samples
from a single image following this general approach (the full size image can pair
with the 3 different smaller crops, 75% crop can pair with 50% and 25% and 50% can
pair with 25%). The inputs to the network is now 1 image from the labelled dataset
and a pair of images from the unlabelled dataset. Weights are shared between all
branches, and no additional learnable layers are implemented, thus the number of
parameters trained is the same as for the base model. We therefore know that any
improvement in results is not due to more complexity in the model. The model is
trained end to end so the dataset of unlabelled pairs increases the overall size of the
training dataset with the aim of improving accuracy and generalisation of the super-
vised counting task.
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TABLE 4.2: Algorithm for generating unlabelled pairs of images

Algorithm 2: Generate random pairs of unlabelled data

Input: Unlabelled image, size of crop k
Step1:  for kin {0.25,0.5,0.75}:
i) Crop image at:
upper: up_bb + k(image height)
left: le_bb
lower: lo_bb
right: ri_bb - k(imagewidth).
ii) Choose random new location of crop:
upper: from up_bb to lo_bb - height of crop:
left: from le_bb to ri_bb - width of crop
iii) Place crop on new blank background
end for
Step 2: Randomly choose original image, or 3/4 original image, and pair with
random choice of smaller crop
Output: Pairs of images, the larger being 100% or 75% of original image and
smaller crop being 75%, 50% or 25% of original. (NB. if larger pair is
75%, this does not pair with itself).

Where “up_bb”, “lo_bb", "le_bb", "ri_bb" are the upper, lower, left and right edge
locations of original image bounding box.

The self-supervised task has a Siamese architecture with a global average pooling
layer added to each branch to produce a single count estimate of each image in the
pair. A further layer is added which subtracts the count estimate, ¢ of image 1 in
the pair, P; from image 2, P». This task can then be trained with a standard pairwise
ranking hinge loss, applicable to a Siamese architecture. For a given pair i:

L, = max(0,&(Py,) — &(Py,) +€) (4.2)

where € is the margin of error, set to zero here. It is known from the cropping and
ordering within pairs (Table 4.2), that ¢(P,) < ¢(P;) and thus if the model predicts
this order correctly the loss value for this pair will be 0. Otherwise the difference
of the two will be added to the total loss: The greater the difference is, the greater
the increase in loss. This way the model can learn the correct order within a pair
according to number of fish (Liu, Weijer, and Bagdanov, 2018). It is not necessary to
know the exact count of either image, hence enabling the self-supervised task.

4.4 Regularizing the loss term: aleatoric uncertainty

As we know there are varying levels of noise within our dataset, as well as there be-
ing a challenge of labelling images accurately and consistently, particularly in those
displaying a high number of fish, there is obvious value in having a greater under-
standing of the relative uncertainty arising from each data sample. In addition, by
reducing the weight of noisy samples, training should improve on non-noisy sam-
ples and overall lead to higher accuracy in predictions achieved.
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Inspired by Kendall and Gal, 2017 and Oh, Olsen, and Ramamurthy, 2020 we add
an additional output to our network so it will predict the noise variance, 02, as well
as a count estimate for each image, i. We adjust our loss function with an "aleatoric
uncertainty regularizer" so there is now a trade off between two components: the
adjusted L./c? and the predicted noise variance:
|ci — &i

2

Lo, + Ly, = +logo? (4.3)

1
During training, the model learns to increase the value of o2 when the difference
between ¢ and ¢ is large to decrease its contribution to the overall loss, but minimise
the value of 02 when the difference is small. This way, the model is able to learn
to ignore noisy samples, weakening their impact on training. The L, component is
added to the overall loss term so the model is penalised for increasing o to prevent
it from simply learning to make ¢? large for all samples.

Note the actual model output is log o2 for greater numerical stability (Kendall
and Gal, 2017) (to avoid dividing by zero). Also, as variance should be positive, this
ensures the model cannot learn to make the predicted noise output negative to drive
down loss: we multiply the L, component by e~ Predicted noise” yhich would result in
a large multiple if the predicted noise variance was negative.

We add an additional output to our network. This has the same dimensions as
the density map output and can be integrated for the desired scaler estimation of
noise variance. An additional ~ 2k parameters are trained for the network to learn
this parallel prediction, but this number is negligible compared to the size of the
base model. No additional parameters are trained for the regression to a density
map. Thus we can be confident that any improvement in estimating fish count is
likely due to the uncertainty regularisation rather than increased complexity in the
model.
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Chapter 5

Results

In this section we first give details of our experimental setup, including the incor-
poration of "balance regularization" (Liu et al., 2018) from the comparable state of
the art methodology for fish counting in sonar images. We then give an overview
of each of the 9 methods applied in our ablation study, followed by an explanation
our experimental results. All code can be found in: https://github.com/ptarling/
Deep-Learning-to-Count-Fish-in-Sonar-Images

5.1 Experimental setup

The 500 image dataset was split into 350 training images, 70 validation and 80 test.
We made sure that the distribution of data in these sets was reasonably consistent to
minimise bias in results. The error in predictions of the validation set was calculated
at the end of each epoch throughout training and the results were used to save the
optimal model weights. After all experiments were completed, we ran our models
on the test data to analyse performance.

Mini-batch sizes of 10 images were used, or 10 images and 10 pairs of images for
the multi-task networks (Figure 4.1). Input size of samples was 576 x 320 x 3 and thus
memory capacity needed to be adhered to with small mini-batch sizes. Everything
was programmed in Python and built with Keras and Tensorflow 2.2, which allows
for custom training loops. As we were combining a Siamese architecture, with our
base model, plus generating sample weights within each batch in some cases and /
or adding a predicted variance output, we needed control over all stages of build-
ing and compiling our models. All loss terms were also custom built. We trained
models where weights were initialised from the beginning (ImageNet weights, He
et al., 2015; ImageNet) for 300 epochs and further experiments for up to an additional
200 epochs (as weights were initialised from training previously - stated in detail be-
low). The Adam Optimizer (Kingma and Ba, 2014) was used for minimizing the loss
term, with a learning rate of 0.0001. For base models, which were initialised from
the start (with ImageNet weights, He et al., 2015; [mageNet), we lowered the learning
rate to 0.00001 after 200 epochs. Final experiments required approximately 10 days
of continuous training across 2 GPUs.

5.1.1 Comparison with state of the art: balance regularization

Like Liu et al., 2018, our dataset is imbalanced (Figure 3.4), a common occurrence
with data collected in the wild. There are a far greater number of images containing
less than 50 fish compared to those with several hundred. We therefore adjust our
loss function with a sample balancing regularizer based on the approach of Liu et al.,
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2018, which weights samples during online compilation of batches. We then directly
compare and combine our method with the use of this regularizer. We group all
images into 3 classes according to number of fish, c:

* Class 1: 75% of images, ¢ < 50
* Class 2: 18% of images, 50 < ¢ < 150
¢ Class 3: 7% of images, c > 150

The following "information entropy-based" balance regularizer is then applied
so that the weight of a sample is negatively correlated with the number of samples
of its same class in the batch:

Nclass N
Liep, = — log (Nbatch) ’Cz‘ - Cz| (5.1)

where Nclass = number of images in the class of image i class and Nbatch = number
of images in batch

5.1.2 Summary of methods trialed

The following ablation studies were performed with corresponding loss function, L,
for image (and pair, P) i. ¢; is the actual fish count in image 7, and ¢; is the predicted
count:

(i) Base model:
Le, = |ei — ¢il

(ii) Base model with balancing regularizer:

R Nclass R
L, + BLiep; = |ci — ¢i| — Blog (Nbatch) |ci — ¢

We found B = 0.1 worked best for our study, anything higher than this failed
to train. Note this is different from Liu et al., 2018 who used = 1 but they
worked with patches of up to 8 fish meaning much smaller absolute differences
in dense inputs. In contrast, the larger absolute differences in our patches can
be over 50x greater than the smaller absolute differences. This high absolute
difference is also seen in less common images which the regularizer adds more
weight to. Because of this, § > 0.1 resulted in the regularizing term signif-
icantly dominating the overall loss function in certain mini-batches and the
model was unable to learn.

(iii) Base model with uncertainty regularizer:
_ i =il

LC,‘ + Lui - 0_2 + log 0-12

i

(iv) Base model with balancing + uncertainty regularizer:

Lci + ,BLiebi + Lu,‘ - ’1021| + ,BLiebi + Lu,-

1
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(v) Base model with augmented labelled data:
LCi = ’Ci - éi|

This is the same network and loss function as the base model i but training on
augmented data as well.

(vi) Multi-task:
L, + Ly, = [¢; — ¢;| + a max(0,¢(Py,) — é(P1,))
For this study, we kept the hyperparameter a = 1.

(vii) Multi-task with balancing regularizer:

Lci + D‘Lr,' + ﬁLieb[ = |Ci - éi| +a max(O, CA(PZI') - 6(P1,')) + ﬁLieb,-
(viii) Multi-task with uncertainty regularizer:

@ + amax(0,é(Py;) — &(Py,)) + Ly,

i

Le, +aLy + Ly, =

(ix) Multi-task with balancing + uncertainty regularizer:
Le; + &Ly, + BLicb, + Ly, = |ci — &i| + a max(0,6(Py,) — &(Py,)) + PLiep, + Luy,

Experiments i, ii, iii and iv are initiated with ImageNet weights for the ResNet-50
architecture (He et al., 2015) and weights from additional layers and nodes with
Xavier initialisation (Glorot and Bengio, 2010). Experiments v and vi are initiated
with weights from i, vii from ii and viii and ix from iii. This way any progress seen
from each ablation study can be considered fairly.

For each model, experiments were run 3 times. Thus, for methods i, ii, iii and iv,
the weights were initialised from the start on 3 independent trials and these 3 inde-
pendent sets of weights used to initialise the other methods, which were in turn run
3 times. An average of these 3 trial runs was then taken. 5.1.

5.2 Evaluation metrics
Following common practice in crowd counting papers, and also adopted in fish

counting papers that have been discussed above, we evaluate our results using the
Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) where:

1 .
MAE = N;m — & (5.2)

[1 & R
RMSE = N;(c,-—ci)2 (5.3)

where N is the number of test samples, c; is the actual count of fish in sample i and
¢; is the predicted count in sample i.
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TABLE 5.1: Results on test set of each individual trial run and the
average result across these

Average Experiment 1 Experiment 2 Experiment 3
Method MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE
i) Base 400 11.09 23.88 | 1065 2273 | 11.88 2544 | 10.74  23.47
ii) + Liep 400 1027 22,01 | 1028 2191 | 1152  26.99 9.00 17.13
iii)  + Ly 400 8.89 20.24 8.79 19.16 8.37 20.45 9.50 21.10
iv)  + Ly + Ly 400 1127 2522 | 11.09 23.03 | 11.02 2520 | 11.69  27.42
v) +aug. data 5,672 7.88 17.20 7.94 16.48 8.17 17.35 7.53 17.78
vi) Multi-task 5672 +11,344 | 7.05 14.27 7.18 15.39 6.54 13.88 7.42 13.53
vii)  + Ligp 5672 +11,344 | 7.87 16.67 9.91 21.81 6.16 13.13 7.53 15.07
viii)  + Ly 5672 +11,344 | 6.48 14.81 6.26 13.66 6.31 15.12 6.88 15.65
ix) 4+ Lgp+L, 5672+11,344 | 725 16.99 7.64 19.26 6.44 16.02 7.67 15.67

5.3 Results of ablation study

Results of the experiments are shown in Table 5.1. Figure 5.1 shows the results
of each method split by loose categories, to understand the effect of each ablation
study on different types of samples, and in particular when analysing the impact
of the targeted regularizers. Categories are shown in line with the groups chosen
for assigning weights according to the L, regularizer. Except the most common
group of ¢ < 50 fish / sample has been broken down further to show results for
samples with less than 25 fish separately. The reason being that these images will be
mostly sparsely distributed and relatively easy to count. Beyond 25 fish, more oc-
clusions and overlaps will occur between individuals. Samples which contain large
elements of noise, usually either dolphins or fishing nets, are also shown as a sep-
arate group to see how each model and associated loss term handles this particular
challenge. For each group the MAE for a given sample has been divided by the aver-
age ground truth fish count for that group, plotted on the y-axis, so the error scores
are somewhat normalised and can be compared between groups.

5.3.1 Base model and with labelled data augmentation

The base model, i achieved a MAE of 11.09 MAE and 23.88 RMSE averaged across
the 3 runs. Each incremental study building on the base model, improved these
scores. v which uses the same model architecture and loss function, but where train-
ing data has been augmented to increase the number of samples from 350 to nearly
6,000, improves the test MAE score to 7.88 and RMSE score to 17.20. This equates
to a respective 3.17 and 6.68 reduction from the base model i, a 28% decrease in both.

5.3.2 Multi-task (supervised + self-supervised task)

As method v showed that training with synthetic data as well, notably improved
performance, we train all our multi-task networks with this larger dataset and com-
pare our results with v. The pure multi-task network, vi, which adds the pair-wise
ranking hinge loss to the loss term and trains on unlabelled data as well as the la-
belled samples, reduces the MAE score to 7.05, by a further 11% and RMSE to 14.27,
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by a further 17% from v. It actually achieved the lowest RMSE score out of all ap-
proaches taken, showing it is the least susceptible to extreme values. This supports
our hypothesis that effectively tripling the size of the training set by leveraging un-
labelled data, improves the overall accuracy of the model on unseen data. Figure
5.1 allows for a greater understanding of what is driving this improvement: the last
two columns show vi better predicts samples with high numbers of fish and sam-
ples with noise compared with v. This is likely because by adding unlabelled data,
we increase the number of samples that fall within these two challenging categories,
which will disproportionately require more training data. High number fish sam-
ples also make up the smallest percentage of the labelled training data, adding to
the likelihood that models i-v, will not be as well adapted to this category. These
samples are also the most time-consuming to annotate. Thus, adding more images
like this through unlabelled data allows for an efficient way access these samples to
help increase the accuracy of the corresponding predictions. A common outcome
of trained neural networks’ predictions, is a regression to the mean of training data.
The mean of our training data is 41 fish. Thus the multi-task’s ability to predict im-
ages of extreme high values compared to the single-network, is also a positive sign
that it is more robust to not simply regressing to the mean.

5.3.3 Regularizing the loss term
Balance regularization

Incorporating the balancing regularizing term, L;; (Liu et al., 2018), in our base
model, and with the smaller original labelled dataset, ii, improves the MAE and
RMSE score to 10.27, by 7%, and to 22.01, by 8% respectively from the base model i.
But it did not actually improve upon the results of the multi-task network vi, when
added to the loss term here, vii. We would expect the L;,;, to improve results of
the less common, more densely populated images as it increases the weighting of
these samples. This was the case when comparing ii to the base model i, but not
when comparing vii to the other multi-task networks, vi, viii, ix (Figure 5.1). In
general, examining the average difference in count versus prediction, all methods
suffer from under predicting the fish count in samples where noise is not present
(but over predicting where noise is present). Perhaps this is due to the fact that, be-
cause a high proportion of our samples contain noise, the model trains to interpret
some patterns as noise that are actually fish and in general under predicts the fish
count. A common outcome of deep learning models, is a regression to the mean so
the generated prediction is equally right or wrong for all samples; this could also be
seen here with underestimating for non-noise and overestimating for noise. When
looking at the raw average differences instead of absolute difference, it is apparent
however that both ii and vii methods, which include the balancing regularizer, on
average over predict the fish count for the less common class of relatively dense im-
ages, where 50 < ¢ < 150 fish. The regularizer therefore has had the expected effect
on these samples in driving predictions up and overcoming the commonly seen out-
come in crowd counting papers of under prediction in dense scenes. It has however
over predicted these samples too much, resulting in still a higher overall MAE than
comparative methods. (Figure 5.1 - Base + L;,;, and Multi-task + L;,;, show highest
"normalised" MAE versus comparative models for 50 < ¢ < 150 fish). This predic-
tion behaviour was not seen in very dense images, ¢ > 150, where vii generally
under predicted the fish count. This also resulted in the highest MAE compared to
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other multi-task networks, vi, viii, ix (Figure 5.1). One plausible explanation could
be overfitting these types of samples during training by adding too much weight to
them. Hence, not performing so well on unseen data.

It is also evident that ii and vii are relatively less able to predict images with
substantial noise. Figure 5.1 shows the "normalised" MAE score for ii was notably
greater than the base model i and the base model with uncertainty regularization iii,
and that of vii was greater than the pure multi-task network vi or multi-task with
uncertainty regularisation viii. This can likely be explained because noisy images
tend to contain a below average number of fish. So the balancing regularizer is ac-
tually also reducing the relative weight of noisy images in training, resulting in less
accurate predictions on noisy test data.
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FIGURE 5.1: Error analysis for samples grouped into categories de-
pending on number of fish or noise present. The MAE for a sam-
ple has been divided by the average actual count within each group
so results are somewhat normalised and can be compared between
groups. The percentage of samples that fall within each group are:
c < 250 34% ,25 < ¢ < 50: 10%, 50 < ¢ < 150: 14%, ¢ > 150:
9%, Noise: 34%. The reason c < 50 (our first class for balancing regu-
larization) is altogether lower than 75% as stated in 5.1.1, is because
many of these samples have been put into the "Noise" category for
this analysis.

Aleatoric uncertainty regularization

Adapting the loss term to include the L, uncertainty in methods iii and viii regu-
larisation improved both the comparative base model, i and the multi-task network
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vi. In fact, the multi-task network with uncertainty regularization viii achieved the
lowest MAE error score of 6.48 out of all the approaches tested, a 0.57, or 8%, im-
provement on the second best score from the pure multi-task network, vi and a 4.61,
or 42% improvement from our base model i. Figure 5.1 suggests how the regularizer
has affected training by showing how well adapted the model is to different sample
categories. Interestingly the multi-task + L, achieves the best results (lowest "nor-
malised" MAE score on the bar plot) for more densely populated fish images with
limited noise, where images contain more than 50 fish. As for vi, but to an even
greater extent, this is a positive indication that it is not simply regressing predictions
to the mean. But it works comparatively less well when noise is present (the last col-
umn shows it produced a "normalised” MAE score higher than the pure multi-task
network, vi . This is as expected because essentially adding this regularizing term,
allows the model to ignore noisy images in training so it learns to predict non-noisy
images more accurately, but in turn there will be a trade off in its ability to handle
noisy images.

The second benefit of the this approach should be a reliable predicted noise vari-
ance. Figure 5.2 includes scatter plots for the best performing three out of the four
methods where the loss term has been modified with uncertainty regularization, iii,
viii and ix to see if there is a correlation between each model’s two outputs: pre-
dicted noise variance (¢?, outputted as logc?) and predicted count (from which we
calculate the absolute error). The left scatter plots, show there is a moderate posi-
tive correlation between the absolute error score and predicted variance score of a
sample. For the two multi-task networks, the correlation statistic r, reaches 0.68 and
0.73, without and with the balancing regularizer respectively (p < 0.001, one-tailed
test, in all cases). The histogram plots show variance predictions are heavily skewed
towards lower values. This is also seen in the scatter plots where a high number
of samples are clustered in the bottom (left) corners. Over 80% of samples have a
predicted noise variance (¢%) of < 3 for any of these three methods. In practice the
user can then choose to treat sample results with high relative variance scores with
caution, investigate further or even ignore altogether. In turn this should lead to
better accuracy in interpreted findings.

Three test sample images along with their corresponding ground truth and pre-
dicted density maps are shown in the first two columns (A & B) of Figure 5.3 so
results can be compared locally. The density maps can be interpreted like typical
heat maps, where areas of red indicate dense regions of mullet. Prediction outputs
are from the base model, i, (C) and multi-task with uncertainty regularization, vii,
the best performing model from our experiments for comparison (D). The first test
image contains no noise, but has a relatively high number of mullet, 74, swimming
compactly in places resulting in occlusions and overlaps, and thus making it difficult
to distinguish between individuals. The base model performs reasonably well, over
predicting by 7 (91% accuracy) but we can see the improvement in accuracy with vii
which gives a perfect count prediction (100% accuracy). The predicted noise vari-
ance 02 is 2.96, which is meaningful. It is < 3, so falls outside the top 20% of high
predicted variance score samples, which is good as the prediction is relatively accu-
rate and we would not wish to disregard it, but it is still relatively high suggesting
there is some sample noise (in this case occlusions) making it more difficult to count.

In the case of the middle image, mullet are more sparsely distributed so should
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be easier to count. Indeed model vii (D) gives a near perfect prediction (96% accu-
racy) and we can see how well the ground truth and predicted density map coincide.
There is a random blue blob in the bottom left corner. This is could be a faint blob
visible to the machine but missed by the human eye. Arguably the automated count
could be more reliable here! Notably, the predicted noise variance is just 0.08, a use-
ful score given the lack of noise and accuracy in prediction. The base model, (C)
under predicted the count by 9 (63% accuracy). Given by the lack of red where fish
are seen swimming more compactly, it seems it did not detect overlaps between fish
instead counting individuals together.

The bottom test image contains substantial noise (fishing net). Both models
clearly identify parts of the fishing net as noise as we cannot see red patches in the
density map corresponding to the areas in the test sample with most prominent nets.
Furthermore, if the models assumed all blue patterns seen here in the test image
were fish, we would expect the predicted count to be be much higher. Both models
predict the count to be 14 and it appears to be counting the blue objects inside the
fishing net as fish. This is even inconclusive for a human labeller; they could either
be fish or splashes as a result of the fishing net. Anything seen within fishing nets
was consistently manually labelled as noise as it was too difficult to distinguish and
thus we expect some discrepancies from model predictions and our ground truths.
Even though the multi-task + L, performs slightly worse than the base model here
(taking the predictions with a higher degree of precision), it simultaneously gives a
high predicted noise variance of 4.66, alerting the user that there is likely noise and
potential inaccuracies in this estimation.

Combining balance and uncertainty regularization.

When modifying the loss term in our base model to include both the balancing and
uncertainty regularizer, iv, we do not see an improvement in results than using just
one of these regularizers, ii or iii, or even from the base model itself, i. MAE was
11.27 and RMSE 25.22, both higher than the results of the base model, 11.09 and 23.88
respectively. This outcome was seen again from our experiments with a multi-task
network: we do not see an improvement in performance from multi-task with both
loss function regularizing terms, ix, compared with multi-task with only uncertainty
regularization, (Figure 5.1). 7.25 MAE compared to 6.48. In fact, overall predictions
are less accurate than when even compared to the pure multi-task model vi which
gave an MAE score of 7.05. It is therefore apparent that these two regularizers do
not compliment each other and the uncertainty regularizer beats the balancing reg-
ularizer in performance.

This pattern is particularly highlighted in the results for samples containing sub-
stantial noise (Figure 5.1). The far right column shows iv and ix produced the highest
("normalised") MAE score out of all the single-task and multi-task networks respec-
tively. As explained above, this is likely because both regularizers have the effect
of reducing the weighting of noisy images in training and thus when used together,
the performance on this type of data in testing is worse. We do however see the
best comparative results for more sparsely populated test samples. This is a some-
what surprising result as both regularizers are counter-acting each other in their be-
haviour in terms of relatively weighting these samples. One explanation may be that
images with small numbers of fish, sparsely distributed, should be straight forward
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for the network to count accurately and require less training. Thus even though the
balancing regularizer decreases the weights of these samples, it also compounds the
effect of the uncertainty regularizer of decreasing the weight of noisy samples. In
turn, this could lead to an harmonious intersection of smaller weighting given to
low fish number samples in training, but an even more pronounced reduction to the
impact of noise, that leads to the best performance on unseen data for this class.
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Chapter 6

Conclusion

In this thesis, for the first time, we combined a self-supervised task with uncertainty
regularisation in a deep learning model to count mullet fish (Mugil liza) in underwa-
ter sonar images. The key challenges with this type of problem are the lack of data
(particularly annotated data) available, the low resolution of sonar images and noise
present in data collected in the wild. We address these by 1) introducing a new large
dataset, with a subset of 500 labelled images, 2) leveraging unlabelled data in a self-
supervised task and 3) incorporating a measure of uncertainty to not only improve
training but gain a greater understanding of the noise present in samples.

We show that deep learning is an effective way to count fish in images which are
low resolution, present many occlusions and overlaps between individuals and can
contain significant levels of noise. Nine different methods with varying datasets,
model architectures and loss functions were trialed 3 times. We see an improvement
in predicted results on our test data with each novel technique (in the context of fish
counting) implemented: from innovative ways to augment the annotated data, to
building a multi-task network to simultaneously train the self-supervised task, to
finally combining this with uncertainty regularisation. From this, we were able to
obtain an average MAE score of just 6.48, which was a 42% improvement on our
comparative base deep network. Note, this is the result for a biased sample, de-
liberately chosen to contain a significantly higher proportion of noisy samples and
those with dense schools of fish. This enabled us to test the model with the most
challenging data but we are confident the average accuracy in predictions will be
substantially greater with a true sample representation of the data.

We put forward two models for practical use depending on the specific use case:
The multi-task network with uncertainty regularisation which leads to the lowest
MAE averaged over all samples and gives an approximation of sample noise. And
the multi-task network without uncertainty regularisation which is more accurate in
predicting fish count when noise is present and is more robust to extreme counts.
Both these models were able to estimate the number of mullet present to a sufficient
level of accuracy for biological research, in samples ranging widely in the number
and spatial distribution of fish.

Our approach can be compared to that used by the state of the art in deep learn-
ing for fish counting in moving sonar imaging (Liu et al., 2018) (we have only found
one other paper attempting this with our type of sonar images). Our methodology
builds upon this by adding a Siamese network to a regression model in a multi-task
network. We incorporated the balancing regularization proposed in their paper with
both our base model and multi-task network but we found in both cases that our ap-
proach of using uncertainty regularization was more effective here.
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From labelling a dataset such as this, we understand the challenges it presents.
It is difficult even for the biological experts to determine fish numbers in very dense
images and at times distinguish between noise and fish. To this end, there will very
likely be inaccuracies, bias and even inconsistencies in the labelling which will have
affected the training capacity of the model and lead to discrepancies between predic-
tions and ground truths. For this particular real-life application, we propose there-
fore incorporating a classifier in the multi-task network. From examining predicted
density maps we believe the model will be good at detecting categorically whether
noise is present or not, e.g. if a fishing net is present in a sample, even if it cannot
accurately detect it at every pixel within a sample. As this type of noise is apparent
in a very small proportion of images in the whole dataset, these sample results could
be discarded from population estimation altogether, if the classifier detects this type
of noise. For wider applications, similar classifiers can be built depending on the
particular challenges at hand.

Building upon our derived network, future research can explore a more sophis-
ticated back-end. With the ResNet architecture as the front end, our input samples
have been be reduced by 2° and so we have likely lost valuable information through
this. Particularly as counting problems should make use of spatial relationships and
local patterns, training a model to learn to regress back to the original size of the
input through learnable upsampling could be beneficial to achieving more accurate
results. Thus this could be a fruitful avenue for further work. We propose explor-
ing a U-Net type architecture, with a decoder backend, first proposed in medical
imaging research (Ronneberger, Fischer, and Brox, 2015), or a dilated convolutional
backend as used in Oh, Olsen, and Ramamurthy, 2020 and Zhang et al., 2020.

From our results, we know that training on unlabelled data with the incorpora-
tion of the pair-wise hinge loss boosts performance. There is potential for further
improvement by experimenting with, and fine tuning the hyperparameter, «, the
multiple of the hinge loss that this is added to the overall loss term. Given the ben-
efit we found of incorporating aleatoric uncertainty into training and prediction,
suggested next steps could be to broaden this with the inclusion of epistemic uncer-
tainty. Particularly as we know there must be a degree of model uncertainty given
our relatively small labelled dataset. Furthermore, measuring epistemic uncertainty
will allow for a confidence interval range around each point prediction, resulting in
a more comprehensive interpretation of population estimations.

Another interesting line of research could be with the experimentation of regu-
larizing the loss term to account for accuracy in results in terms of percentage error
rather than simply absolute error. In training, the model could be penalised more
for higher absolute errors on lower ground truth counts of fish, to help reduce the
percentage error in predictions. This metric is not usually incorporated or discussed
in crowd counting papers or even in comparable fish counting papers (Liu et al.,
2018) but it could be a useful metric to measure from a biologist’s point of view.

Even though we have applied our approach to a specific, unique, cooperative
foraging system between Lahille’s bottlenose dolphins (Tursiops truncatus gephyreus)
and artisanal fishers in Laguna Brazil, the effective techniques we have applied can
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be used to analyse wide ranging underwater imaging. This can be hugely valu-
able in being able to automatically access underwater populations in a cheap, ef-
ficient and non-intrusive way support conservation efforts worldwide as well as
wide-ranging biological research (Lamba et al., 2019).
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