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Abstract

The theory of matrices is a very important field in the world of mathematics, which plays
a central role in the study of a large variety of areas in pure and applied mathematics. Is
is one of the first topics studied in the degree. I remember when I was studying the first
course that I got fascinated by the fact that you can transform a matrix into an easier
one through a similarity and these two matrices would preserve basic properties that give
a big amount of information of the matrix.

In Algebra courses, we have learned all the geometrical concepts that a matrix can rep-
resent and are endless. Besides, there are structured matrices, such as Toeplitz matrices
which are useful in many branchs. Their study has been an active field of research since
the beginning of the last century, and it remains until today. Many journal papers have
been devoted to these matrices and the large interest has a reason: the number of applica-
tions that arise from it. They contribute to the discretization of differential and integral
equations, in the theory of orthogonal polynomials, trigonometric moments, time series
analysis, graph theory and signal processing applications, as it is studied at [2], [9], [14]
and [18].

The aim of this work is to bring together these two areas. We are interested in finding
which Jordan canonical forms can be realized by some Toeplitz matrix. In other words,
if every matrix is similar to a Toeplitz matrix. To do so, we have deeply studied the
two only articles published related to our topic ([4] and [5]). Before starting with this
research, we will present all concepts that will be needed related to Linear Algebra and
Toeplitz matrices. Once we have set the knowledge base required, we will focus on our
final purpose.

Unless it is otherwise stated, we suppose we are in the field of complex numbers. With
a view to answer our question, we have divided the study in different parts, mainly in
two blocks. The first block is dedicated to proving those matrices which are similar to a
Toeplitz matrix, which are diagonalizable matrices, nonderogatory matrices and the gen-
eral case for n ≤ 4. Regarding the second part, is devoted to matrices of general dimension
and we will need to do some strong assumptions like having just one eigenvalue. In this
case, we distinguish between matrices of odd and even order. All these investigations will
lead us to answer this question.
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Chapter 1

Introduction

Toeplitz matrices are characterized by the property of following a concrete structure,
depending uniquely on the indices of a given sequence numbers. Later we will define
it rigorously. Before starting with the mathematical study, we will contextualize these
structured matrices.

History and contextualization

Figure 1.0.1: Otto Toeplitz

Toeplitz matrices are named after Otto Toeplitz
(01/08/1981 in Breslau, Germany - 15/02/1940 in
Jerusalem). Toeplitz had a strong mathemati-
cal influence from his father and his grandfather,
Emili Toeplitz and Julius Toeplitz, that were teach-
ers in mathematics and published several math-
ematical papers. He followed in the footsteps
of them and studied mathematics at University
of Breslau, where he specialized in the field of
algebraic geometry. He received his P.h.D. in
1905.

The next year, he moved to Göttingen. At that time,
Hilbert was completing his theory of integral equa-
tions and Toeplitz was greatly influenced by him and
started to study on known classical theories of forms
on n-dimensional (finite) spaces for infinite dimensional
spaces. He collaborated with the circle of Hilbert’s brilliant students. Moreover, he pub-
lished papers related to Hilbert’s spectral theory and he discovered basic ideas of what
now are called Toeplitz operators.

With the latter, in 1913, he became a professor at University of Kiel. Years after he
did an extensive project of fundamental articles on integral equations. In 1928, he was
promoted and he was offered a chain at University of Bonn, he accepted it but five years
later, when Hitler raised power in 1933, Toeplitz was dismissed from the office by the
National Socialist regime. Until 1938, he involved in political activism against Hitler’s
Jewish communities. Furthermore, Toeplitz founded a private school in Bonn for Jewish
children excluded from the German educational System.
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After the famous night of Broken Glass (November 9-10, 1938), he was settled in Palestine
and he participated in the renovation of the University of Jerusalem, where he started to
work as an administrative adviser while he did private seminars and, two years later, he
passed away because of a tuberculosis.

Despite all the complicated political situation in Germany, he never stopped studying
mathematics. It is considered to be one of the creators of the spectral theory of linear
operators. His chief interest was the theory of infinite linear, bilinear and quadratic forms.
He studied the matrices related to these forms in a functional analysis frame. Around
1930, his mathematical research was based on a more general point of view and he devel-
oped a general theory of infinite dimensional spaces and he criticized Banach’s work for
being too abstract.

The work

Once having contextualized our topic, we will focus on the technical part of our work.
As we have noticed before, this paper studies if every matrix is similar to a Toeplitz matrix.

Before presenting the body of our work, we must point out that the inverse eigenvalue
problem concerns the construction of a matrix given its spectrum (the reverse problem is
what we will study in this paper). In the case of Toeplitz matrices, this problem is always
solvable. That means for a given system of n complex numbers λk, there is always a
Toeplitz matrix T ∈Mn(C) such that the λk are eigenvalues of T , counting multiplicities.
In the case that λk and dim(Ker(A−λkIn) are known, then we have the common inverse
eigenvalue problem (see [2] and [17]).

In the study of finding the possible Jordan forms that can be realized by some Toeplitz
matrix, the first matrices we focus on are diagonalizable matrices (Chapter 3 ), which we
prove that are similar to a Toeplitz by taking into account a related Toeplitz form: cir-
culant matrices. Then, we study another type of matrices that are called nonderogatory
(Chapter 4 ). In this case, Hessenberg ones are crucial: we first check that a nonderoga-
tory matrix is similar to an upper Hessenberg matrix and, secondly, we see that the latter
matrices are similar to a unit upper Hessenberg Toeplitz matrix. Hence, because of its
uniqueness, we can talk about the Toeplitz canonical form in the nonderogatory case. Af-
terwards, we ask ourselves what would happen if we extended this case to a general field
F and we show that the proof constructed before can be adapted to fields of characteristic
zero or greater than n (where n is the size of the matrix).

The next chapters discuss the problem if the hypothesis of nondiagonalizable and non-
derogatorcy are dropped. We start by studying the general case of a complex matrix of
dimension n ≤ 4 (Chapter 5 ) and, through a constructive proof, we arrive to the conclu-
sion that are similar to a Toeplitz matrix. However, we will prove that the statement is
not true if we consider the matrix in the field R.

Subsequently, we study the general case for n > 5 (Chapter 6 ). We cannot extend the
above-mentioned proof for n ≤ 4, as checking all the possible Jordan forms and finding
the corresponding similarities is lengthy and rough so it makes no sense studying higher
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dimensions with this strategy. In such case, we reduce ourselves to the case of having just
one eigenvalue, concretely λ = 0, as it plays an are instrumental role in the structure of
the kernel of a Toeplitz matrix. Is in this chapter where we find that not every matrix
is similar to a Toeplitz by finding concrete counterexamples for matrices of odd and even
order. In this part we will define a general tuple that defines the possible Jordan forms
of a matrix following a concrete structure and check whether if it is Toeplitz admissible
or not, just about checking if these Jordan forms can be similar to a Toeplitz matrix.
The procedure for the even order is a bit more complicated and we will consider three
sub-cases: n = 4, n = 6 and n ≥ 8. Distinctly, for n ≥ 8, we will compact this last problem
to find common zeroes of a class of polynomials defined recursively and we will also find
counterexamples.
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Chapter 2

Preliminaries

The essential prerequisites of this work are a knowledge of matrix theory. However, before
starting we need to recall some concepts of previous courses of the degree in Mathematics
at University of Barcelona, because of that, we will skip some of the proofs. In addition,
we will introduce some new related concepts that are needed to go deep on our study.

2.1 Notation

First, let us set up and discuss some notations and terminology that will be used along
the paper.

• Unless otherwise stated we assume that all the matrices are defined in the field
F = C.

• Mn,m(C) stands for n × m complex matrices, if n =m we simply write Mn(C).

• A ∈ Mn,m(C) with elements aij is denoted by A = (aij)1≤i≤n,1≤j≤m. If n = m,
its determinant is expressed by det(A) or ∣A∣ and its trace by tr(A). Besides,
vec(A) ∈ Cmn denotes the vectorization of a matrix, that is obtained by stacking
the columns of the matrix A on top of one another.

• We mean by At the transposed matrix, by Ā the conjugate matrix and by A∗ the
conjugate transpose matrix. It is said that A ∈ Mn(C) is Hermitian if and only if
A∗ = A and it is Normal if and only if A∗A = AA∗.

• We denote by In the identity matrix.

• The permutation matrix is obtained when we permute the standard basis via σ(n),
is denoted by Pσ ∈Mn(C). Particularly, if σ = (1,2, . . . , n), Z ∈Mn(C) denotes the
following permutation matrix

Z =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 1 0 ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ 0
0 ⋱ 1
1 0 ⋯ ⋯ 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

∈Mn(C)
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• The exchange or counteridentity matrix is a matrix with 1’s in the anti-diagonal
and it is a special case of a permutation. Therefore we have, σ = {(1, n)(2, n−1) . . .}
and

J =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 ⋯ ⋯ 0 1
⋮ ⋰ ⋰ 0
⋮ ⋰ ⋰ ⋮
0 ⋰ ⋮
1 0 ⋯ ⋯ 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

∈Mn(C)

• Let E and F be vector subspaces of finite dimension over C and f ∶ E → F be a
linear map. We denote the kernel of f by

Ker(f) = {x ∈ E ∣ f(x) = 0} ⊂ E

and the image of f by

Im(f) = {y ∈ F ∣ ∃x ∈ E,y = f(x)} ⊂ F

Note that every linear application is identified with a matrix (f ↔ A). The rank of
f is the dimension of the image subspace, that is

Rank(f) = dim(Im(f)) = Rank(A)

• The characteristic polynomial of A ∈Mn(C) is denoted by pA(x) = det(A−λI) and
the minimal polynomial by µA(x).

• Regarding the study of eigenvalues and eigenvectors, we denote by Spec(A) the
spectrum of A and its cardinality is denoted by ∣Spec(A)∣.

• The relation of similarity between two given matrices A,B ∈Mn(C) is denoted by
∼, this relation is given when there exists an invertible matrix S ∈Mn(C) such that
B = S−1AS.

• ⌊x⌋ denotes the integer part of x.

2.2 Sylvester equations

We now present some concepts related to matrix analysis that will be useful for our work.

Definition 2.2.1. A Sylvester equation is a matrix equation of the form

AX +XB = C (2.2.1)

where A ∈Mm(C), B ∈Mn(C) and X,C ∈Mn,m(C).

Definition 2.2.2. Given A ∈ Mm(C) and B ∈ Mn(C), Syl(A,B) stands for the linear
Sylvester operator defined by

Syl(A,B) ∶Mm(C) →Mn(C)

X ↦ AX −XB
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Definition 2.2.3. Let A = (aij)1≤i≤m,1≤j≤n ∈Mm,n(C) and B = (bij)1≤i≤p,1≤j≤q ∈Mp,q(C).
The Kronecker product of A and B, A⊗B, is defined as

A⊗B ≡
⎛
⎜
⎝

a11B ⋯ a1nB
⋮ ⋱ ⋮

am1B ⋯ amnB

⎞
⎟
⎠
∈Mmp,nq(C) (2.2.2)

Observation 2.2.4. The equation AX +XB = C can be easily rewritten via Kronecker
product as

[(In ⊗A) + (Bt ⊗ Im)]vec(X) = vec(C) (2.2.3)

The point of the two following theorems is that it allows one to prove Lemma 2.2.7 that
will be useful for our object of study.

Theorem 2.2.5. ([13]) Let A ∈ Mm(C), B ∈ Mn(C). If λ ∈ Spec(A) and x ∈ Cm is
a corresponding eigenvector of A and if µ ∈ Spec(B) and y ∈ Cn is a corresponding
eigenvector of B, then λ+µ is an eigenvalue of the Kronecker sum [(In ⊗A) + (Bt ⊗ Im)]
and y ⊗ x ∈ Cnm is a corresponding eigenvector.

Theorem 2.2.6. ([13]) LetA ∈Mm(C) andB ∈Mn(C). The equationAX+XB = C has a
unique solution X ∈Mn,m(C) for each C ∈Mn,m(C) if and only if Spec(A)∩Spec(−B) = ∅.

Proof. Applying Observation 2.2.4, we obtain an equivalent equation

[(In ⊗A) + (Bt ⊗ Im)]vec(X) = vec(C)

that it has a unique solution if and only if the rank of (In ⊗A) + (Bt ⊗ Im) is maximum
and this happens if and only if 0 ∉ Spec((In ⊗ A) + (Bt ⊗ Im)). Applying Theorem
2.2.5 we have that λ + µ ≠ 0 with λ ∈ Spec(A) and µ ∈ Spec(B), and equivalently,
Spec(A) ∩ Spec(−B) = ∅.

Lemma 2.2.7. ([4]) Let A ∈Mm(C), B ∈Mn(C) be such that Spec(A) ∩ Spec(B) = ∅.
Then for any C ∈Mn,m(C), we have

(A 0
0 B

) ∼ (A 0
C B

) (2.2.4)

Proof. The above similarity is obtained by

(Id 0
X Id

)
−1

(A 0
0 B

)(Id 0
X Id

) = ( Id 0
−X Id

)(A 0
0 B

)(Id 0
X Id

) = ( A 0
X(−A) +XB B

) = (A 0
C B

)

And regarding, Theorem 2.2.5 and 2.2.6, X does exist and it is unique.
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2.3 Toeplitz matrices

In this section we give a brief exposition of Toeplitz matrices. We present the definition,
some basic properties and examples. We will touch only a few aspects of the theory as it
is not our goal of study. For a fuller treatment of the topic, we refer the reader to [3], [9]
and [18].

Toeplitz matrices are studied in many fields of mathematics. In pure math: algebra,
analysis, combinatorics, graph theory, differential and integral equations, topology, as well
as in applied mathematics: numerical integration, image processing, time series analysis,
mechanics and among other areas. Again, it is not the aim of this work to do an extensive
study of these applications: for a deeper discussion, we refer the reader to [6], [15] and
[18].

Definition 2.3.1. A Toeplitz matrix T ∈Mn(C) (T -matrix, for short) is a matrix which
each descending diagonal from left to right is constant. In other words, is a matrix
characterized by having constant diagonal entries, that is, a matrix of the form

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

t0 t1 t2 ⋯ ⋯ t(n−1)
t−1 t0 t1 t2 ⋱ ⋮
t−2 t−1 ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ t1 t2
⋮ ⋱ t−1 t0 t1

t−(n−1) ⋯ ⋯ t−2 t−1 t0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∈Mn(C) (2.3.1)

A Toeplitz matrix does not have necessarily to be square, but we will only be considering
square matrices in the major part of our work.

2.3.1 Basic properties

T -matrices have a long history and have given rise to important recent applications. To
date, many results related to the algebra of Toeplitz matrices and the corresponding ap-
plications has been accumulated in journal literature and these results combined already
form a well-structured theory. This work is devoted to construct the necessary theory to
check if every matrix is similar to a Toeplitz matrix, as we have already mentioned in the
preceding pages. Accordingly, we will just enumerate some primary results of Toeplitz
matrices to have an elementary knowledge of these matrices that will let us go in dept
with our main subject.

1. Regarding the structure of a Toeplitz matrix, it is closed under addition and scalar
multiplication. Furthermore, the product of two T -matrices, in general, is not a
Toeplitz matrix and the same happens with the computation of its inverse.

2. Given a sequence t−(n+1), . . . , t0, . . . , tn+1 ∈ C, we write the general term of a Toeplitz
matrix as tij = tj−i.

3. Toeplitz matrices T ∈Mn+2(C) can be represented by a 2n + 3 vector

v = (t−(n+1), . . . , t0, . . . , tn+1) ∈ C2n+3
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In the case of symmetric Toeplitz matrices, they are just determined by the first
column or row. Hence, these matrices are represented by

v = (t−(n+1), . . . , t0) ∈ Cn+2 or v = (t0, . . . , tn+1) ∈ Cn+2

4. The following matrices are Toeplitz

B =
⎛
⎜⎜⎜
⎝

0 1 ⋯ 0
0 ⋱ ⋱ ⋮
⋮ ⋱ 1
0 0

⎞
⎟⎟⎟
⎠
∈Mn+1(C) and F =

⎛
⎜⎜⎜
⎝

0 ⋯ ⋯ 0
1 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋮
0 ⋯ 1 0

⎞
⎟⎟⎟
⎠
∈Mn+1(C) (2.3.2)

and are called backward shift and forward shift, respectively, because of their effect
on the elements of the standard basis {e1, . . . , en+1}. Note that Bt = F and F t = B.

5. Concerning the anterior point, we have a characterization of T -matrices:

T =
n

∑
k=1

t−kF
k +

n

∑
k=0

tkB
k ∈Mn+1(C) ⇔ T ∈Mn+1(C) is a Toeplitz matrix

6. In a Toeplitz linear system, Tx = b with T ∈ Mn(C) and x, b ∈ Cn, we have 2n − 1
degrees of freedom rather than n2.

7. Toeplitz matrices are persymmetric, in other words, a square matrix which is sym-
metric with respect to the northeast-to-southwest diagonal. Thus,

TJ = JT t ∀T, J ∈Mn(C)

where J is the counteridentity matrix.
In particular, symmetric Toeplitz matrices are also centrosymmetric (symmetric
respect to its center), so follow the equality

TJ = JT ∀T, J ∈Mn(C)

and bisymmetric (symmetric with respect to the two main diagonals). Hence,

TJ = JT and T = T t ∀T, J ∈Mn(C)

8. Toeplitz matrices are nearby linked to Fourier series, because the multiplication
operator by a trigonometric polynomial compressed to a finite-dimensional space,
can be represented by such a matrix. Similarly, one can represent linear convolution
as multiplication by a Toeplitz matrix.

2.3.2 Related Toeplitz forms

In this part we will introduce three matrices that are closely related to Toeplitz matrices.

Circulant matrices

Circulant matrices have a lot of interest when studying some properties related to Toeplitz
matrices. Furthermore, they will be a key concept when we prove that all diagonalizable
matrices are similar to T -matrices (see Chapter 3 ).
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Definition 2.3.2. ([10]) A circulant matrix C ∈ Mn(C) is a matrix with the following
form

C =

⎛
⎜⎜⎜⎜⎜⎜
⎝

c1 c2 ⋯ cn−1 cn
cn c1 ⋱ cn−1
⋮ ⋱ ⋱ ⋱ ⋮
c3 ⋱ ⋱ c2
c2 c3 ⋯ cn c1

⎞
⎟⎟⎟⎟⎟⎟
⎠

(2.3.3)

It is easily seen that C = (cjk) = c(k−j+1) (mod n). We emphasize that the matrix is
determined by the first row as each row k with k = 1, . . . , n is identical to the first row
(k = 1) but moved k − 1 positions to the right. That is, in the rows and columns we have
cyclic permutations of the elements. Moreover, circulant matrices form a linear subspace
of the set of all matrices of dimension n.

Hankel matrices

The matrix now defined is not a Toeplitz matrix despite it is closely related and they
always go together.

Definition 2.3.3. ([6]) A Hankel matrix H ∈ Mn(C) has constant skew diagonal, that
is, it is constant across the anti-diagonals. One can write more explicitly:

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

h1 h2 h3 ⋯ hn−1 hn
h2 h3 ⋯ ⋯ hn hn+1
h3 ⋰ ⋰ ⋰ ⋰ ⋮
⋮ ⋰ ⋰ ⋰ ⋰ ⋮

hn−1 ⋰ ⋰ ⋰ ⋰ ⋮
hn hn+1 ⋯ ⋯ h2n−2 h2n−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∈Mn(C)

It can be easily see that any Hankel matrix is symmetric.

Observation 2.3.4. Let T ∈Mn(C) be a Toeplitz matrix and H ∈Mn(C) be a Hankel
matrix. Then T = J H, where J is the counteridentity matrix. In other words, Toeplitz
matrices turn into Hankel matrices by reversing the order of the rows.

Toeplitz-plus-Hankel matrices

Definition 2.3.5. ([6]) A Toeplitz-plus-Hankel matrix is a matrix that the entries are
constant along each diagonal plus constant along each anti-diagonal. That is to say that
it is Toeplitz and Hankel at the same time.

Example 2.3.6. As the notation of the general matrix is harsh, we will provide an
example of dimension 5 to visualize the form of a Toeplitz-plus-Hankel matrix:

A =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 2 1 2 1
2 1 2 1 2
1 2 1 2 1
2 1 2 1 2
1 2 1 2 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

∈M5(C)
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Chapter 3

Diagonalizable case

We begin by considering those matrices that are diagonalizable. The following lemma
provides a natural and intrinsic characterization of circulant matrices related with the
permutation cyclic matrix, which will be essential the proof of Theorem 3.2, the crucial
part of this chapter, that proves that every diagonalizable matrix is similar to a Toeplitz.

Lemma 3.1. ([16]) Let A = (aij)1≤i,j≤n ∈Mn(C) and Z ∈Mn(C) the cyclic permutation
matrix (see Notation 2.1). Then

A is circulant ⇔ AZ = ZA
That is, A is invariant under the similarity A↦ Z−1AZ.

Proof. We suppose AZ = ZA, then

AZ =

⎛
⎜⎜⎜⎜⎜⎜
⎝

a21 a22 a23 ⋯ a2n
a31 a32 a33 ⋯ a3n
a41 a42 a43 ⋯ a4n
⋮ ⋮ ⋮ ⋱ ⋮
a11 a12 a13 ⋯ a1n

⎞
⎟⎟⎟⎟⎟⎟
⎠

= ZA =

⎛
⎜⎜⎜⎜⎜⎜
⎝

a1n a11 a12 ⋯ a1(n−1)
a2n a22 a23 ⋯ a2n
a3n a32 a33 ⋯ a3n
⋮ ⋮ ⋮ ⋱ ⋮
ann an2 an3 ⋯ an(n−1)

⎞
⎟⎟⎟⎟⎟⎟
⎠

and by equaling term-wise A must be circulant.
Conversely, if A is a circulant matrix

A =

⎛
⎜⎜⎜⎜⎜⎜
⎝

a1 a2 ⋯ an
an a1 ⋯ an−1
an−1 an ⋱ an−2
⋮ ⋮ ⋱ ⋮
a2 a3 ⋯ a1

⎞
⎟⎟⎟⎟⎟⎟
⎠

by direct computation AZ = ZA is obtained.

Theorem 3.2. ([4]) Every diagonalizable matrix is similar to a Toeplitz matrix.

Proof. Let D = diag(d0, . . . , dn−1) ∈Mn(C) and Z the cyclic permutation matrix

Z =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 1
0 1

⋱ ⋱
0 1

1 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

∈Mn(C) (3.0.1)
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We have that Spec(Z) = {1, ξ, ξ2, . . . , ξn−1}, where ξ is a primitive nth root of the unity.
Therefore, Z ∼ D′ = diag(1, ξ, ξ2, . . . , ξn−1) and there exists an invertible matrix Q ∈
Mn(C) such that Z = Q−1D′Q.

The task is now to prove that D ∼ p(Z) for some p(x) ∈ C[x]. Let p(x) = a0 + ... + anxn ∈
C[x], then

p(Z) = p(QD′Q−1) =
n−1

∑
i=1

ai(QD′Q−1)i =
n−1

∑
i=1

Qai(D′)iQ−1 = Qp(D′)Q−1 (3.0.2)

If we take p(x) as the polynomial obtained by the Lagrange interpolation such that
p(ξi) = di, 0 ≤ i ≤ n − 1, we obtain that

⎛
⎜
⎝

p(1)
⋱

p(ξn−1)

⎞
⎟
⎠
=
⎛
⎜
⎝

d0
⋱

dn−1

⎞
⎟
⎠

(3.0.3)

that is, p(Z) ∼ D. Furthermore, p(Z) is a Toeplitz matrix because p(Z) commutes with
Z (see Lemma 3.1).

In light of having a more intuitive view of the above proof, we will do the construction of
it for n = 2 and n = 3 step by step.

Example 3.3. –

• Case n = 2 :

Let D = (λ1 0
0 λ2

) where λ1 ≠ λ2 ∈ C (if λ1 = λ2, D is a Toeplitz matrix).

In this case, Z = (0 1
1 0

) and Spec(Z) = {1,−1}. The matrix Q given in the proof

is: Q = (1 −1
1 1

).

We define p(x) ∈ C2[x] such as p(1) = λ1 and p(−1) = λ2. According to the proof,

p(Z) = p((0 1
1 0

)) = (1 −1
1 1

)p((1 0
0 −1

))( 1/2 1/2
−1/2 1/2) =

= (1 −1
1 1

)(λ1 0
0 λ2

)( 1/2 1/2
−1/2 1/2) = (

λ1+λ2
2

λ1−λ2
2

λ1−λ2
2

λ1+λ2
2

)

where the last matrix is a Toeplitz matrix similar to D.

• Case n = 3 :

Let D =
⎛
⎜
⎝

λ1 0 0
0 λ2 0
0 0 λ3

⎞
⎟
⎠

where λ1, λ2, λ3 ∈ C. We need to consider three cases:

– If λ1 = λ2 = λ3, it is immediate that we have that D is a Toeplitz matrix.

– λ1 = λ2 ≠ λ3, Spec(Z) = { 1, −
√
3i−1
2 ,

√
3i−1
2 }. In this case

11



Z =
⎛
⎜
⎝

0 1 0
0 0 1
1 0 0

⎞
⎟
⎠
=
⎛
⎜⎜
⎝

1 −
√
3i−1
2

√
3i−1
2

1
√
3i−1
2

−
√
3i−1
2

1 1 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

1 0 0

0 −
√
3i−1
2 0

0 0
√
3i−1
2

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

1/3 1/3 1/3
√
3i−1
6

−
√
3i−1
6 1/3

−
√
3i−1
6

√
3i−1
6 1/3

⎞
⎟⎟
⎠

We define p(x) ∈ C3[x] such as p(1) = λ1, p(−
√
3i−1
2 ) = λ2 and p(

√
3i−1
2 ) = λ3 and we

have

p(Z) =
⎛
⎜⎜
⎝

1 −
√
3i−1
2

√
3i−1
2

1
√
3i−1
2

−
√
3i−1
2

1 1 1

⎞
⎟⎟
⎠
p

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

1 0 0

0 −
√
3i−1
2 0

0 0
√
3i−1
2

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

1/3 1/3 1/3
√
3i−1
6

−
√
3i−1
6 1/3

−
√
3i−1
6

√
3i−1
6 1/3

⎞
⎟⎟
⎠
=

=
⎛
⎜⎜
⎝

λ3+2λ1
3

−
√
3λ3i+

√
3λ1i+λ1

6

√
3λ3i−λ3−

√
3λ1i+λ1

6
−
√
3λ3i+

√
3λ1i+λ1

6
λ3+2λ1

3
−
√
3λ3i−λ3+

√
3λ1i+λ1

6
−
√
3λ3i−λ3+

√
3λ1i+λ1

6
−
√
3λ3i+

√
3λ1i+λ1

6
λ3+2λ1

3

⎞
⎟⎟
⎠

• λ1 ≠ λ2 ≠ λ3 ≠ λ1, we can proceed analogously to the last case.

Observe that p(Z) is not unique as it is obtained from a polynomial interpolation.

Remark 3.4. ([9]) It is well known that any symmetric matrix S ∈Mn(R) is diagonaliz-
able. Consequently, every symmetric matrix with real coefficients is similar to a Toeplitz
matrix. Additionally, if we consider N ∈Mn(C) a normal matrix (N is diagonalizable by
a unitary matrix), then N is similar to a Toeplitz matrix.
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Chapter 4

Nonderogatory case

In this chapter we will relate nonderogatory and Toeplitz matrices. The strategy here is
first constructing a similarity between a nonderogatory matrix and an upper Hessenberg
matrix. Once having done this, we will introduce some lemmas with the final objective of
showing that an upper Hessenberg matrix is similar to a unit upper Hessenberg Toeplitz
matrix. Moreover, we will prove that the latter matrix is unique and therefore we will be
able to talk about the Toeplitz canonical form.

4.1 Nonderogatory matrices

Definition 4.1.1. A ∈ Mn(C) is nonderogatory if every eigenvalue of A has geometric
multiplicity 1. Analogously, if in the Jordan form of A every eigenvalue of A appears in
exactly one Jordan block or equivalently if the minimal and the characteristic polynomials
of A coincide.

Another characterization of nonderogatory matrices is given in the following lemma:

Lemma 4.1.2. ([12]) A ∈Mn(C) is nonderogatory if and only if the only matrices that
commute with A are polynomials in A.

4.2 Upper Hessenberg matrices

Definition 4.2.1. ([12]) H = (hij) ∈ Mn(C) is upper Hessenberg if all its entries below
the first subdiagonal are zero, videlicet, hij = 0 whenever i > j + 1.
Upper Hessenberg matrices are called unreduced when all entries on the first subdiagonal
are non-zero, i.e., hi+1,i ≠ 0. Particularly, H is a unit upper Hessenberg matrix if all its
subdiagonal entries are equal to one.

Observation 4.2.2. These matrices play an important role in matrix factorization as
it simplifies the steps. For instance, in QR factorization that, what is more, assures a
unique factorization (see [1]).

Example 4.2.3. An example of an unreduced and a unit Hessenberg matrix are respec-
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tively:

H1 =
⎛
⎜⎜⎜
⎝

2 2 7 2
2 8 3 2
0 7 5 6
0 0 5 9

⎞
⎟⎟⎟
⎠
∈M4(C) and H2 =

⎛
⎜⎜⎜
⎝

2 2 7 2
1 8 3 2
0 1 5 6
0 0 1 9

⎞
⎟⎟⎟
⎠
∈M4(C)

4.3 Nonderogatory matrices and upper Hessenberg matri-
ces

The following proposition deals with the relation of similarity between nonderogatory
matrices and unit upper Hessenberg matrices.

Proposition 4.3.1. ([4]) Let A ∈Mn(C). The following statements are equivalent:

(a) A is nonderogatory.

(b) A is similar to an upper Hessenberg matrix H = (hij) with hij /= 0 for i = j + 1.

(c) A is similar to a unit upper Hessenberg matrix.

Proof. We will prove the following implications: (a) ⇒ (c) ⇒ (b) ⇒ (a).

(a) ⇒ (c) : Since A is nonderogatory, every eigenvalue has only one Jordan block, and thus
their Jordan form is almost unit upper Hessenberg. We may now use Lemma 2.2.7
repeatedly to fill in the missing 1’s on the first subdiagonal.

(c) ⇒ (b) : This result is trivial.

(b) ⇒ (a) : Let H ∈ Mn(C) be a Hessenberg matrix such that H ∼ A. For all λ ∈ C, since
hij ≠ 0 for i = j + 1, we have that Rank(H − λI) ≥ n − 1 and using the dimension
formula from Linear Algebra we obtain dim(Ker(H − λI)) ≤ 1. Consequently, the
eigenspaces have dimension 1 and this completes the proof.

From now on, we will provide an example of every fundamental proof we use as a way
of helping the reader to understand easily the vital parts of every proof and give a basic
notion to those readers who are not so familiar with mathematical notation.

Example 4.3.2. We will give an example of (a) ⇒ (c): Let A =
⎛
⎜
⎝

2 0 0
1 2 0
0 0 3

⎞
⎟
⎠
∈M3(C) be

a nonderogatory matrix. It is a simple matter by using the proof of Lemma 2.2.7 where

C = (0 1) by taking the change of basis S =
⎛
⎜
⎝

1 0 0
0 1 0
1 1 1

⎞
⎟
⎠

we obtain an upper Hessenberg

matrix as it follows

H =
⎛
⎜
⎝

1 0 0
0 1 0
−1 −1 0

⎞
⎟
⎠

⎛
⎜
⎝

2 0 0
1 2 0
0 1 3

⎞
⎟
⎠

⎛
⎜
⎝

1 0 0
0 1 0
1 1 0

⎞
⎟
⎠
=
⎛
⎜
⎝

2 0 0
1 2 0
0 1 3

⎞
⎟
⎠
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4.4 Nonderogatory matrices and Toeplitz matrices

This part is committed to prove that every nonderogatory matrix is similar to a unit
upper Hessenberg Toeplitz matrix, H ∈ Mn(C). In the above section we have proved
that nonderogatory matrices are similar to unit upper Hessenberg matrices. Hence, it
remains to prove that a unit upper Hessenberg matrix is similar to a unit upper Hessen-
berg Toeplitz matrix. The way to prove this is based on fixing any selected diagonal of H
and making all the entries along this diagonal the same while keeping the lower diagonals
unchanged. Doing this with every diagonal from lower left to upper right, we can obtain
the desired matrix.

Since Toeplitz matrices are constant along diagonals, it will be natural to consider matri-
ces from a diagonal perspective. Following standard convention, the northwest-southeast
diagonals of a matrix will be numbered −(n−1), . . . ,0, . . . , (n−1) starting from the lower
left corner.

Definition 4.4.1. For each integer i, let △i ⊂Mn(C) be the subspace of matrices whose
non-zero entries are restricted to the ith diagonal. This can be rewritten as

△i = {A ∈Mn(C) ∣ ars = 0 if s − r /= i} (4.4.1)

Observe that if ∣i∣ > n − 1, then △i is just the zero matrix.

Example 4.4.2. Following Example 4.3.2 of matrix A we have

△−1 =
⎛
⎜
⎝

0 0 0
1 0 0
0 1 0

⎞
⎟
⎠
, △0 =

⎛
⎜
⎝

2 0 0
0 2 0
0 0 3

⎞
⎟
⎠

and △−2 = △1 = △2 =
⎛
⎜
⎝

0 0 0
0 0 0
0 0 0

⎞
⎟
⎠

Lemma 4.4.3. Let △i ⊂Mn(C).

A(i) ∈ △i and B(j) ∈ △j ⇒ A(i)B(j) ∈ △i+j .

Proof. It is straightforward.

Remark 4.4.4. Regarding general matrices, it will be useful for our study to have com-
pact notation for a general matrix A ∈ Mn(C) that consists of sorting all entries except
those on the ith diagonal: A(i) ∈ △i is defined by

a(i)rs = { ars if s − r = i
0 otherwise

Precisely,
A = ∑

i

A(i)

We need some previous results that will prompt us to our final result.

Lemma 4.4.5. ([4])

(a) Let P ∈ Mn(C) be any unit upper triangular matrix with non-zero entries on at
most two diagonals, i.e., P = In +P (k) for some k ≥ 1. Then P −1 can have non-zero
entries only on the ith diagonals where i = 0, k, 2k, 3k, . . . < n.
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(b) Let A ∈ Mn(C) be an upper Hessenberg matrix and B = P −1AP , where P = In +
P (k+1) is unit upper triangular with k ≥ 0. Then

(b.1) B is upper Hessenberg, particularly, B(l) = A(l) for l ≤ k − 1.

(b.2) The kth diagonal of B (the first that could differ from A) is given by

B(k) = A(k) +A(−1)P (k+1) −A(−1) + P (k+1)A(−1) (4.4.2)

Proof. -

(a) It is clear that P (k) is a nilpotent matrix and so P (k) + In is an invertible matrix
which its inverse is

P −1 = (P (k) + In)−1 =
n−1

∑
j=0

(−P (k))j . (4.4.3)

According to Lemma 4.4.3, we have (P (k))j ∈ △kj . So, P −1 is a linear combination
of elements that the only entry which it is not zero is diagonal kj with j ≥ 0.

(b)

(b.1) As a consequence of (a)

B = P −1AP =
⎛
⎝
In − P (k+1) +

n−1

∑
j=2

(−P (k+1))j
⎞
⎠
A (In + P (k+1)) = (4.4.4)

= A +AP (k+1) − P (k+1)A − P (k+1)AP (k+1) +
n−1

∑
j=2

(−1)j(P (k+1)j)A (In + P (k+1))

By hypothesis, A is an Upper Hessenberg matrix, hence we can write

A = A(−1) +A(0) + . . . +A(n−1)

Substituting in Equation (4.4.4) and using part (a) of this lemma and Lemma
4.4.3, we can observe all the summands in the Equation (4.4.4) belong to the
set △i with i ∈ {−1, . . . , n− 1} as is easy to check by analyzing every summand

AP (k+1) = (A(−1) + . . . +A(n−1)P (k+1) ∈ △k + . . . +△k+n, (4.4.5)

P (k+1)A = P (k+1)(A(−1) + . . . +A(n−1))P (k+1) ∈ △2k+1 + . . . +△2k+n+1

(P (k+1))j(A(−1) + . . . +A(n−1))(In + P (k+1)) ∈ △(k+1)j−1 + . . . +△(k+1)j+n−1+

+△(k+1)j+k + . . . +△(k+1)j+k+n

Thus, we see that the non-zero contributions to B(`) for ` ≤ k − 1 come only
from A, the first term in (4.4.4). Consequently, we have that B is an upper
Hessenberg matrix and B` = A` for ` ≤ k − 1.

(b.2) From Equations (4.4.4) and (4.4.5) we have

B(k) = A(k) + (AP (k+1))(k) − (P (k+1)A)(k) − (P (k+1)AP (k+1))(k)+
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+
⎛
⎝
n−1

∑
j=2

(−1)j(P (k+1)j)A (In + P (k+1))
⎞
⎠

(k)

=

= A(k) + (A(−1)P (k+1)) − (P (k+1)A(−1)) − (P (k+1)A(−k−2)P (k+1))+

+
⎛
⎝
n−1

∑
j=2

(−1)j((P (k+1)jA) (In + P (k+1))
⎞
⎠

(k)

= A(k) +(AP (k+1))(k) −(P (k+1)A)(k)

Therefore,
B(k) = A(k) +A(−1)P (k+1) − P (k+1)A(−1)

The following theorem states the relation of similarity between a nonderogatory matrix
and a Toeplitz matrix. Note that the proof strongly depends on the restrictive assumption
of having a nonderogatory matrix.

Theorem 4.4.6. ([4]) Every nonderogatory matrix in Mn(C) is similar to a Toeplitz
matrix, in particular, to a unit upper Hessenberg Toeplitz matrix.

Proof. As a result of Proposition 4.3.1 we can suppose A is a unit upper Hessenberg
matrix. Let P ∈ Mn(C) be a unit upper triangular matrix of the form P = In + P (k+1)

with 0 ≤ k ≤ n− 2 and we consider as in Lemma 4.4.5, B = P −1AP . We will prove that we
can take P such that all the entries of the kth diagonal of B are equal. By Lemma 4.4.5,
we can choose P (k+1) such that

B(k) = A(k) +A(−1)P (k+1) − P (k+1)A(−1) (4.4.6)

where A(−1) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0
1 0

1 ⋱
⋱ ⋱

1 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

= F . (Forward shift Toeplitz matrix (Example 2.3.2)).

Recalling Definition 2.2.2, the Sylvester operator

ϕ ∶ △k+1 →△k (4.4.7)

X ↦ FX −XF

allows rewriting Equation (4.4.6) as

B(k) = A(k) + ϕ(P (k+1))

which is well defined as if P (k+1) ∈ △k+1 then ϕ(P (k+1)) ∈ △k.

Our next concern will be the behavior of Im(ϕ) because, in this way, we will be able to
study the kth diagonals of B(k).
Let us consider the standard product on Mn(C)

⟨A,B⟩ = tr(AB∗) (4.4.8)

As △k and △k+1 are linear subspaces of Mn(C) we can restrict the inner product to these
two subspaces.
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If ϕ∗ is the adjoint map of ϕ we have that

⟨ϕ(X), Y ⟩ = ⟨X,ϕ∗(Y )⟩ (4.4.9)

⟨ϕ(X), Y ⟩ = ⟨FX −XF,Y ⟩ = tr((FX −XF )Y t) = tr(FXY t −XFY t) = (4.4.10)

= tr(FXY t)− tr(XFY t) = tr(XY tF )− tr(XFY t) = tr(XY tF −XFY t) = ⟨X,F tY −Y F t⟩
Combining Equations (4.4.9) and (4.4.10) we obtain that

F tY − Y F t = ϕ∗(Y )

where the the adjoint map ϕ∗ is

ϕ∗ ∶ △k →△k+1 (4.4.11)

Y ↦ F tY − Y F t

From Im(ϕ) = (Ker(ϕ∗))�, we can express △k as the following direct sum

△k =Ker(ϕ∗) ⊕ Im(ϕ) (4.4.12)

Hence, we can compute Im(ϕ) by finding (Ker(ϕ∗))�.

Ker(ϕ∗) = {Y ∈Mn(C) ∣ ϕ∗(Y ) = 0} = {Y ∈Mn(C) ∣ F tY − Y F t = 0}

Invoking Proposition 4.1.2 we know that the matrices that commute with a nonderogatory
matrix are triangular Toeplitz matrices. Thus,

Ker(ϕ∗) = {T ∈ △k ∣ T is an upper triangular Toeplitz matrix}

Now,

Im(ϕ) = (Ker(ϕ∗))⊥ = {B ∣ ⟨B,T ⟩ = 0 ∀T ∈Ker(ϕ∗)} = {B ∣ tr(BT t) = 0 ∀T ∈Ker(ϕ∗)}

Let T = (tij)1≤i,j≤n ∈Mn(C) be an upper triangular Toeplitz matrix, and B = (bij)1≤i,j≤n ∈
Mn(C), then

tr(BT t) =
n

∑
i=1

(BT t)ii =
n

∑
j=1

n

∑
i=1

(B)ij(T t)ji =
n−1

∑
i=1

n

∑
j=i

tj−i+1bij

Hence,

Im(ϕ) = {B = (bij)1≤i,j≤n ∈ △k ∣
n

∑
i=1

n

∑
j=0

bij = 0}

We are left with the task of constructing P (k+1). From Equation (4.4.12) we know that
A(k) has the unique following decomposition

A(k) = T +R

where T ∈Ker(ϕ∗) and R ∈ Im(ϕ).
Let α ∈ C be the average of all the entries in the kth diagonal of A(k), for instance,

α = 1

n − k
n−k

∑
i=k

ai,i+1
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We take T ∈ △k as the matrix with all α’s on the kth diagonal and R = A(k) −T ∈ Im(ϕ).
Let P (k+1) ∈ △k+1 be the unique matrix such that ϕ(P (k+1)) = −R. We solve the system
of equations by back-substitution, and we obtain

B(k) = A(k) + ϕ(P (k+1)) = T

being B(k) is a Toeplitz matrix.

Example 4.4.7. Following with the Example 4.3.2 we will make the construction of the

last proof. Let us consider A = H =
⎛
⎜
⎝

2 0 0
1 2 0
0 1 3

⎞
⎟
⎠

. We can choose the form of P such that

all the 0th diagonal of A is constant. Observe that A(−1) is constant. So, we only need
to change A(0). We want to find P ∈M3(C) such that

P −1AP = T =
⎛
⎜
⎝

∗ 0 0
1 ∗ 0
0 1 ∗

⎞
⎟
⎠

and applying Lemma 4.4.5 we have that P = I3 + P (1). What is more, we have that

B(k) = A(k) + ϕ(P (k+1))

where
ϕ ∶ △1 →△0

−
⎛
⎜
⎝

0 x 0
0 0 y
0 0 0

⎞
⎟
⎠
↦ FX −XF =

⎛
⎜
⎝

−x 0 0
0 x − y −y + z
0 0 y

⎞
⎟
⎠

and

△1 = {
⎛
⎜
⎝

0 1 0
0 0 0
0 0 0

⎞
⎟
⎠
,
⎛
⎜
⎝

0 0 0
0 0 1
0 0 0

⎞
⎟
⎠
} , △0 = {

⎛
⎜
⎝

1 0 0
0 0 0
0 0 0

⎞
⎟
⎠
,
⎛
⎜
⎝

0 0 0
0 1 0
0 0 0

⎞
⎟
⎠
,
⎛
⎜
⎝

0 0 0
0 0 0
0 0 1

⎞
⎟
⎠
}

Note that Im(ϕ) = {
⎛
⎜
⎝

−1 0 0
0 1 0
0 0 0

⎞
⎟
⎠
,
⎛
⎜
⎝

0 0 0
0 −1 0
0 0 1

⎞
⎟
⎠
}. We also consider the adjoint map of ϕ

ϕ∗ ∶ △0 →△1

−
⎛
⎜
⎝

x 0 0
0 y 0
0 0 z

⎞
⎟
⎠
↦ F tY − Y F t =

⎛
⎜
⎝

0 −x + y 0
0 0 −y + z
0 0 0

⎞
⎟
⎠

as we have that

⎛
⎜
⎝

0 0 0
1 0 0
0 1 0

⎞
⎟
⎠

⎛
⎜
⎝

0 x 0
0 0 y
0 0 0

⎞
⎟
⎠
−
⎛
⎜
⎝

0 x 0
0 0 y
0 0 0

⎞
⎟
⎠

⎛
⎜
⎝

0 0 0
1 0 0
0 1 0

⎞
⎟
⎠
=
⎛
⎜
⎝

0 0 0
0 x 0
0 0 y

⎞
⎟
⎠

⎛
⎜
⎝

x 0 0
0 y 0
0 0 0

⎞
⎟
⎠

It is clear that Ker(ϕ∗) = {Id}. We also have that the unique decomposition of A(0) is

A(0) = T +R with T ∈Ker(ϕ∗), R ∈ Im(ϕ)

19



We take

T =
⎛
⎜
⎝

7
3 0 0

0 7
3 0

0 0 7
3

⎞
⎟
⎠

where α = 7
3 is the average of the elements in the 0th diagonal. Then,

R = A(0) − T =
⎛
⎜
⎝

−1/3 0 0
0 −1/3 0
0 0 2/3

⎞
⎟
⎠
= ϕ(P (1))

Hence, we obtain that

B(0) = A(0) + ϕ(P (1)) =
⎛
⎜
⎝

2 0 0
0 2 0
0 0 3

⎞
⎟
⎠
+
⎛
⎜
⎝

1/3 0 0
0 1/3 0
0 0 −2/3

⎞
⎟
⎠
=
⎛
⎜
⎝

7/3 0 0
0 7/3 0
0 0 7/3

⎞
⎟
⎠

as

ϕ(P (1)) =
⎛
⎜
⎝

−x 0 0
0 x − y 0
0 0 y

⎞
⎟
⎠
=
⎛
⎜
⎝

−1
3 0 0

0 −1
3 0

0 0 2
3

⎞
⎟
⎠

and therefore x = 1
3 and y = 2

3 , which implies that P =
⎛
⎜
⎝

1 1
3 0

0 1 2
3

0 0 1

⎞
⎟
⎠

.

Finally, we obtain the desired result

A ∼ B =
⎛
⎜
⎝

7/3 0 0
1 7/3 0
0 1 7/3

⎞
⎟
⎠

4.5 The Toeplitz canonical form for a nonderogatory matrix

The objective of this section is to prove the uniqueness of the upper Hessenberg Toeplitz
matrix defined above. Afterwards, we will be able to refer to it as the Toeplitz canonical
form.

First, we need to give some related results. The principal significance of the next two
lemmas is setting up a recurrence relation for characteristic polynomials of unit upper
Hessenberg Toeplitz matrices. On the one hand, Lemma 4.5.1 studies the characteristic
polynomial of a unit upper Hessenberg matrix and, on the other hand, Lemma 4.5.2
studies the characteristic polynomial of a Hessenberg matrix. After being set up this, we
will give the formal definition of the mentioned canonical form.

Lemma 4.5.1. Let Tn =

⎛
⎜⎜⎜⎜⎜⎜
⎝

a1 a2 ⋯ an
1 a1 ⋱ ⋮
0 1 ⋱ ⋱
⋮ a2
0 ⋯ 1 a1

⎞
⎟⎟⎟⎟⎟⎟
⎠

be a unit upper Hessenberg Toeplitz ma-

trix. We define p0(x) = 1 and pn(x) = det(xId − Tn). Then,

pn(x) = xpn−1(x) −
n

∑
i=1

aipn−i(x) for n = 1,2, . . .
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Proof. We will use induction to prove this result.
Base case, n = 1:

p1(x) = det(−T1 + xI) = det(−a1 + x) = −a1 + x = xp0(x) − a1p0(x) (4.5.1)

Inductive step: Show that for any n ≥ 1, if pn−1(x) = xpn−1(x)−∑ni=0 aipn−i(x) holds, then
pn(x) holds.

By definition:

pn(x) = det(−Tn + xI) =

RRRRRRRRRRRRRRRRRRRRRRRR

−a1 + x −a2 ⋯ −an−1 an
−1 −a1 + x −a2 ⋯ −an−1
0 −1 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ −a2
0 −1 −a1 + x

RRRRRRRRRRRRRRRRRRRRRRRR
We apply the Laplace expansion along the first column in order to compute the determi-
nant. Note that the first minor of dimension (n − 1) × (n − 1) is exactly pn−1(x). It is
immediate that if we remove row i and column 1 for i = 1, . . . , n− 1 we get a minor where
its last row is 0, . . . ,0,−1. And, applying again the Laplace expansion we will clearly
obtain that the determinant of the minor is (−1)pn−i(x). Hence,

pn(x) = (−a1 + x)pn−1(x) +
n−1

∑
i=1

−aipn−i(x) = xpn−1(x) −
n

∑
i=1

aipn−i(x)

The above lemma gives the relationship between the coefficients of the characteristic
polynomial pn(x) ∈ C[x] in terms of the entries of the Toeplitz matrix Tn ∈Mn(C). If we
write

pn(x) = xn + cn,1xn−1 + cn,2xn−2 + . . . + cn,n−1x + cn,n
then each coefficient cn,i is a polynomial involving all the n complex variables a1, a2, . . . , an.

The following lemma shows that cn,i involves just the first i variables a1, a2, . . . , an and
depends linearly on ai.

Lemma 4.5.2. If pn(x) = xn + cn,1xn−1 + cn,2xn−2 + . . .+ cn,n−1x+ cn,n is the characteristic

polynomial of Tn =

⎛
⎜⎜⎜⎜⎜⎜
⎝

a1 a2 ⋯ an
1 a1 ⋱ ⋮
0 1 ⋱ ⋱
⋮ a2
0 ⋯ 1 a1

⎞
⎟⎟⎟⎟⎟⎟
⎠

, then we have that

cn,i = { −na1 if i = 1
−(n − i + 1)ai + dni(a1, a2, . . . , ai−1) if 2 ≤ i ≤ n (4.5.2)

where dni(a1, a2, . . . , ai−1) is a polynomial in a1, a2, . . . , ai−1.

Proof. The proof is by induction on n.
Base case, n = 1:

p1(x) = det(−T1 + xI) = det(−a1 + x) = −a1 + x (4.5.3)
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Note that c1,1 = −a1.
Base case, n = 2:

p2(x) = det(−T2 + xI) = x2 − 2a1x + (−a2 + a21) (4.5.4)

We see that c2,1 = −2a1 and c2,2 = −a2 + a21 with d22(a1) = a21.

Inductive step: We assume that cki follows (4.5.2) for each k ≤ n − 1 and 1 ≤ i ≤ k. Now
we want to prove for k = n:

On the one hand, we know that the characteristic polynomial follows this structure:

pi(x) = xi + ci,1xi−1 + ci,2xi−2 + . . . + ci,i−1x + ci,i

On the other hand, by (4.5.1), we have that

pn(x) = xpn−1(x) − (a1pn−1(x) + . . . + an−1p1(x) + an)

Substituting (4.5.2) into (4.5.2) we obtain that

pn(x) = x(xn−1 + cn−1,1xn−2 + . . . + cn−1,n−2x + cn−1,n−1)

− (a1(xn−1 + cn−1,1xn−2 + . . . + cn−1,n−2x + cn−1,n−1) + . . . + an−1(x − c1,1) + an)

Now, we consider Equation (4.5.2) for i = n and we will match term to term both equa-
tions. Regarding term xn−1, we have that cn,1 = cn−1,1−a1 = −(n−1)a1−a1 = −na1. Where
in the penultimate equality we have applied induction hypothesis.
Now, we focus on study what happens with term xn−i, for i = 2, . . . , n.

cn,i = cn−1,i − (a1cn−1,i−1 + a2cn−2,i−1 + . . . + ai−1cn−i+1,1 + ai)
= (cn−1,i − ai) − (a1cn−1,i−1 + a2cn−2,i−2 + . . . + ai−1cn−i+1,1) = (A) + (B)

We apply induction hypothesis to cn−1,i−1, cn−2,i−2+ . . .+cn−i+1,1 and we have that (B) is a
polynomial in the variables a1, . . . , ai−1. Now we study A, we apply induction hypothesis
to (A) gives: cn−1,i −ai = −(n− i+1)ai. Putting both facts together we obtain the desired
result.

Once introduced the former lemmas, the following theorem gives the uniqueness of the
unit upper Hessenberg Toeplitz matrix and it will be reasonable to define the Toeplitz
canonical form.

Theorem 4.5.3. ([4]) Every nonderogatory matrix A ∈Mn(C) is similar to a unique unit
upper Hessenberg Toeplitz matrix.

Proof. In Theorem 4.5.3 we have proved that every nonderogatory matrix in Mn(C) is
similar to a unit upper Hessenberg Toeplitz matrix. For this reason, the proof is completed
by showing that if two upper Hessenberg Toeplitz matrices are similar, then they are equal.
Set

H1 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

a1 a2 ⋯ an−1 an
1 a1 ⋱ ⋱ an−1
0 ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ a2
0 ⋯ 0 1 a1

⎞
⎟⎟⎟⎟⎟⎟
⎠

and H2 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

b1 b2 ⋯ bn−1 bn
1 b1 ⋱ ⋱ bn−1
0 ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ b2
0 ⋯ 0 1 b1

⎞
⎟⎟⎟⎟⎟⎟
⎠
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We suppose that H1 and H2 are similar matrices. Consequently, their characteristic
polynomials must be the same: pH1(x) = pH2(x). By Lemma 4.5.2 we have that

{ −na1 = −nb1 if i = 1
−(n − i + 1)ai + dni(a1, a2 . . . , ai−1) = −(n − i + 1)bi + dni(b1, b2 . . . , bi−1) if 2 ≤ i ≤ n

It is clear that ak = bk for all 1 ≤ k ≤ n by using the induction hypothesis that dnk(a1, a2, . . . , ak−1) =
dnk(b1, b2, . . . , bk−1) and taking into account that n − k + 1 ≠ 0 as k ≤ n. Finally, we have
proved the uniqueness.

Definition 4.5.4. A Toeplitz canonical form for a nonderogatory matrix A ∈ Mn(C) is
the unit upper Hessenberg Toeplitz matrix T ∈Mn(C) similar to A.

4.6 Extension of other fields of the nonderogatory case

In earlier sections, we have been working under the supposition that F = C and we have
proved that every nonderogatory matrix with entries in the complex field is similar to an
upper Hessenberg Toeplitz matrix. One may ask whether the result above is still true
if we consider nonderogatory matrices with entries in any field F. To study the general
case, we consider the following three cases:

• Char(F) = 0
In this case, all the construction of the similarity follows as all the operations defined
above will be well defined.

• Char(F) = p > n
The same conclusion of the first case can be drawn for p > n as all the operations
will be well defined.

• Char(F) = p ≤ n.
Loosely speaking, we have that when we apply the procedure explained above, we
can arrive at a point that we divide by zero because of the characteristic of the field
and then the proof will be not well defined.
Consequently, there exists a nonderogatory matrix A ∈Mn(F) that is not similar to
any upper Hessenberg Toeplitz matrix in Mn(F). We will give a counterexample to
prove the assertion.

Counterexample:
We suppose n = 4 and Char(F) = p = 2. Let

B =
⎛
⎜⎜⎜
⎝

0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 1

⎞
⎟⎟⎟
⎠
∈Mn(F)

The characteristic polynomial of B is pB(x) = x4 − x3, and therefore c4,1 = −1, c4,2 =

c4,3 = c4,4 = 0. If T =
⎛
⎜⎜⎜
⎝

a0 a1 a2 a3
1 a0 a1 a2
0 1 a0 a1
0 0 1 a0

⎞
⎟⎟⎟
⎠
∼ B, they must have the same characteris-

tic polynomial. From Lemma 4.5.2, we have one of the equations of the system is
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c4,1 = −4a0 = −1 and as we are in a field of Char(F) = 2, we obtain 0 = −1, which
is a contradiction. In consequence, we have that there is no unit upper Hessenberg
Toeplitz matrix defined in M4(F) can have this characteristic polynomial, which is
our assertion.
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Chapter 5

General case for n ≤ 4

In this chapter we will restrict ourselves to matrices of low dimension dropping the as-
sumption of being a diagonalizable or a nonderogatory matrix. It is worth pointing out
that these conditions cannot be relaxed in general, as all the construction of the results
proved closely depends on them. We will show that all 4×4 (or smaller) complex matrices
are similar to a Toeplitz matrix.

Theorem 5.1. ([4]) Every A ∈Mn(C) with n ≤ 4 is similar to a Toeplitz matrix.

Proof. The proof falls naturally into three parts:

• n = 2
In this case, the possible Jordan form of a 2 × 2 matrix are:

J1 = (λ1 0
1 λ1

) , J2 = (λ1 0
0 λ1

) and J3 = (λ1 0
0 λ2

) with λ1 ≠ λ2

Observe J1 is nonderogatory and J2 and J3 are diagonalizable. Hence, the three
matrices are similar to a Toeplitz matrix (Theorem 3.2 and 4.5.3).

• n = 3
We will consider three sub-cases depending on the cardinality of Spec(A), denoted
as ∣Spec(A)∣.

– If ∣Spec(A)∣ = 3, then A = diag(λ1, λ2, λ3) which is similar to a Toeplitz matrix.

– If ∣Spec(A)∣ = 2, we have two possible forms:

J1 =
⎛
⎜
⎝

λ1 0 0
0 λ1 0
0 0 λ2

⎞
⎟
⎠

and J2 =
⎛
⎜
⎝

λ1 0 0
1 λ1 0
0 0 λ2

⎞
⎟
⎠

with λ1 ≠ λ2

J1 is diagonalizable and J2 is nonderogatory, and thus both are similar to a
Toeplitz matrix.

– If ∣Spec(A)∣ = 1, we have three possible forms:

J1 =
⎛
⎜
⎝

λ1 0 0
0 λ1 0
0 0 λ1

⎞
⎟
⎠
, J2 =

⎛
⎜
⎝

λ1 1 0
0 λ1 1
0 0 λ1

⎞
⎟
⎠

and J3 =
⎛
⎜
⎝

λ1 1 0
0 λ1 0
0 0 λ1

⎞
⎟
⎠
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J1 and J2 are Toeplitz so we are done. Observe that J3 = λ1I +N3 with

N3 =
⎛
⎜
⎝

0 1 0
0 0 0
0 0 0

⎞
⎟
⎠

and if we consider

S =
⎛
⎜
⎝

1 0 0
0 0 1
0 1 0

⎞
⎟
⎠

we obtain that

S−1N3S =
⎛
⎜
⎝

0 0 1
0 0 0
0 0 0

⎞
⎟
⎠

and thus

S−1J3S =
⎛
⎜
⎝

λ1 0 1
0 λ1 0
0 0 λ1

⎞
⎟
⎠

and J3 is similar to a Toeplitz matrix.

• n = 4
The proof is similar in spirit to the case n = 3.

– If ∣Spec(A)∣ = 4, we are in the diagonalizable case.

– If ∣Spec(A)∣ = 3, we have two possible matrices:

J1 =
⎛
⎜⎜⎜
⎝

λ1 0 0 0
0 λ1 0 0
0 0 λ2 0
0 0 0 λ3

⎞
⎟⎟⎟
⎠

and J2 =
⎛
⎜⎜⎜
⎝

λ1 0 0 0
1 λ1 0 0
0 0 λ2 0
0 0 0 λ3

⎞
⎟⎟⎟
⎠

J1 is diagonalizable and J2 is nonderogatory, so we are done.

– If ∣Spec(A)∣ = 2, we have six possibilities:

D1 =
⎛
⎜⎜⎜
⎝

λ1 0 0 0
0 λ1 0 0
0 0 λ2 0
0 0 0 λ2

⎞
⎟⎟⎟
⎠

O1 =
⎛
⎜⎜⎜
⎝

λ1 1 0 0
0 λ1 0 0
0 0 λ2 0
0 0 0 λ2

⎞
⎟⎟⎟
⎠

ND1 =
⎛
⎜⎜⎜
⎝

λ1 0 0 0
1 λ1 0 0
0 0 λ2 0
0 0 1 λ2

⎞
⎟⎟⎟
⎠

D2 =
⎛
⎜⎜⎜
⎝

λ1 0 0 0
0 λ1 0 0
0 0 λ1 0
0 0 0 λ2

⎞
⎟⎟⎟
⎠

O2 =
⎛
⎜⎜⎜
⎝

λ1 1 0 0
0 λ1 0 0
0 0 λ1 0
0 0 0 λ2

⎞
⎟⎟⎟
⎠

ND2 =
⎛
⎜⎜⎜
⎝

λ1 0 0 0
1 λ1 0 0
0 1 λ1 0
0 0 0 λ2

⎞
⎟⎟⎟
⎠

Observe we named every matrix according to its type. Di (diagonalizable) and
NDi (nonderogatory) with i = 1,2 are clearly similar to a Toeplitz matrix.
It remains to study Oi cases. Our aim is to find a similarity that results with
a Toeplitz matrix. The computations are lengthily and muddled, so we have
used computer programs (such as Maple and Mathematica) to compute it and
the proof is constructive as it follows:
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The first thing we do is assuming λ1 = 0 and we construct a similarity to T̄2.
If we take

T̄2 =
⎛
⎜⎜⎜
⎝

4 + 2i 4 + 4i 3 + 6i 1 + 8i
4 4 + 2i 4 + 4i 3 + 6i
4 4 4 + 2i 4 + 4i
0 4 4 4 + 2i

⎞
⎟⎟⎟
⎠

(5.0.1)

and computing its Jordan form we have

J̄2 =
⎛
⎜⎜⎜
⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 16 + 8i

⎞
⎟⎟⎟
⎠

(5.0.2)

Now we scale and shift J̄2 and we obtain

λ2 − λ1
16 + 8i

J̄2 + λ1Id =
⎛
⎜⎜⎜⎜
⎝

λ1 0 0 0

0 λ1
λ2−λ1
16+8i 0

0 0 λ1 0
0 0 0 λ2

⎞
⎟⎟⎟⎟
⎠

Now we look for a similarity that makes the element λ2−λ1
16+8i in the position (2,3)

be a 1. This is D = diag(1,16 + 8i, λ2 − λ1,1). Finally, we have that

O2 =D(λ2 − λ1
16 + 8i

J̄2 + λ1Id)D−1 =DS2(
λ2 − λ1
16 + 8i

)S−12 D−1

This let us conclude that O2 is similar to the Toeplitz matrix T2 = λ2−λ1
16+8i J̄2 +

λ1Id.

– ∣Spec(A)∣ = 1. There are five different possibilities:

J1 =
⎛
⎜⎜⎜
⎝

λ1 0 0 0
0 λ1 0 0
0 0 λ1 0
0 0 0 λ1

⎞
⎟⎟⎟
⎠
, J2 =

⎛
⎜⎜⎜
⎝

λ1 1 0 0
0 λ1 1 0
0 0 λ1 1
0 0 0 λ1

⎞
⎟⎟⎟
⎠

J3 =
⎛
⎜⎜⎜
⎝

λ1 1 0 0
0 λ1 0 0
0 0 λ1 1
0 0 0 λ1

⎞
⎟⎟⎟
⎠
, J4 =

⎛
⎜⎜⎜
⎝

λ1 1 0 0
0 λ1 0 0
0 0 λ1 0
0 0 0 λ1

⎞
⎟⎟⎟
⎠

and J5 =
⎛
⎜⎜⎜
⎝

λ1 1 0 0
0 λ1 1 0
0 0 λ1 0
0 0 0 λ1

⎞
⎟⎟⎟
⎠

Clearly, J1 and J2 are already Toeplitz matrices. As well, J3 and J4 can be
split as: Ji = λ1Id +Ni for i = 3,4 with

N3 =
⎛
⎜⎜⎜
⎝

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞
⎟⎟⎟
⎠

and N4 =
⎛
⎜⎜⎜
⎝

0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟
⎠

and by applying a permutation we obtain the Toeplitz matrix of the forms:

T3 =
⎛
⎜⎜⎜
⎝

λ1 0 0 1
0 λ1 0 0
0 0 λ1 0
0 0 0 λ1

⎞
⎟⎟⎟
⎠

and T4 =
⎛
⎜⎜⎜
⎝

λ1 0 1 0
0 λ1 0 1
0 0 λ1 0
0 0 0 λ1

⎞
⎟⎟⎟
⎠
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To end our proof, we must construct a similarity for J5. With the same rea-
soning as before we have that taking

T5 =
⎛
⎜⎜⎜
⎝

0 −2i 2 −1 + 2i
4 0 −2i 2
8 4 0 −2i

16 + 8i 8 4 0

⎞
⎟⎟⎟
⎠

and S5 =
⎛
⎜⎜⎜
⎝

0 2 − 2i −1 + i 0
0 −4 + 4i −4 − 4i 6 − 2i
64 32 − 32i 32 −16 + 16i
−64 −32 − 96i −160 80 − 16i

⎞
⎟⎟⎟
⎠

and this concludes the proof.

Remark 5.2. In Chapter 5 (concretely, in Theorem 6.2.1) we will see that the condition
of being in the field F = C is essential to the proof as we will see an example that shows
that in F = R the theorem is not true.
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Chapter 6

General case: Beyond n ≥ 5

This chapter deals with the cases of higher dimension. We will show how to dispense with
the hypothesis of having general matrices of dimension higher than 5 as we cannot proceed
as in the preceding chapter (general case for n ≤ 4) as the calculus are computationally
expensive and very long. Moreover, we will not be able to do constructive proofs or give
a general result as we did in the former chapters (diagonalizable and nonderogatory cases).

We will focus on some special cases in order to answer the main question of this paper:
if every matrix is similar to a Toeplitz matrix and we will see the answer to the question
is negative. To do so we will need to make some specific assumptions.

In what follows, we will present some new notation:

Notation 6.1. Let A ∈Mn(C) and λ0 ∈ Spec(A). We define the integers

dk(A,λ0) = dim(Ker(A − λ0In)k+1)– dim(Ker(A − λ0In)k)

for k = 0,1, . . . .
Observe that d0(A,λ0) is the geometric multiplicity of λ0 and dk(A,λ0) is the number of
Jordan blocks corresponding to λ0 with a size greater than k.

In the general inverse Jordan structure problem, λk and dkj with j = 0, . . . , qk are given
and we look for a matrix A with eigenvalues λk and dj(A,λk) = dkj . In the case of n × n
matrices, the problem has a solution if ∑k∑qkj=0 dkj ≤ n (see [2] and [7]). If A is Toeplitz,
the problem is very complex and it is hard to set if the problem has a solution. So, we
will make the following assumption:

Assumption 6.2. We will suppose we have just one eigenvalue λ0 ∈ C and, without loss
of generality, we can assume λ0 = 0 since the identity matrix is Toeplitz. According to
the above notation, we write dk(A,0) = dk(A).

Notation 6.3. From now on

Sn =
⎛
⎜⎜⎜
⎝

0 ⋯ 0
1

⋱ ⋮
0 1 0

⎞
⎟⎟⎟
⎠
∈Mn(C)
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Definition 6.4. ([5]) The (q+2)-tuple (n, d0, . . . , dq) with 0 ≤ dq ≤ . . . ≤ d0 and ∑qj=0 dj ≤ n
is Toeplitz admissible if there exists a Toeplitz matrix T ∈ Mn(C) with dk(T ) = dk for
k = 0, . . . , q.

Examples 6.5. In the following examples we will study basic cases of Toeplitz admissible
matrices. What is more, we will sketch them using Young diagram that will be useful to
visualize and make more understable further results.

• (n, d0) with d0 ≤ n is Toeplitz admissible since we can take any matrix T ∈Mn(C)
with Rank(T ) ≤ n − d0.

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
d0

• (n,1, . . . ,1
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

≤n

) corresponds to a nonderogatory matrix and so it is Toeplitz admissible

(Theorem 4.4.6).
⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

≤ n

• (n, l, . . . , l
´¹¹¹¹¹¸¹¹¹¹¹¹¶

q

) is Toeplitz admissible for ql ≤ n. According to Notation 6.3 we have that

dk(Sln) = l for kl ≤ n.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

q

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
l

In general, the study if a tuple is Toeplitz admissible is a difficult problem that we will
have to study it carefully.

In the next lemma we will study the structure of the intersection of the kernel and the
range of a Toeplitz matrix as it has the same structure as the kernel of a square Toeplitz
matrix. Our approach is based on the following result:

Lemma 6.6. ([5]) Given A ∈Mn(C), then

d1(A) = dim(Ker(A) ∩ Im(A)) (6.0.1)
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Proof. Let f be a linear map defined as

f ∶ Ker(A2) → Ker(A) ∩ Im(A)

X ↦ AX

Given Y ∈ Ker(A) ∩ Im(A), we have that AY = 0 and Y = AX = f(X) and therefore f
is exhaustive.
As well,

Ker(f) = {X ∈Ker(A2) ∣ f(X) = 0} =Ker(A)
Applying the first isomorphism theorem, we get that

Ker(A2)/Ker(f) =Ker(A2)/Ker(A) ≅ Im(f) =Ker(A) ∩ Im(A)

And the result follows.

The prior lemma points us to study the structure of Ker(T )∩Im(T ) in order to go further
in our investigations. At first, we will focus on the structure of Ker(T ) and afterwards
the intersection specified.

Notation 6.7. Given a vector u = (uk)mk=0 ∈ Cm+1 then

• û = (uk)0k=m ∈ Cm+1 is the reverse vector.

• u(λ) will denote the polynomial u(λ) = ∑mk=0 ukλk.

• Td(u) is a Toeplitz matrix of the form

Td(u) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

u0 0
⋮ u0
um ⋮ ⋱

um u0
⋱ ⋮

0 um

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∈Mm+d,d(C)

Note that Td(u) is the matrix of the multiplication operator x(λ) → u(λ)x(λ) where
x(λ) is a polynomial of degree d − 1 with respect to the basis λi.

Lemma 6.8. ([5]) Let T = (ai−j) ∈Mn(C) be a Toeplitz matrix and let Tk = (ai−j)2n−k;ki=1

for k = 1, . . . ,2n − 1. Then

u ∈Ker(Tk) ⇔ υ = (ut 0)t ∈Ker(Tk+1) and ω = (0 , ut)t ∈Ker(Tk+1)

Proof. Observe that Tk−1 ∈M2n−k+1,k−1(C) is obtained from Tk ∈M2n−k,k(C) by deleting
the last column and adding a top row in such way that the structure of a Toeplitz matrix
is preserved.
If

u ∈Ker(Tk) ⇔ Tku = (0, . . . ,0
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
2n−k

) ⇔
2n−k

∑
i=2

k

∑
j=1

Tijuj = 0 ⇔
2n−k−1

∑
i=1

k+1

∑
j=1

Tijυj = 0 ⇔

⇔
2n−k−1

∑
i=1

k+1

∑
j=1

Tijωj = 0

The converse implication follows likewise.
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Example 6.9. As the notation of the last proof is complicated, we will give an example.

Let T =
⎛
⎜
⎝

−2
3

1
9

4
27

1 −2
3

1
9

0 1 −2
3

⎞
⎟
⎠

, then

T1 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

4
27
1
9
−2
3
1
0

⎞
⎟⎟⎟⎟⎟⎟
⎠

, T2 =
⎛
⎜⎜⎜
⎝

1
9

4
27

−2
3

1
9

1 −2
3

0 1

⎞
⎟⎟⎟
⎠
, T3 = T , T4 = (1 −2

3
1
9

4
27

0 1 −2
3

1
9

) and T5 = (0 1 −2
3

1
9

4
27

)

Let us denote by uk the kernel generating vector of each Tk. By a trivial computation we
have that

Ker(T1) = ⟨(0)⟩ , Ker(T2) = ⟨(0
0
)⟩ , Ker(T3) = ⟨

⎛
⎜
⎝

1
3
2
3
1

⎞
⎟
⎠
⟩ ,

⟨
⎛
⎜⎜⎜
⎝

1/3
2/3
1
0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0
1/3
2/3
1

⎞
⎟⎟⎟
⎠
⟩ ∈Ker(T4) and ⟨

⎛
⎜⎜⎜⎜⎜⎜
⎝

0
1/3
2/3
1
0

⎞
⎟⎟⎟⎟⎟⎟
⎠

,

⎛
⎜⎜⎜⎜⎜⎜
⎝

0
0

1/3
2/3
1

⎞
⎟⎟⎟⎟⎟⎟
⎠

,

⎛
⎜⎜⎜⎜⎜⎜
⎝

1/3
2/3
1
0
0

⎞
⎟⎟⎟⎟⎟⎟
⎠

⟩ ∈Ker(T5)

It is clear that the lemma follows as if we start with k = 1 it is trivial that the zero
vector will belong to all the subspaces Ker(Tk) by taking the linear combinations with

the coefficients equal to 0. If we start with k = 3, we have that u3 =
⎛
⎜
⎝

1
3
2
3
1

⎞
⎟
⎠

and (u3,0)t

belongs to T4 and T5. The way back works under the same idea.

The interest of the following theorem is in the assertion that if we have T ∈ Mn(C), we
can compute u ∈Ker(T ) such that the columns of Td(u) form a basis of T (see Notation
6.7). Conversely, given u ∈ Cm+1 and d = n −m we can obtain T ∈ Mn(C) such that
Ker(T ) = Td(u).

Theorem 6.10. ([5]) Let T ∈Mn(C) be a singular Toeplitz matrix and d = dim(Ker(T )).
Then

(a) There exists a vector u = (u0, . . . , um) with m = n − d such that the columns of
Td(u) ∈Mm+d,d(C) form a basis of Ker(T ) and the columns of Td(û) form a basis
of Ker(T t).

(b) The above vector u is unique up to a constant non-zero factor.

(c) Reciprocally, for a given non-zero vector u ∈ Cm+1 and any n > m there exists a
Toeplitz matrix T ∈Mn(C) such that the columns of Td(u), d = n −m form a basis
of Ker(T ).

Proof. -
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(a) Observe that for T = 0, the result is trivial, so we can assume T ≠ 0. Besides the
matrix T , we consider the (2n − k) × k Toeplitz matrices Tk for k = 1, . . . ,2n − 1
defined in Lemma 6.8. Let m be the largest integer such that Ker(Tm) = {0} and
Ker(Tm+1) ≠ {0} (since Ker(T1) = {0}, m is well defined). Observe that by Lemma
6.8 we have that

u ∈Ker(Tm+1) ⇔ (ut,0)t ∈Ker(Tm+2) ⇔ . . .⇔

⇔ (u,0, . . . ,0
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
n−m

) ∈Ker(Tm+n−m) =Ker(Tn) =Ker(T )

and we can assert that the columns of Tn−m(u) ∈Ker(T ).
Let J ∈ Mn(C) be the backward identity, clearly, T t = JTJ from this relation, we
have that the columns of Tn−m(û) belong to Ker(T t).

(b) The uniqueness of u is consequence of dim(Ker(Tm+1)) = 1.

(c) We will give the main ideas of the proof of this part. For simplicity, we assume that
um ≠ 0 and u(λ) has only simple roots λi for i = 1, . . . ,m. For t ∈ C we define the
vector `(t) = (tk−1)2n−1k=1 and consider a = (ai)1−ni=n−1 to be the columns of T . Notice
that Tm+1u = 0 ⇔ T2n−m−1(u)ta = 0.
If we solve the second system and using the fact that u(λi) = 0, we have that the
solutions can be expressed as

a =
m

∑
i=1

ci`(λi) with ci ≠ 0

What is more, if we study the kernel of T = (ai−j) ∈Mn(C), we have that

Tx = 0⇔ x(λi) = 0 for i = 1, . . . ,m

As a result, x(λ) must be a multiple of u(λ) as the zeros of u(λ) are the zeros of
x(λ). Specifically, Rank(T ) =m.

In conclusion, T is the desired Toeplitz matrix with kernel generating vector u and
dim(Ker(T )) = d = n −m.

Definition 6.11. The vector u defined as in Theorem 6.10 is a kernel generating vector
for T ∈Mn(C).

Example 6.12. Now we will provide an example of having a kernel generating vector
and obtaining a Toeplitz matrix and vice versa in order to clarify the main concepts of
the above proof.

• We will check a case where given a Toeplitz matrix of low dimension, we can directly
obtain the kernel generating vector:

Let T =
⎛
⎜
⎝

3 4 5
2 3 4
1 2 3

⎞
⎟
⎠
∈M3(C) be the Toeplitz matrix which is singular. We have that
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d = dim(Ker(T )) = 1 and m = 2 and therefore T1(u) =
⎛
⎜
⎝

u0
u1
u2

⎞
⎟
⎠

. We have that

T1 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

5
4
3
2
1

⎞
⎟⎟⎟⎟⎟⎟
⎠

, T2 =
⎛
⎜⎜⎜
⎝

4 5
3 4
2 3
1 2

⎞
⎟⎟⎟
⎠
, T3 = T , T4 = (2 3 4 5

1 2 3 4
) and T5 = (1 2 3 4 5)

In our example, m = 2 is the largest integer such that Ker(T2) = 0 and Ker(T3) ≠ 0.
We have that Ker(T3) = ⟨(1,−2,1)⟩. If u ∈ Ker(T3), then (u,0) ∈ Ker(T4) and
(u,0,0) ∈Ker(T5).

• Reciprocally, we take a kernel generating vector and we obtain the Toeplitz matrix
T :
If we take u = (1,1,−2), u(λ) = −2 + λ + λ2, λ1 = 1, λ2 = −2, m = 2, n = 3 and d = 1.
We have to find a Toeplitz matrix T ∈M3(C) such that the kernel are the columns
of T1(u). Equivalently, we need to solve the system T3(u)ta = 0

⎛
⎜
⎝

1 1 −2 0 0
0 1 1 −2 0
0 0 1 1 −2

⎞
⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜
⎝

a−2
a−1
a0
a1
a2

⎞
⎟⎟⎟⎟⎟⎟
⎠

=
⎛
⎜
⎝

0
0
0

⎞
⎟
⎠
⇔

⎛
⎜
⎝

a−2 + a−1 − 2a0
a−1 + a0 − 2a1
a1 + a2 − 2a3

⎞
⎟
⎠
=
⎛
⎜
⎝

0
0
0

⎞
⎟
⎠
⇔

⎛
⎜⎜⎜⎜⎜⎜
⎝

a−2
a−1
a0
a1
a2

⎞
⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

−5a1 + 6a2
3a1 − 2a2
−a1 + 2a2

a1
a2

⎞
⎟⎟⎟⎟⎟⎟
⎠

If we take a1 = 2 and a2 = 1, we get T =
⎛
⎜
⎝

0 2 1
4 0 2
−4 4 0

⎞
⎟
⎠

In the next proposition we will present a Toeplitz matrix that will be essential for our
concern, the study of Ker(T ) ∩ Im(T ).

Proposition 6.13. ([5]) For any u ∈ Cm+1, the matrix defined by

Rd(u) = Td(û)tTd(u) ∈Md(C)

is a Toeplitz matrix.

Proof. It is straightforward to see that

Td(û)tTd(u) =
⎛
⎜⎜⎜
⎝

um ⋯ u0 0 ⋯ 0
0 um ⋯ u0

⋱ ⋱
0 um ⋯ u0

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

u0 0
⋮ u0
um ⋮ ⋱

um u0
⋱ ⋮

0 um

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

t0 t1 t2 ⋯ tm
t−1 t0 t1 ⋱ ⋮
t−2 ⋱ ⋱ ⋱ t2
⋮ ⋱ ⋱ ⋱ t1

t−m ⋯ t−2 t−1 t0

⎞
⎟⎟⎟⎟⎟⎟
⎠

which is a Toeplitz with

tj =
m−j

∑
k=0

uj+kum−k and t−j =
m−j

∑
k=0

ukum−j−k (6.0.2)

for j = 0, . . . ,m and the remaining entries equal to zero.
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The next theorem will be our tool of investigation and our subsequent considerations rely
on the following:

Theorem 6.14. ([5]) Let T ∈ Mn(C) be a singular Toeplitz matrix, u ∈ Cm+1 a kernel
generating vector for T and d = n −m = dim(Ker(T )). Then

d1 = dim(Ker(T ) ∩ Im(T )) = dim(Ker(Rd(u))) (6.0.3)

Further to this, if d1 = dim(Ker(Rd(u)) and v is a kernel generating vector for Rd(u) ∈
Md(C), then the columns of Td1(w) ∈ Mm+d1,d1(C), with w(λ) = u(λ)v(λ) form a basis
of Ker(T ) ∩ Im(T ).

Proof. We know by Theorem 6.10 that Ker(T ) = Im(Td(u)). Let x = Td(u)ξ ∈ Ker(T ),
then

Td(u)ξ ∈ Im(T ) ⇔ Td(u)ξ = Ty ⇔ ztTd(u)ξ = ztTy = 0 ∀z ∈Ker(T t) ⇔

⇔ Td(û)Td(u)ξ = Rd(u)ξ = 0

The last if and only if comes from the fact that the columns of Td(û) form a basis of
Ker(T t). This gives the following bijection

Ker(Rd(u)) →Ker(T ) ∩ Im(T )

ξ ↦ Td(u)ξ

that implies that dim(Ker(T ) ∩ Im(T )) = dim(Ker(Rd(u))).
Regarding the second part of the theorem, we have that Ker(Rd(u)) = Im(Td1(v)) as
Rd(u) is a Toeplitz matrix (see Proposition 6.13), then we have that

ξ ∈Ker(Rd(u)) ⇒ ξ = Td1(v)ξ2 ⇒ Td(u)ξ = Td(u)Td1(v)ξ2 ∈Ker(T ) ∩ Im(T )

that follows directly that Td1(w) = Td(u)Td1(v) and, hence, the columns of Td1(w) form
a basis of Ker(T ) ∩ Im(T ).

Corollary 6.15. The triple (n, d, d1) is Toeplitz admissible if and only if there exists
u ∈ Cn−d+1 with u ≠ 0 such that d1 = dim(Ker(Rd(u))).

Let
M (n, d0, d1) = { T ∈Mn(C)Toeplitz ∣ d0(T ) = d0, d1(T ) = d1 }

Notice that
M (n, d0, d1) ≠ ∅ ⇔ (n, d0, d1) is Toeplitz admissible.

6.1 Matrices of odd order (n = 2m + 1)

In this section we will study the set M (2m + 1, d0, d1). First, we will present Theorem
6.1.1, which asserts that all Toeplitz matrices that belong to M (2m + 1,m,m) are sim-
ilar to diag(S2, . . . , S2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
m−1

, S3) ∈ M2m+1(C). Considering the theorem we will find the first

counterexample that leads us to state that not every matrix is similar to a Toeplitz matrix.
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Theorem 6.1.1. ([5]) For m ≥ 2, any T ∈ M (2m + 1,m,m) is similar to

diag(S2, . . . , S2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

m−1

, S3) ∈M2m+1(C) with S2 = (0 0
1 0

) and S3 =
⎛
⎜
⎝

0 0 0
1 0 0
0 1 0

⎞
⎟
⎠

Proof. First, let us see M (2m + 1,m,m) in a schematic way:

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
m

or
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

m

Let T ∈ M (2m + 1,m,m) and u a kernel generating vector for T . Note that d =
dim(Ker(T )) = m and, considering Theorem 6.14, d1 = dim(Ker(Rm(u))) = m then,
dim(Im(Rm(u)) = 0 and therefore Rm(u) = 0. By imposing it, we obtain the following
system of nonlinear equations

t1−m = 2u0u2 + u21 = 0
t2−m = 2u0u3 + 2u1u2 = 0

t3−m = 2u0u4 + 2u1u3 + u22 = 0
⋮

t0 = 2u0um−1 + 2u1um +⋯ = 0
⋮

tm−2 = 2um−2um+1 + 2um−1um = 0
tm−1 = 2um−1um+1 + u2m = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.1.1)

On the one hand, we suppose u0 ≠ 0 and we may assume u0 = 1 and we will show that
u1 = 0. Suppose that u1 ≠ 0 and define

x0 = 1 , xk =
uk

uk1
for k = 2, . . . ,m

From (6.1.1) we get the following recursion

x0 = x1 = 1 , x2 = x2 and xj = −
1

2

j−1

∑
k=1

xkxj−k for j > 2 (6.1.2)

Note that the system will exclusively depend on x2. Studying the recursion, we can prove
by induction that xj are real numbers and that the following property is fulfilled

xj > 0 if j is odd
xj < 0 if j is even

} (6.1.3)

Base case:
We have assumed that x1 = 1. Let us now check the sign of x2. We know that
x2 = u2

u21
= −1

2 < 0 where the last equality follows from 2u2 + u21 = 0 (see Equation (6.1.1)).

Inductive step:
We assume the result for i ≤ n = 2m + 1. Let us check the sign for xn+1.

xn+1 = −
1

2

2m

∑
k=1

xkx2m+1−k
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At this point, we have to analyze what happens within the summation. If k is even, we
have that xkxn+1−k < 0 and the same if k is odd, and so, xn+1 > 0.
Consequently, we have that

2xm−1xm+1 + x2m > 0

and this is a contradiction as the last equation of (6.1.1) will not be fulfilled. Thus, u1 = 0
and using the recursion (6.1.2) we obtain that uj = 0 for all j = 2, . . . ,m+ 1. According to
our notation, this gives us that T is an upper triangular matrix and the first m columns
are equal to 0.

T = ( 0 . . . 0
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

m

TU ) ∈M2m+1(C)

where TU denotes an upper triangular Toeplitz matrix of dimension (2m + 1) × (m + 1).
Note that T is nilpotent and similar to diag(S2, . . . , S2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
m−1

, S3).

If u0 = 0, then by (6.2.11), uj = 0 for all j = 1, . . . ,m and um+1 ≠ 0. In this case we have
that T is lower triangular and the m last columns of T are zero. In the same way as
before, such matrix is nilpotent and similar to diag(S2, . . . , S2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
m−1

, S3).

T = ( TL 0 . . . 0
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

m
) ∈M2m+1(C)

where TL denotes an upper triangular Toeplitz matrix of dimension (2m+1)×(m+1).

Example 6.1.2. Let us give an example of the above theorem for the case n = 5 and
m = 2. Hence, we have that T ∈ M (5,2,2). We know that T is similar to

diag(S2, S3) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 0
1 0

0

0
0 0 0
1 0 0
0 1 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

∈M5(C)

and let us find T in an explicit form. Solving the system of equations (6.1.1) we obtain
that ti = 0 for i = −4, . . . ,0 and i = 4. Finally, we have that

T =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 0 a b 0
0 0 0 a b
0 0 0 0 a
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

with a ≠ 0

Corollary 6.1.3. For m ≥ 2, there is no Toeplitz matrix similar to

diag(S2, . . . , S2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

m

, c) if c ≠ 0

Proof. The tuple (2m + 1,m,m,0), corresponding to the second figure of Theorem 6.1.1,
is not Toeplitz admissible as a consequence the same theorem.

Corollary 6.1.4. For any odd integer n > 4 there exists an n × n matrix that is not
similar to a Toeplitz matrix.
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6.2 Matrices of even order (n = 2m)

Once we have studied matrices of odd order, we study the even order case. For even n the
problem is more complicated. In Theorem 6.1.1, we have studied the set M (2m+1,m,m).
Following the proof of the mentioned theorem, we can sketch M (2m,m,m) as it follows:

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
m

and solving the system (6.1.1) for our case we obtain that any T ∈ M (2m + 1,m,m) is
similar to diag(S2, . . . , S2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
m

). Consequently, M (2m,m,m) is Toeplitz admissible.

Our objective is now finding tuples that are not Toeplitz admissible with the following
forms: M (2m,m,m − 1) or M (2m,m − 1,m − 1). For this reason, we will divide our
section into three parts: order 4, 6 and greater than 8. The last part consists of defining
a recursion of polynomials and finding a counterexample based on them.

6.2.1 Case n = 4

Notice that we have earlier studied this case in Chapter 5 by studying the possible Jor-
dan forms. Taking into consideration Theorem 5.1, we know that there exists T ∈M4(C)
Toeplitz matrices that are similar to diag(S2,0, c) with c ≠ 0 or diag(S3,0). So, we have
the statement is true for complex matrices but in this section we will see that the assertion
is not true for real matrices.

Theorem 6.2.1. ([5]) The class M (4,2,1) does not contain real matrices. Furthermore,
there is no Toeplitz matrix T ∈M4(R) that is similar to diag(S2,0, c) with c ≠ 0 or similar
to diag(S3,0).

Proof. Before starting the rigorous proof, we sketch the Jordan blocks that are:

or

We suppose that T ∈ M (4,2,1) and u = (u0, u1, u2)t is a kernel generating vector for T .
Let R2(u) be the matrix defined in (6.13) as

R2(u) = ( 2u1u2 2u0u2 + u21
2u0u2 + u21 2u0u1

) ∈M2(C)

Since d1 = dim(Ker(R2(u))) = 1, we have that

det(R2(u)) = 4u20u
2
2 + u41 = 0 (6.2.1)
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If ui ∈ R, then combining this fact with (6.2.1) we have two possible options:

u0 ≠ 0, u1 = 0, u2 = 0 ⇒ u(λ) = u0 ≠ 0

or

u0 = 0, u1 = 0, u2 ≠ 0 ⇒ u(λ) = u2λ2 ≠ 0

Following the construction of Proposition 6.13 and using that d0 = 2 we have that T is a
triangular matrix of the form

⎛
⎜⎜⎜
⎝

0
0 0
a 0 0
∗ a 0 0

⎞
⎟⎟⎟
⎠

or

⎛
⎜⎜⎜
⎝

0 0 a ∗
0 0 a

0 0
0

⎞
⎟⎟⎟
⎠

with a ≠ 0

If we compute the Jordan form of these matrices, we have that they are similar to
diag(S2, S2) and not to diag(S2,0, c) with c ≠ 0 or diag(S3,0).

6.2.2 Case n = 6

In this section, we will find a triple (6, d0, d1) for which the class M (6, d0, d1) = ∅. Addi-
tionally, we find a nilpotent matrix that is not similar to a Toeplitz matrix.

Theorem 6.2.2. ([5]) M (6,3,2) = ∅, in other words, there is no T ∈ M6(C) Toeplitz
matrix that is similar to

diag(S3, S2,0) or diag(S2, S2,0, c)

with c ≠ 0.

Proof. We have the following possible Young diagrams:

or

We suppose that T ∈ M (6,3,2), then

R3(u) =
⎛
⎜
⎝

2u1u2 + 2u0u3 u21 + 2u0u2 2u0u1
u22 + 2u1u3 2u1u2 + 2u0u3 u21 + 2u0u2

2u2u3 u22 + 2u1u3 2u1u2 + 2u0u3

⎞
⎟
⎠
=
⎛
⎜
⎝

t0 t1 t2
t−1 t0 t1
t−2 t−1 t0

⎞
⎟
⎠

and n = 6, m = 3 and d = 3. Observe that in this case we have that d1 = dim(Ker(R3(u))) =
2 and dim(Im(R3(u))) = 1. Now, we distinguish different cases:

• Case t0 ≠ 0 (⇔ 2u1u2 + 2u0u3 ≠ 0)
Considering Theorem 6.10, we know that u and R3(u) are defined up to non-zero
constant factor, then we can assume t0 = 2. In addition, as d1 = dim(Ker(R3(u))) =
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2, we have that dim(Im(R3(u))) = 1 so all the minors of dimension 2 × 2 are 0. In
particular, t20 − t2t−2 = 0, and therefore we can take

u0u1u2u3 = 1 and u0u3 + u1u2 = 1 (6.2.2)

At first glance, we see that uk ≠ 0 for k = 0,1,2,3. We do a variable change u0u3 = γ,
and u1u2 = γ−1. Then, we have that

γγ−1 = 1 , γ + γ−1 = 1⇒ γ = 1 ±
√

3i

2

We continue using the relationship given by the minors 2 × 2. We now use two
relations t21 = t0t2 and t2−1 = t0t−2 that drive to

4u0u2u
2
3 = 4u21u

2
3 + u42 and 4u20u1u3 = 4u20u

2
2 + u41 (6.2.3)

substituting we have

4γ3u32u3 = 4u23 + γ2u62 and 4γ3u32u3 = 4γ4u62 + γ−2u23
Then by substituting the first expression into the second we have

u23 =
γ4(4 − γ−2)

4 − γ−2 u62 = γ4u62

Hence,
u3 = ±γ2u32 (6.2.4)

Inserting (6.2.4) into the first equality of (6.2.3) we get that

±4γ3 = ∓4 = 4γ2 + 1

and this equality is clearly false, so we have a contradiction.

• Case t0 = 0 (⇔ 2u1u2 + 2u0u3 ≠ 0)
In this case

R3(u) =
⎛
⎜
⎝

0 u21 + 2u0u2 2u0u1
u22 + 2u1u3 0 u21 + 2u0u2

2u2u3 u22 + 2u1u3 0

⎞
⎟
⎠
=
⎛
⎜
⎝

t0 t1 t2
t−1 t0 t1
t−2 t−1 t0

⎞
⎟
⎠

We proceed as before using the fact that dim(Im(R3(u)) = 1. We only have two
possible situations:

– t2 ≠ 0 ⇒ t1 = t−1 = t−2 = 0 ⇒ u21 = −2u0u1, u
2
2 = −2u1u3 and 2u2u3 = 0.

We can have two possible situations: u2 = 0 or u3 = 0.

∗ u2 = 0 ⇒ u1 = 0 ⇒ Rd(u) = 0 (!)

∗ u3 = 0 ⇒ u2 = 0 ⇒ u1 = 0 ⇒ R3(u) = 0 (!)

– t−2 ≠ 0 ⇒ t1 = t−1 = t2 = 0 ⇒ ⇒ u21 = −2u0u1, u
2
2 = −2u1u3 and 2u0u1 = 0.

Hence, we can have u0 = 0 or u1 = 0.

∗ u0 = 0 ⇒ u1 = 0 ⇒ u2 = 0 ⇒ Rd(u) = 0 (!)

∗ u1 = 1 ⇒ u2 = 0 ⇒ u0 = 0 ⇒ Rd(u) = 0 (!)

In conclusion, we have proved that dim(Im(R3(u))) ≠ 1, that is d1 ≠ 2 which proves the
theorem.

The case n = 6 arises the following question: is M (2m,m,m − 1) = ∅ for all m ≥ 3? We
will be able to answer the problem in the next section.
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6.2.3 Case n ≥ 8

For higher dimensions, the problem is reduced to the class of polynomials that can be
checked for special cases, defined recursively as it follows:

p0(t) = p1(t) = 1 , p2(t) = t and pj(t) =
−1

2

j−1

∑
k=1

pk(t)pj−k(t) (j > 2) (6.2.5)

We will study this recursion as will be the fundamental point of this section to check if
there is always a similarity to a Toeplitz matrix T ∈Mn(C) for n ≥ 8. The study of this
polynomial recursion will be based on three lemmas and one main theorem.

Lemma 6.2.3. ([3]) The generating function of the family of polynomials {pj(t)} which
is

p(z, t) =
∞

∑
j=0

pj(t)zj

is given by
p(z, t) =

√
1 + 2z + z2(1 + 2t) (6.2.6)

Proof. According to the definition of pj(t) (in (6.2.5)), we have

∑
i+k=j

pi(t)pk(t) = 0 for j > 2

Moreover,

p(z, t)2 =
∞

∑
j=0
∑
i+k=j

(pi(t)pk(t))zj =
2

∑
j=0

( ∑
i+k=j

pi(t))zj = A(t) +B(t)z +C(t)z2

It is straightforward by the definition of pj(t) for j = 0,1,2 that

A(t) = p0(t) = 1

B(t) = p0(t)p1(t) + p1(t)p0(t) = 2

C(t) = p0(t)p2(t) + p1(t)p1(t) + p2(t)p0(t) = t + 1 + 1 = 2t + 1

We isolate p(z, t) and we obtain the desired result.

Lemma 6.2.4. ([3]) Let pj(t) as in (6.2.5), then

pj(t) =
⌊
j
2
⌋

∑
k=0

2j−2k( 1/2
j − k)(

j − k
k

)(2t + 1)k

Proof. The basic idea of the proof is using the binomial expansion twice.

p(z, t) =
√

1 + 2z + z2(1 + 2t) = (1 + 2z + z2(1 + 2t))1/2 =
∞

∑
j=0

(
1
2

j
)(2z + z2(1 + 2t))j (6.2.7)

and

(2z + z2(1 + 2t))j =
j

∑
k=0

(j
k
)(2z)j−k(z2(1 + 2t))k (6.2.8)
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Thus, combining (6.2.7) and (6.2.8) we have that

p(z, t) =
∞

∑
j=0

j

∑
k=0

(1/2
j

)(j
k
)2j−kzj−kzk(1 + 2t)k =

∞

∑
j=0

j

∑
k=0

(1/2
j

)(j
k
)2j−k(1 + 2t)kzj =

∞

∑
j=0

pj(t)zj

Lemma 6.2.5. ([3]) The polynomials pj(t) satisfy the 3-term recursion

(j + 2)pj+2(t) + (2j + 1)pj+1(t) + (j − 1)(2t + 1)pj(t) = 0 , j ≥ 0 (6.2.9)

Proof. Let h(z, t) be the generating function of the polynomial family {pj(t)} defined in
(6.2.9). Let hz denote the partial derivative of h(z, t) by z and h(z, t) = h. Then, we show
that h(z, t) = p(z, t).

∞

∑
j=0

(j + 2)pj+2zj+1 = hz − 1

∞

∑
j=0

(2j + 1)pj+1zj+1 = 2zhz − h + 1

∞

∑
j=0

(j − 1)pjzj+1 = z2hz − zh

Summing the three equations we obtain the ordinary differential equation

(1 + 2z + (2t + 1)z2)hz − (1 + (2t + 1)z)h = 0 (6.2.10)

It is straightforward that p(z, t) satisfies (6.2.10). Since p(0, t) = h(0, t), we conclude that
p(z, t) = h(z, t).

This theorem is essential for the further part of this work as all the next considerations
strongly depend on it.

Theorem 6.2.6. ([3]) For m > 1 pm+1(t) = pm(t) = 0 has only a trivial solution t = 0.

Proof. We will use induction to prove this result.
Base case, m = 2: By computing p2(t) = t and p3(t) = −t, it is evident that the only
solution of p2(t) = p3(t) is t = 0.

Inductive step: We assume the theorem is valid for m > 1, then we prove that it is true
for m + 1.
We will prove it by contraposition. We suppose pm+1(τ) = pm+2(τ) = 0 for some τ ≠ 0.
From Lemma 6.2.5 we have (m− 1)(2τ + 1)pm(τ) = 0 then τ = −1

2 and applying again the
lemma we have

(m + 1)pm+1(τ) + (2m − 1)pm(τ) + (m − 2)(2τ + 1)pm−1(τ) = 0⇒ pm(−1

2
) = 0 = pm+1(−

1

2
)

and we have a contradiction.
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Corollary 6.2.7. ([5]) For m > 3, the system of m − 2 equations

pm+2(t) = pm+3(t) = . . . = p2m−1(t) = 0

has only the trivial solution t = 0.

As soon as defined these polynomials, we are now ready for the study of the even order
case for n ≥ 8.

Theorem 6.2.8. ([5]) For m ≥ 4, M (2m,m,m − 1) = ∅, precisely, there is no Toeplitz
matrix that is similar to

diag(S2, . . . , S2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

m−1

,0, c) or diag(S3, S2, . . . , S2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

m−2

,0)

if c ≠ 0.

The proof of this theorem is based on the following lemma that describes the class of
M (2m,m − 1,m − 1).

Lemma 6.2.9. ([5]) Let T ∈ M (2m,m−1,m−1) and u = (uj)m+1j=0 be a kernel generating
vector for T . Then

u = (u0, u1,0, . . . ,0) or u = (0, . . . ,0, um, um+1)

Proof. Firstly, we sketch part of the possible Jordan forms (in particular, the nilpotent
ones):

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
m−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
m−1

Considering Theorem 6.10, we have that d1 = dim(Ker(Rm−1(u)) =m−1 ⇒ Rm−1(u) = 0
by Theorem 6.14. So, we have a system of 2m − 3 nonlinear equations

t2−m = 2(u0u3 + u1u2) = 0
⋮

t0 = 2u0um−1 + 2u1um +⋯ = 0
⋮

tm−2 = 2um−2um+1 + 2um−1um = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.2.11)

We shall consider different cases:

• u0 = u1 = 0 ⇒ u2 = ⋯ = um−1 = 0, which is our assertion.

• u0 = 0 and u1 ≠ 0 ⇒ u2 = ⋯ = um+1 = 0.

43



• If u0 ≠ 0, we can suppose u0 = 1. The first m − 1 equations of (6.2.11) can be
rewritten as a recursion

uj = −
1

2

j−1

∑
k=1

ukuj−k (j = 3, . . .m + 1) (6.2.12)

Note that we can see uj as a polynomial in u2. If we define um+2, . . . , u2m−1 according
to the recursion, then the last m − 2 equations of (6.2.11) can be written as

um+1 = ⋯ = u2m−1 = 0 (6.2.13)

Now, we can distinguish two sub-cases:

– u1 = 0. In this case, we obtain that

uj = {
0− − − if j is odd− − − − − − −−

− − −−αjuj/22 if j is even, where (−1)jαj > 0

Hence, the recursion defined in (6.2.13) is only true if u2 = 0, which means that
u3 = . . . = um+1 = 0.

– u1 ≠ 0. We can define

xk = uk
uk1

x2 = t = u2
} (6.2.14)

Combining Equations (6.2.12) and (6.2.14) we have the following recursion

xj = −
1

2

j−1

∑
k=1

xkxj−k , x0 = 1 , x1 = 1 , x2 = t

If we consider Corollary (6.2.7) and Equation (6.2.13), we obtain that t = 0 = u2,
which implies that u3 = . . . = um+1 = 0 and this proves the lemma.

Proof of Theorem 6.2.8. Let T ∈ M (2m,m,m−1) and u = (uj)mj=0 a kernel generating
vector for T . We have that dim(Ker(Rm(u))) = m − 1. According to Theorem 6.10,
Rm(u) has a kernel generating polynomial of degree 1, this is v(λ) = x0 + x1λ. Hence,
Rm(u)Tm−1(v) = 0, from which we can see that

0 = Tm−1(v̂)tRm(u)Tm−1(v) = Tm−1(v̂)tTm(û)tTm(u)Tm−1(v) =

= Tm−1(ŵ)tTm−1(w) = Rm−1(w)
The last equality comes from the fact that Tm(u)Tm−1(v) = Tm−1(w). Finally, since
Rm−1(w) = 0 and because of Lemma 6.2.9, we have that

w = (w0,w1,0, . . . ,0) or w = (0, . . . ,0,wm,wm+1)

Let us assume we have the first case (then, the second case is analogous): w(λ) = u(λ)v(λ)
and deg(v(λ)) = 1, therefore

deg(w(λ)) = 1⇒ deg(u(λ)) = 0, u = (u0,0, . . . ,0)

We have that u(λ) must be constant and we obtain that T ∼ diag(S2, . . . , S2). That means
that T ∈ M (2m,m,m) and T ∉ M (2m,m,m − 1), and this concludes the proof.
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Bearing in mind the theorem, we can conclude the following fact:

Corollary 6.2.10.
M (n, d0, d1) ≠ ∅ ⇒ M (n, d1, d1) ≠ ∅

Proof. Let T ∈ M (n, d0, d1), u be a kernel generating vector for T , v be a kernel generating
vector for Rd0(u) and w(λ) = u(λ)v(λ). Then

Rd1(w) = Td(v̂)tRd0(u)Td(v) = 0

Therefore, any Toeplitz matrix T ′ ∈Mn(C) with dim(Ker(T ′)) = d1 and a kernel gener-
ating vector w, belongs to M (n, d1, d1).

Corollary 6.2.11. For any n > 4 there exists an n × n matrix that is not similar to a
Toeplitz matrix.
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Chapter 7

Conclusions

In regard of the objectives of this project that were set at the beginning, we can state
that they have been reasonably satisfied and fulfilled.

From my personal point of view, I can ensure that working with this paper has exceeded
my expectations. Not only I have worked on one of my favorite subjects of the degree, but
I have had the opportunity to introduce myself to read advanced essays of many topics
related to the work and realizing that I have the sufficient skills to understand high-level
mathematical reports.

Furthermore, the fact of having to rewrite articles [4] and [5] has forced me to learn how
to make formal definitions, how to write organized and rigorous proofs, understand deeply
every detail written in the articles and find the way to explain it more understandable
for the reader. Further to this, at first, I was terrified by the fact of having to write the
work in TeX but I got used to it very fast and now it feels more familiar than Word.

Concerning the technical part of the project, the objectives have been met as we have
studied in depth the similarities to a Toeplitz in the case of diagonalizable and nonderoga-
tory matrices. Moreover, we have drawn an strategy to find counterexamples to reject
our initial question by essentially studying the structure of a Kernel of a Toeplitz matrix
and the Toeplitz admissibility of the tuples.

Notwithstanding that we have answered the question, there are many areas of this topic
that remain open and due to the short amount of time we have had, we have not been
able to study them. I will list the most important, in my point of view, unsolved topic:
the study in an arbitrary field F. For example, those that do not have a Jordan form.

Finally, for further reading, I recommend a book that two of the writers of article [4],
D. Steven Mackey and Niloufer Mackey, sent me which recaps all the studies related
to Toeplitz matrices of the mathematician that has studied most these matrices: Georg
Heinig, Dario Andrea Bini, Fabio Di Benedetto, Eugene Tyrtyshnikov, Marc
Van Barel, Structured Matrices in Numerical Linear Algebra. Volume 30. Springer,
2019.
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