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Abstract
Over the last decade, the increasing interest in long non-coding RNAs (lncRNAs) has led to the discovery of these transcripts 
in multiple organisms. LncRNAs tend to be specifically, and often lowly, expressed in certain tissues, cell types and biological 
contexts. Although lncRNAs participate in the regulation of a wide variety of biological processes, including development 
and disease, most of their functions and mechanisms of action remain unknown. Poor conservation of the DNA sequences 
encoding for these transcripts makes the identification of lncRNAs orthologues among different species very challenging, 
especially between evolutionarily distant species such as flies and humans or mice. However, the functions of lncRNAs are 
unexpectedly preserved among different species supporting the idea that conservation occurs beyond DNA sequences and 
reinforcing the potential of characterising lncRNAs in animal models. In this review, we describe the features and roles of 
lncRNAs in the fruit fly Drosophila melanogaster, focusing on genomic and functional comparisons with human and mouse 
lncRNAs. We also discuss the current state of advances and limitations in the study of lncRNA conservation and future 
perspectives.
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Introduction

Long non-coding RNAs (lncRNAs), are DNA sequences 
encoding transcripts larger than 200 nt that lack protein-
coding potential. Although many lncRNAs show low lev-
els of expression, some are known to play a pivotal role in 
the regulation of several cellular processes. In recent years, 
the amount of available transcriptomic data has increased 
exponentially and has been crucial in demonstrating that 
genomes are extensively transcribed. Additionally, the emer-
gence of tools to identify putative non-coding genes has led 
to the annotation of a large number of lncRNAs not only in 

humans, but also in mice, insects and plants (Brown et al. 
2014; Derrien et al. 2012; Lagarde et al. 2017; Legeai and 
Derrien 2015; Paytuví Gallart et al. 2016; Pervouchine et al. 
2015).

The most updated version of the human genome anno-
tation contains 19,951 protein-coding genes and 17,948 
lncRNA genes (GENCODE v37, March 2021). In contrast to 
protein-coding genes, whose molecular functions can often 
be inferred by the presence of protein domains, inferring 
the function, if any, of lncRNAs is a whole different story. 
Although some lncRNAs have been functionally character-
ised in humans (Rinn et al. 2007; Tripathi et al. 2010; Wutz 
et al. 2002; Zhou et al. 2007), the frequent absence of phe-
notypes after their mutation or deletion has raised questions 
about the proportion of annotated lncRNAs that are actually 
functional (Gao et al. 2020; Lee et al. 2019).

High-throughput screens of lncRNA knock downs 
affecting molecular phenotypes have been performed in 
human cells (Liu et  al. 2017, 2018; Ramilowski et  al. 
2020). However, the difficulties in conducting functional 
genetic screens in humans and other vertebrates in vivo 
limit the ability to characterise the role of annotated lncR-
NAs in these species, pointing out the need to use less 
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complex model organisms. One of the most useful animal 
models for genetic analyses is the fruit fly Drosophila mel-
anogaster, whose genome contains 13,969 protein-coding 
and 2545 long non-coding RNA annotated genes (FlyBase 
r6.39, February 2021). A huge advantage of using Dros-
ophila as an animal model is the availability of a great 
variety of genetic tools, resources and mutant collections 
that facilitate the undertaking of genetic screens. For-
ward genetic screens use mutagenesis to create random 
mutations in the search for the genotypes that underlie 
the resulting phenotypes. They have been instrumental 
in identifying the function of protein-coding genes (St 
Johnston 2002). On the contrary, reverse genetic assays 
are preferentially used to screen for lncRNAs, searching 
for phenotypes after creating targeted mutations in candi-
date genes (Wen et al. 2016). Compared to protein-coding 
genes, in which a single nucleotide deletion or insertion 
can abolish the production of the proteins they encode, 
the deletion of a large region encompassing the whole 
gene, smaller specific domains or the promoter, may be 
required to compromise the function of lncRNAs. The 
existence of different systems for the conditional expres-
sion of transgenes (both for inhibition and/or overexpres-
sion), widely used to assess protein-coding genes, may 
also contribute to understanding the function of lncRNAs.

It is well known that fundamental biological mecha-
nisms and signalling pathways are conserved throughout 
evolution. An estimated 75% of genes related to human 
diseases have orthologs in the Drosophila genome (Bier 
2005; Ji et al. 2019), endorsing the study of human dis-
eases in flies. In this context, several lncRNAs have been 
associated with cancer (Dong et al. 2015; Li et al. 2014, 
2015; Wu et al. 2014), and many neurological disorders, 
such as amyotrophic lateral sclerosis (Zu et al. 2013), 
Alzheimer’s disease (Lee et al. 2015) and Huntington’s 
disease (Johnson 2012). Although no fly orthologs have 
been identified for lncRNAs associated to human diseases, 
the study of lncRNAs in Drosophila could shed light into 
the regulation of disease-causing genes (Li et al. 2012; 
Lo Piccolo and Yamaguchi 2017; reviewed in Rogoyski 
et al. 2017).

In this review, we discuss lncRNAs in the fly genome and 
compare them with human and mouse lncRNAs. Further-
more, we provide an overview of the functions and mecha-
nisms of action associated with lncRNAs in Drosophila, 
including similarities in the function of some lncRNAs 
between flies and humans. We also characterise developmen-
tally dynamic fly lncRNAs that are differentially expressed 
during tissue development, and report resemblances among 
these lncRNAs and the ones identified in human and mouse 
organ development (Sarropoulos et al. 2019). Finally, we 
discuss the current status of identifying orthologues in evo-
lutionarily distant species such as flies and humans.

Genomic and transcriptomic comparison 
between flies, mice and humans

Drosophila has four pairs of chromosomes: one pair of 
sexual chromosomes and three pairs of autosomes. In 
flies, similar to what happens in mice and humans, sex 
is determined by the XX/XY mechanism, with females 
carrying two X chromosomes and males carrying one X 
and Y chromosomes. In mammals, the presence of the Y 
chromosome determines the male sex, while its absence 
results in female individuals. However, the Y chromosome 
is not involved in sex determination in flies. Instead, the 
X:A ratio is responsible for the activation of the femin-
izing gene Sex-lethal (sxl). Hence, flies carrying XY or 
X0 are male, while flies carrying XX or XXY are female. 
The Drosophila genome is small, with approximately 120 
megabases, (Adams et al. 2000) compared to the human 
and mouse genomes (3100 and 2700 megabases, respec-
tively) (Lander et al. 2001; Venter et al. 2001; Consortium 
et al. 2002) (Fig. 1a). This is consistent with the reduced 
number of annotated genes in Drosophila (17,874) com-
pared to humans and mice (45,468 and 39,923 genes, 
respectively). This trend is preserved for both protein-
coding genes (13.969 genes in flies compared to 19,951 
and 21,848 genes in humans and mice, respectively) and 
lncRNA genes (2545 genes in Drosophila compared to 
17,948 and 13,186 genes in humans and mice, respec-
tively) (Fig. 1b). Remarkably, the number of lncRNAs in 
Drosophila is considerably smaller compared to protein-
coding genes, whereas in mice and humans the number of 
lncRNAs and protein coding-genes is similar (Fig. 1b). 
Furthermore, the Drosophila genome is much more 
compact, containing around 100 protein-coding and 18 
lncRNA annotated genes per megabase compared to fewer 
than 10 protein-coding and lnRNA genes per megabase in 
the human and mouse genomes (Fig. 1c).

LncRNAs are pervasively distributed throughout the 
genome and can be found in intergenic regions (lincR-
NAs) or overlapping totally or partially with sequences of 
other genes transcribed in the same direction (sense) or 
in the opposite direction (antisense). Despite the differ-
ences in genome compactness among Drosophila, mice 
and humans, lincRNAs represent 50–55% of all annotated 
lncRNAs in the three species. Similarly, the proportion of 
lncRNAs found overlapping the introns (intronic) or exons 
(exonic) of other genes accounts for ~ 20% and ~ 25%, 
respectively, in all three species (Fig. 1d). Regarding the 
number of exons, the majority of lncRNAs found in Dros-
ophila are either mono-exonic or composed of 2 exons, 
with only a few exceptions containing 3 or more exons. 
On the contrary, the number of exons in human and mouse 
lncRNAs is more diverse, with around 60% in each species 
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containing 1–2 exons (compared to 90% in fly) and around 
20% containing 4 or more exons (Fig. 1e). This is consist-
ent with the proportion observed in protein-coding genes 
in flies (Graveley et al. 2011). In terms of transcript size, 
as with the protein-coding genes, Drosophila lncRNAs 
are shorter than human and mouse lncRNAs (average 
length of 962 nt in flies compared to 1230 and 1456 nt in 
humans and mice, respectively, Mann–Whitney–Wilcoxon 
test p-value < 1e−12 for all comparisons). Only 3.35% of 
Drosophila lncRNAs span more than 3 kb compared to 
7.78% in humans and 10.35% in mice (Fig. 1f).

The small number of lncRNA genes annotated in Dros-
ophila, with respect to humans and mice may not be a bio-
logical feature, but it might rather reflect two factors that 
hinder the identification of lncRNAs in Drosophila. First, 

the properties of most lncRNAs (low expression and high 
specificity in terms of time and tissue) might constraint their 
expression to a specific region during a very specific period 
of time. Thus, the identification of these lncRNAs may 
require transcriptomic analyses in specific tissues and devel-
opmental stages, which are not as common in flies as they 
are in humans and mice. Supporting this hypothesis, a recent 
publication producing transcriptomic data from Drosophila 
embryonic mesodermal cells collected at different develop-
mental stages identified 179 novel lncRNA genes that could 
play a role in embryogenesis (Schor et al. 2018). Second, 
the bias towards mono-exonic genes found so far in Dros-
ophila could also affect the identification of novel lncRNA 
genes, since most identifying pipelines often omit novel 
mono-exonic transcripts in favour of spliced, multi-exonic 
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Fig. 1  Genomic and transcriptomic comparison of humans, mice and 
flies. a Barplot showing the size (gigabases—Gb) of the human (H. 
sapiens), mouse (M. musculus), fly (D. melanogaster) and worm (C.
elegans) genome. b Number of annotated protein-coding and long 
non-coding RNA (lncRNA) genes in each species. c Gene density, 
measured as the number of genes per megabase, of protein-coding 
and lncRNA genes in each species. d Classification of the annotated 
lncRNA genes into exonic, intronic or intergenic groups. The longest 
annotated isoform of each lncRNA has been used for overlap analysis 

and classification. e Distribution of the lncRNA genes annotated in 
human, mouse, fly and worm depending on their number of exons. 
f Distribution of the long non-coding genes of humans, mice, flies 
and worms based on the size (nucleotides—nt) of their longest tran-
script. Human data from GENCODE v37 are shown in blue, mouse 
data from GENCODE M27 are shown in cyan, fly data from FlyBase 
r6.39 are presented in red and worm data from WS281 are shown in 
pink
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transcripts to reduce false positives. To provide a global 
vision of the evolutionary trend we observed for lncRNAs 
in flies, we inspected the genome of the worm Caenorhab-
ditis elegans (Fig. 1). Interestingly, the genomic features we 
interrogated indicate that lncRNAs in worms resemble fly 
lncRNAs compared to human and mouse lncRNAs.

Functions and mechanisms of action 
of Drosophila lncRNAs

Since the discovery of lncRNAs, several studies in mam-
mals and flies have demonstrated that lncRNAs participate 
in a variety of cellular processes, such as development, dif-
ferentiation and proliferation, and often contribute to the 
modulation of gene expression programmes (reviewed in 
Jandura and Krause 2017; Statello et al. 2021). Functional 
lncRNAs can be classified as cis-acting lncRNAs, when they 
act near their site of transcription within the same molecule, 
or trans-acting lncRNAs, which act far from their locus or 
in a different DNA molecule. In general, lncRNAs influence 
gene expression at three main levels: chromatin regulation, 
transcriptional regulation and post-transcriptional regula-
tion (reviewed in Statello et al. 2021). On chromatin, some 
lncRNAs regulate the activity or localisation of chromatin 
regulatory complexes and transcription factors. These lncR-
NAs bind to specific chromatin regions and interact with 
proteins, facilitating or inhibiting their binding to targeted 
neighbouring genes, thereby promoting or repressing gene 
expression (Grote and Herrmann 2013; Jiang et al. 2015; 
Prensner et al. 2013; Rinn et al. 2007; Yap et al. 2010). At 
the transcriptional level, lncRNAs influence gene regula-
tion directly by interacting with the transcriptional machin-
ery, mediating or facilitating loops between promoters and 
enhancers (eRNAs) or, in some cases, the act of transcrip-
tion or splicing of a lncRNA influence the transcription of 
nearby genes (reviewed in Statello et al. 2021). LncRNAs 
can also act at the post-transcriptional level by interacting 
with a plethora of RNA-binding proteins that contribute to 
mRNA stability, localisation, splicing or translation (Cao 
et al. 2017; Gumireddy et al. 2013; Lee et al. 2016; reviewed 
in He et al. 2019).

In the last few years, several lncRNAs have been char-
acterised in Drosophila. Although most of them are not 
evolutionarily conserved across metazoans at the sequence 
level, some seem to participate in similar cellular processes 
as those in mammals, such as dosage compensation or 
Polycomb group (PcG)/Trithorax group (TrxG) regulation 
(reviewed in Murillo-Maldonado and Riesgo-Escovar 2019; 
Ringrose 2017; Samata and Akhtar 2018). In this section, 
we discuss the functions associated with fly lncRNAs, their 
level of conservation in mammals, and provide some specific 
examples.

LncRNAs influencing chromatin regulation

LncRNAs involved in dosage compensation mechanisms

As mentioned before, in Drosophila, sex is dictated by the 
XY sex-determination system. Comparable to that occurring 
in mammals, the imbalance in the expression of X-linked 
genes between females and males is corrected by a dos-
age compensation mechanism, involving lncRNAs, which 
result in similar levels of expression of the genes in the X 
chromosome. However, in female mammals, one of the X 
chromosomes is subjected to inactivation, whereas in Dros-
ophila, the transcription rate of the male X chromosome is 
almost doubled. These strategies share some mechanistic 
similarities, including the involvement of lncRNAs. In both 
cases, a lncRNA is responsible for recruiting chromatin-
modifying complexes that drive the inactivation (in female 
mammals) or overactivation (in male flies) of the X chromo-
some. Briefly, in mammals, the lncRNA Xist is upregulated 
in one of the X chromosomes of the females at early embry-
onic stages and rapidly spreads along the X chromosome 
from which it is transcribed (Brockdorff et al. 1992; Brown 
et al. 1991, 1992). Polycomb repressive complex 2 (PRC2), 
a chromatin regulatory complex, is recruited by Xist and 
mediates the trimethylation of lysine 27 in the histone H3 
tail (H3K27me3). This triggers the heterochromatinisation 
of the Xist-bound X chromosome, resulting in X chromo-
some inactivation (Lee et al. 1996; Penny et al. 1996; Wutz 
and Jaenisch 2000).

On the contrary, in flies, the male-specific lethal com-
plex (MSL), composed of MSL proteins and the lncRNAs 
roX1 and roX2, is responsible for the overactivation of 
genes located in the X chromosome of Drosophila males. 
Although very different in size and sequence, roX1 and roX2 
act redundantly to allow the binding of MSL2 and the other 
subunits of the complex, which target the X-chromosome in 
males (Meller and Rattner, 2002). The MSL subunits medi-
ate the activation of the X-chromosome genes by the acety-
lation of lysine 16 in histone H4 (H4K16ac) (Bone et al. 
1994; Gelbart et al. 2009). In female flies, the Sex lethal (sxl) 
gene, is upregulated and the female-specific RNA-binding 
protein it encodes interacts with the msl2 mRNA to inhibit 
its translation, preventing the assembly of the MSL complex 
and the subsequent dosage compensation (Beckmann et al. 
2005; Gebauer et al. 1998; Graindorge et al. 2013).

LncRNAs mediating PcG and TrxG gene regulation

PcG and TrxG proteins are key modulators of an evolution-
arily conserved gene regulatory system. They are chromatin 
modifiers that operate antagonistically and were originally 
identified as part of an epigenetic cellular memory system 
that maintains repressed or active gene expression states. The 
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first identified target genes of PcG and TrxG regulation were 
the fly Hox genes (reviewed in Kassis et al. 2017). Hox genes 
encode transcription factors that determine the allocation of 
segmental identity along the anterior–posterior body axis 
and when mutated, typically, lead to homeotic transforma-
tions (reviewed in Mallo and Alonso 2013). In Drosophila, 
Hox genes are organized in two separate gene clusters: the 
Antennapedia and Bithorax complexes (ANT-C and BX-C, 
respectively); and their expression is activated by the seg-
mentation gene products in early fly development. Further 
characterisation of Hox loci allowed the identification of sev-
eral elements that respond to PcG and TrxG genes, named 
Polycomb response elements (PREs) and Trithorax response 
elements (TREs) (Chan et al. 1994; Simon et al. 1993). Dros-
ophila PcG and TrxG proteins are recruited to chromatin by 
targeting these PREs and TREs, which are cis-regulatory 
DNA elements essential for the regulation of several hundred 
developmental genes beyond Hox genes. The PcG and TrxG 
proteins are able to regulate their target genes in a complex 
and dynamic manner, modifying local chromatin depending 
on the state of the promoters and maintaining active (TrxG) 
or repressive (PcG) states. (reviewed in Kassis and Brown, 
2013; Geisler and Paro 2015; Grossniklaus and Paro 2014; 
Steffen and Ringrose, 2014; Ringrose 2017; Schuettengruber 
et al. 2017). Many PcG/TrxG binding sites give rise to non-
coding transcripts (reviewed in Hekimoglu and Ringrose 2009 
and Ringrose 2017). For instance, forward and reverse non-
coding transcription has been detected from the Drosophila 
melanogaster vestigial (vg) PRE/TRE, which switches the 
status of the element between silencing (induced by transcrip-
tion from the forward strand) and activation (induced by tran-
scription from the reverse strand). Moreover, the non-coding 
transcripts from the reverse strand are able to bind to the PRC2 
in vivo, inhibiting its enzymatic activity (Herzog et al. 2014). 
Additionally, since the initial discovery of lncRNA Xist tar-
geting PcG to the inactive X chromosome in mammals (Plath 
et al. 2003), several lncRNAs in flies and mammals have been 
described to participate, not only in PcG-dependent silencing, 
but also in gene activation via disruption of PcG silencing or 
physical interaction with TrxG components (Geisler and Paro 
2015; Schuettengruber et al. 2017). Altogether, the analyses 
of non-coding-mediated regulation of PcG and TrxG suggest 
that non-coding transcripts may be required to destabilize sta-
ble active and silent chromatin states, and to recruit or evict 
components of the PcG and TrxG complexes depending on 
their transcription rate (Ringrose 2017).

LncRNAs modulating gene expression

LncRNAs transcribed from active enhancers (eRNAs)

Transcription has been observed from multiple active 
enhancers in mammals (Andersson et al. 2014; Arner et al. 

2015; De Santa et al. 2010; Kim et al. 2010), Drosophila 
(Henriques et al. 2018; Meers et al. 2018) and Caenorhab-
ditis elegans (Chen et al. 2013). Although these enhancer 
RNAs (eRNAs) are not transcribed from all enhancer 
regions, a correlation has been observed between enhancer 
activity and the transcription of eRNAs both in mammals 
and flies (Hah et al. 2013; Mikhaylichenko et al. 2018). A 
growing number of studies demonstrate that specific eRNAs 
are required to properly activate the expression of their 
target genes (Ivaldi et al. 2018; Lai et al. 2013; Lam et al. 
2013; Li et al. 2013; Rahnamoun et al. 2018; Schaukowitch 
et al. 2014; Tsai et al. 2018). In mammals, eRNAs have 
been associated with regulation of transcription through 
different mechanisms including: interaction and enhance-
ment of the activity of chromatin regulators, like the acetyl-
transferase CREB binding protein(CBP), PRC2, MLL1 or 
CTCF; influencing enhancer-promoter looping or altering 
RNA polymerase II elongation by interaction with proteins 
that either induce or inhibit elongation (reviewed in De Lara 
et al. 2019). However, as with the other types of lncRNAs, 
further studies are required to distinguish the eRNAs that 
actually play an active role in enhancer activity from those 
that might just be transcriptional noise arising from the 
presence of the RNA polymerase machinery. Although few 
eRNAs have been functionally characterised in flies, identi-
fication of general properties of eRNAs in Drosophila shows 
that eRNAs in flies share many characteristics with mam-
malian eRNAs, for instance, directionality, low abundance, 
correlation between expression and enhancer activity, or the 
presence of promoter-like motifs like INR motif (Mikhayli-
chenko et al. 2018).

LncRNAs acting at post‑transcriptional level

LncRNAs as a source of miRNAs

MicroRNAs (miRNAs) are small non-coding transcripts 
(about 22 nucleotides) that play a major role in the post-
transcriptional regulation of gene expression. In most cases, 
miRNAs are derived from the introns or exons of larger 
protein-coding or non-coding genes. In Drosophila, one of 
these non-coding transcripts, iab-8, is transcribed primarily 
from the posterior central nervous system, beginning in early 
development (Bender 2008). It spans over 90 kb and is both 
spliced and polyadenylated (Bender 2008; Garaulet et al. 
2014). Once transcribed, iab-8 is processed into three miR-
NAs that altogether are called miR-iab-8, which are encoded 
within its intronic sequence. These miRNAs are known to 
target and downregulate the homeotic genes abd-A and Ubx, 
as well as their cofactors hth and exd (Garaulet et al. 2014; 
Gummalla et al. 2012). The consequence of the loss of iab-
8 is male and female sterility caused by the increase in the 
level of the transcripts targeted by miR-iab-8 that is thought 
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to elicit a defective innervation of the abdominal and/or 
reproductive tract muscles of the fly (Maeda et al. 2018). In 
mammals, several lncRNAs have been described as precur-
sors of miRNAs, although none have been found to target 
the Hox genes. For instance, the maternally imprinted H19 
gene encodes one of the first lncRNAs described, which is 
a known precursor of miR-675 (Cai and Cullen 2007). H19 
is highly transcribed in fetal tissues, where it is found to be 
processed into miR-675, which limits placental growth by 
targeting, among others, growth promoting Igf1r (Keniry 
et al. 2012). In parallel, H19 is also expressed in the adult 
skeletal muscle of humans and mice, where, instead of being 
processed into miR-675, H19 acts as a molecular sponge for 
the let-7 family of miRNAs (Kallen et al. 2013; Onyango 
and Feinberg 2011).

Another lncRNA that is processed into smaller RNAs 
is acal, which was described by Riesgo-Escovar and col-
leagues in 2015 (Ríos-Barrera et al. 2015). acal is one of the 
few Drosophila lncRNAs showing sequence conservation. 
In particular, a 296 nt-long fragment is 80% sequence identi-
cal in Drosophila melanogaster and Drosophila bipectinata. 
Also, a similar-sized lncRNA is found in humans, showing 
a considerable 48% sequence identity to Drosophila acal 
(Murillo-Maldonado and Riesgo-Escovar 2019). Mutations 
in acal are embryonic lethal and result in defects in dor-
sal closure, a JNK-dependent process that is essential for 
Drosophila embryogenesis. It was found that acal, through 
the regulation of two JNK modulators, Connector of kinase 
to AP1 (Cka) and anterior open (aop), is able to modulate 
JNK activity (Ríos-Barrera et al. 2015). Remarkably, acal is 
transcribed from a mono-exonic gene into a 2.3-kb long tran-
script that, throughout the life cycle of the fly, particularly 
during pupal stages, is processed into smaller transcripts 
spanning from 50 to 120 nucleotides. The function of these 
small RNAs is yet to be investigated, but the differences in 
size with respect to the ~ 22 nucleotide miRNAs indicate 
that processed acal does not act as a typical miRNA (Ríos-
Barrera et al. 2015).

LncRNAs regulating isoform usage

We recently identified blistered antisense (bsAS) as a natural 
antisense transcript of the blistered (bs) gene involved in the 
regulation of bs isoform usage in flies (Pérez-Lluch et al. 
2020). The bs gene encodes the Drosophila serum response 
factor (DSRF) and is a well characterised gene required 
for wing development and formation (Fristrom et al. 1994; 
Montagne et al. 1996; Roch et al. 1998). We have found 
that the usage of bs isoforms is regulated in a tissue-specific 
manner by the expression of the bsAS. Transcription of bsAS 
occurs specifically in wing intervein regions and impairs the 
expression of the long isoforms of bs, thereby promoting the 
relative expression of the short isoform. Overexpression of 

the long isoform in bsAS mutants induces the formation of 
extra vein tissue in adult wings. The regulation of bs isoform 
usage is based on the formation of a genomic loop between 
bs and bsAS promoters that impairs transcription of the long 
isoform and potentiates short isoform presence. This regu-
latory mechanism is totally independent of the presence of 
the bsAs transcript, as bsAS overexpression does not affect 
bs transcription.

A growing number of lncRNAs has been linked to the 
modulation of alternative splicing in mammals (reviewed 
in Romero-Barrios et  al. 2018). For example, a natural 
antisense transcript regulates Zeb2/Sip1 expression during 
epithelial-mesenchymal transition in mammalian cells by 
preventing splicing of the Zeb2 5′-UTR (Beltran et al. 2008). 
An evolutionarily conserved nuclear antisense lncRNA, 
generated from the human fibroblast growth factor receptor 
2 (FGFR2) locus, promotes epithelial-specific alternative 
splicing of FGFR2 (Gonzalez et al. 2015). This lncRNA 
impairs the binding of a repressive chromatin-splicing adap-
tor complex important for mesenchymal-specific splicing, 
by recruiting PcG proteins and the histone demethylase 
KDM2a. More recently, Singer and colleagues (Singer et al. 
2019) characterised Paupar, a lncRNA that interacts with SR 
proteins to promote the alternative splicing of PAX6 in pan-
creatic glucagon-producing α cells and computational analy-
sis of hepatocellular carcinoma RNA-Seq samples predicted 
hundreds of splicing-related lncRNAs (Wang et al. 2020).

Other mechanisms of action of lncRNAs

LncRNAs encoding small functional peptides

By definition, lncRNAs lack protein coding potential. 
Nevertheless, roughly 98% of the annotated lncRNAs in 
humans, mice and flies contain small open reading frames 
(smORFs) of 10 to 100 codons that may code for peptides 
(Couso and Patraquim 2017). The putative function of 
these peptides is, however, often neglected and the genes 
that encode them remain listed as non-coding. Translation 
of smORFs is observed in many eukaryotes (Andrews and 
Rothnagel 2014; Couso and Patraquim 2017), but examples 
of small functional peptides have been described primar-
ily in humans (Anderson et al. 2015; D’Lima et al. 2017; 
Huang et al. 2017; Nelson et al. 2016; Slavoff et al. 2014; 
van Heesch et al. 2019) and insects (Galindo et al. 2007; 
Kondo et al. 2007; Magny et al. 2013). In Drosophila, the 
tarsal-less (tal) gene, previously classified as non-coding, 
encodes for a polycistronic mRNA that is translated into 
4 small peptides of 11 amino acids. One of these peptides 
actively participates in leg development at the larval stage 
by regulating gene expression and tissue folding (Galindo 
et al. 2007) and at the pupal stage by modulating Notch sig-
nalling (Pueyo and Couso 2011). Moreover, the presence of 
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similar smORFs in tal homologues across different species 
of insects suggests the presence of a conserved family of 
functional peptides (Galindo et al. 2007).

Ribosome profiling techniques (Ribo-seq), which specifi-
cally identify ribosome-bound transcripts, have corroborated 
that a fraction of lncRNAs have a strong affinity for ribo-
somes (Aspden et al. 2014; Bazzini et al. 2014; Carlevaro-
Fita et al. 2016; Ingolia et al. 2011; Ruiz-Orera et al. 2014; 
van Heesch et al. 2014). However, the association with ribo-
somes does not necessarily imply that these lncRNAs are 
actively translated, since lncRNAs are known to regulate 
the translation of mRNAs through ribosome binding (Car-
rieri et al. 2012; Hansji et al. 2016; Liu et al. 2019; Yoon 
et al. 2012). To overcome this limitation, further studies on 
ribosome-bound lncRNAs should be taken: (1) to confirm 
whether they are translated and (2) to test the functionality 
of the translated smORFs. While peptide tagging or in vitro 
translation assays can be used to identify the coding poten-
tial of smORFs (Galindo et al. 2007; Pueyo and Couso 2011; 
van Heesch et al. 2019), the generation of knock-out mutants 
or the inhibition of the lncRNA transcription or translation 
should be considered to study their functionality (Anderson 
et al. 2015; Pueyo and Couso 2011).

The increasing number of functional smORFs encoded 
by genes annotated as lncRNAs challenges the current 
definition of lncRNAs. The fact that almost the totality of 
annotated lncRNAs present at least one predicted smORF 
within its sequence makes it impossible to rule them out just 
because of the smORF presence. However, to our under-
standing, the lncRNA status of those genes encoding for 
functionally validated smORFs should be revised or, on 
the contrary, the definition of lncRNA should be revised to 
include the genes encoding for functional smORFs.

Expression of lncRNAs in development

The first evidence of the involvement of mammalian lncR-
NAs in development came from high-throughput expres-
sion analyses of different tissues (Grote et al. 2013). Cell-
type and tissue specificities have been described for many 
lncRNAs and differential expression of lncRNAs has been 
reported in in vitro models of haematopoiesis, suggesting 
that they could have a role in the regulation of cell fate deci-
sions (Briggs et al. 2015; Constanty and Shkumatava 2021; 
Perry and Ulitsky 2016; Schwarzer et al. 2017). Although 
most lncRNAs are still uncharacterised, a wide variety of 
functional activities have been associated with lncRNAs 
involved in development, such as the regulation of chromatin 
and DNA interactions, modulation of transcription factors, 
roles in mRNA stability and processing, and involvement 
in protein stability and function. Thus, an increasing num-
ber of human and mouse lncRNAs are being implicated as 

key regulators in a variety of cellular processes including 
proliferation, apoptosis and responses to stress. In agree-
ment with observations in mammals, analyses based on 
the modENCODE RNA-Seq data from whole Drosophila 
animals have shown that a substantial number of lncRNAs 
are differentially expressed during development (referred 
to as developmentally dynamic lncRNAs), although some 
of the lncRNAs characterised were very lowly expressed 
(Chen et al. 2016; Brown et al. 2014; Lee et al. 2019; Li 
et al. 2019). Figure 2a shows the expression changes of the 
updated list of annotated lncRNAs in Drosophila (FlyBase 
r6.39, 2,545 lncRNAs) across fly development, using the 
modENCODE RNA-Seq data. Although different profiles of 
expression can be observed, a huge proportion of lncRNAs 
is upregulated towards the end of development, as previ-
ously reported (Graveley et al. 2011). Indeed, large changes 
of expression are detected for many genes specifically at the 
entrance of metamorphosis.

The expression patterns of developmentally dynamic 
lncRNAs in Drosophila are more restricted than those of 
protein-coding genes. Brown and colleagues reported that, 
on average, lncRNAs are expressed in a smaller number of 
stages and tissues compared to protein-coding genes (Brown 
et al. 2014). Remarkably, similarly restricted expression pat-
terns have been reported for lncRNAs in humans and other 
mammals (Briggs et al. 2015; Constanty and Shkumatava 
2021; Perry and Ulitsky 2016). Most studies characterising 
lncRNAs expression during development, either in Dros-
ophila or in mammals, have been carried out using whole 
animals, which could be an important constraint consider-
ing the high level of tissue specificity that lncRNAs display. 
Interestingly, a recent publication from Kaessmann’s group 
systematically described developmentally dynamic lncRNAs 
across several organs during mammalian development (Sar-
ropoulos et al. 2019). After analysing the RNA-Seq data 
from seven species, the authors identified developmentally 
dynamic genes that displayed changes in expression during 
the development of mammalian organs, showing that the 
fraction of lncRNAs among this group of genes was sub-
stantially low considering the total proportion of lncRNAs 
in the human and mouse genomes (Sarropoulos et al. 2019). 
We took advantage of a previously published RNA-Seq data 
set from our group (Pérez-Lluch et al. 2020) containing the 
expression values for three tissues (eye, leg and wing) in 
three developmental stages (third instar larvae, early pupae 
and late pupae) to identify developmentally dynamic Dros-
ophila genes, including lncRNA genes. We observed that the 
proportion of developmentally dynamic genes corresponding 
to lncRNAs is much lower in Drosophila (4%) than humans 
and mice (~ 25%), which correlates with the lower number 
of annotated lncRNAs in flies (Fig. 2b).

We observed that the proportion of lncRNAs within 
developmentally dynamic genes in flies was lower (3.3%) 
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than that of protein-coding genes (96.7%), a trend stronger 
than that observed in mammals, in which lncRNAs account 
for ~ 25% of developmentally dynamic genes (Fig. 2b). Sar-
ropoulos and colleagues found some traits associated with 
developmentally dynamic lncRNAs. For example, the devel-
opmentally dynamic lncRNAs have a higher and broader 
expression than non-dynamic lncRNAs, they are in closer 
proximity to protein-coding genes, the transcripts are longer 
and they contain more exons than non-dynamic lncRNAs. 
To further characterise dynamic lncRNAs in Drosophila, 
and to compare them with mammalian ones, we analysed 
the lncRNA length, number of exons and level of expres-
sion during tissue development. Developmentally dynamic 
lncRNAs are longer (Fig. 2c, Mann–Whitney–Wilcoxon test 
p-value = 1.9e−9), contain more exons (Fig. 2d), and gen-
erally show higher expression across tissues during devel-
opment than non-dynamic lncRNAs (Fig. 2e, Mann–Whit-
ney–Wilcoxon test p-value = 2.4e−6). Our results indicate, 
therefore, that the properties identified previously for the 
mammalian lncRNAs with dynamic expression during organ 

development are conserved in Drosophila developmentally 
dynamic lncRNAs. Although it is difficult to identify con-
servation of lncRNAs in different species, the fact that their 
properties are conserved suggests that some of their roles in 
development could be conserved, as well.

Conservation

LncRNA sequences are generally not conserved across dif-
ferent species, which severely hinders the identification of 
conserved lncRNAs that are likely to be functional. While 
protein-coding genes are constrained by a strong selective 
pressure to maintain their reading frame and codon syn-
onymy, lncRNAs do not seem to depend on their sequence 
to perform their function, leading to their rapid evolution 
and sequence degeneration. Nevertheless, a few examples 
of lncRNAs whose sequence is conserved between dif-
ferent species of Drosophila have been described. This is 
the case of the previously discussed lncRNA acal or the 
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yellow-achaete intergenic RNA (yar), which is a lncRNA 
involved in Drosophila sleep regulation. Several motifs rang-
ing from 40 to 111 bp located in the TSS, the exons and the 
3′-end of yar genomic sequence are conserved in different 
Drosophila species separated by as much as 40–60 million 
years of evolution (Soshnev et al. 2011). However, it is not 
possible to find sequence similarity for most lncRNAs, thus, 
other types of conservation analysis are often used to dis-
cover orthologous lncRNAs in different organisms.

Synteny, the positional conservation of neighbouring 
genes across different species, has emerged as a valuable in 
identifying orthologous non-coding genes (Bryzghalov et al. 
2021; Herrera-Úbeda et al. 2019; Pegueroles et al. 2019; 
Rolland et al. 2019). This analysis relies on the presence of 
orthologous genes located in the same order in the linear 
genome of different species. Syntenic conservation of the 
region surrounding the lncRNA locus could be an indicator 
of lncRNA orthology. However, the presence of a lncRNA 
conserved by synteny in different species does not neces-
sarily imply orthology. Particularly, the presence of large 
intergenic regions containing multiple lncRNAs increases 
the rate of false positives (Young et al. 2012). In addition, 
since the analysis of synteny depends on the presence of 
orthologous genes, it works better in evolutionarily closer 
species and becomes less useful as the evolutionary distance 
increases between the species being compared. Around 60% 
of protein-coding genes in Drosophila melanogaster have 
human homologues (Wangler et al. 2015), which is often not 
enough to find orthologous lncRNA genes consistently by 
the analysis of synteny. Nevertheless, the number of syntenic 
lincRNAs found in flies and mice is significantly higher than 
expected by chance, suggesting that a subset of those could 
be actual orthologs (Young et al. 2012), paving the way for 
further studies of lncRNAs in Drosophila.

Despite lacking sequence conservation, smaller regions 
of homology among different species have been observed 
for lncRNAs (Hezroni et al. 2015; Quinn et al. 2016; Ulitsky 
et al. 2011). These microhomologous regions are thought 
to correspond to functional elements that are essential for 
the function of the lncRNA, such as RNA-binding protein 
motifs or miRNA-binding sites. Recent studies have used 
a novel approach to identify orthologous lncRNAs based 
on the identification of these regions of microhomology. 
It is important to note that RNA-binding protein motifs 
or miRNA-binding sites are very short (between 4 and 12 
nucleotides) and individual matches between different spe-
cies can be found purely by chance (Bartel 2018). An inter-
esting approach to bypass the rate of false positive hits is the 
addition of order to these elements (Ross et al. 2021). In this 
way, not only the presence of these motifs is considered, but 
also the order in which they are found in putatively ortholo-
gous lncRNAs. Although this method has not been tested for 
distantly related species, finding small regions of homology 

should be more achievable than finding orthologous lncR-
NAs using the current methods based on whole-sequence 
similarity or secondary structure predictions.

Another type of conservation analysis is the study of 
lncRNA secondary structures, which are thought to be more 
conserved than the primary sequence (Graf and Kretz 2020; 
Smith et al. 2013). Unfortunately, the currently available 
secondary structure predicting tools are not very accurate. 
Most of these programmes use a minimum free energy algo-
rithm, which predicts the optimal secondary structure that 
requires the minimum energy to fold. However, features such 
as the presence of RNA-binding motifs, which should be 
located outside of the main structure to be properly recog-
nised by their binding proteins, are not taken into consid-
eration. Although it could be a reliable alternative for con-
firming the orthologous genes identified by other methods, 
the current secondary structure prediction tools do not seem 
accurate enough to consider the RNA folding form as the 
primary source to identify orthologous lncRNAs.

Another approach to identify potential lncRNAs ortholo-
gous is through the analysis of their pattern of binding to 
protein coding genes. If lncRNAs from different species 
bind to the same orthologous protein coding genes, they 
may exert a similar function. Methods have been developed 
to estimate the binding propensity of protein-RNA pairs in 
silico (Agostini et al. 2013; Armaos et al. 2021; Bellucci 
et al. 2011). However, to date, this approach has not been 
tested on a large scale to identify ortholog lncRNAs. To 
date, no reliable methods exist to systematically establish 
conservation among lncRNAs in evolutionarily distant spe-
cies like flies and humans. However, the huge amount of 
effort made in that direction and the increasing number of 
annotated transcripts that will emerge in the coming years, 
hint to a promising perspective regarding lncRNA orthol-
ogy. The fact that many functions and features associated 
with lncRNAs are conserved in Drosophila reinforces its 
extraordinary potential as a model organism to functionally 
characterise and model lncRNAs.

Finally, the characterisation of genomes across the tree 
of life will provide an incredible amount of data to perform 
comparative analyses. Advances in sequencing technologies 
that enable the identification of complete genomes have led 
to the emergence of the Earth BioGenome Project, an inter-
national collaboration that aims to sequence, catalogue and 
characterise the genomes of all eukaryotes on Earth (Lewin 
et al. 2018). One of the outcomes of this project is the pro-
duction of new knowledge on the organisation and evolution 
of genomes, which could also have a major impact on the 
field of lncRNAs.
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