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BACKGROUND: The effective reproductive number, Re, is a critical indicator to monitor disease dynamics, inform regional and national policies, and
estimate the effectiveness of interventions. It describes the average number of new infections caused by a single infectious person through time. To
date, Re estimates are based on clinical data such as observed cases, hospitalizations, and/or deaths. These estimates are temporarily biased when clin-
ical testing or reporting strategies change.

OBJECTIVES:We show that the dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in wastewater can be used to esti-
mate Re in near real time, independent of clinical data and without the associated biases.
METHODS:We collected longitudinal measurements of SARS-CoV-2 RNA in wastewater in Zurich, Switzerland, and San Jose, California, USA. We
combined this data with information on the temporal dynamics of shedding (the shedding load distribution) to estimate a time series proportional to
the daily COVID-19 infection incidence. We estimated a wastewater-based Re from this incidence.

RESULTS: The method to estimate Re from wastewater worked robustly on data from two different countries and two wastewater matrices. The result-
ing estimates were as similar to the Re estimates from case report data as Re estimates based on observed cases, hospitalizations, and deaths are
among each other. We further provide details on the effect of sampling frequency and the shedding load distribution on the ability to infer Re.
DISCUSSION: To our knowledge, this is the first time Re has been estimated from wastewater. This method provides a low-cost, rapid, and independent
way to inform SARS-CoV-2 monitoring during the ongoing pandemic and is applicable to future wastewater-based epidemiology targeting other
pathogens. https://doi.org/10.1289/EHP10050

Introduction
A critical quantity to monitor an ongoing epidemic is the effec-
tive reproductive number (Re).

1–4 Re describes the time-varying
average number of new infections caused by a single infectious
person throughout the course of their infection. Typically, Re is
estimated from case report data (hereafter referred to as Rcc),
including the numbers of new clinical cases, hospitalizations, and
deaths.1,3–5 Here, we hypothesized that viral RNA concentrations
measured in wastewater can also be used to estimate Re (hereafter
referred to as Rww). This independent data set complements exist-
ing Rcc estimates to provide a more complete picture of transmis-
sion dynamics.

Re estimates for severe acute respiratory syndrome coronavi-
rus 2 (SARS-CoV-2) are used to inform regional and national
policies.6,7 The Re changes through time and reflects changes in
the immune status of the population, policy, climate, and/or indi-
vidual behaviors.1,2 It can thus be used to estimate the effective-
ness of nonpharmaceutical interventions in disease control.5,8–11

However, Rcc estimates have some notable drawbacks. The most
important aspect is that they depend on robust and accurate clini-
cal case surveillance and reporting. Temporal changes in testing
capacity, hospitalization criteria, or the definition of COVID-19-
related deaths can bias the Rcc estimates.1,12 These estimates are
also inferred with a delay: Rcc is estimable once the infections
occurring on that day tested positive and were reported as clinical
cases.1,2 The distribution of infection to reporting delays is neces-
sary to accurately infer Rcc, yet differs through time and space,
thus complicating the simultaneous computation of Rcc across ge-
ographic regions. Wastewater data may provide an advantage
over clinical case data in all these aspects.

SARS-CoV-2 RNA measurements in wastewater can be used
to understand COVID-19 epidemiology because infected individ-
uals shed the virus into the sewer system throughout their infec-
tion. During the COVID-19 pandemic, SARS-CoV-2 RNA has
been repeatedly detected in wastewater and sewage sludge glob-
ally,13–19 and measured RNA concentrations or loads correlate
with clinical case data.13–15,17 Detection of SARS-CoV-2 RNA
in the wastewater implies that there is at least one actively shed-
ding infected person in the catchment served by the sewer sys-
tem. In comparison with clinical testing, substantially fewer
wastewater samples are required to track changes in infection
incidence at the community level.20 Wastewater data have also
been integrated into compartmental models of infectious disease
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transmission, allowing estimation of epidemiological parameters,
including incidence and the basic reproductive number R0 (which
corresponds to the Re in a fully susceptible population at the start
of an outbreak).21,22 These model results are frequently validated
against clinical case data, and the good correspondence between
both supports the use of SARS-CoV-2 RNA measurements in
wastewater to inform disease transmission dynamics. In addition,
there are indications that the wastewater may track transmission
dynamics more truthfully than cases, especially when test positiv-
ity is high.23

Models relating SARS-CoV-2 RNA in wastewater to inci-
dence or transmission rates are driven by assumptions of virus
excretion rates into the sewer system. Excretion (whether via
feces, saliva, or sputum) varies by individual and through time af-
ter infection. Generally, virus excretion can be described using a
shedding load profile, which captures both the temporal dynamics
of shedding [in the shedding load distribution (SLD)], and the
total amount of virus shed by an infected individual. Clinical stud-
ies in various settings have measured shedding from symptom
onset onward. Notable examples include Wölfel et al., who meas-
ured virus concentrations in the stool of hospitalized patients22,24

and Han et al., who included symptomatic and asymptomatic chil-
dren.25 Benefield et al. combined such studies into a systematic
review of SARS-CoV-2 viral loads.26 However, little is known
about shedding prior to symptom onset. Given uncertainty and var-
iation in estimates of SLDs, modeling approaches to relate waste-
water to transmission have varied. For example, Kaplan et al. used
an infectivity profile (based on virus concentrations in the upper
and lower respiratory tract from Li et al.26) rather than information
on gastrointestinal shedding to estimate the basic reproductive
number R0 from wastewater data.21,27 More work is needed to
determine both the SLD and the amount of virus shed during an
infection to relate SARS-CoV-2 RNA measurements in waste-
water to epidemiology.

We measured SARS-CoV-2 RNA in sewage sludge or waste-
water from two distinct monitoring programs (Zurich, Switzerland,
and San Jose, California, USA), used themeasured RNA to estimate
Rww, and compared the estimates to Rcc obtained from clinical case
data. We further determined the SLD that optimized the fit between
Rww and Rcc and compared it to previously reported SLDs. To our
knowledge, this is the first time Re has been estimated from patho-
gen concentrations inwastewater.

Methods

SARS-CoV-2 RNA Quantification in Wastewater and
Primary Sludge
Overall approach. Longitudinal samples of raw wastewater influ-
ent from Zurich and primary sludge from San Jose were collected
over several weeks from late 2020 through early 2021. Samples
were concentrated, viral RNA was extracted, and SARS-CoV-2
RNA markers as well as pepper mild mottle virus (PMMoV)
RNA were quantified in each extract. PMMoV is a plant virus
that is found in wastewater at high concentrations and in fairly
constant loads and serves to detect anomalies in the collected
sample or problems during concentration and extraction.28

Sample collection and processing. Zurich approach. From
03 September 2020 to 19 January 2021, 24-h flow-proportional
composite samples of raw influent (after fine screening) were col-
lected from the Werdhölzli wastewater treatment plant (Zurich).
Samples were collected twice per week (Thursdays, Sundays)
until October 29; afterward, samples were collected almost daily.
This change occurred due to increased availability of funding and
prioritization of daily sampling over replication. Samples were
collected in 500-mL polystyrene or polypropylene plastic bottles,

shipped on ice, and stored at 4°C for up to 8 d before processing.
Samples were processed following the protocol of Fernandez-
Cassi et al. 2021.23 Briefly, aliquots (50 mL) were stirred at room
temperature for 30 min and then clarified by sequential filtration
through 2-lm glass fiber prefilters (Merck) and 0:22-lm
SteriCup filters (Merck). The filtrates were concentrated by cen-
trifugation (3,000× g for 30 min) using centrifugal filter units
(10 kDa Centricon Plus-70; Millipore), followed by concentrate
collection from the inverted filter during 3 min at 1,000× g.

RNA was extracted from concentrates (140–280 lL) using
the QiaAmp Viral RNA MiniKit (Qiagen) according to the manu-
facturer’s instructions, using 80 lL of eluate. Until 25 October,
samples were processed in duplicate (biological replicates). After
that date, we switched to daily sampling and processing of a sin-
gle sample, because the variation between biological replicates
was observed to be low. Samples were extracted once, and a neg-
ative extraction control using molecular grade water was run in
parallel for every batch of extracted samples.

San Jose approach. From 15 November 2020 to 19 March
2021, 125 settled solids samples (approximately 50 mL) were col-
lected and processed daily from the primary settling tank at the San
Jose wastewater treatment plant (San Jose, California) using meth-
ods adapted from Graham et al. and described in published proto-
cols.15,29–31 Briefly, 24-h composite samples were collected in
clean plastic containers, immediately stored at 4°C, and trans-
ported to the lab for initial processing within 6 h of collection. The
solids were dewatered by centrifugation at 24,000× g for 30 min at
4°C. The supernatant was aspirated and discarded. A 0.5-g aliquot
of the dewatered solids was dried at 110°C for 19–24 h to deter-
mine its dry weight. Dewatered solids were resuspended in Bovine
Coronavirus (BCoV)-spiked DNA/RNA Shield (Zymo Research),
to a concentration of 75 mg=mL. This concentration of solids rep-
resented a concentration at which the polymerase chain reaction
(PCR) inhibition of the SARS-CoV-2 assays was minimized based
on experiments with solutions containing varying concentrations
of solids32 (see also Supplemental Material “Managing PCR inhi-
bition in San Jose sludge samples” and Figure S1). BCoV was
spiked as an external process control (1:5 lL rehydrated BCoV
vaccine per milliliter of DNA/RNA shield). To homogenize
samples, 5–10 5/32-in Stainless Steel Grinding Balls (OPS
Diagnostics) were added to each sample before shaking with a
Geno/Grinder 2010 (Spex SamplePrep). Samples were subse-
quently briefly centrifuged to remove air bubbles introduced dur-
ing the homogenization process and then vortexed to remix the
sample. Samples were either further processed immediately or
stored at 4°C for processingwithin 7 d.

RNA was extracted from 300 lL of homogenized sample
using the Chemagic Viral DNA/RNA 300 Kit H96 for the Perkin
Elmer Chemagic 360 into 60 lL of eluent followed by PCR
Inhibitor Removal with the Zymo OneStep-96 PCR Inhibitor
Removal Kit.30 Each sample was extracted 10 times. In addition,
extraction negative and extraction positive controls, consisting of
∼ 500 copies of SARS-CoV-2 genomic RNA (ATCC), were
extracted using the same protocol as that used for homogenized
samples in each batch of sample extraction.

Quantification of viral targets. Zurich approach. SARS-
CoV-2 N gene markers N1 and N2 were quantified immediately or
within 1 wk after RNA extraction (storage at −80�C) using digital
real-time polymerase chain reaction (RT-PCR) (RT-dPCR). RT-
dPCR was performed on 5 lL of extract containing RNA as tem-
plate on either the Bio-Rad QX200 Droplet Digital (01 September
2020 to 7 October 2020) with the One-Step RT-ddPCR Advanced
Kit for Probes (CN 1864021; Bio-Rad) or Crystal Digital PCR
using the Naica System (Stilla Technologies; 8 October 2020 to 20
January 2021) with the qScript XLT 1-Step RT-PCR Kit (CN
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95132-500; QuantaBio). SARS-CoV-2 N1 and N2 markers for the
N gene were detected using the 2019-nCoV CDC ddPCR Triplex
Probe Assay (Assay ID dEXD28563542; Bio-Rad) according to
manufacturer’s instructions, with proprietary primer and probe
concentrations. Primer and probe sequences are specified in Table
S1, and further dPCR details in Excel Table S1.

For samples processed on the Bio-Rad QX200, 20-lL reaction
volumes were prepared in a prereaction volume of 22 lL consist-
ing of 5:5 lL of template, 5:5 lL of Supermix, 2:2 lL of Reverse
Transcriptase, 1:1 lL of Dithiothreitol (DTT), and 1:1 lL of 20×
2019-nCoV CDC ddPCR Triplex Probe Assay. Droplets were
generated using the QX100 Droplet Generator (Bio-Rad). PCR
was performed on the T100 Thermal Cycler (Bio-Rad) with the
following protocol: hold at 25°C for 3 min, reverse transcription at
50°C for 60 min, enzyme activation at 95°C for 10 min, 40 cycles
of denaturation at 95°C for 30 s, annealing and extension at 55°C
for 1 min, enzyme deactivation at 98°C for 10 min, and an indefi-
nite hold at 4°C. Ramp rate was 2°C/s, and the final hold at 4°C
was at least 30 min to stabilize droplets. Droplets were analyzed
using the QX200 Droplet Reader (Bio-Rad) and thresholding done
on the QuantaSoft Analysis Pro Software (version 1.0; Bio-Rad).

For samples processed on the Crystal Digital PCR, 25-lL
reactions were prepared in 27 lL prereaction volumes for
Sapphire Chips (CN C14012; Stilla Technologies) consisting of
5:4 lL of template, 13:5 lL of 2× qScript XLT One-Step RT-
PCR, and 1:35 lL of 20× 2019-nCov CDC ddPCR Triplex
Probe Assay. Droplet production and PCR were performed on
the Naica Geode with the following protocol: reverse transcrip-
tion at 48°C for 50 min, denaturation at 94°C for 3 min, followed
by 40 cycles of denaturation at 94°C for 30 s, annealing and
extension at 57°C for 1 min. Chips were read and analyzed on the
Naica Prism3 using the Crystal Reader and Crystal Miner soft-
ware (Stilla Technologies).

For the Bio-Rad QX200, samples with more than 12,000
droplets with average partitioning volume of 1 nL were deemed
acceptable. For the Stilla Crystal Digital PCR, 15,000 droplets
with average 0:8 nL were deemed acceptable. The average
[standard deviation (SD)] number of droplets observed in sam-
ples from QX200 was 15,000 (2,100) and for the Crystal Digital
PCR excluding controls was 24,000 (2,000). Average copies per
partition (relative uncertainty) was 8:7× 10−3 (54%). Technical
replicate variability was, on average, <20%. The variation among
distinct RT-dPCR runs (interexperimental variation) was quanti-
fied as the coefficient of variation in the performance of a positive
control [100 gene copies (gc)/reaction of synthetic SARS-CoV-2
RNA reference material; EURM-019, Joint Research Center]
across 87 runs and was <25%. Assays were only conducted in
one laboratory, so reproducibility was not assessed. Example flu-
orescence plots are provided in Figures S2 and S3.

Samples were diluted 10-fold in a single step using molecular
grade water before quantification in replicate wells. In addition,
every thermal cycler run included one positive control and one
no template control (NTC) consisting of RNAse/DNAse-free
water. Thermal cycle runs and associated samples were deemed
acceptable if the NTCs in the run contained two or fewer positive
droplets and there was detectable SARS-CoV-2 RNA in the posi-
tive controls. All RT-dPCR runs fulfilled these criteria, with an
average (SD) concentration of the positive controls of 101 (25)
gc/reaction, in line with the target concentration. If the sample
concentration was below the limit of quantification (LOQ), an
undiluted sample was quantified. The limit of detection (LOD)
and LOQ of the N1 and N2 markers were determined by process-
ing 10 replicates of synthetic SARS-CoV-2 RNA reference
material at target concentrations of 5, 8, 10, 25, 30, and
50 gc/reaction. The LOD was defined as the lowest sample

concentration distinguishable from the no template control in at
least 8 out of 10 replicates (3 or more positive droplets). At this
concentration, there would be a >95% likelihood of detecting the
target in at least one of the two technical replicates.33 Using this
criterion, LOD was determined to be 8 gc/reaction (equivalent to
2,560 gc/L wastewater).33 LOQ was determined to be 25 gc/reac-
tion (equivalent to 8,000 gc/L wastewater), which was the lowest
concentration with coefficient of variation <25%.33 When sample
concentrations were below the LOQ, samples were processed
without dilution. Only one sample (20 September, replicate B)
remained below LOQ in both dilute and undilute samples (22.5
gc/reaction). This sample was included in the analysis anyway,
using the value returned.

To test PCR inhibition, the RT-dPCR was repeated using
mastermix with a spiked internal positive control consisting of
800 gc/reaction of synthetic SARS-CoV-2 RNA reference mate-
rial (EURM-019, Joint Research Center) so inhibition testing
could be performed on the same assay used for quantification.34

Samples were added to the mastermix with a spiked internal con-
trol at the same dilution used for quantification of the N1 and N2
markers. If either the observed N1 or N2 concentration in the
samples analyzed in mastermix with synthetic SARS-CoV-2
RNA was 80% or less than the sum of the concentration of
SARS-CoV–2 RNA in the samples (unspiked) plus the concen-
tration in the sample-free, spiked internal positive control, then
the samples were considered inhibited. Inhibited samples were
diluted 1:10, retested for SARS-CoV-2 as well as inhibition,
using the same spiked internal positive control. Dilution suffi-
ciently reduced inhibition for all affected samples.

PMMoV was quantified by RT-qPCR using RNA UltraSense
One-Step Quantitative RT-PCR System (CN 11732927; Applied
Biosystems) on a LightCycler 480 instrument (Roche Life Science)
using previously reported primers and probes (Microsynth AG;
Table S1).35,36 RNA extract aliquots that were separately stored at
−80�C for <3 months were used as template. Samples were pre-
pared in 25-lL reaction volumes consisting of 5 lL of template,
5 lL of 5 × Ultrasense Mix, 4 lL of Bovine Serum Albumin (CN
05470-1G; Sigma-Aldrich) at 2 mg=mL concentration, 1:25 lL of
Reverse Transcriptase, and 1 lL of each primer at final concentra-
tions of 400 nM and 0:25 lL of probe at a final concentration of
250 nM. The RT-qPCR was run with the following program:
reverse transcription at 55°C for 60 min, denaturation at 95°C for
10 min, followed by 45 cycles of denaturation at 95°C for 15 s,
and annealing and extension at 60°C for 1 min. PMMoV quantifi-
cation was performed in six separate RT-qPCR runs by compari-
son to synthetic DNA standards (gBlock; IDT Technologies) run
in duplicate at 10-fold dilutions between 5× 102 (the lowest con-
centration measured) and 5× 107 per 5 lL reaction. All thermal
cycler runs were pooled for analysis. The pooled standard curve
had an amplification efficiency of 97.4% and a goodness-of-fit
(R2) of 0.997.

San Jose approach. RNA extracts were used as template in
RT-dPCR assays for SARS-CoV-2N, S, and ORF1aRNA gene tar-
gets in a triplex assay and for PMMoV and BCoV in a duplex assay.
All primers and probes are listed in Table S1. The SARS-CoV-2
assays were designed using Primer3Plus (https://primer3plus.com/)
based on the genome of the SARS-CoV-2 isolate Wuhan-Hu-1
(Accession Number MN908947.3). The assay was designed to tar-
get product size range of 60–200 base pair (bp) at concentration of
deoxynucleotide triphosphates (dNTPs) of 0:8mM and concentra-
tion of divalent cations of 3:8mM, based on the following optimum
[range] conditions: primer size: 20 bp [15 bp, 36 bp]; primermelting
temperature 60°C [50°C, 65°C]; primer GC content: 50% [40%,
60%]; hydrolysis probe size 20 bp [15 bp, 27 bp]; hydrolysis probe
melting temperature 63°C [62°C, 70°C]; hydrolysis probe GC
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content: 50% [30%, 80%]. The location (length) of the amplicons for
N is 28,287–28,457 (171 bp), S is 23,591–23,665 (75 bp), and
ORF1a is 12,885–13,063 (179 bp). Cross-reactivity was determined
in silico using National Center for Biological Information Basic
Local Alignment Search Tool (NCBI BLAST). The assays were
optimized by varying annealing temperature and then benchmarked
against a respiratory virus verification panel using extracted RNA.
Limit of the blank was determined using negative nasal swab
samples.

RT-dPCR was performed as previously described for the Bio-
Rad QX200 analysis conducted in Zurich using the One-Step RT-
ddPCRAdvanced Kit for Probes (CN 1863021; Bio-Rad) with pri-
mers (900 nM) and probes (250 nM) targeting N, S, and ORF1a
RNA. Droplets were generated using the AutoDG Automated
Droplet Generator (Bio-Rad). PCR was performed using
Mastercycler Prowith the following protocol: reverse transcription
at 50°C for 60 min, enzyme activation at 95°C for 5 min, 40 cycles
of denaturation at 95°C for 30 s and annealing and extension at ei-
ther 59°C (for SARS-CoV-2 assay) or 56°C (for PMMoV/BCoV
duplex assay) for 30 s, enzyme deactivation at 98°C for 10 min,
and then an indefinite hold at 4°C. The ramp rate for temperature
changes were set to 2°C/s, and the final hold at 4°C was performed
for aminimumof 30min to allow the droplets to stabilize.

Droplets were analyzed using the QX200 Droplet Reader
(Bio-Rad), with thresholding done using QuantaSoft Analysis
Pro Software (version 1.0.596; Bio-Rad). The average (SD) num-
ber of droplets in 10 merged wells determined from a random
subset of 10 samples was 176,000 (14,500). Average (relative
uncertainty) of the number of copies per partition in the same
subset was 3:2× 10−3 (52%). As the samples were extracted 10
times and each extract analyzed in one well, technical replicate
variability incorporated variation from both RNA extraction and
RT-dPCR. Sample errors estimated from the merged wells were
<10%, in line with coefficient of variation estimates of <8% for
all three targets (S, N, ORF1a) in an experiment of replicate
(n=97) positive controls at target concentrations of 400 gc/reac-
tion. Assays were conducted in only one lab, so reproducibility
was not assessed. Example fluorescence plots are provided in the
associated reference by Topol et al.31 All liquid transfers were
performed using the Agilent Bravo (Agilent Technologies).

Undiluted extract was used for the SARS-CoV-2 assay template,
and a 1:100 dilution of the extract (2 lL into 198 lL molecular
grade water) was used for the PMMoV and BCoV assay template.
The 1:100 dilution was required because PMMoV was present in
high concentrations, and it is important to be able to quantify the tar-
get and not saturate the number of positive partitions.

Each sample was run in 10 replicate wells, extraction negative
controls were run in 7 wells, and extraction positive controls in 1
well. In addition, PCR-positive controls for SARS-CoV-2 RNA
were run in 1 well, and NTC were run in 7 wells. Results from
replicate wells were merged for analysis. Negative controls were
required to have <2 droplets across all wells, PCR positive con-
trols were required to have ∼ 200 positive droplets, and PCR
positive extraction controls were required to have ∼ 50 positive
droplets. If controls did not meet these acceptability criteria, then
the samples included on that plate were reprocessed. Therefore,
none of the samples included in this study had controls that failed
these acceptability criteria.

Data Analysis and Exclusion Criteria
Zurich approach. Concentrations of RNA targets were multi-
plied by the daily flow rate to estimate the total number of ge-
nome copies (gc) shed by people within the catchment per day
(referred to as loads and reported as gene copies per day).
Samples with PMMoV loads outside the mean plus or minus

three times the SD were considered as inconsistent with respect
to virus recovery and were excluded from further analysis.
Inhibited samples were also removed from further analysis.

San Jose approach. Concentrations of RNA targets were con-
verted to concentrations per dry weight of solids in units of gene
copies per gram dry weight. PMMoV was also used to monitor
virus recovery in the San Jose samples, using the same criteria as
those used for the Zurich samples. BCoV was used to assess virus
recovery, and samples were removed from further analysis if the
amount recovered was <10% of the amount added.

Deconvolution by the Shedding Load Distribution
To relate the viral RNA loads or concentrations measured in
wastewater to the number of new infections per day, we used in-
formation on the profile of SARS-CoV-2 RNA shedding into the
wastewater by an infected individual in days after infection or
symptom onset. In general, this profile contains information
about both the magnitude and timing of viral RNA shedding: a)
the SLD

P
jwj (a unitless distribution which sums to 1) describes

the temporal dynamics of shedding, and b) a normalization factor
N describes the total amount of virus shed by an infected individ-
ual during the course of infection (in units of gene copies per
infection). After shedding, downstream processes further affect
the total amount of viral RNA sampled per infected individual.
We assume this does not affect the temporal dynamics and can be
summarized into a second normalization factor M. In general, M
will depend on the sewer system, the sampling point within the
wastewater treatment plant, choice of sample matrix and process-
ing pipeline. The units of M differ depending on the way viral
concentrations were measured: in this study M is unitless for
Zurich, and day per gram dry weight for San Jose.

With these definitions, the measurement Ci of viral RNA in
the wastewater on day i is related to the past incidence of infec-
tions Ij on day j:

Ci =N ×M
X
j

wi− jIj ,

i.e., the observed wastewater measurements are a convolution of
the daily infection incidence with the SLD.

To obtain the infection incidence, we first filled gaps in the
wastewater data through linear interpolation and smoothed it
using local polynomial regression (LOESS) with first order poly-
nomials and tricubic weights that take into account 21 d of data
around each point. To deconvolve the resulting time series we
used an expectation–maximization algorithm,2 which iteratively
determines the time series I(t) that maximizes the likelihood of
the smoothed wastewater measurements �CðtÞ (either in units of
gene copies per day or gene copies per gram dry weight), given
assumptions on N, M, and

P
jwj.

For the main analysis, we deconvolved by a SLD that was a
combination of the incubation period (the time from infection to
symptom onset) and the gastrointestinal SLD from Benefield et al.
for the time from symptom onset to shedding.26 Figure 3 from
Benefield et al.26 was digitized manually, and yielded a gamma
distribution with mean 6.7 d and SD 7.0 d.23 For the incubation
period, we used the distribution of Linton et al.: a gamma distri-
bution with mean 5.3 d and SD 3.2 d.37 For additional compari-
sons, we exchanged the Benefield et al. distribution for the SLD
upon symptom onset reported by Han et al. (gamma distributed
with mean 4.7 d and SD 1.7 d),25 or the symptom onset to death
delay distribution from Linton et al. (gamma distributed with
mean 15 d and SD 6.9 d).37

Because the normalization factorsN andM are difficult to mea-
sure and only influence Rww point estimates when off by several
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orders of magnitude, we made a simplifying assumption. We
assumed that the lowest measured RNA load (Zurich) or concen-
tration (San Jose) represents the viral load or concentration from a
single infection (N ×M). For the Zurich wastewater data, this was
1× 1012 gc per infection, and for the San Jose sewage sludge meas-
urements this was 2,663.7 gc/g dry weight per infection per day.

To study the effect of less frequent sampling on the ability to esti-
mate Rww, we subsampled the wastewater measurements in Zurich
and San Jose prior to estimating Re. We varied the number of sam-
ples taken per week (1, 2, 3, 5), and the sampling schedule: daily
(Monday–Sunday; 7 samples); working week (Monday–Friday;
5 samples); Monday, Wednesday, Friday (3 samples); Tuesday,
Thursday, Saturday (3 samples); Monday, Thursday (2 samples);
Tuesday, Friday (2 samples); only Monday; only Wednesday;
only Friday. For Zurich, we restricted the analysis to the period
with daily sampling (22 November 2020 to 11 January 2021).

Re Estimates
The Re was estimated from SARS-CoV-2 RNA loads in waste-
water or concentrations in sewage sludge using the pipeline
developed in Huisman et al.2 In brief, we first transformed
SARS-CoV-2 RNA measurements into a time series of infection
incidence as described in the “Deconvolution” section above.
Second, we used the R package EpiEstim to estimate the Re from
this infection incidence.4,38 The pipeline further accounts for
noise in the observation process by bootstrapping the observa-
tions prior to smoothing and deconvolution. Specifically, we
block-bootstrap the log-transformed residuals between the linear
interpolated original observations and the smoothed value.2

To estimate Rcc for Zurich, we obtained case data from the
Health Department of Canton Zurich, restricted to cases in the
catchment. We then used the pipeline from Huisman et al.,2

where we deconvolved by a distribution specifying the delay
from infection to case confirmation. This was parameterized as
the sum of a gamma distributed incubation period with mean
5.3 d, SD 3.2 d37; and a gamma distributed delay from symptom
onset to case confirmation with mean 2.8 d, SD 3.0 d (estimated
from line list data for Canton Zurich, September 2020–January
2021). The reported Rcc values for confirmed cases, hospitaliza-
tions, and deaths at the cantonal level were taken from https://
github.com/covid-19-Re/dailyRe-Data (based on Huisman et al.2).
For the Swiss data, “case confirmation” refers to the earliest
recorded date of either a positive test or case reporting.

To estimate Rcc in San Jose, we downloaded COVID-19 case
data for Santa Clara County from the California Health and Human
Services Open Data portal.39 The data included the reported cases,
number of positive tests, and number of total tests in the county per
day. The wastewater from Santa Clara County (population of
1:7million) is nearly all treated at the San Josewastewater treatment
plant (catchment population of 1:5million).32 We estimated Rcc
using the pipeline from Huisman et al.,2 with the incubation period
as before from Linton et al.,37 and a gamma distributed symptom
onset to case reporting delay distribution with a mean of 4.51 d and
SD of 3.16 d (estimated from line list data for Santa Clara County in
December; based on personal correspondence with the California
Department of Public Health COVID-19 modeling team). During
the study period, the mean of this distribution changed from 5.24 to
3.31 d, and the SD from 3.55 to 2.32 d. Negative numbers of cases
reported (30December) were set to zero for themain analysis and to
1,000 to test the impact ofmisreporting.

To estimate Re for the testing-adjusted cases in Santa Clara
County, we extracted the daily number of positive tests per total
number of tests, multiplied by the mean number of tests during the
time period (14,960.3). This time series was then used to estimate
Re, similar to the confirmed cases (with the same delay

distribution).2 Technically, the tests are reported by testing date,
which typically precedes the reporting date, so this approach con-
stitutes a misspecification of the delay distribution. However, an
analysis where the delay between symptom onset and testing was
assumed zero did not yield qualitatively different results (Figure
S4). We additionally compared our estimates to the Rcc estimates
for Santa Clara County from the California COVID assessment
tool (https://calcat.covid19.ca.gov/cacovidmodels/).

Comparing Re Traces
We assessed how well the Re estimates from SARS-CoV-2 con-
centrations in wastewater (Rww) match those estimated from case
report data (Rcc) using several measures. First, we used the aver-
age root mean squared error between both point estimates across
the time series (RMSE):

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
K

XK

j=1
Rww, j −Rcc, jð Þ2

r
,

where j describes the date, and K the length of the time series.
Second, we used the fraction of dates where the Rww point esti-
mate was within the confidence interval of the Rcc estimate (“cov-
erage”). Third, we used the mean average percentage error
between the time series (MAPE):

1
K

XK

j=1

Rcc, j −Rww,j
Rcc,j

����
����:

Scanning across Shedding Load Distributions
To investigate optimal parameters for the SLD, we conducted
two separate scans. In the first scan, we varied the parameters of
the SLD from infection. In the second scan, we estimated the pa-
rameters of the SLD from symptom onset onward. In the latter
case, the delay sampled from the SLD was added to a second
sampled delay corresponding to the incubation period (gamma
distributed with mean 5.3 d and SD 3.2 d).37 In both cases, we
assumed the SLD was described by a gamma distribution and
varied the mean l and SD σ on a grid (l 2 f0:5,1:0, . . . , 15g and
2 f0:5,1:0, . . . , 10g). The normalization factor (N ×M) was kept
fixed to the location-specific value throughout. The Rww for the
wastewater data was estimated across 50 bootstrap samples and
compared to the Rcc for the catchment.

Availability Statement
All code and underlying data are publicly available through the
GitHub repository (https://github.com/JSHuisman/wastewaterRe).
Wastewater measurements and daily flow rates for Zurich are avail-
able from the EAWAG open data repository.40 Measurements from
San Jose are available from the Stanford Data Repository (https://
purl.stanford.edu/bx987vn9177),32,41 and case data for Santa Clara
County is available from the California Health and Human Services
OpenData portal.39

Approval
No ethics approval was required for this study because no
humans or animals were involved.

Results

SARS-CoV-2 RNA in Wastewater
We tracked SARS-CoV-2 RNA concentrations in Zurich and
San Jose during a rise and fall in clinical COVID-19 cases
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(Figure 1A,B; Figure 2A,B). Data from Zurich were used to
develop and assess Rww estimates, and data from San Jose
were used to assess the generalizability of the approach.

In Zurich, SARS-CoV-2 N1 and N2 markers of the N gene
were detectable in the raw influent samples from the Zurich
wastewater treatment plant between 1 September 2020 and 19
January 2021 in all 99 samples collected (Figure 1A). Of these,
the average of the technical replicates was above the LOQ in 97,
yielding median (range) loads of 13.4 [<12 (LOD), 13.7] log10
gc/d (Figure 1A).

Two samples (11 and 29 October 2020) were excluded based
on quality control, which included monitoring sample inhibition

and consistency of effluent PMMoV loads. One sample (11
October) was removed from analysis because the dilute sample
(1:10) was below LOQ and the undiluted sample was inhibited,
as defined by recovery of <80% of the synthetic SARS-CoV-2
RNA added in. PMMoV concentrations were obtained for all
dates except 4 October. Mean (SD) PMMoV loads were 16.5
(0.12) log10 gc/d. All PMMoV loads fell within 3 standard devia-
tions of the mean, consistent with a normal distribution, except
on 29 October (16.1 log10 gc/d). The sample was subsequently
removed from further analysis.

In San Jose, SARS-CoV-2 N, S, and ORF1a genes were quan-
tifiable in the settled solids of the primary settling tank in all 125
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Figure 1. Rww estimation from Zurich (Switzerland) wastewater measurements. (A) Measured RNA loads of the N1 and N2 markers (green triangles and yel-
low circles, respectively) between 1 September 2020 and 19 January 2021 (99 samples, of which 2 were excluded based on quality control). Linearly interpo-
lated values are indicated in gray. (B) Confirmed cases (purple) in the catchment during the same time period. (C) The estimated infection incidence in the
catchment per day from normalized RNA loads of the N1 and N2 markers (top; green\-hatched and yellow/-hatched bands respectively), and case reports (bot-
tom; purple solid band). The measured loads were normalized by the lowest measured value (N ×M=1× 1012 gene copies per infection). The ribbons indicate
the mean± standard deviation across 1,000 bootstrap replicates. (D) The estimated Rww compared to the Rcc from confirmed cases. The colored line indicates
the point estimate on the original data, and the ribbons the 95% CI across 1,000 bootstrap replicates. The N1- and N2-based CIs nearly completely overlap.
The numeric data corresponding to this figure can be found in Excel Tables S2–S4. Note: CI, confidence interval; M, normalisation factor stemming from the
virus recovery process; N, normalisation factor stemming from the total amount of virus shed per person; Rcc, Re estimated from case report data; Re, effective
reproductive number; Rww, Re estimated from viral RNA concentrations measured in wastewater.
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Environmental Health Perspectives 057011-7 130(5) May 2022



samples collected between 15 November 2020 and 19 March
2021 (Figure 2A). The median [range] concentrations were 4.9
[3.4, 6.0], 5.0 [3.9, 6.0], and 5.0 [3.8, 6.0] log10 gc/g dry weight
for N, S, and ORF1a genes, respectively (Figure 2A).

Three samples (03 January, 18 February, 19 March 2021) were
excluded based on quality control using consistency of PMMoV
concentrations. PMMoV concentrations were mean (SD) 8.9 (0.20)
log10 gc/g dry weight. In two samples (03 January 2021, 18 February
2021), PMMoV concentrations exceeded the mean plus three times
the SD. On one day (19 March 2021), PMMoV concentrations fell
below the mean minus three times the SD. These three samples were
excluded from further analysis. All samples met criteria for inclusion
based onBCoVconcentrations,whichwere all >10% of the expected
concentrations based on the amount added.

Inferring the Infection Incidence Dynamics
Next, we related the RNA measurements in wastewater to the
original infection incidence by applying a deconvolution with the
SLD. SARS-CoV-2 wastewater measurements reflect the cumu-
lative contributions of all infected individuals actively shedding
virus into the wastewater. The amount of virus shed by each indi-
vidual varies through time after infection and is captured in the
shedding load profile. In general, this profile contains information
about the timing of viral shedding—the SLD, which sums to 1—
and the total amount of virus shed, captured by a normalization
factor N. To estimate the true number of infections in the sewer
shed, it is important to estimate the exact value of the normaliza-
tion factor N, as well as a factor M describing losses along the
way from shedding to sample processing. However, to estimate
Re it suffices to know the temporal dynamics of shedding and
infection (described in more detail in the “Methods” section). As
a first approximation, we assumed individuals do not shed prior
to symptom onset and thereafter shed according to the gastroin-
testinal SLD reported by Benefield et al.26 With this assumption,
we found that the dynamics of infection incidence inferred from
wastewater measurements in Zurich are similar to the dynamics
inferred from clinical case data (Figure 1C). In particular, both
data sources show a steep increase starting from mid-September
and capture two peaks (indicative of Re =1) around late October
and early December, each of which is followed by relatively
rapid decline in daily case incidence. We later tested the sensitiv-
ity of our results to the assumed SLD and normalization.

Estimating the Effective Reproductive Number Rww from
Wastewater Measurements
We used the inferred time series of infection incidence from
SARS-CoV-2 RNA measured in wastewater to estimate Rww in
Zurich (Figure 1D). The N1 and N2 markers resulted in nearly
identical Rww estimates, and there is a good correspondence
between Rww and Rcc. Both estimates showed a rapid increase up
to Re =1 in mid-September, a decline to below 1 in late October,
followed by a period where Re was slightly above 1 until drop-
ping more clearly below 1 from early December onward. Rww
and Rcc were changing in similar ways, with Rcc lagging the Rww
trajectory. Because both estimates describe the same underlying
epidemic, this finding suggests that the wastewater measurements
may be deconvolved too far back in time (the mean of the SLD is
too high), or that the confirmed cases are not deconvolved back
far enough (the mean of the delay distribution is too low).

Over the entire time period, the average RMSE between Rww
and Rcc is 0.11 and 0.12 for N1 and N2, respectively. This is
smaller than the RMSE between the Re estimates based on differ-
ent sources of case report data: 0.13 between confirmed cases and
hospitalizations and 0.26 between confirmed cases and deaths

(estimated on case report data from Canton Zurich, which has a
population 3.4 times the size of the catchment, for the same time
period as Rww).

Application to an Independent Data Source and Different
Wastewater Matrix
To assess whether these results could be generalized to different
geographic locations and wastewater matrices, we analyzed daily
sampled primary sewage sludge data from the San Jose waste-
water treatment plant in California.

In San Jose, the inferred infection incidence curves between
confirmed cases and wastewater data followed similar trends
(Figure 2D). The inferred incidence from confirmed cases rose
rapidly, reaching a maximum and fluctuating at a plateau through-
out December. This fluctuation seems primarily caused by report-
ing errors on 30 December, because it fully disappeared when
replacing the zero cases reported that day by 1,000 (Figure S5).
Instead, wastewater estimates continued to rise more gradually
throughout December, similar to the cases adjusted for test positiv-
ity. Starting in late December, all traces showed a similar decrease.

We found that Rww agreed with Rcc, although there was again
some temporal lag between both, which seems more pronounced
in November/December than in the second half of the time series
(Figure 2D). The Re estimates based on the testing-adjusted cases
are more comparable to Rww, both in terms of slope (especially in
December) and a more uniform delay throughout the entire time
period. A comparison between Rcc estimated using different
methods (as reported on the website of the California State
Department of Public Health) shows substantially larger differen-
ces than between the wastewater and the confirmed case esti-
mates from the same pipeline (Figure S6).

Minimal Frequency of Wastewater Sampling Needed to
Inform Rww

When designing wastewater-based epidemiology studies, an im-
portant cost–benefit trade-off centers around the frequency of
sampling. We subsampled the daily sampled wastewater meas-
urements in Zurich and San Jose, prior to the Re estimation pipe-
line, to determine how this would affect the estimated Rww. We
assessed a range of sampling strategies that differed in the num-
ber and identity of the days sampled (e.g., Monday, Wednesday,
and Friday or Monday–Friday). For Zurich, we restricted our-
selves to the period with daily sampling (22 November 2020 to
11 January 2021). Using the RMSE to quantify the similarity
between different Rww estimates, we found that subsampling
down to three measurements per week still leads to results com-
parable to a daily sampling regime (Figure S7; Table S2 and
Table S3). However, below this frequency the representativity of
the Rww estimate started to depend on which days were sampled.

Susceptibility of Rww Estimates to the SLD
There is substantial variation between SLDs described in the litera-
ture, across patients, bodily fluids, and geographic locations.20,24,25

We find that the shape of the used SLD, in particular the mean of
the gamma distributions, affects the inferred timing of peak infec-
tion incidence (with larger means shifting the incidence further
back in time; Figure S8). In our pipeline, we also observed that
smaller normalization factorsN ×M increased the amplitude of the
estimated Rww, albeit only when misspecified by more than 5
orders of magnitude (Figure S9). In principle, the inference of the
Re point estimate from an infection incidence is independent of the
magnitude of this incidence.2,4 However, the expectation maximi-
zation algorithm used for deconvolution in our pipeline was opti-
mized for data on the scale of infections per day. Here, we have
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chosen to normalize the wastewater measurements such that the
considered gene loads are on that same scale, because Rww other-
wise reacts too strongly to changes in the daily incidence.

Estimating the SLD from the Fit between Clinical and
Wastewater Data
Instead of assuming a single SLD and estimating Rww based only
on that distribution, we also asked which SLD would maximize
the similarity between the Rww and Rcc estimates. We numerically
scanned across different SLDs and quantified the resulting good-
ness of fit between the Rww and Rcc for both Zurich and San Jose.
We assumed the SLD is described by a single gamma distribu-
tion, starting at infection, and searched for the optimal fit on a
grid of mean–SD parameter pairs (Table 1; Figure 3). The fit was
quantified using the RMSE, coverage, and MAPE. Because the
measurements of the different genetic markers followed nearly
identical patterns in both locations (Figures 1 and 2), we con-
ducted the SLD optimization analysis only for the N1 marker in
Zurich and the S gene in San Jose.

The optimal fits based on these metrics suggest that the SLD
has a mean between 7 and 11 d in Zurich and between 5 and 7 d in
San Jose, with a very low SD of 0.5 d in both locations (Table 1).
However, there is some nonidentifiability in our analysis, with
most optimal value pairs lying along a ridge (Figure 3; repeated for
coverage: Figure S10 and for MAPE: Figure S11). This ridge cor-
responds to SLDs with a similar median, which result in nearly
indistinguishable Rww estimates (examples shown in Figure S12).
If we consider the parameters yielding a fit within 10% from the op-
timum, the parameter ranges found in both locations are compati-
ble and jointly suggest an SLD with mean between 6 and 9 d, and
SD between 0.5 and 3 d. Longer time series and more locations
would further constrain this distribution. In comparison with the
delay between infection and case reporting, the SLD introduces a
similar or lower mean delay to Rww. For Zurich, the cases were
delayed with respect to infection by 8.1 d on average, which is
comparable to the 6–9 d for Rww. For San Jose, instead, the delay
distribution of the case report data had a mean of 9.8 d. There, the
wastewater may lead the confirmed cases by 1–4 d, if the current
testing and reporting regime ismaintained.

To compare against published SLDs, which are frequently
parameterized from symptom onset instead of infection, we con-
ducted a second analysis. Here we assumed individuals do not
shed during their incubation period and subsequently shed with a
gamma distribution, starting at symptom onset. In this case, we
found optimal SLDs with a mean between 0.5 and 3 d for San
Jose and between 3.5 and 5.5 d for Zurich (Table S4; Figure
S13). These optimal distributions have a lower mean than the
SLD reported by Benefield et al.26 (mean 6.7 d), and Han et al.
(mean 4.7 d).25 If we add the mean incubation period (5.3 d) to
the results of this scan, we find that for both locations the mean
delay between infection and shedding is comparable to the mean
of the SLD we estimated from infection.

Discussion
We showed that regular measurements of SARS-CoV-2 concen-
trations in wastewater and settled solids can be used to estimate
the effective reproductive number Re. The difference between Re
estimates from wastewater (Rww) and from case report data (Rcc)
was similar to the difference between Re estimates based on dif-
ferent types of case report data (clinical cases, hospitalizations,

Table 1. Parameters of the optimal shedding distribution from infection.

Comparison
method

Optimal pair
(mean; SD)

Mean within 10% from
the optimum

SD within 10% from
the optimum

RMSE
(Zurich)

(7.5; 0.5) [6, 11.5] [0.5, 10]

Coverage
(Zurich)

(7.5; 0.5) [6, 12.5] [0.5, 10]

MAPE
(Zurich)

(11; 9.5) [6.5, 11] [0.5, 10]

RMSE (San
Jose)

(7.0; 0.5) [6, 9] [0.5, 3]

Coverage
(San Jose)

(5; 0.5) [1, 11] [0.5, 10]

MAPE (San
Jose)

(6; 0.5) [5, 8] [0.5, 2.5]

Note: We scanned across different (mean, SD) parameter pairs for the shedding load dis-
tribution from time since infection. For Zurich, the Rww from N1 loads in wastewater
was compared to the Rcc of confirmed cases in the catchment. For San Jose, we com-
pared S gene concentrations to confirmed cases in Santa Clara County. For all values of
the scan, see Figure 3 (RMSE), S10 (coverage), and S11 (MAPE). All parameters are in
units of days. For the coverage, the 95% confidence intervals of Rcc and Rww were based
on 50 bootstrap replicates in each comparison. MAPE, mean average percentage error;
RMSE, root mean squared error; SD, standard deviation.
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Figure 3. RMSE between case-based Rcc and wastewater-based Rww for different SLDs. We scanned across different parameter pairs (mean, SD in days) for
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water; SD, standard deviation; SLD, shedding load distributions.
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and deaths). This did not depend on which of the measured gene
targets was used to estimate Rww. We further showed wastewater
samples should be collected at least three times per week to reli-
ably estimate past Rww, in line with analyses based on direct com-
parison of wastewater signals to clinical cases.15,42 For real-time
monitoring of Rww, more frequent measurements may be prefera-
ble to ensure stable estimates when new data comes in.

Estimating Rww requires accurate characterization of the SLD,
i.e., the temporal dynamics of shedding. In our primary analysis,
we used the distribution for gastrointestinal shedding from
Benefield et al.26 In using this SLD, we implicitly assumed that
fecal shedding dominates the viral load in wastewater. However,
there is a wide range in published viral shedding loads, and it is
unclear which—if any—accurately capture viral shedding dynam-
ics of people within a catchment. Virus shed in saliva, sputum, and
feces are possible contributors to the total amount of virus RNA in
the wastewater.43 Although upper respiratory tract swabs show
peak viral loads around the day of symptom onset, there are indica-
tions that sputum samples peak a few days later, and feces even af-
ter that.44–46 Studies differ in the inferred timing of peak viral load
(even in the same bodily fluids), and there is a general lack of infor-
mation to constrain dynamics prior to symptom onset.47

Additionally, the duration andmagnitude of viral shedding seem to
differ within different populations (for example, due to age or se-
verity of disease).48,49 However, these individual differences will
probably average out in a sufficiently large catchment, and better
estimates of the SLD are likely to become available as prospective
sampling studies report results.

We showed that the optimal SLD can also be inferred from
the fit between Rww and Rcc. Once the SLD has been estimated
from historic wastewater and case data, it may from then on pro-
vide a more accurate estimation of Rww than using one of the pub-
lished SLDs. Indeed, here we show a range of gamma-distributed
SLDs inferred from our wastewater data that generally align with
but have lower means than published SLDs based on patient
shedding profiles. Optimization based on alignment between Rww
and Rcc assumes accuracy of Rcc, which only holds when there is
adequate clinical case surveillance. However, given widespread
wastewater monitoring coincident to clinical case reporting,
broader application of our methods would help constrain the SLD
of SARS-CoV-2.

The utility of wastewater measurements for Re estimation is
independent of the pipeline used to estimate Re. Here, we report
results obtained with the pipeline of Huisman et al.2 However,
many estimation methods exist, differing in assumptions on
smoothing, deconvolution, and uncertainty quantification as well
as the underlying method to estimate Re from infection inci-
dence.1,3,7,50,51 Although the Re point estimate is not affected by
the absolute magnitude of the infection incidence (and thus com-
parable across wastewater treatment plants with differing sam-
pling protocols), the rest of our pipeline (in particular the
deconvolution) was originally developed specifically for use with
clinical data. Thus, we had to normalize the measured wastewater
concentrations to the same order of magnitude as the case data.
Further development could make the method more specifically
adapted to wastewater data and alleviate this dependence on the
normalization.

Estimates of Rww are independent of biases influencing clini-
cal case-based estimates. Rcc estimates are based on only the sub-
set of infections, hospitalizations, and/or deaths that are captured
by surveillance within the health care system. If this subset
changes (for instance, due to developments in testing or reporting
policy), the resulting Rcc estimates will be temporarily biased.2,4

In Geneva, Switzerland, seroprevalence studies showed that the
number of infections per reported case varied substantially, from

an estimated 11.6 infections per reported case as of May 2020 to
only 2.7 as of December 2020.52,53 During that period, SARS-
CoV-2 RNA concentrations in wastewater better reflected the dy-
namics than the clinical cases.23

However, Rww estimates are also prone to biases. People’s
behaviors, such as defecation timing outside of a daily routine54

and/or movement into or out of the catchment55 can influence Rww
estimates, particularly when the number of infected individuals is
low. RNA signals may also be impacted during sewer transport,
with persistence influenced by environmental conditions (i.e., tem-
perature) and/or sewage composition (i.e., solids content).56–59

Furthermore, sample processing required to quantify SARS-CoV-
2 RNA may introduce variation, as suggested by substantial day-
to-day variation in measurements.13,15,23,60 Finally, Rww estimates
are informed by the number and proportion of infected and/or shed-
ding people within the catchment: If there are too few active shed-
ders, Rww may be very sensitive to the increased fluctuations in
SARS-CoV-2 RNA concentrations.

To conclude, deriving Re from wastewater offers an independ-
ent method to track disease dynamics. Wastewater-based epidemi-
ology is used globally to track the COVID-19 pandemic.13–19,61

The data collected within these campaigns could be used to estimate
Rww with a robust method that is not influenced by heterogeneous
testing and reporting strategies, and hence the method would be
more applicable across geographic areas. Additionally, Rww esti-
mates could be derived for the transmission of SARS-CoV-2 var-
iants and/or other pathogens for which SLDs are known. SARS-
CoV-2 variants, including Variants of Concern (VOCs), are readily
detectable in wastewater62–64 as are other pathogens (e.g., norovi-
rus, enterovirus, hepatitis A).65–67 This could provide the temporal,
quantitative wastewater measurements needed to estimate Rww.
Wastewater surveillance allows estimating Rww to track disease
transmission dynamics in near real time, using low-cost, rapid, and
geographically comparable methods, and such surveillance can be
used when reporting clinical cases is not feasible, mandatory, or
much delayed in comparisonwith infection and shedding.
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