Probability Distribution Functions - Discrete variable

Josep L. Carrasco
Bioestadística. Departament de Fonaments Clínics
Universitat de Barcelona

Discrete random variable: functions and properties

- Variable: counts of events.
- Example: number of women in 2nd year of the Biomedical Engineering degree.

Probability mass function

The probability mass function assigns probability to each possible value of the random variable.

$$
\begin{aligned}
& P: \mathbb{R} \longrightarrow[0,1] \\
& k \longrightarrow P(X=k)=p \\
& P(X=k) \in[0,1] \\
& \sum_{i=-\infty}^{+\infty} P(X=k)=1
\end{aligned}
$$

Example: number of boys in sets of 3 siblings. Assuming equiprobability and independence among births:
$\mathrm{X}=$ number of boys.
$P($ 우 $)=P\left(\sigma^{x}\right)=0.5$

Probability Distribution Function

The probability distribution function assigns cumulative probability to each possible value of the random variable.

Ω	X	p
ㅇ¢ㅇ	0	0.125
¢¢0'	1	0.125
¢0'9 $0^{\prime \prime}$	1	0.125
O'po	1	0.125
¢ $\square^{\prime \prime} 0^{\prime \prime}$	2	0.125
$0^{\prime \prime}+0^{\prime \prime}$	2	0.125
$0^{4} 0^{4}$ ¢	2	0.125
$O^{4} O^{4} O^{\prime \prime}$	3	0.125

X	$P(X=k)$
0	0.125
1	0.375
2	0.375
3	0.125

$$
\begin{aligned}
& F: \mathbb{R} \longrightarrow[0,1] \\
& k \longrightarrow F(k)=P(X \leq k)=p \\
& P\left(k_{1}<X \leq k_{2}\right)=F\left(k_{2}\right)-F\left(k_{1}\right)
\end{aligned}
$$

k	$P(X=k)$	$P(X \leq k)$
0	0.125	0.125
1	0.375	0.5
2	0.375	0.875
3	0.125	1

Expectation of a Random Variable $E(X)$

Expectation: the expected value of a random variable.
Prediction: a guess about the value of the random variable.
Prediction error: the difference between the prediction and the actual value of the random variable.

The expectation minimizes the prediction error when the number of predictions tend to infinite.

Discrete variable: expectation appears as a weighted mean.

$$
E(X)=\sum_{k=-\infty}^{+\infty} k \cdot P(X=k)
$$

- If we randomly selected a set of 3 siblings, how many boys do we expect to find?

$$
\begin{gathered}
E(X)=\sum_{k=0}^{3} k \cdot P(X=k)= \\
0 \cdot P(X=0)+1 \cdot P(X=1)+2 \cdot P(X=2)+3 \cdot P(X=3)= \\
0 \cdot 0.125+1 \cdot 0.375+2 \cdot 0.375+3 \cdot 0.125=1.5
\end{gathered}
$$

The expectation is 1.5 boys. Notice that the expectation may be a value that the random variable cannot take.

Properties of the Expectation

Let X and Y be two random variables and C a constant.

- Linearity.

$$
\begin{gathered}
E(X+C)=E(X)+C \\
E(X+Y)=E(X)+E(Y)
\end{gathered}
$$

- Multiplicity.

$$
E(X \cdot C)=E(X) \cdot C
$$

- If X and Y are independent:
$E(X \cdot Y)=E(X) \cdot E(Y)$

Variance of a random variable

- Variance: indicates the dispersion of the variable around its expectation.

It is a statistical distance:

- How far are the values from the expectation?
- What is the mean distance of the random variable to its expectation?
- How much representative of the random variable is the expectation?

If the variance is large the data will be very spread and the expectation can not be taken as representative of the random variable.

- General expression

$$
V(X)=E\left[(X-E(X))^{2}\right]=E\left(X^{2}\right)-E(X)^{2}
$$

- Variance in discrete variables

$$
V(X)=\sum_{k=-\infty}^{+\infty} k^{2} \cdot P(X=k)-E(X)^{2}
$$

- Example: number of boys in 3 siblings

k^{2}	$P(x=k)$	$k^{2} P(x=k)$
0	0.125	0
1	0.375	0.375
4	0.375	1.5
9	0.125	1.125
		$\sum=3$

$$
V(X)=\sum_{k=0}^{3} k^{2} P(X=k)-E(X)^{2}=3-1.5^{2}=0.75
$$

The random variable "number of boys in 3 siblings" has a expectation of 1.5 boys and a variance of 0.75 boys 2.

Properties of the Variance

Let X and Y be two random variables and C a constant.

- Invariant to changes in location parameter

$$
V(X+C)=V(X)
$$

- Scale

$$
V(X \cdot C)=C^{2} \cdot V(X)
$$

- Variance of the sum of two random variables

$$
V(X+Y)=V(X)+V(Y)+2 \operatorname{Cov}(X, Y)
$$

where $\operatorname{Cov}(X, Y)$ is the covariance which is a measure of joint variability.

$$
\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)
$$

If two variables, X and Y , are independent, $\operatorname{Cov}(X, Y)=0$.
So that, if two variables, X and Y , are independent:

$$
V(X+Y)=V(X)+V(Y)
$$

- Variance of the difference of two random variables

$$
V(X-Y)=V(X)+V(Y)-2 \operatorname{Cov}(X, Y)
$$

Probability distribution models

Bernoulli

- Binary results. The variable usually takes values 0 or 1 .
- Probability distribution defined by one single parameter $p=P(X=1)$.
- Probability mass function

$$
\begin{aligned}
& P(X=1)=p \\
& P(X=0)=1-p
\end{aligned}
$$

- Expectation and Variance

$$
\begin{aligned}
& E(X)=p \\
& V(X)=p(1-p)
\end{aligned}
$$

Example. Flipping a coin. $\mathrm{X}=$ "Head side"

$$
p=0.5, E(X)=0.5, V(X)=0.5 \cdot 0.5=0.25
$$

Binomial

The addition of n independent and identically distributed Bernoulli variables.

$$
X=\sum_{i=1}^{n} Y_{i}, \quad Y_{i} \sim \operatorname{Bernoulli}(p)
$$

- Range of values: $\{0,1, \ldots, n\}$
- Probability mass function

$$
P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

- Expectation and Variance

$$
\begin{aligned}
& E(X)=n p \\
& V(X)=n p(1-p)
\end{aligned}
$$

Example. Flipping 3 times a coin.

$\mathrm{X}=$ "number of heads" follows a $\operatorname{Bin}(3,0.5)$

$$
E(X)=n \cdot p=3 \cdot 0.5=1.5
$$

- Probability of 2 heads

$$
P(X=2)=\binom{3}{2} 0.5^{2} 0.5=0.375
$$

- Probability of less than 2 heads

$$
\begin{gathered}
P(X<2)=P(X \leq 1)=F(1)=P(X=0)+P(X=1)= \\
\binom{3}{0} 0.5^{0} 0.5^{3}+\binom{3}{1} 0.5^{1} 0.5^{2}=0.125+0.375=0.5
\end{gathered}
$$

Geometric

X: "number of failures before a success".
Every trial follows an independent bernoulli distribution with parameter p.

- Range of values: $\{0,1,2, \ldots\}$
- Probability mass function

$$
P(X=k)=(1-p)^{k} p
$$

- Probability distribution function

$$
F(k)=1-(1-p)^{k+1}
$$

- Expectation and Variance

$$
E(X)=\frac{1-p}{p} \quad V(X)=\frac{1-p}{p^{2}}
$$

Alternatively, one could define $\mathrm{W}=$ "Number of trials until one success is observed"

$$
W=X+1
$$

- Range of values: $\{1,2, \ldots\}$
- Probability mass function

$$
P(W=k)=(1-p)^{w-1} p
$$

- Probability distribution function

$$
F(k)=1-(1-p)^{k}
$$

- Expectation and Variance

$$
E(X)=\frac{1}{p} \quad V(X)=\frac{1-p}{p^{2}}
$$

Example. $W=$ "Number of rolls of a die until one 5 is observed"

$$
p=\frac{1}{6}
$$

- Probability of (exactly) 6 rolls

$$
P(W=6)=\left(\frac{5}{6}\right)^{5} \frac{1}{6}=0.067
$$

- Probability of "number 5 is observed in 3 rolls as much"

$$
P(W \leq 3)=F(3)=1-\left(1-\frac{1}{6}\right)^{3}=0.421
$$

- Expected number of rolls

$$
E(W)=\left(\frac{1}{6}\right)^{-1}=6
$$

Negative Binomial

Number of failures until r successes are observed.
Generalization of the geometric distribution: sum of r independent and identical Geometric distributions.

- Range of values: $\{0,1,2, \ldots\}$
- Probability mass function

$$
\begin{gathered}
P(X=k)=\binom{k+r-1}{k}(1-p)^{k} p^{r} \\
E(X)=\frac{r(1-p)}{p} \\
V(X)=\frac{r(1-p)}{p^{2}}
\end{gathered}
$$

Example. $\mathrm{X}=$ "Number of non- 5 results until three 5 are observed when rolling a die"
$r=3, p=1 / 6$

$$
X \sim N B(3,1 / 6)
$$

- Probability of 10 rolls (7 failures, 3 successes).

$$
P(X=7)=\binom{9}{7}\left(\frac{5}{6}\right)^{7}\left(\frac{1}{6}\right)^{3}=0.017
$$

- Expected number of "non-5" results until three " 5 " are obtained.

$$
E(X)=\frac{3\left(\frac{5}{6}\right)}{\frac{1}{6}}=15
$$

Poisson

Let X follow a Binomial distribution $\operatorname{Bin}(n, p)$

$$
\begin{gathered}
E(X)=n p \\
P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}=\binom{n}{k}\left(\frac{\lambda}{n}\right)^{k}\left(1-\frac{\lambda}{n}\right)^{n-k}
\end{gathered}
$$

If the number of trials (n) tends to infinite and the probability of success (p) tends to zero in such a way that the expectation (λ) remains the same:

$$
\lim _{n \rightarrow \infty} P(X=k)=e^{-\lambda} \frac{\lambda^{k}}{k!}
$$

In this case X follows a Poisson distribution of parameter λ

- Commonly applied to rare events.
- Usually X is expressed with relation to a differential (time, space,...).
- Range of values: $\{0,1,2, \ldots, \infty\}$
- Expectation and Variance

$$
E(X)=V(X)=\lambda
$$

Example

An emergency service from a certain hospital usually receives 10 visits per hour on average. The service collapses if it receives more than 20 visits in an hour.

- Probability that the service collapses.

$$
P(X>20)=1-P(X \leq 20)=1-\sum_{i=1}^{20} e^{-10} \frac{10^{i}}{i!}=0.0016
$$

- Probability of no visits in an hour.

$$
P(X=0)=e^{-10} \frac{10^{0}}{0!}=4.54 \cdot 10^{-5}
$$

