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Probability

Definition

• The probability is a measure of likelihood that an event occurs.
• It takes values between 0 and 1.
• A value of 0 means that is completely unlikely to observe the event whilst a value of 1

implies that the event is undoubtedly going to happen.
• In case the probability is 0.5 it is equally possible that the event happens as it does

not.

Some events

• Elementary event. Such an event that can not be divided in other events.

• Compound event. An event composed of elementary or other compound events.

• Example. Roll one dice.

– Elementary event: “The result is 7”. It only involves the result “7”.

The probability is: P (”7”) = 1
6

where the value of 6 in the denominator stands for all the possible results.

– Compound event: “The result is even”. It involves the set of elementary results
“1”,“3”,“5”.

The probability is: P (”even”) = 3
6 = 1

2

• Intersection. Two events A and B happen at the same time.
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If the two events are independent P (A ∩ B) = P (A) P (B)

• Example. Roll two dice. What is the probability of obtaining two ones? The results
of each die can be assumed to be independent.

P (D1 = 1 ∩ D2 = 1) = P (D1 = 1) P (D2 = 1) = 1
6

1
6 = 1

36

• Union. Given two events A and B, at least one of them is observed.

P (A ∪ B) = P (A) + P (B) − P (A ∩ B)

• Example. Roll two dice (D1 and D2). What is the probability of obtaining one five at
least? The results of each die can be assumed to be independent.

P (D1 = 5 ∪ D2 = 5) = P (D1 = 5) + P (D2 = 5) − P (D1 = 5 ∩ D2 = 5) = 1
6 + 1

6 − 1
36 = 11

36

• Complementary / contrary. The opposite of an event. AC

P
(
AC

)
= 1 − P (A)

• Example. When rolling a die, what is the probability of obtaining a result different to
“5”?

P (D ̸= 5) = 1 − P (D = 5) = 1 − 1
6 = 5

6

Conditional probability

• The probability of event A occurring if event B occurred.

P (A|B)

• If P (A|B)=P (A), A and B are independent, i.e. the probability of A is not condi-
tioned by B.
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• Example. Roll a dice. What is the probability of “6” if we know that the result is
even?

Two ways to find the probability.

a) Use the equation for conditional probability.

P (A|B) = P (A ∩ B)
P (B)

P (D = 6|even) = P (D = 6 ∩ even)
P (even) =

1
6
3
6

= 1
3

b) Reduce the sample space (possible results) and compute the probability in this new
sample space.

If we know that the result is even, the sample space is {2, 4, 6}. In this new sample space
the probability of “6” is 1

3 .
Both approaches are equivalent.

• Conditional complimentary. The complimentary of a conditional event: keep the
condition and apply the contrary to the event.

P
(
(A|B)C

)
= P

(
AC |B

)
• Example. Roll a dice. What is the probability of result different to “6” if we know

that the result is even?

P
(
(D = 6|”even”)C

)
= P (D ̸= 6|”even”)

a) Use the equation for conditional probability

P (D ̸= 6|even) = P (D ̸= 6 ∩ even)
P (even) =

2
6
3
6

= 2
3

b) Reduce the sample space (possible results) and compute the probability in this new
sample space.

If we know that the result is even, the sample space is {2, 4, 6}. In this new sample space
the probability of not “6” is 2

3 .
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Bayes theorem

• Suppose the information is brought to us in terms of conditional probabilities rather
than intersections of elementary events.

P (A|B) = P (A ∩ B)
P (B)

but also

P (B|A) = P (A ∩ B)
P (A)

so that

P (A ∩ B) = P (B|A) P (A)

P (A|B) = P (B|A) P (A)
P (B)

In this case the probability of B has to be computed considering all the settings in relation
of A.

P (B) = P (A ∩ B) + P
(
AC ∩ B

)
= P (B|A) P (A) + P

(
B|AC

)
P

(
AC

)
Example. It is known that 1 out of 3 subjects using a treatment have a positive response.
Among them 1 out of 4 have genotype AA whereas only a 10% of subjects with negative
response have genotype AA.

P (+) = 1
3; P (AA|+) = 1

4; P (AA|−) = 1
10

What is the probability of positive response if a subject has genotype AA?

P (+|AA) = P (AA|+) P (+)
P (AA|+) P (+) + P (AA|−) P (−) =

=
1
4

1
3

1
4

1
3 + 1

10
2
3

= 5
9
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Assessment of diagnostic test ability

Introduction

• Marker values are used as a predictor of a binary outcome.

• Diagnostic test. The marker values and the outcome are referred to the same chrono-
logical time.

• Prognostic test. The marker values are obtained before the outcome happens.

Examples: clinical signs or symptoms, biomarkers, laboratory tests,. . .

• Commonly the marker is dichotomized as a positive or negative result.

If the test (Y = 0, 1) and the outcome (D = 0, 1) are binary variables, there are four possible
intersections between the two variables.

Outcome
Test D = 1 D = 0

Y = 1 TP FP TP + FP
Y = 0 FN TN FN + TN

TP + FN FP + TN

• D = 1 for outcome present. D = 0 for outcome absent.

• Y = 1 for a positive test. Y = 0 for a negative test.

• TP: True positive. (Y = 1) ∩ (D = 1)

• FP: False positive. (Y = 1) ∩ (D = 0)

• TN: True negative. (Y = 0) ∩ (D = 0)

• FN: False negative. (Y = 0) ∩ (D = 1)

Example. Ultrasonography approach is assessed to diagnose prostate cancer. A sample of
245 subjects, 105 with prostate cancer and 140 controls, were undergo to an ultrasonography.
The results are in the following table:
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Outcome
Test D = 1 D = 0

Y = 1 45 50 95
Y = 0 60 90 150

105 140 245

Accuracy measures

• Accuracy: the test’s ability to correctly detect a condition when it is actually present
and to rule out a condition when it is truly absent.

• Accuracy has to do with concepts as:

– Classification error
– Association between test and outcome
– Discriminative ability of outcome populations

Sensitivity and Specificity

• True positive fraction (TPF)

TPF = P (Y = 1|D = 1)

In Medicine is known as Sensitivity.
Sensitivity: It assesses the test’s ability to detect the condition when it is present.
In Engineering is also known as Success rate

• False positive fraction (FPF)

FPF = P (Y = 1|D = 0)

In Medicine the complementary of FPF, (1 − FPF ), is known as Specificity.
Specificity: It assesses the test’s ability to exclude the condition in subjects without the
condition.
In Engineering FPF is known as False alarm rate
In the example:

TPF = 45
105 = 0.429

FPF = 50
140 = 0.357

Specificity = 1 − FPF = 0.643
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Odds Ratio

It is a measure of association between the test and the outcome.
First let’s define an odds.
An odds is the ratio between a probability and its complementary p

1−p
.

• Odds of outcome present.

OddsD=1 = P (Y = 1|D = 1)
P (Y = 0|D = 1) = TPF

1 − TPF

• Odds of outcome absent.

OddsD=0 = P (Y = 1|D = 0)
P (Y = 0|D = 0) = FPF

1 − FPF

• Interpreting the Odds

– Odds > 1 means a positive result is more probable than a negative one.
– Odds = 1 means a positive result is equally probable than a negative one.
– Odds < 1 means a positive result is less probable than a negative one.

If the test performs well it is expected that:

• OddsD=1 takes values greater than 1.
• OddsD=0 takes values lower than 1.

Odds ratio. Ratio of two odds.

ORD=1
D=0

= OddsD=1

OddsD=0

• OR > 1. The Odds of D = 1 is greater than Odds for D = 0. The test performs
correctly.

• OR = 1. The Odds of D = 1 is equal than Odds for D = 0. The test is useless.
Independence between test and outcome.

• OR < 1. The Odds of D = 1 is lower than Odds for D = 0. Nonsense. Revise the test.

In the example:

OddsD=1 = TPF

1 − TPF
= 45

60 = 0.75

OddsD=0 = FPF

1 − FPF
= 50

90 = 0.556

OR = 0.75
0.556 = 1.35
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Likelihood Ratios

Likelihood ratios are interpreted as “information gain”. How much knowledge do the test
bring about the outcome?

• Positive likelihood ratio.

LR+ = P (Y = 1|D = 1)
P (Y = 1|D = 0) = TPF

FPF

How much probable is a positive result when outcome is present.

• Negative likelihood ratio.

LR− = P (Y = 0|D = 1)
P (Y = 0|D = 0) = 1 − TPF

1 − FPF

How much probable is a negative result when outcome is present.

• Pre-test Odds

OddsP re = P (D = 1)
P (D = 0)

• Post-test Odds

OddsP ost,Y =1 = P (D = 1|Y = 1)
P (D = 0|Y = 1) = OddsP re · LR+

OddsP ost,Y =0 = P (D = 1|Y = 0)
P (D = 0|Y = 0) = OddsP re · LR−

Likelihood ratios informs how the test modifies the odds.

• LR+ indicates how much informative is a positive result.
• LR− indicates how much informative is a negative result.

In the example:

LR+ = TPF

FPF
= 1.2

LR− = 1 − TPF

1 − FPF
= 0.89
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Utility measures

• How much useful is the test when applied?

• Positive predictive value (PPV)

Utility of positive results.

PPV = P (D = 1|Y = 1) = TPF · p

TPF · p + FPF · (1 − p)

• Negative predictive value (NPV)

Utility of negative results.

NPV = P (D = 0|Y = 0) = (1 − FPF ) · (1 − p)
(1 − FPF ) · (1 − p) + (1 − TPF ) · p

In the example:

• If the prevalence of the table is representative of the “true prevalence”

p = P (D = 1) = 105
245 = 0.43

PPV = P (D = 1|Y = 1) = 45
95 = 0.474

NPV = P (D = 0|Y = 0) = 60
150 = 0.6

• Utility if the prevalence is 0.2.

PPV = P (D = 1|Y = 1) = 0.429 · 0.2
0.429 · 0.2 + 0.357 · 0.8 = 0.231

NPV = P (D = 0|Y = 0) = 0.643 · 0.8
0.643 · 0.8 + 0.571 · 0.2 = 0.818
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Continuous test

• Let Y be a continuous variable.

• Usually the test is dichotomized using a threshold (c) and proceed as we saw before
(accuracy and utility measures).

• If the population with outcome present (D = 1) has greater values (mean) than the
population with outcome absent (D = 0)

Y ≥ c → positive and Y < c → negative.

• Notice that accuracy and utility measures change with a different threshold.

• Plotting the pairs (TPF, 1 − FPF ) produces a ROC curve.

• Area under the ROC curve (AUC) is used to assess the diagnostic ability of the test.

Specificity
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Area under the curve: 0.74

• AUC takes values between 0.5 (independence between marker and outcome) and 1
(perfect discrimination).
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• Interpretation of AUC:

– 0.5 < AUC < 0.7, diagnostic ability is poor.
– 0.7 ≤ AUC < 0.9 and < 0.9 diagnostic ability is good.
– AUC ≥ 0.9, diagnostic ability is excellent.
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