Introduction to probability computation and applications

Josep L. Carrasco
Bioestadística. Departament de Fonaments Clínics
Universitat de Barcelona

Probability

Definition

- The probability is a measure of likelihood that an event occurs.
- It takes values between 0 and 1 .
- A value of 0 means that is completely unlikely to observe the event whilst a value of 1 implies that the event is undoubtedly going to happen.
- In case the probability is 0.5 it is equally possible that the event happens as it does not.

Some events

- Elementary event. Such an event that can not be divided in other events.
- Compound event. An event composed of elementary or other compound events.
- Example. Roll one dice.
- Elementary event: "The result is 7". It only involves the result " 7 ".

The probability is: $P(" 7 ")=\frac{1}{6}$
where the value of 6 in the denominator stands for all the possible results.

- Compound event: "The result is even". It involves the set of elementary results " 1 "," 3 "," " $"$ ".

The probability is: $P("$ even" $)=\frac{3}{6}=\frac{1}{2}$

- Intersection. Two events A and B happen at the same time.

If the two events are independent $P(A \cap B)=P(A) P(B)$

- Example. Roll two dice. What is the probability of obtaining two ones? The results of each die can be assumed to be independent.

$$
P\left(D_{1}=1 \cap D_{2}=1\right)=P\left(D_{1}=1\right) P\left(D_{2}=1\right)=\frac{1}{6} \frac{1}{6}=\frac{1}{36}
$$

- Union. Given two events A and B, at least one of them is observed.

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

- Example. Roll two dice (D_{1} and D_{2}). What is the probability of obtaining one five at least? The results of each die can be assumed to be independent.

$$
P\left(D_{1}=5 \cup D_{2}=5\right)=P\left(D_{1}=5\right)+P\left(D_{2}=5\right)-P\left(D_{1}=5 \cap D_{2}=5\right)=\frac{1}{6}+\frac{1}{6}-\frac{1}{36}=\frac{11}{36}
$$

- Complementary / contrary. The opposite of an event. A^{C}

$$
P\left(A^{C}\right)=1-P(A)
$$

- Example. When rolling a die, what is the probability of obtaining a result different to " 5 "?

$$
P(D \neq 5)=1-P(D=5)=1-\frac{1}{6}=\frac{5}{6}
$$

Conditional probability

- The probability of event A occurring if event B occurred.

$$
P(A \mid B)
$$

- If $P(A \mid B)=P(A), \mathrm{A}$ and B are independent, i.e. the probability of A is not conditioned by B.
- Example. Roll a dice. What is the probability of " 6 " if we know that the result is even?

Two ways to find the probability.
a) Use the equation for conditional probability.

$$
\begin{gathered}
P(A \mid B)=\frac{P(A \cap B)}{P(B)} \\
P(D=6 \mid \text { even })=\frac{P(D=6 \cap \text { even })}{P(\text { even })}=\frac{\frac{1}{6}}{\frac{3}{6}}=\frac{1}{3}
\end{gathered}
$$

b) Reduce the sample space (possible results) and compute the probability in this new sample space.

If we know that the result is even, the sample space is $\{2,4,6\}$. In this new sample space the probability of " 6 " is $\frac{1}{3}$.
Both approaches are equivalent.

- Conditional complimentary. The complimentary of a conditional event: keep the condition and apply the contrary to the event.

$$
P\left((A \mid B)^{C}\right)=P\left(A^{C} \mid B\right)
$$

- Example. Roll a dice. What is the probability of result different to " 6 " if we know that the result is even?

$$
P\left((D=6 \mid " \text { even" })^{C}\right)=P(D \neq 6 \mid " \text { even" })
$$

a) Use the equation for conditional probability

$$
P(D \neq 6 \mid \text { even })=\frac{P(D \neq 6 \cap \text { even })}{P(\text { even })}=\frac{\frac{2}{6}}{\frac{3}{6}}=\frac{2}{3}
$$

b) Reduce the sample space (possible results) and compute the probability in this new sample space.

If we know that the result is even, the sample space is $\{2,4,6\}$. In this new sample space the probability of not " 6 " is $\frac{2}{3}$.

Bayes theorem

- Suppose the information is brought to us in terms of conditional probabilities rather than intersections of elementary events.

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

but also

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}
$$

so that

$$
\begin{gathered}
P(A \cap B)=P(B \mid A) P(A) \\
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
\end{gathered}
$$

In this case the probability of B has to be computed considering all the settings in relation of A .

$$
P(B)=P(A \cap B)+P\left(A^{C} \cap B\right)=P(B \mid A) P(A)+P\left(B \mid A^{C}\right) P\left(A^{C}\right)
$$

Example. It is known that 1 out of 3 subjects using a treatment have a positive response. Among them 1 out of 4 have genotype AA whereas only a 10% of subjects with negative response have genotype AA.

$$
P(+)=\frac{1}{3} ; P(A A \mid+)=\frac{1}{4} ; P(A A \mid-)=\frac{1}{10}
$$

What is the probability of positive response if a subject has genotype AA?

$$
\begin{array}{r}
P(+\mid A A)=\frac{P(A A \mid+) P(+)}{P(A A \mid+) P(+)+P(A A \mid-) P(-)}= \\
=\frac{\frac{1}{4} \frac{1}{3}}{\frac{1}{4} \frac{1}{3}+\frac{1}{10} \frac{2}{3}}=\frac{5}{9}
\end{array}
$$

Assessment of diagnostic test ability

Introduction

- Marker values are used as a predictor of a binary outcome.
- Diagnostic test. The marker values and the outcome are referred to the same chronological time.
- Prognostic test. The marker values are obtained before the outcome happens.

Examples: clinical signs or symptoms, biomarkers, laboratory tests,...

- Commonly the marker is dichotomized as a positive or negative result.

If the test $(Y=0,1)$ and the outcome $(D=0,1)$ are binary variables, there are four possible intersections between the two variables.

	Outcome		
Test	$D=1$	$D=0$	
$Y=1$	TP	FP	$T P+F P$
$Y=0$	FN	TN	$F N+T N$
	$T P+F N$	$F P+T N$	

- $D=1$ for outcome present. $D=0$ for outcome absent.
- $Y=1$ for a positive test. $Y=0$ for a negative test.
- TP: True positive. $(Y=1) \cap(D=1)$
- FP: False positive. $(Y=1) \cap(D=0)$
- TN: True negative. $(Y=0) \cap(D=0)$
- FN: False negative. $(Y=0) \cap(D=1)$

Example. Ultrasonography approach is assessed to diagnose prostate cancer. A sample of 245 subjects, 105 with prostate cancer and 140 controls, were undergo to an ultrasonography. The results are in the following table:

	Outcome		
Test	$D=1$	$D=0$	
$Y=1$	45	50	95
$Y=0$	60	90	150
	105	140	245

Accuracy measures

- Accuracy: the test's ability to correctly detect a condition when it is actually present and to rule out a condition when it is truly absent.
- Accuracy has to do with concepts as:
- Classification error
- Association between test and outcome
- Discriminative ability of outcome populations

Sensitivity and Specificity

- True positive fraction (TPF)

$$
T P F=P(Y=1 \mid D=1)
$$

In Medicine is known as Sensitivity.
Sensitivity: It assesses the test's ability to detect the condition when it is present.
In Engineering is also known as Success rate

- False positive fraction (FPF)

$$
F P F=P(Y=1 \mid D=0)
$$

In Medicine the complementary of FPF, $(1-F P F)$, is known as Specificity.
Specificity: It assesses the test's ability to exclude the condition in subjects without the condition.

In Engineering FPF is known as False alarm rate
In the example:

$$
\begin{gathered}
T P F=\frac{45}{105}=0.429 \\
F P F=\frac{50}{140}=0.357 \\
\text { Specificity }
\end{gathered}=1-F P F=0.643-1 .
$$

Odds Ratio

It is a measure of association between the test and the outcome.
First let's define an odds.
An odds is the ratio between a probability and its complementary $\frac{p}{1-p}$.

- Odds of outcome present.

$$
O d d s_{D=1}=\frac{P(Y=1 \mid D=1)}{P(Y=0 \mid D=1)}=\frac{T P F}{1-T P F}
$$

- Odds of outcome absent.

$$
O d d s_{D=0}=\frac{P(Y=1 \mid D=0)}{P(Y=0 \mid D=0)}=\frac{F P F}{1-F P F}
$$

- Interpreting the Odds
- Odds >1 means a positive result is more probable than a negative one.
$-O d d s=1$ means a positive result is equally probable than a negative one.
- Odds <1 means a positive result is less probable than a negative one.

If the test performs well it is expected that:

- $O d d s_{D=1}$ takes values greater than 1 .
- $O d d s_{D=0}$ takes values lower than 1.

Odds ratio. Ratio of two odds.

$$
O R_{\frac{D=1}{D=0}}=\frac{O d d s_{D=1}}{O d d s_{D=0}}
$$

- $O R>1$. The Odds of $D=1$ is greater than Odds for $D=0$. The test performs correctly.
- $O R=1$. The Odds of $D=1$ is equal than Odds for $D=0$. The test is useless. Independence between test and outcome.
- $O R<1$. The Odds of $D=1$ is lower than Odds for $D=0$. Nonsense. Revise the test.

In the example:

$$
\begin{gathered}
O d d s_{D=1}=\frac{T P F}{1-T P F}=\frac{45}{60}=0.75 \\
O d d s_{D=0}=\frac{F P F}{1-F P F}=\frac{50}{90}=0.556 \\
O R=\frac{0.75}{0.556}=1.35
\end{gathered}
$$

Likelihood Ratios

Likelihood ratios are interpreted as "information gain". How much knowledge do the test bring about the outcome?

- Positive likelihood ratio.

$$
L R+=\frac{P(Y=1 \mid D=1)}{P(Y=1 \mid D=0)}=\frac{T P F}{F P F}
$$

How much probable is a positive result when outcome is present.

- Negative likelihood ratio.

$$
L R-=\frac{P(Y=0 \mid D=1)}{P(Y=0 \mid D=0)}=\frac{1-T P F}{1-F P F}
$$

How much probable is a negative result when outcome is present.

- Pre-test Odds

$$
O d d s_{P r e}=\frac{P(D=1)}{P(D=0)}
$$

- Post-test Odds

$$
\begin{aligned}
& O d d s_{\text {Post }, Y=1}=\frac{P(D=1 \mid Y=1)}{P(D=0 \mid Y=1)}=O d d s_{\text {Pre }} \cdot L R+ \\
& O d d s_{\text {Post }, Y=0}=\frac{P(D=1 \mid Y=0)}{P(D=0 \mid Y=0)}=O d d s_{\text {Pre }} \cdot L R-
\end{aligned}
$$

Likelihood ratios informs how the test modifies the odds.

- $L R+$ indicates how much informative is a positive result.
- $L R$ - indicates how much informative is a negative result.

In the example:

$$
\begin{gathered}
L R+=\frac{T P F}{F P F}=1.2 \\
L R-=\frac{1-T P F}{1-F P F}=0.89
\end{gathered}
$$

Utility measures

- How much useful is the test when applied?
- Positive predictive value (PPV)

Utility of positive results.

$$
P P V=P(D=1 \mid Y=1)=\frac{T P F \cdot p}{T P F \cdot p+F P F \cdot(1-p)}
$$

- Negative predictive value (NPV)

Utility of negative results.

$$
N P V=P(D=0 \mid Y=0)=\frac{(1-F P F) \cdot(1-p)}{(1-F P F) \cdot(1-p)+(1-T P F) \cdot p}
$$

In the example:

- If the prevalence of the table is representative of the "true prevalence"

$$
\begin{gathered}
p=P(D=1)=\frac{105}{245}=0.43 \\
P P V=P(D=1 \mid Y=1)=\frac{45}{95}=0.474 \\
N P V=P(D=0 \mid Y=0)=\frac{60}{150}=0.6
\end{gathered}
$$

- Utility if the prevalence is 0.2 .

$$
\begin{aligned}
& P P V=P(D=1 \mid Y=1)=\frac{0.429 \cdot 0.2}{0.429 \cdot 0.2+0.357 \cdot 0.8}=0.231 \\
& N P V=P(D=0 \mid Y=0)=\frac{0.643 \cdot 0.8}{0.643 \cdot 0.8+0.571 \cdot 0.2}=0.818
\end{aligned}
$$

Continuous test

- Let Y be a continuous variable.
- Usually the test is dichotomized using a threshold (c) and proceed as we saw before (accuracy and utility measures).
- If the population with outcome present $(D=1)$ has greater values (mean) than the population with outcome absent $(D=0)$
$Y \geq c \rightarrow$ positive and $Y<c \rightarrow$ negative.
- Notice that accuracy and utility measures change with a different threshold.
- Plotting the pairs (TPF, $1-F P F)$ produces a ROC curve.
- Area under the ROC curve (AUC) is used to assess the diagnostic ability of the test.

Area under the curve: 0.74

- AUC takes values between 0.5 (independence between marker and outcome) and 1 (perfect discrimination).
- Interpretation of AUC:
$-0.5<A U C<0.7$, diagnostic ability is poor.
$-0.7 \leq A U C<0.9$ and <0.9 diagnostic ability is good.
$-\mathrm{AUC} \geq 0.9$, diagnostic ability is excellent.

