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Abstract 28 

Study question:  29 

Are there DNA methylation alterations in sperm that could explain the reduced 30 

biological fertility of male partners from couples with unexplained infertility? 31 

Summary answer: DNA methylation patterns, not only at specific loci but also at Alu 32 

Yb8 repetitive sequences, are altered in infertile individuals compared to fertile 33 

controls. 34 

What is known already: Aberrant DNA methylation of sperm has been associated 35 

with human male infertility in patients demonstrating either deficiencies in the process 36 

of spermatogenesis or low semen quality. 37 

Study design, size, duration: Case and control prospective study. This study 38 

compares 46 sperm samples obtained from 17 normospermic fertile men and 29 39 

normospermic infertile patients. 40 

Participants/materials, setting, methods: Illumina Infinium HD Human Methylation 41 

450K arrays were used to identify genomic regions showing differences in sperm DNA 42 

methylation patterns between 5 fertile and 7 infertile individuals. Additionally, global 43 

DNA methylation of sperm was measured using the Methylamp Global DNA 44 

Methylation Quantification Ultra kit (Epigentek) in 14 samples, and DNA methylation at 45 

several repetitive sequences (LINE-1, Alu Yb8, NBL2, D4Z4) measured by bisulfite 46 

pyrosequencing in 44 sperm samples. A sperm-specific DNA methylation pattern was 47 

obtained by comparing the sperm methylomes with the DNA methylomes of 48 

differentiated somatic cells using data obtained from methylation arrays (Illumina 450K) 49 

of blood, neural and glial cells deposited in public databases. 50 

Main results and the role of chance: In this study we conduct, for the first time, a 51 

genome-wide study to identify alterations of sperm DNA methylation in individuals with 52 

unexplained infertility that may account for the differences in their biological fertility 53 

compared to fertile individuals. We have identified 2,752 CpGs showing aberrant DNA 54 

methylation patterns, and more importantly, these differentially methylated CpGs were 55 

significantly associated with CpG sites which are specifically methylated in sperm when 56 

compared to somatic cells. We also found statistically significant (p<0.001) 57 

associations between DNA hypomethylation and regions corresponding to those which, 58 

in somatic cells, are enriched in the repressive histone mark H3K9me3, and between 59 

DNA hypermethylation and regions enriched in H3K4me1 and CTCF, suggesting that 60 

the relationship between chromatin context and aberrant DNA methylation of sperm in 61 

infertile men could be locus-dependent. Finally, we also show that DNA methylation 62 

patterns, not only at specific loci but also at several repetitive sequences (LINE-1, Alu 63 
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Yb8, NBL2, D4Z4), were lower in sperm than in somatic cells. Interestingly, sperm 64 

samples at Alu Yb8 repetitive sequences of infertile patients showed significantly lower 65 

DNA methylation levels than controls. 66 

Limitations, reasons for caution: Our results are descriptive and further studies 67 

would be needed to elucidate the functional effects of aberrant DNA methylation on 68 

male fertility. 69 

Wider implications of the findings: Overall, our data suggest that aberrant sperm 70 

DNA methylation might contribute to fertility impairment in couples with unexplained 71 

infertility and they provide a promising basis for future research. 72 

Study funding/competing interest(s): This work has been financially supported by 73 

the Fundación Cientifica de la AECC (to R.G.U.); IUOPA (to G.F.B.); FICYT (to E.G.T.); 74 

the Spanish National Research Council (CSIC; 200820I172 to M.F.F.); Fundación 75 

Ramón Areces (to M.F.F); the Plan Nacional de I+D+I 2008-2011/2013-2016/FEDER 76 

(PI11/01728 to AF.F., PI12/01080 to M.F.F. and PI12/00361 to S.L.); the PN de I+D+I 77 

2008-20011 and the Generalitat de Catalunya (2009SGR01490). A.F.F. is sponsored 78 

by ISCIII-Subdirección General de Evaluación y Fomento de la Investigación 79 

(CP11/00131). S.L. is sponsored by the Researchers Stabilization Program from the 80 

Spanish National Health System (CES09/020). The IUOPA is supported by the Obra 81 

Social Cajastur, Spain. 82 
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 85 
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Introduction 87 

 88 

Human infertility is a disorder affecting 13-15% of couples worldwide, where in 20% of 89 

cases the male factor is fully responsible and in another 30%-40% it is contributory 90 

(Jarow, et al., 2002). In the majority of cases, male factor infertility is closely related to 91 

decreased semen quality as a consequence of urogenital abnormalities including 92 

testicular dysfunction (a large proportion being caused by genetic abnormalities such 93 

as karyotype anomalies and Y chromosome microdeletions), varicocele, infections of 94 

the genital tract, immunological problems and/or exposure to exogenous chemical or 95 

physical agents. However, in some cases the clinical evaluation of the individual is 96 

normal, thus the patient is diagnosed with infertility of unknown origin (Hamada, et al., 97 

2011, Irvine, 1998). 98 

Epigenetics involves the study of heritable changes affecting gene expression that are 99 

not caused by any change in DNA sequence (Holliday, 1987). The best-known 100 

epigenetic mark is DNA methylation (Esteller, 2008, Fernandez, et al., 2012), a 101 

dynamic process that takes place throughout the course of development in multicellular 102 

organisms and ensures the maintenance of normal expression patterns. Likewise, DNA 103 

methylation alterations related to different human pathologies, developmental 104 

processes and aging have been found (Fernandez, et al., 2012, Urdinguio, et al., 105 

2009).  106 

In particular, DNA methylation of germ cells is critically involved in many processes, 107 

including paternal genomic imprinting (Feinberg, et al., 2002), the gene-dosage 108 

reduction involved in X-chromosome inactivation in females (Payer and Lee, 2008), the 109 

silencing of transposable elements (Doerfler, 1991), and several aspects of meiosis, 110 

post-meiotic gene silencing and DNA compaction (Oakes, et al., 2007a). 111 

The mammalian germ line undergoes extensive epigenetic reprogramming during germ 112 

cell maturation and gametogenesis. In males, widespread erasure of DNA methylation 113 

takes place in primordial germ cells (Hajkova, et al., 2002, Reik, et al., 2001) and 114 

subsequent de novo DNA methylation occurs during the maturation of germ cells and 115 

spermatogenesis, prior to meiosis (Oakes, et al., 2007a). As a result, the pattern of 116 

sperm DNA methylation is unique and hypomethylated compared with any other 117 

somatic cell (Eckhardt, et al., 2006, Oakes, et al., 2007b). The main targets of 118 

methylation in germ cells are non-CpG island (non-CGI) sequences in both distinct loci 119 

and repetitive sequences, but CpG islands (CGIs) can also be methylated (Oakes, et 120 

al., 2007a). Interestingly, hypomethylated promoters in the mature sperm are the 121 

promoters of developmental transcription and signalling factors. In mammals, correct 122 

sperm DNA methylation is suggested to be essential for both fertilization and early 123 
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embryo viability (Anway, et al., 2005, Bourc'his and Bestor, 2004, Carrell and 124 

Hammoud, 2010, Dada, et al., 2012, Jenkins and Carrell, 2012, Li, et al., 1992, Okano, 125 

et al., 1999, Romero, et al., 2011, Yaman and Grandjean, 2006) and therefore 126 

improved knowledge of the epigenetics of sperm is not only necessary to understand 127 

these processes, but may also provide clues to the potential causes of male infertility of 128 

unknown origin. 129 

Early studies of sperm DNA methylation analysis were specifically performed in 130 

imprinted genes as an increased risk of congenital imprinting diseases in children 131 

conceived through assisted reproductive technologies (ART) had been suggested. 132 

These studies showed the aberrant methylation patterns of imprinted genes in poor 133 

quality sperm (Kobayashi, et al., 2007, Marques, et al., 2004, Marques, et al., 2008, 134 

Poplinski, et al., 2010). Altered sperm DNA methylation patterns have also been found 135 

in non-imprinted genes associated with spermatogenic impairment, such as 136 

Methylenetetrahydrofolate Reductase (MTHFR) (associated with folate metabolism and 137 

methylation reactions) (Wu, et al., 2010b), the cAMP Responsive Element Modulator 138 

(CREM), involved in spermatogenesis, (Nanassy and Carrell, 2011) and the Deleted in 139 

Azoospermia-like (DAZL) gene which is involved in germline establishment and 140 

gametogenesis (Navarro-Costa, et al., 2010). 141 

The emergence of new technologies to analyse DNA methylation has allowed the study 142 

of alterations at the whole-genome level. In this manner, aberrant sperm DNA 143 

methylation of both imprinted and non-imprinted genes has been identified in infertile 144 

individuals with poor quality semen (Houshdaran, et al., 2007, Pacheco, et al., 2011). 145 

Furthermore, nearly 600 genes were found differentially methylated in the testes of 146 

humans with spermatogenic disorders, of which two are worth noting; Piwi-like RNA-147 

mediated gene silencing 2 (PIWIL2) and Tudor domain containing 1 (TDRD1), two 148 

germline-specific genes involved in PIWI-interacting RNA (piRNA) processing 149 

machinery (Heyn, et al., 2012). The results of all these studies suggest that alterations 150 

of DNA methylation patterns of the germ cell could affect reproductive success. 151 

Although defective germ cell-DNA methylation patterns have been associated with 152 

alterations in semen quality, there is a lack of such epigenetic studies in infertile men 153 

with normal sperm parameters. In this project we aim for the first time to conduct a 154 

genome-wide analysis of DNA methylation in sperm samples from normozoospermic 155 

fertile and infertile men. To address this issue, we used high-throughput 450K 156 

methylation arrays, covering the whole genome, to determine whether epigenetic 157 

changes in male germ cells could explain differences in reproductive success related to 158 

the functional quality of spermatozoa. 159 

160 
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Materials and methods 161 

Ethical Approval 162 

Our study recruited semen samples from 49 selected individuals of Caucasian origin. 163 

All the participants signed an informed consent form and the project was approved by 164 

the Ethical Committee of the Puigvert Foundation. 165 

Subjects of study 166 

Clinical assessment of fertile and infertile individuals was conducted at the Andrology 167 

Service of the Fundació Puigvert, and included taking a full personal and family 168 

medical history to rule out heritable conditions, physical examination –with special 169 

emphasis on sexual characters, gonads and genitalia– and a minimum of two semen 170 

analyses [performed in accordance with the World Health Organization guidelines 171 

(Cooper, et al., 2010, WHO, 2010) except for motility assessments, which were done at 172 

room temperature using the WHO 1999 four-grade classification of movement]. 173 

Spermiograms included volume, pH, sperm concentration, four-category motility 174 

assessment, vitality, morphology and antisperm antibodies. Motility and sperm count 175 

were done in duplicate aliquots of ≥200 cells, and measures were adopted to control 176 

for acceptable differences between duplicates. Sperm concentration was performed on 177 

diluted, immobilized samples using haemocytometer chambers. Computer assisted 178 

sperm analysis (CASA) was performed on fresh ejaculates with the Integrated Semen 179 

Analysis System (ISAS®, version 1.01), Proiser R+D (Valencia, Spain) to obtain 180 

objective measurements of sperm kinematics (Pedigo, et al., 1989).  181 

Semen samples from 17 fertile men (2 of whom were anonymous donors used in >10 182 

insemination cycles per sperm donor for at least 6 female recipients; the other 15 being 183 

volunteers of proven fertility who were going to undergo vasectomy; aged 22- 49 years) 184 

with normal seminal quality, were studied as methylation controls of fertile 185 

spermatozoa. In addition, semen samples were obtained from 29 male patients (aged 186 

30-55 years) consulting for couple infertility with no known risk factors and normal or 187 

mild defects of semen quality values that were used in husband ART (IVF-ICSI: in vitro 188 

fertilization- intracytoplasmic sperm injection technique) (Table I). The reference values 189 

of fertility were those most recently defined by the WHO (Cooper, et al., 2010, WHO, 190 

2010). 191 

Semen volume, count, motility, and morphology, including the teratozoospermia index 192 

(TZI), as well as the results of the gynecological assessment of the female partner, for 193 

the samples used for the epigenetic studies are summarized in Table I. TZI is defined 194 

as the number of abnormalities present per abnormal spermatozoon, these being 195 
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defects of the head, neck/mid piece and tail defects or presence of cytoplasmic 196 

droplets, thus indicating the severity of the morphology alteration (from 1 to 4 value). 197 

Pregnancy outcome from IVF-ICSI treatment of infertile couples is also described for 198 

patients (Table I). 199 

Isolation of mature germ cells and DNA extraction 200 

Semen samples were liquefacted and homogenized with a mechanical mixer at 37ºC 201 

(30-60 min) and subsequently processed with a differential centrifugation technique 202 

using density gradients (65-90% Puresperm®, Nidacon International AB, Mölndal, 203 

Sweden) to remove somatic contaminants and to enrich the sample in terms of 204 

spermatozoa. The isolated germ cells were normalized to a concentration of 1x106/mL 205 

and processed to obtain sperm DNA (Wizard Genomic Purification kit, Promega, USA) 206 

following the manufacturer’s instructions for this specific cell type. The DNA extraction 207 

included RNAse A treatment of DNA samples. 208 

 209 

Genome-wide DNA methylation analysis with high-density arrays 210 

Microarray-based DNA methylation profiling was performed with the Illumina Infinium® 211 

Human Methylation450 BeadChip (Illumina Inc., USA) (Bibikova, et al., 2011). Bisulfite 212 

conversion of DNA was carried out using the EZ DNA Methylation Kit (Zymo Research, 213 

Orange, CA) following the manufacturer’s procedure, but with the modifications 214 

described in the Infinium Assay Methylation Protocol Guide. Processed DNA samples 215 

were then hybridized to the BeadChip (Illumina) following the Illumina Infinium HD 216 

Methylation Protocol. Genotyping services were provided by the Spanish "Centro 217 

Nacional de Genotipado” (CEGEN-ISCIII)" (www.cegen.org).  218 

IDAT files from the microarray were further processed using the R/Bioconductor 219 

(version 3.0; open source) package minfi (Hansen and Aryee). In order to adjust for the 220 

different probe design types present in the 450k architecture, red and green signals 221 

from the IDAT files were corrected using the SWAN algorithm (Makismovic, et al., 222 

2012). Probes with detection p-values over 0.01 in at least two samples were filtered 223 

out. In accordance with Du (Du, et al., 2010), both beta values and M-values were 224 

computed and employed across the analysis pipeline. M-values were used for all the 225 

statistical analyses, assuming homoscedasticity, while beta values were mostly used 226 

for the intuitive interpretation and visualization of results. 227 

Probes that were found to co-hybridate with probes in the sexual chromosomes 228 

(Lemire, et al., 2013) were removed. 229 
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 230 

Detection of differentially methylated probes 231 

In order to identify CpG sites which were differentially methylated (dmCpGs) between 232 

the sperm samples of fertile and infertile men, a robust moderated t-test implemented 233 

in the R/Bioconductor package limma (Smyth, 2005) was performed. False Discovery 234 

Rate (FDR) was controlled using the Benjamini-Hochberg procedure, and a 235 

significance level of 0.05 employed. An additional threshold of effect size was applied, 236 

meaning that only those probes with the strongest differences between groups (the top 237 

70%) were selected.  The application of this threshold is essential to remove 238 

differences deriving from technical artefacts and consequently ensure a more 239 

biologically sound statistical data analysis (Pan et al. 2005). dmCpGs were defined as 240 

hypermethylated or hypomethylated when methylation values were respectively higher 241 

or lower in infertile samples compared with fertile controls.   242 

 243 

Genomic region analysis  244 

The probes in the microarray were assigned to a genomic region according to their 245 

position relative to the transcript information extracted from the R/Bioconductor 246 

package TxDb.Hsapiens.UCSC.hg19.knownGene (Carlson). A probe was said to be in 247 

a Promoter region when it was located inside the first exon, the 5'-UTR or a region up 248 

to 2kbp upstream of the transcription start site (TSS) of any given transcript. Similarly, 249 

a probe found inside any intron or any exon other than the first was labelled as 250 

Intragenic. Intergenic probes were determined as those which did not fall into either of 251 

the two previous categories. According to this definition, a probe could be in both a 252 

Promoter and an Intragenic region at the same time, for different transcripts. A 253 

contingency table was built for each selected subset of probes and a given genomic 254 

region, with one variable indicating whether a given probe belonged or not to the 255 

subset, and the other indicating whether a given probe was labelled with the selected 256 

region. Significance of the association was determined by a Chi-squared test. A 257 

significance level of 0.05 was used to determine if a subset was dependent with 258 

respect to a given genomic region. Odds Ratio was used as a measure of effect size. 259 

 260 

CGI status analysis 261 

The CGI locations used in the analyses were obtained from the R/Bioconductor 262 

package FDb.InfiniumMethylation.hg19 (Triche). This dataset contains all the CGIs 263 

distributed along the whole genome. The generation procedure for these CGIs is 264 

described by Wu and colleagues (Wu, et al., 2010a). CpG shores were defined as the 265 
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2kbp regions flanking a CGI. CpG shelves were defined as the 2kbp region, either 266 

upstream or downstream, of each CpG shore. Probes not belonging to any of the 267 

regions thus far mentioned were assigned to the special category Non-CGI. Each 268 

probe was assigned to only one category. A 4x2 contingency table was constructed for 269 

every subset of probes in order to study the association between the given subset and 270 

the different CGI categories. A Chi-squared test was used to determine if any of the 271 

categories had a significant association with the given subset. For each of the CGI 272 

status levels, a 2x2 contingency table was defined and another Chi-squared test was 273 

independently used to evaluate the association of the given subset with each status 274 

level, a significance level of 0.05 being employed for all tests. Effect size was reported 275 

as the Odds Ratio for each of the individual tests. 276 

 277 

Histone enrichment analysis 278 

In order to analyse the enrichment of a histone mark on a given subset of probes, we 279 

used the information contained in the UCSC Browser Broad Histone track from the 280 

ENCODE project (Bernstein, et al., 2005, Bernstein, et al., 2006, Ernst, et al., 2011, 281 

Guttman, et al., 2010, Mikkelsen, et al., 2007). Histone peak data for every cell line and 282 

mark present in the ENCODE project were downloaded from the UCSC Browser 283 

(Supplementary Table 1). Small peaks were discarded when they were completely 284 

contained within wider peaks. For each combination of cell line and mark, a 2x2 285 

contingency table was built to determine its association with the input subset of probes. 286 

Probes in the array were classified according to whether they belonged to the subset or 287 

not, and whether they intersected with a significant broad peak for the given 288 

combination of cell line and mark. A Fisher exact test was used to determine if the 289 

given subset of probes was significantly enriched for each combination of cell line and 290 

mark. P-values were corrected for multiple testing using FDR (using the Benjamini-291 

Hochberg method) and a significance level of 0.05 was used to determine which 292 

probes had significant enrichment. The base-2 logarithm of the Odds Ratio was used 293 

as a measure of effect size. 294 

   295 

Global DNA methylation analysis 296 

Global DNA methylation status was quantified using the Methylamp global DNA 297 

methylation quantification ultra kit (Epigentek, Catalog # P-1014B, USA) following the 298 

manufacturer’s instructions. Briefly, 100 or 200 ng of genomic DNA is used for a 5-299 

methylcytosine (5-mC) quantification. The methylated fraction of DNA is recognized by 300 

a 5-methylcytosine antibody and colorimetrically quantified through an ELISA-like 301 
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reaction. 302 

 303 

Bisulfite pyrosequencing 304 

DNA methylation patterns of the repetitive sequences were analysed by bisulfite 305 

pyrosequencing. Bisulfite modification of DNA was performed with the EZ DNA 306 

Methylation-Gold kit (Zymo Research) following the manufacturer's instructions. Each 307 

sequence was amplified with previously described forward and reverse primers 308 

(Supplementary Table 2) (Bollati, et al., 2007, Choi, et al., 2009, Martinez, et al., 309 

2012). After PCR amplification of the region of interest with the specific primers, 310 

pyrosequencing was performed using PyroMark Q24 reagents, vacuum prep 311 

workstation, equipment and software (Qiagen, Netherlands). 312 

 313 

Identification of specific DNA methylation patterns in spermatozoa 314 

DNA methylation data of blood (Hannum, et al., 2013) and brain (neuron and glia) 315 

(Guintivano, et al., 2013) samples produced with the Illumina Infinium Human 316 

Methylation450 were used for comparison with the sperm data in order to identify DNA 317 

methylation patterns specific to mature germ cells. DNA methylation beta value data 318 

was downloaded from GEO accession numbers GSE40279 and GSE41826. 319 

Methylation data for the blood dataset was adjusted for white blood cell heterogeneity 320 

using the method described in Houseman et al. 2012 (Houseman, et al., 2012). In 321 

order to feed this method, we used the original 27k database of purified white blood cell 322 

subtypes included in the authors' original implementation of the algorithm. 323 

To identify tissue-specific methylated CpG sites in a given tissue, we looked for CpGs 324 

showing mean methylation > 60% in the target tissue and < 40% in the other tissues. 325 

Similarly, to identify tissue-specific unmethylated CpG sites we looked for CpGs with 326 

methylation <40% in the target tissue and > 60% in the other tissues. 327 

 328 

Circos data track smoothing 329 

In order to plot the CpG information on Circos genome-wide graphs, smoothing was 330 

applied to our data. Broad Histone peak information from UCSC was averaged by 331 

partitioning the genome into intervals of 200kbp and assigning to each peak a score 332 

that corresponded to the average of the broad peak scores found within it. CpG 333 

locations were not smoothed but rather stacked on several lines. This does not mean 334 

that any CpG has a higher score than other, but simply that the higher the stack of 335 

markers, the higher the density of CpGs in the region. 336 

 337 
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Statistical Analyses 338 

Statistical analyses were performed using R/Bioconductor (version 3.0; open source). 339 

To identify CpG sites showing differential methylation values between the sperm 340 

samples of fertile and infertile men, a robust moderated t-test implemented in the 341 

R/Bioconductor package limma was performed. FDR was controlled using the 342 

Benjamini-Hochberg procedure.  343 

Significant associations between dmCpGs and specific genomic locations was 344 

determined by a Chi-squared test. Odds Ratio was used as a measure of effect size. 345 

A Fisher exact test was used to analyse the enrichment of dmCpGs on an specific 346 

chromatin mark. P-values were corrected for multiple testing using FDR, and the base-347 

2 logarithm of the Odds Ratio was used as a measure of effect size. 348 

The non-parametric Kruskal-Wallis and Wilcox tests  were used to analyze differences 349 

in methylation levels (global and repetitive regions) in sperm groups compared with 350 

somatic cells. A value of p<0.05 was considered significant.  351 

352 
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Results 353 

 354 

Alterations of sperm DNA methylation are found in infertile individuals 355 

To identify genomic regions showing differences in sperm DNA methylation patterns 356 

between fertile and infertile individuals, we performed methylation arrays (methylation 357 

assay 1 in Table I) of 12 sperm samples and analysed the site-specific methylation 358 

status of 485,577 CpG sites across the human genome (Bibikova, et al., 2011, 359 

Sandoval, et al., 2011). In order to analyse differential methylation patterns, we divided 360 

the samples into two groups; one composed of 5 fertile individuals (samples Control-1 361 

to 5) and the other, 7 infertile patients (samples Patient-1 to 7). Only one of the female 362 

partners (Patient-7 partner) had a potential factor (dysovulation, corrected with 363 

medication) that may influence the fertility of the couple. The rest of the women 364 

presented no known risk factors. It is worth taking into account that we decided to 365 

establish semen diagnosis based exclusively on the first semen analysis, since fertile 366 

controls only delivered a single sample.Nevertheless, some of the subsequent semen 367 

samples collected for this study in the infertile group showed some deviation from initial 368 

values with respect to sperm morphology.  It is of note, however, that abnormal sperm 369 

from infertile individuals showed a similar low severity of morphological alteration (TZI 370 

values < 1.7) as those from fertile individuals (Table I). 371 

The first observation indicated that, although methylation patterns are well preserved, 372 

some CpG sites exhibited higher interindividual variability (5% showed M-values 373 

SD>0.6), irrespective of the group of samples analysed (Fig. 1A), which confirms 374 

variation in DNA methylation of the male germline across unrelated individuals 375 

(Flanagan, et al., 2006). Statistical analysis showed 2,752 dmCpGs between fertile and 376 

infertile men. Of these, 1,447 CpG sites were hypermethylated while 1,305 were 377 

hypomethylated in infertile patients (Supplementary Fig. 1 and Supplementary Table 378 

3). Hierarchical clustering of DNA methylation data for the most variable CpG sites 379 

highlights the differences between the fertile controls and infertile patients (Fig. 1B). 380 

To study, from a functional genomics point of view, the characteristics of the dmCpG 381 

sites we first determined their distribution in CGI and non-CGI regions (Wu, et al., 382 

2010a). Interestingly, while hypermethylated CpG sites were preferentially enriched in 383 

CGI-shores (p<0.001; OR=1.50), hypomethylated CpG sites were enriched in CGIs 384 

(p<0.001, OR=1.27) (Fig. 1C). Intergenic regions showed a significantly increased 385 

proportion of hypomethylated CpG sites (p<0.001, OR=1.83) while promoter regions 386 

presented a decreased proportion of both hypermethylated (p= 0.039, OR=0.89) and 387 
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hypomethylated (p<0.001, OR=0.53) CpGs in infertile patients (Fig. 1D). Gene 388 

Ontology (GO) analysis of the dmCpGs, using DAVID gene ontology annotation 389 

groups, showed that genes around the hypermethylated CpG sites were enriched for a 390 

cell adhesion related term (GO term: homophilic cell adhesion; FDR <0.01), while 391 

genes around the hypomethylated CpG sites did not show any significant term 392 

enrichment for functional (GO) categories. 393 

Given that the establishment of germ cell DNA methylation marks involved in paternal 394 

genomic imprinting is critical during spermatogenesis, we next compared these 395 

dmCpGs with those associated with imprinted genes (Pacheco, et al., 2011). A total of 396 

8746 CpG sites belonging to 183 imprinted genes were present in the 450K array.  We 397 

found that 54 CpG sites associated with 48 imprinted genes were aberrantly 398 

methylated in infertile patients. Specifically, 33 CpG sites (related to 28 genes) were 399 

hypermethylated and 21 CpG sites (related to 28 genes) were hypomethylated; 8 400 

genes showed both hyper- and hypomethylation (Supplementary Tables 4 and 5). In 401 

addition we compared our results with those obtained by Pacheco and collaborators, 402 

who analysed 619 CpGs associated with imprinted genes from samples of sperm with 403 

low motility using 27K Illumina arrays, and found two common CpGs aberrantly 404 

methylated (associated to insulin-like growth factor 2 (IGF2) and heat shock 70kDa 405 

protein 6 (HSPA6) genes) in both studies. 406 

To study other genomic features which may provide clues about the mechanisms 407 

underlying the aberrant methylation changes in infertile men, we investigated whether 408 

the differentially methylated regions were among those targeted by any specific histone 409 

mark in somatic cells. We compared our methylation data with previously published 410 

data on a range of histone modifications and chromatin modifiers in 10 differentiated 411 

somatic cells obtained from healthy individuals (see Materials and Methods). We 412 

found statistically significant (p<0.001) associations between DNA hypomethylation 413 

and the repressive histone mark H3K9me3 in most differentiated ENCODE cell lines 414 

(Fig. 2A-B). However, DNA hypermethylation was associated with H3K4me1 and the 415 

CCCTC-binding factor (CTCF) (p<0.001) (Fig. 2A-B). We also investigated whether the 416 

hyper- and hypomethylated CpGs in the sperm of infertile patients were associated 417 

with the genomic regions that are known to be enriched for nucleosomes, H2AZ or the 418 

post-translational histone marks H3K4me3 and H3K27me3 in human sperm 419 

(Hammoud, et al., 2009), and we found a significant association between 420 

hypermethylated CpGs in sperm of infertile patients and those genomic regions 421 

enriched for H3K4me3 (p= 0.036; OR:1.40).  422 
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 423 

Differentially methylated regions are associated with sperm-specific DNA 424 

methylation sites in infertile individuals  425 

For the further characterization of the regions associated with the dmCpG sites found 426 

in our study we performed a comparative analysis between dmCpG sites and regions 427 

with sperm-specific DNA methylation (see Materials and Methods). To identify 428 

regions with tissue-specific DNA methylation we first compared the above mentioned 429 

sperm methylomes of the fertile subjects (5 samples) with the DNA methylomes of 430 

differentiated somatic cells. We used data obtained from methylation analysis of blood 431 

(8 samples) and neural and glial cells (8 samples of each) from the same type of 432 

methylation arrays (Illumina 450K) deposited in public databases (Guintivano, et al., 433 

2013, Hannum, et al., 2013). To reduce confounding factors in the blood dataset, we 434 

first corrected for cellular heterogeneity (Houseman, et al., 2012). 435 

The results of these comparisons showed that, as expected, the levels of DNA 436 

methylation of the germ cells were lower than those of somatic cells (average M-437 

values: sperm= -0.31, blood= -0.08, neuron= 0.02, glia= 0.02) (Supplementary Fig. 2 438 

and Supplementary Fig. 3A), whilst inter-individual variability of sperm was higher 439 

than observed in differentiated somatic cells (mean of log (SD): sperm= -1.41; blood= -440 

1.66; glia= -1.80; neuron= -1.77) (Supplementary Fig. 3A). Furthermore, we observed 441 

that sperm have a large number of CpG sites showing extreme values (89.5%), both 442 

unmethylated (<40 methylation %) and methylated (> 60 methylation %), while the 443 

differentiated somatic cells showed a large number of probes with intermediate 444 

methylation values (~33%) (Supplementary Fig. 3A). In addition, in sperm cells a 445 

larger number of probes showed specific DNA methylation patterns (unmethylated 446 

21,139; methylated 1,842) than in any of the somatic cell types (see Materials and 447 

Methods) (Supplementary Fig. 3B and Supplementary Table 6). Intriguingly, tissue-448 

specific unmethylated CpGs were enriched in non-CGIs in all somatic cell types, whilst 449 

in sperm they were enriched in CGI-shores, and, conversely, tissue-specific methylated 450 

CpGs were enriched in CGI-shores in all the somatic cells whilst being enriched in non-451 

CGIs in sperm (Supplementary Fig. 4), highlighting the peculiarity of this cell type in 452 

terms of DNA methylation patterns.  453 

Most importantly though, we found a significant association between those CpG sites 454 

with specific DNA methylation in sperm and the dmCpG sites (hyper- and 455 

hypomethylated) identified in infertile men (p<0.001; Fisher´s exact test, OR= 1.43), 456 
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which suggests that the alterations of sperm-specific DNA methylation patterns could 457 

be associated with male infertility. A more detailed analysis showed that only 458 

hypomethylated CpGs were significantly associated with both sperm-specific 459 

methylated (p=0.038, OR: 2.00) or unmethylated (p<0.001; OR: 2.08) CpGs. 460 

 461 

Global DNA methylation patterns: comparative analysis between fertile and 462 

infertile individuals 463 

To evaluate changes in global 5-mC levels (methylation assay 2 in Table I) that might 464 

be associated with male infertility we analysed a different set of samples from 7 fertile 465 

individuals (samples Control-6 to 12) and 7 normospermic infertile patients (samples 466 

Patient-8 to 14). Only two of the female partners (those of Patient-9 and 11) had a 467 

potential factor (tubal obstruction) that could influence the fertility of the couple. We 468 

found no significant differences in global 5-mC levels between fertile and infertile sperm 469 

samples (Fig. 3A).  470 

In addition, since an association between DNA methylation of repetitive elements and 471 

total genomic 5-methylcytosine has been described (Ehrlich, 2002, Weisenberger, et 472 

al., 2005, Yang, et al., 2004), we analysed the methylation patterns of several repetitive 473 

sequences (methylation assay 3 in Table I), both at whole genome level and at four 474 

specific repetitive loci, in sperm from 17 fertile (samples Control-1 to 17) and 27 infertile 475 

subjects (samples Patient-3 to 29) and compared them with differentiated somatic cells 476 

(blood and brain). Successful outcome in IVF-ICSI treatment was also taken into 477 

account (12 resulted in no pregnancy and 15 resulted in pregnancy) (Table I) as 478 

success in IVF-ICSI would provide extra indications for the lack of a phenotype 479 

associated with the female for the selected couples. 480 

Specifically, we determined the methylation status of four repetitive sequences, 481 

namely: LINE-1, an interspersed repeat found throughout the human genome and used 482 

as an estimate of global methylation levels (Yang, et al., 2004); Alu Yb8, a relatively 483 

young subfamily of the Alu short interspersed elements (SINEs) (Carroll, et al., 2001); 484 

D4Z4, a macrosatellite found in the subtelomeric regions (Chadwick, 2009); and NBL-485 

2, a complex tandem repeat found in the centromeric regions of acrocentric 486 

chromosomes (Nishiyama, et al., 2005). Our results showed no differences between 487 

fertile and infertile subjects in any of the repetitive sequences analysed, with the 488 

exception of Alu Yb8, where sperm of infertile individuals showed significantly lower Alu 489 
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methylation levels (p= 0.0011) (Fig. 3B). Furthermore, the comparative analysis of 490 

DNA methylation of repetitive sequences (LINE-1, Alu Yb8, NBL2, D4Z4) showed no 491 

statistical differences between the patient subgroups with respect to IVF-ICSI outcome. 492 

However, we did find huge DNA methylation differences between germ and somatic 493 

cells (blood, brain) in most of the repetitive sequences analysed, and in all cases 494 

sperm samples showed lower average methylation values (Fig. 3B). NBL-2 showed 495 

the largest differences (average methylation: sperm= 3.2%, blood= 80.2, and brain= 496 

76.3; p<0.001). Alu (average methylation: sperm= 47.5%, blood= 90.6, and brain= 497 

89.3; p<0.001) and D4Z4 (average methylation: sperm= 7.9%, blood= 55.6, and brain= 498 

53.6; p<0.001) also showed great differences, and LINE-1 displayed the lowest 499 

difference, with only the comparison with blood cells being statistically significant 500 

(average methylation: sperm= 69.8%, blood= 74.6, and brain= 72.6) (Fig. 3B). These 501 

results agree with the DNA methylation patterns of different repetitive regions found in 502 

human sperm and human embryonic stem cells (hESCs) (Molaro, et al., 2011) as well 503 

as in human sperm and B cells (Krausz, et al., 2012). 504 

505 
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Discussion 506 

 507 

Sperm and testicular DNA methylation profiles of specific genes or genomic regions 508 

from fertile and infertile human males have been compared in several studies to date 509 

(Heyn, et al., 2012, Houshdaran, et al., 2007, Kobayashi, et al., 2007, Marques, et al., 510 

2004, Marques, et al., 2008, Pacheco, et al., 2011, Poplinski, et al., 2010). These 511 

analyses were, however, either restricted to a small number of genes or imprinted 512 

regions, or considered a larger number of genes but focused only on promoter regions. 513 

What is more, only infertile patients presenting alterations associated with either the 514 

process of spermatogenesis or semen quality were studied. In contrast, in this work we 515 

compare, for the first time, and at genome-wide level, the DNA methylation patterns of 516 

sperm from fertile individuals with the sperm of patients with unexplained infertility. 517 

Furthermore, the confounding role of the significant proportion of female causes that 518 

contribute to reproductive failure was controlled since sperm was selected from 519 

couples with no known significant female risk factor.   520 

We analysed gene promoters and intragenic and intergenic regions, and identified 521 

alterations in the methylation of DNA in 2,752 CpGs. It is of particular note that a high 522 

level of variation in DNA methylation was observed in mature germ cells across 523 

unrelated individuals, even among fertile individuals, and may reflect differing levels of 524 

sperm function. Specifically, we found no alterations in the DNA methylation patterns of 525 

genes of the PIWI pathway, previously found to be associated with severe defects of 526 

sperm production (Heyn, et al., 2012). Neither did we find evidence for the previously 527 

described alterations in imprinted genes such as imprinted maternally expressed 528 

transcript (H19) or mesoderm specific transcript (MEST) (Kobayashi, et al., 2007, 529 

Marques, et al., 2004, Marques, et al., 2008, Pacheco, et al., 2011, Poplinski, et al., 530 

2010) or non-imprinted genes such as MTHFR (Houshdaran, et al., 2007, Pacheco, et 531 

al., 2011, Wu, et al., 2010b) which have been associated with male infertility due to 532 

poor semen quality. However, we extended our study on imprinted genes and found a 533 

small number of CpGs showing aberrant DNA methylation associated with 48 imprinted 534 

genes in infertile patients. Subsequently, we compared our results with data obtained in 535 

a previous study (Pacheco, et al., 2011) where 619 CpGs associated with imprinted 536 

genes were analysed in samples from patients with low sperm motility, and, we only 537 

found two common CpG sites aberrantly methylated. Interestingly, one of the genes 538 

associated with these CpGs (IGF2) has been found also aberrantly methylated in 539 

abnormal sperm (Boissonnas, et al., 2010, Pacheco, et al., 2011, Poplinski, et al., 540 
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2010). Unlike in other studies to date, here we analysed patients with normal or mild 541 

defects of semen quality, and our results show previously unidentified alterations in 542 

DNA methylation of CpG sites located at specific genes and genomic regions. This 543 

suggests that the mechanistic origins of these alterations in DNA methylation in 544 

individuals with unexplained infertility may be different from those associated with the 545 

onset of alterations in patients with low semen quality. 546 

We used several genomic approaches to further study the peculiarities of these 547 

dmCpGs that might give some clue to their contribution to male infertility. In the case of 548 

hypomethylated CpGs, besides being preferentially located in CGI, they are more 549 

abundant in intergenic regions and depleted in promoters, all of which suggests that 550 

these CpGs are located in the clusters of CGI II and III recently described by Zeng and 551 

collaborators, which have been associated with tissue-specific DNA methylation (Zeng, 552 

et al., 2014). Intriguingly, hypermethylated related genes were also enriched for a cell 553 

adhesion ontology term, opening new avenues for investigating the functional role that 554 

aberrant DNA hypermethylation may have in cases of unexplained male infertility. This 555 

could be at least partly related to defects in functional capacity of sperm to bind the 556 

oocyte in infertile patients. It could also give evidence that some of these defects in 557 

methylation are shared with sperm morphology deficiencies, from results of other 558 

studies in which associations between teratozoospermia and deficiency in adhesion 559 

molecules were found (Glander and Schaller, 1993).  560 

Since the aberrant DNA methylation appeared to be related to changes in tissue-561 

specific methylation, we aimed to identify CpGs which were specifically methylated in 562 

sperm when compared with somatic cells (brain and blood). These sperm-specific 563 

methylated regions were subsequently compared with the dmCpGs in infertile 564 

individuals. In addition to showing different DNA methylation patterns between somatic 565 

and germ cells, as previously described (Eckhardt, et al., 2006, Krausz, et al., 2012, 566 

Oakes, et al., 2007b), we found a statistically significant association between sperm 567 

dmCpGs, mainly hypomethylated CpGs in individuals with unexplained infertility and 568 

CpGs that showed sperm-specific DNA methylation, which suggests that the alterations 569 

of the mechanisms that establish the sperm-specific epigenetic program could be 570 

involved in the fertilizing quality of sperm in unexplained human male infertility.  571 

In addition, we analysed the genomic location of these dmCpGs in the context of 572 

chromatin and found associations between aberrant DNA methylation and specific 573 

histone marks previously identified in somatic and sperm cells. Interestingly, our results 574 
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showed a significant association between hypomethylated CpGs in sperm and regions 575 

strongly enriched in repressive histone marks such as H3K9me3 in somatic cells, 576 

whereas hypermethylated regions were associated with H3K4me1 and CTCF. Since 577 

there is no reason why these chromatin marks should necessarily be the same in 578 

somatic cells and sperm cells, these associations may merely indicate that during germ 579 

cell development these dmCpGs are associated with regions with some distinct feature 580 

that leads to a differential “vulnerability” to hypo- or hyper methylation in association 581 

with infertility. On the other hand, if the chromatin marks in somatic cells associated 582 

with aberrant DNA methylation in sperm were the same in the germ cell, DNA 583 

hypermethylation of CTCF binding sites could be indicative of alterations in the 584 

architecture and function of the sperm genome of infertile patients, since CTCF binds 585 

to DNA sequences in a methylation-sensitive manner (Wang, et al., 2012), and it has 586 

been shown that CTCF appears to play a significant role in chromatin organization, as 587 

well as in the regulation of gene expression (Ong and Corces, 2014, Phillips and 588 

Corces, 2009, Wang, et al., 2012), which is especially relevant in mammalian sperm 589 

(Arpanahi, et al., 2009, Carone, et al., 2014). 590 

In addition, we analysed associations  between aberrant DNA methylation with the 591 

histone marks identified in human sperm and available in public data bases 592 

(Hammoud, et al., 2009), and found a significant association between hypermethylated 593 

CpGs in the sperm of infertile patients and genomic regions enriched for H3K4me3. 594 

Taken all together, our findings suggest that the relationship between chromatin 595 

context and the aberrant DNA methylation of sperm in infertile men could be locus-596 

dependent. Future studies analysing the complete maps of histone posttranslational 597 

marks of sperm chromatin in normospermic infertile patients and fertile individuals will 598 

elucidate whether these alterations in DNA methylation are also associated with 599 

alterations of other specific histone marks, and whether they could affect chromatin 600 

compaction, as suggested in other studies analysing subfertile individuals (La Spina, et 601 

al., 2014, Steilmann, et al., 2010) 602 

Apart from locus-specific DNA methylation differences, we analysed for the first time 603 

global DNA methylation changes between normospermic fertile and infertile patients. 604 

Our results showed no differences in global methylation between the groups, in 605 

contrast to the results previously found in infertile patients with poor quality of sperm 606 

(Tunc and Tremellen, 2009), suggesting that global DNA methylation changes are 607 

related to spermatogenic efficiency and the semen quality of infertile patients. 608 

Page 19 of 4636

http://humrep.oupjournals.org

Draft Manuscript Submitted to Human Reproduction for Peer Review



20 

 

We also analysed DNA methylation changes between groups in several repetitive 609 

elements across the genome, including LINE-1, considered to represent global DNA 610 

methylation (Yang, et al., 2004). The dynamics of the DNA methylation of repetitive 611 

DNA elements during epigenetic reprogramming of primordial germ cells are gender 612 

specific (Lees-Murdock and Walsh, 2008, Sasaki and Matsui, 2008), and the functional 613 

role of the DNA methylation of retrotransposons, particularly in male germ cells, has 614 

been described (Bourc'his and Bestor, 2004). Our results related to the DNA 615 

methylation of LINE-1 retrotransposon showed no differences between groups, and 616 

agree with previous results analysing differences in infertile men exhibiting low sperm 617 

concentrations (Kobayashi, et al., 2007, Marques, et al., 2008). In contrast, LINE-1 618 

repetitive sequences have been found to be hypomethylated in infertile patients with 619 

severe spermatogenic disorders (Heyn, et al., 2012) associated with the epigenetic 620 

inactivation of piRNA-processing genes: PIWIL2 and TDRD1. Our results, however, not 621 

only failed to show differences in the DNA methylation patterns of PIWIL2 and TDRD1 622 

between groups (data not shown), but neither did we find differences in methylation of 623 

LINE-1 between normospermic fertile and infertile patients. 624 

Interestingly, we did find a significant DNA methylation decrease in another 625 

retrotransposon, AluYb8, in infertile patients. The results from previous works focused 626 

on infertile individuals showing low seminal quality had been unable to clarify the 627 

associations between male infertility and the methylation of Alu sequences (El Hajj, et 628 

al., 2011, Kobayashi, et al., 2007); Kobayashi and collaborators did not find differences 629 

between healthy controls and infertile patients (Kobayashi, et al., 2007), whereas El 630 

Hajj and collaborators, in line with the results of our study, showed that average 631 

methylation values in Alu sequences were lower in infertile men with abnormal semen 632 

parameters (El Hajj, et al., 2011). The differences between these two studies could be 633 

attributed to several causes. First different methodologies were used to measure 634 

methylation; one case used combined bisulfite restriction analysis (COBRA) assay and 635 

the other, bisulfite pyrosequencing. Secondly the difference could be the consequence 636 

of the specific Alu sequence analysed. In our work we specifically analysed the Alu Yb8 637 

subfamily, which is relatively young and more susceptible to retrotransposon activity, 638 

thus requiring stricter control by epigenetic silencing mechanisms. The role of SINE 639 

elements in the regulation of gene expression has recently been investigated in murine 640 

models and been shown to play a role in the activity of downstream gene promoters 641 

(Estecio, et al., 2012). Methylation of SINEs in the transcriptional regulation of genes 642 

specifically expressed in testis has also been suggested to have a role (Ichiyanagi, et 643 
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al., 2011). Thus, future studies are needed to elucidate the functional effects of 644 

aberrant methylation of Alu sequences in sperm from infertile individuals. 645 

We also analysed and compared, for the first time, the DNA methylation patterns of 646 

pericentromeric (NBL2) and subtelomeric (D4Z4) repetitive elements in both control 647 

and infertile patients, and found low methylation values in these regions, but no 648 

significant differences between groups. That said, the results of the analysis of DNA 649 

methylation in both global and repetitive sequences should be considered carefully, 650 

since the presence of mild reproductive risk factors in some females might be masking 651 

potentially fertile individuals. 652 

Together, these results suggest that alterations of DNA methylation, both globally and 653 

at locus-specific level, and therefore of the mechanisms that produce them, are 654 

different in normospermic infertile patients compared to infertile individuals with 655 

spermatogenic impairment. As in the case of DNA methylation at specific loci, we also 656 

performed a comparative analysis of DNA methylation of the repetitive regions 657 

mentioned above in order to analyse differences between germ and somatic cells, and 658 

to ascertain the peculiarities of the former. It has previously been shown that 659 

mammalian testes have more hypomethylated loci than somatic cells (Oakes, et al., 660 

2007b). In addition, the DNA methylation of repetitive sequences has been found to be 661 

particularly low in sperm compared to undifferentiated somatic cells (hESC) (Molaro, et 662 

al., 2011). To further characterize the methylation patterns of these repetitive 663 

sequences in sperm, we also performed methylation analysis of some of these regions 664 

in differentiated somatic cells (blood and brain). The greatest difference in methylation 665 

levels between sperm and somatic cells was observed for NBL-2. This is also the case 666 

when looking at other centromeric repeats (Molaro, et al., 2011), suggesting therefore 667 

that an overall hypomethylation of the centromeric region is characteristic of sperm. 668 

Indeed, Yamagata and collaborators have previously proposed using methylation 669 

levels of the centromeric region in order to discriminate between germ and somatic cell 670 

lineages (Yamagata, et al., 2007). Moreover, although pericentromeric regions are 671 

usually regarded as transcriptionally poor (Copenhaver, et al., 1999, Nagaki, et al., 672 

2004), the expression of a variety of genes has been shown in the testis, with almost 673 

half the cases being unique to the tissue (She, et al., 2004). In the case of D4Z4, 674 

although to date no studies have concentrated on its methylation in sperm, Jian Li and 675 

collaborators have reported enrichment in "methylation deserts" in telomeric regions 676 

(Li, et al., 2012). Thus, the low methylation values found here for D4Z4 are probably, 677 

as in the case of NBL-2, reflective of overall hypomethylation occurring in that region, 678 
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and highlights the increased risk of structural mutations in germ cells due to these 679 

methylation deserts (Li, et al., 2012). 680 

Although Alu Yb8 methylation values in sperm were higher than those found for the 681 

other repetitive elements studied, sperm and somatic cells showed large differences, 682 

confirming the findings of previous studies using other analysis techniques (Hellmann-683 

Blumberg, et al., 1993, Kochanek, et al., 1993). Finally, unlike the other repetitive 684 

sequences, LINE-1 showed high levels of methylation, with significant differences only 685 

being found between sperm and blood cells. When comparing studies based on the 686 

same technique (El Hajj, et al., 2011, Heyn, et al., 2012), the methylation values of this 687 

sequence in sperm were similar. This finding is partially supported by the results of 688 

Molaro and collaborators (Molaro, et al., 2011), who have studied methylation along the 689 

full length of LINE-1 and discovered a higher percentage of hypomethylated regions in 690 

sperm compared to hESCs. Although there are major differences between the results 691 

of Molaro and collaborators and our own, these could be explained because the former 692 

analysed undifferentiated somatic cells while differentiated somatic cells were 693 

considered in this work, and because we only studied 3 CpGs, thereby only reflecting 694 

methylation for specific locations on LINE-1. 695 

In conclusion, DNA methylation patterns of spermatozoa are significantly different to 696 

those found in other somatic cells such as blood or brain. In this work we have 697 

analysed for the first time, at genome-wide resolution, the DNA methylation profiles of 698 

the sperm of patients with unexplained infertility versus that of fertile individuals, and 699 

we have identified almost 3,000 CpGs which display aberrant methylation. Our data 700 

show that these changes are precisely associated with regions of sperm-specific 701 

methylation, thereby suggesting that DNA methylation is involved in the control of the 702 

functional capacity of germ cells. Further studies are necessary to elucidate the 703 

mechanisms relating to the origin of these alterations, and to determine their 704 

significance and functional consequences for male infertility. 705 

706 
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Figure legends 985 

 986 

Figure 1. DNA methylation patterns in fertile individuals and infertile patients. (A) 987 

Deviation plot for all the CpG sites studied in sperm samples showing the variability of 988 

methylation values (grey area).  Probes are ranked on the x-axis with respect to their 989 

median methylation, as visualized by a curve. Probe values represented by grey lines 990 

depicting the 5th and 95th percentile range. On the right, the distribution of standard 991 

deviation (SD) across all the probes analysed is shown and the 95th percentile is 992 

indicated. (B) Unsupervised hierarchical clustering and heatmap including the 193 most 993 

variable CpG sites (absolute M-value differences >0.2) between fertile and infertile 994 

individuals. Average methylation values are displayed from 0 (blue) to 1 (yellow). On 995 

the right, bar plot displaying the number of hyper- and hypomethylated CpG sites in 996 

infertile patients. (C) Distribution of dmCpGs relative to CGIs. (D) Relative distribution 997 

of dmCpGs across different genomic regions. 998 

dmCpGs: differentially methylated CpGs; CGI: CpG islands 999 

 1000 

Figure 2. Chromatin signatures associated with aberrant DNA methylation in infertile 1001 

patients. (A) Heatmaps showing significant enrichment of hyper- and hypomethylated 1002 

CpG sites identified in infertile individuals, with different histone marks and chromatin 1003 

modifiers contained in the UCSC Browser Broad Histone track from the ENCODE 1004 

project. Colour code indicates significant enrichment based on log2 odds ratio (OR). 1005 

(B) Circular representation of genome-wide DNA methylation changes in the infertile 1006 

patients indicating whether the CpGs were hypermethylated (red) or hypomethylated 1007 

(blue). Inner tracks display chromatin marks (Ctcf, H3K4me1 and H3K9me3) generated 1008 

for osteoblast cells, and associated with differentially methylated regions. Broad 1009 

Histone peak information is averaged in 200 kbp genomic windows and represented as 1010 

histogram tracks. Two regions of chromosomes 6 and 11 are magnified (grey area) in 1011 

order to detail the associations between hypo- or hypermethylated DNA regions with 1012 

specific chromatin signatures. 1013 

 1014 

Figure 3. Global DNA methylation patterns in sperm. (A) Global DNA methylation 1015 

levels of sperm from fertile individuals and normospermic infertile patients obtained in a 1016 

colorimetric assay. (B) DNA methylation values of several repetitive regions (LINE-1, 1017 

Alu Yb8, NBL-2, and D4Z4) measured by bisulfite pyrosequencing in sperm (controls 1018 

and patients) and somatic cells (blood and brain). ***: p<0.001; **: p<0.01. 1019 
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Supplementary Fig. 1. Unsupervised hierarchical clustering and heatmap including 1021 

CpG sites with differential DNA methylation between fertile and  infertile individuals. 1022 

Average methylation values are displayed from 0 (blue) to 1 (yellow).  1023 

Supplementary Fig. 2. Quantile–quantile (QQ) plot displaying the relationship 1024 

between the average beta methylation values in blood, glia and neuron (vertical axis) 1025 

with the average beta methylation values in sperm (horizontal axis).  1026 

Supplementary Fig. 3. Sperm-specific DNA methylation patterns. (A) The first column 1027 

depicts deviation plots for all the CpG sites in the respective cell type, showing the 1028 

variability of methylation values (coloured area). The middle column shows the 1029 

relationship between means and standard deviations (log) of methylation levels 1030 

between samples (M-values). The red line represents the average standard deviation. 1031 

The right column depicts kernel density plots showing the distribution of methylation 1032 

levels for each cell type across all CpG sites analysed. The Y-axis represents M 1033 

methylation values. (B) Unsupervised hierarchical clustering and heatmap including 1034 

CpG sites with tissue-specific DNA methylation in sperm, blood, neuron and glial cells.  1035 

Supplementary Fig. 4. Distribution of tissue-specific (Blood, glia, neuron, and sperm) 1036 

methylated and unmethylated CpGs relative to CpG Island (CGI).  1037 
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Table 1. Clinical characteristics of semen samples from fertile controls and infertile patients included in the study 

Code ID
Methylation 

assay

Clinical 

intervention

IVF-ICSI 

outcome
Age (years)

Semen volume 

(ml)

Sperm count 

(×10
6
/ml)

Total Sperm 

count (×10
6
)

Progressive 

motility (%)

Normal 

morphology (%)

Teratozoosperm

ia index (TZI)

Age female 

partner (years)

Female gynecological 

assesment

Control-1 1,3 Vasectomy - 41 4.5 174 783.0 46 11 1.69  - N (by default)
Control-2 1,3 Vasectomy - 49 4.5 122 549.0 46 11 1.78  - N (by default)
Control-3 1,3 Vasectomy - 35 6.0 32 192.0 23 6 1.64  - N (by default)
Control-4 1,3 Vasectomy - 39 1.5 96 144.0 58 10 1.21  - N (by default)
Control-5 1,3 Vasectomy - 36 3.5 42 147.0 42 6 1.49  - N (by default)
Control-6 2,3 Vasectomy - 45 2.8 89 244.8 67 10 1.52  - N (by default)
Control-7 2,3 Vasectomy - 39 3.3 81 267.3 32 6 1.50  - N (by default)
Control-8 2,3 Vasectomy - 48 5.5 89 489.5 67 10 1.56  - N (by default)
Control-9 2,3 Vasectomy - 39 4.0 65 260.0 69 5 1.45  - N (by default)
Control-10 2,3 Vasectomy - 42 5.8 29 168.2 71 5 1.56  - N (by default)
Control-11 2,3 Vasectomy - 44 3.0 250 750.0 60 8 1.65  - N (by default)
Control-12 2,3 Vasectomy - 38 4.6 70 322.0 54 16 1.33  - N (by default)
Control-13 3 Vasectomy - 34 2.0 29 58.0 24 0 1.44  - N (by default)
Control-14 3 Vasectomy - 35 4.0 75 300.0 46 8 1.39  - N (by default)
Control-15 3 Vasectomy - 44 1.0 120 120.0 68 9 1.45  - N (by default)

Control-16 3 Semen donor - 25 3.3 80 264.0 58 24 1.30 35,2
a  -

Control-17 3 Semen donor - 22 4.8 78 370.5 39 14 1.32 34,1
a  -

Patient-1 1 IVF-ICSI No pregnancy 42 2.0 36 72.0 50 1 1.58 41 N
Patient-2 1 IVF-ICSI Pregnancy-birth (twin) 37 4.8 43 204.3 42 9 1.51 37 N
Patient-3 1,3 IVF-ICSI No pregnancy 40 6.1 10 61.0 37 2 1.49 39 N
Patient-4 1,3 IVF-ICSI No pregnancy 36 6.6 18 118.8 52 1 1.63 35 N
Patient-5 1,3 IVF-ICSI No pregnancy 36 5.5 91 500.5 48 5 1.67 37 N
Patient-6 1,3 IVF-ICSI Pregnancy-birth 54 3.7 25 92.5 18 1 1.57 38 N
Patient-7 1,3 IVF-ICSI Pregnancy-miscarriage 39 3.9 17 66.3 46 1 1.59 35 Treated disovulation
Patient-8 2,3 IVF-ICSI No pregnancy 45 5.0 95 475.0 40 7 1.52 40 N
Patient-9 2,3 IVF-ICSI No pregnancy 31 2.5 98 245.0 62 7 1.43 26 Tubal obstruction
Patient-10 2,3 IVF-ICSI No pregnancy 33 3.0 123 369.0 69 7 1.48 35 N
Patient-11 2,3 IVF-ICSI No pregnancy 37 2.5 171 427.5 71 8 1.61 36 Tubal obstruction
Patient-12 2,3 IVF-ICSI No pregnancy 55 2.8 92 257.6 36 6 1.52 38 N
Patient-13 2,3 IVF-ICSI No pregnancy 34 3.6 203 722.7 55 6 1.46 34 N
Patient-14 2,3 IVF-ICSI No pregnancy 36 4.5 61 274.5 53 8 1.57 37 N
Patient-15 3 IVF-ICSI Pregnancy-birth 45 2.5 56 140.0 50 6 1.46 39 Mild endometriosis
Patient-16 3 IVF-ICSI Pregnancy-birth (twin) 39 4.0 90 360.0 60 4 1.60 37 N
Patient-17 3 IVF-ICSI Pregnancy-birth 39 2.8 206 576.8 40 15 1.32 35 N
Patient-18 3 IVF-ICSI Pregnancy-birth (twin) 36 2.8 105 288.8 58 15 1.63 33 N
Patient-19 3 IVF-ICSI Pregnancy-miscarriage 40 1.8 75 131.3 51 12 1.33 35 Mild endometriosis
Patient-20 3 IVF-ICSI Pregnancy-miscarriage 37 3.5 202 707.0 61 12 1.44 38 Mild endometriosis
Patient-21 3 IVF-ICSI Pregnancy-miscarriage 36 1.8 42 75.6 59 6 1.34 40 N
Patient-22 3 IVF-ICSI Pregnancy-birth 32 4.8 196 931.0 48 14 1.35 27 Tubal obstruction
Patient-23 3 IVF-ICSI No pregnancy 30 5.3 75 393.8 50 9 1.45 38 Tubal obstruction
Patient-24 3 IVF-ICSI Pregnancy-birth (twin) 37 2.5 87 217.5 54 11 1.54 38 Mild endometriosis
Patient-25 3 IVF-ICSI Pregnancy-miscarriage 44 4.9 119 583.1 60 12 1.42 39 Disovulation
Patient-26 3 IVF-ICSI Pregnancy-miscarriage 48 1.8 164 287.0 55 7 1.62 39 Mild endometriosis
Patient-27 3 IVF-ICSI Pregnancy-birth 35 1.7 206 342.0 58 12 1.49 32 Disovulation
Patient-28 3 IVF-ICSI No pregnancy 41 3.6 71 255.6 47 6 1.46 38 Disovulation
Patient-29 3 IVF-ICSI Pregnancy-birth 36 7.3 92 671.6 46 8 1.52 35 Tubal obstruction

Average Controls 1 40.0 4.0 93.2 363 43.0 8.8 1.56

Average Patients 1 40.6 4.7 34.3 159.3 41.9 2.9 1.6

P-value 1 0.872 0.514 0.088 0.205 0.877 0.005 0.874

Average Controls 2 42.1 4.1 96.1 357.4 60.0 8.6 1.5

Average Patients 2 38.7 3.4 120.4 395.9 55.1 7.0 1.5

P-value 2 0.354 0.244 0.474 0.704 0.516 0.335 0.956

Average Controls 3 38.5 3.8 89.5 319.4 51.2 9.4 1.5

Average Patients 3 38.9 3.7 103.3 354.5 51.3 7.7 1.5

P-value 3 0.853 0.925 0.445 0.606 0.985 0.284 0.753

N: normal; a: age average of female recipients is indicated

IVF-ICSI: in vitro fertilization-intracytoplasmic sperm injection

Methylation assay 1: Methylation array

Methylation assay 2: Global DNA methylation

Methylation assay 3: Pyrosequencing of repetitive sequences
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