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Modeling and Characterization of the Passive Bending
Stiffness of Nanoparticle-Coated Sperm Cells using
Magnetic Excitation

João M. S. Dias, Daniel Estima, Harmen Punte, Anke Klingner, Lino Marques,
Veronika Magdanz, and Islam S. M. Khalil*

Of all the various locomotion strategies in low-Re, traveling-wave propulsion
methods with an elastic tail are preferred because they can be developed
using simple designs and fabrication procedures. The only intrinsic property
of the elastic tail that governs the form and rate of wave propagation along its
length is the bending stiffness. Such traveling wave motion is performed by
spermatozoa, which possess a tail that is characterized by intrinsic variable
stiffness along its length. In this paper, the passive bending stiffness of the
magnetic nanoparticle-coated flagella of bull sperm cells is measured using a
contactless electromagnetic-based excitation method. Numerical
elasto-hydrodynamic models are first developed to predict the magnetic
excitation and relaxation of nanoparticle-coated nonuniform flagella. Then
solutions are provided for various groups of nonuniform flagella with
disparate nanoparticle coatings that relate their bending stiffness to their
decay rate after the magnetic field is removed and the flagellum restores its
original configuration. The numerical models are verified experimentally, and
capture the effect of the nanoparticle coating on the bending stiffness. It is
also shown that electrostatic self-assembly enables arbitrarily magnetizable
cellular segments with variable stiffness along the flagellum. The bending
stiffness is found to depend on the number and location of the magnetized
cellular segments.

1. Introduction

Soft microrobots hold prospects in various biomedical ap-
plications through their potential to perform noninvasive
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operations using gentle interactions with
the surrounding tissue while maintaining
a high level of control and propulsion
efficiency.[1–4] The small size and excellent
dexterity of these microrobots are promis-
ing features for delivery of a chemical agent
to a target region with a higher degree of
precision compared to conventional types
of medicine,[5–8] thus, decreasing the nega-
tive side-effects in the rest of the healthy re-
gions. In particular, biohybrid microrobots,
consisting of artificial and biological com-
ponents, have been developed as a special
type of softmicrorobots for selected applica-
tions such as active targeted drug delivery,[9]

sensing,[10] and manipulation,[11] In this
case, the biological component can act as
a propulsion mechanism, an on-board en-
ergy source, a drug carrier, and a struc-
tural component.[12] These biological com-
ponents are typically complemented by ar-
tificial structures which provide additional
features, such as predictable response to
external stimuli and the ability to emit
detectable signals by noninvasive imaging
systems. In order to fabricate such soft

biohybrid microrobots, various flagellated cells (spermatozoa,
bacteria, and algae) that serve as propulsion mechanisms have
been assembled with synthetic microstructures.[13–15]

Another proposed method to fabricate magnetic microrobots
takes a hybrid approach that combines nonmotile biological
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component to an artificial microstructure. Biotemplating has
been performed previously based on the combination of plant
or algae structures with synthetic magnetic elements.[16–18]

This fabrication route has delivered rigid magnetic helical or
needle-shapedmicrorobots, whichmove under the influence of a
rotating magnetic field. Besides the plant structures, the organic
bodies of somemicroorganisms and cells offer flexible templates
for magnetic microswimmers when self-assembled with mag-
netic particles.[19,20] This approach utilizes the intrinsic flexibility
of the sperm flagellum which varies along its length to create
a swimmer with efficient locomotion under the influence of a
dynamic magnetic field. A time-varying magnetic field can
be used to actuate the sperm flagellum and propel the cell
regardless of its lifetime.[19,20] The motion characteristics of a
magnetically actuated passive flagellum differ from that of a
live cell in that passively propagating waves initiated from a
boundary cannot resemble those observed on an active flagellum
with distributed contractile elements.[21] In addition, some
cellular segments of the magnetically actuated passive flagellum
are coated with nanoparticles, leading to significantly different
mechanical properties from that of active flagella. Hence, the
location of the magnetic segment along the cell is of importance
for the locomotion in low Reynolds numbers (Re).[20] Alternative
approaches to develop flexible microrobots have introduced
magnetized elements in a desired design. For example, 3D mag-
netization profiles allow several designs to have complex modes
of locomotion and shape changes.[22–24] In addition to the mag-
netization profile along the structure, the importance of intrinsic
variable flexibility has also been proposed to obtain a desired
shape.[25]

The compliance provided by the biological component is
essential to break the time-reversal symmetry in low-Re flow,
and can be used for flexible motion and gentle interaction with
other cells and tissue. The bending stiffness along the length
of the flagellum is an important parameter to enable correct
theoretical predictions and simulations of sperm motion. The
hydrodynamic interactions in low-Re are governed by the elastic
properties of the swimmer, the rheological properties of the vis-
cous medium, and the frequency of time-periodic deformations.
These conditions define the pattern of the transverse waves that
propagate along the soft body. In particular, the mean flagellar
curvature of the flagellar beat is directly proportional to the
curvature of the swimming path of the cell.[26] Thus, a detailed
study of the mechanical properties of the sperm-templated
microrobot is essential to provide maximum drag-based
propulsive force.
In order to study the motility forces and bending stiffness of

motile flagella and cilia, optical tweezers have been previously
used.[27–29] The force generated by the optical trap was correlated
to any other forces acting on the cell at the point of escape from
the laser beam. This way the motility force of the spermatozoon
was related to the threshold trapping power of the laser.[28] In
a similar manner, Harada et al. have determined the bending
stiffness of primary cilia of the renal epithelium.[30] To achieve
controlled deformation, antibody-coated microspheres were at-
tached to the tips of primary cilia and trapped by the laser. The
trapping force was then correlated to the laser power, and the dis-
tance of the displacement at which themicrospheres escape from

the laser was measured and correlated to the Young’s modulus.
Similarly, Xu et al. have studied the bending and shear stiffness
of Chlamydomonas cilia using bends and counterbends.[31] Hill
et al. have used magnetic beads to examine the force produced
by cilia or flagella against an external load and estimated the ax-
oneme stiffness.[32] They have demonstrated that the direction of
the distal force does not influence the estimated bending stiff-
ness. Lindemann et al. have measured the stiffness of impaled
bull sperm flagella by bending the tail with a microprobe and
measuring the relaxation time of the tail after release.[33]

Details of the elasto-hydrodynamic interactions andwave prop-
agation of sperm cells are not yet fully understood due to the lack
of characterization of critical mechanical properties such as the
internal resistive forces of the tail.[31] One of the unique prop-
erties of sperm cells is that their tail has a nonuniform bend-
ing stiffness along the length. This characteristic results in the
typical waveform that is described by faster rate of propagation
of waves near the distal end. In practice, measuring the exact
bending stiffness of flagella is difficult in terms of implemen-
tation, cell handling, and repeatability. This difficulty arises from
the fact that the implementation relies on excitation of a soft or-
ganic body at the microscale and relating a measurable response
to desirable mechanical properties, and previous work have been
limited to study the immutable elasticity of flagellar compounds.
The vast majority of the previously mentioned studies have fo-
cused on live sperm cells and although these approaches are im-
portant in the determination of the bending stiffness, the prop-
erties of passive flagella and functionalized flagella must still be
investigated. Developing methods for estimation of the bending
stiffness is relatively challenging but will help understand how
sperm cells perform their efficient swimming under different
conditions.
Here, we take into account the impact of additional function-

alities on the flagellum bending stiffness, such as magnetiza-
tion and surface coating. Sperm-templated, self-assembled mi-
crorobots comprise a heterogeneity in terms of the particle dis-
tribution along their tail. This heterogeneity is particularly use-
ful when designing and optimizing soft microrobots. In this
study, we characterize the spatially varying bending stiffness due
to the nonuniform magnetic nanoparticle coating along sperm
flagella (Figure 1), and propose a wireless electromagnetic-based
method to estimate the bending stiffness of such nonuniform
flagella. Our method capitalizes on the transduction of mag-
netic energy into motion proportional to the stiffness of a pas-
sive flagellum surrounded by magnetizable nanoparticles. En-
ergy is fed in by an external magnetic field and we measure
decay rates of the flagellum to its initial configuration to deter-
mine the bending stiffness of flagella with disparate nanoparticle
coatings.

2. Bending Stiffness of Particle-Coated
Nonuniform Flagellum

2.1. Nanoparticle-Coated Soft Flagellum

Traveling-wave propulsion provides an effective method to swim
through various viscous fluidic environments. If a filament
of length l and bending stiffness 𝜅 = IE deforms such that a
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Figure 1. The bending stiffness varies along the flagellum due to a change in moment of area, I(m, p, d; x), and elastic modulus, E(m, p, d; x). a) It tapers
gradually toward the distal end with a taper factor f . b) The location of the magnetizable cellular segment is determined during self-assembly and the
indicesm, p, d designate the magnetized region. c) The nanoparticles provide magnetization when magnetic field is applied yielding a deformation y. d)
The field, B, produces elastic deformation of the flagellum using magnetic torque exerted on its dipole moment. e) The elastic bending resistance of the
passive flagellum is balanced by the viscous drag in the surrounding fluid when the field is removed, B = 0.

transverse bending wave is initiated at its proximal end to propa-
gate toward its distal end, the steady-state solution of the balance
of forces acting on any segment along the uniform filament will
depend only on the sperm number[34]

Sp = l
(
𝜉⟂𝜔

𝜅

)1∕4

(1)

where 𝜉⟂ is the normal drag coefficient, 𝜔 is the angular fre-
quency, E is themodulus of elasticity, and I is themoment of area

of the cross-section. This is true only if the material has a uni-
form elastic modulus and cross-section along the length. In con-
trast, the flagellum displays remarkable complex internal struc-
ture, consisting of center and outer microtubles within a plasma
membrane. It tapers gradually toward the distal end, as shown in
Figure 1a,b). Therefore, the normal drag coefficient in Equation
(1) varies along the length such that[35]

𝜉⟂(x) =
4𝜋𝜂

log
(
l∕D(x)

)
− 1

(2)
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Figure 2. Nanoparticles are assembled around the passive flagella of Bovine sperm cells (see Experimental Section) and result in spatially varying
properties along the length. The dead cells are surrounded by elongated maghemite rice grain-shaped nanoparticles. Scale bar 10 μm. a) Fully uncoated.
b) Distal-coated. c) Principal piece-coated. d) Midpiece-coated. e) Principal piece- and distal-coated. f) Midpiece- and distal-coated. g) Midpiece- and
principal piece-coated. h) Fully coated.

where 𝜂 is the viscosity of the medium and D(x) is the diameter
of the flagellum. The elastic modulus also depends on the loca-
tion and concentration of the magnetizable nanoparticles. Fig-
ure 1c shows, for example, a passive midpiece-coated flagellum
and under these conditions the elastic modulus will vary along
the length based on the rule of mixture such that

E(m, p, d; x) =
⎧⎪⎨⎪⎩
Es + 𝜙(Ep − Es)m, x ∈ m

Es + 𝜙(Ep − Es)p, x ∈ p

Es + 𝜙(Ep − Es)d, x ∈ d

(3)

where E(m, p, d; x) is the elastic modulus of the nanoparticle-
coated flagellum (see Experimental Section) and the combination
(m, p, d) indicates the location of the magnetizable cellular seg-
ment, such that the midpiece-coated flagellum, principal piece-
coated flagellum, and distal-coated flagellum with nanoparticles
are designated bym = 1, p = 1, and d = 1, respectively, while the
uncoated cellular segments are designated by m = 0, p = 0, and
d = 0. In Equation (3), Es and Ep are the modulus of elasticity
of the organic body and the nanoparticles, respectively, and 𝜙 is
a volume fraction between the organic body and the nanopar-
ticles. Further, m = {0 ≤ x ≤ lm}, p = {lm ≤ x ≤ lm + lp}, andd = {lm + lp ≤ x ≤ l} are midpiece, principal piece, and distal
end sets, respectively, where lm is the length of the midpiece and
lp is the length of the principal piece.
Figure 2 shows eight representative nanoparticle-coated cells

at different cellular segments. Each cellular segment can be
made magnetic through nanoparticle-coating by surrounding
the flagellum using electrostatic self-assembly (see Experi-

mental Section). Figure 2a shows a fully uncoated flagellum,
whereas Figure 2b–d show distal-coated, principal piece-coated,
and midpiece-coated flagella, respectively. The flagellum can
also be coated at several cellular segments, as shown in Fig-
ure 2e for distal- and principal piece-coated flagellum, Figure 2f
for midpiece- and distal-coated flagellum, and Figure 2g for
midpiece- and principal piece-coated flagellum. Finally, Figure 2h
shows a fully coated flagellum. Such flagellum exhibits spatially
varying properties along the length based on the location of the
nanoparticles.
We can also determine the influence of the nanoparticle coat-

ing on the diameter and moment of area of the flagellum based
on the volume fraction, 𝜙, between the organic body and the
nanoparticles. If Vs and Vp denote the volumes of the organic
body and nanoparticles, respectively, we have 𝜙 = Vp∕(Vp + Vs)
and it varies across the flagellum as follows

𝜙(m, p, d; x) =
⎧⎪⎨⎪⎩
m𝜙, x ∈ m

p𝜙, x ∈ p

d𝜙, x ∈ d

(4)

Similarly, the volume fraction function describes the influence of
the nanoparticle coating on the diameter of the filament which
also varies across the length to affect the moment of area and
Sp in Equation (1). To incorporate the effect of the nanoparticle
coating into the moment of area, let us consider a segment of
length Δx and diameter df along the nanoparticle-coated flag-
ellum. If the volume of the organic component of this segment
is ΔVs = 𝜋d2fΔx∕4, then the volume of the nanoparticle-coated
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segment is ΔV = d2fΔx𝜋∕(4(1 − 𝜙)). Therefore, the diameter of
the coated flagellum scales with the diameter of the uncoated
flagellum as ≈ (1 − 𝜙)−0.5df , and we obtain

D(m, p, d; x) =

⎧⎪⎪⎨⎪⎪⎩
(1 −m𝜙)−0.5df , x ∈ m

(1 − p𝜙)−0.5df
(
1 − f x−lm

lp+ld

)
, x ∈ p

(1 − d𝜙)−0.5df
(
1 − f x−lm

lp+ld

)
, x ∈ d

(5)

where f = (lp + ld)∕L is the taper factor of the flagellum, ld is the
length of the distal end. Using Equation (5), the moment of area
of the flagellum is calculated as

I(m, p, d; x) = 𝜋

4

(
D(m, p, d; x)

2

)4

(6)

Therefore, the bending stiffness and the sperm number Sp (1) of
the nanoparticle-coated flagellum are influenced by the volume
fraction function 𝜙(x) from Equations (2)–(6) for any actuation
frequency 𝜔, when a dynamic magnetic field is applied.

2.2. Magnetized Cellular Segments in a Magnetic Field

There is another effect of the nanoparticles on the dynamic re-
sponse, since a distribution of bending moment (m, p, d; x) is
introduced when an external magnetic field, B, is applied. The
magnetic field magnetizes the nanoparticle clusters to magneti-
zation m(m, p, d; x) that is directly proportional to the distribu-
tion of bending moment as (m, p, d; x) = Vp‖m(m, p, d; x) × B‖.
Following the same procedures as before, we can include the in-
fluence of the volume fraction function into the distribution of
bending moment as follows:

(m, p, d; x) =
⎧⎪⎪⎨⎪⎪⎩

𝜋

4
m𝜙Δx‖m‖‖B‖

1−m𝜙
d2f , x ∈ m

𝜋

4

p𝜙Δx‖m‖‖B‖
1−p𝜙

d2f

(
1 − f x−lm

lp+ld

)2
, x ∈ p

𝜋

4
d𝜙Δx‖m‖‖B‖

1−d𝜙
d2f

(
1 − f x−lm

lp+ld

)2
, x ∈ d

(7)

Note that the distribution of bending moment includes maxi-
mummagnetic torque, Vp‖m(m, p, d; x)‖‖B‖, which implies that
the flagellum will undergo maximum deformation, as shown in
Figure 1d,e. Since the elastic (Fel) and magnetic (Fmag) force per
unit length must equal the drag force per unit length (Fvisc), the
small deformation will be governed by the following force bal-
ance:

Fel + Fmag + Fvisc = 0 (8)

where the elastic force per unit length is given by

Fel =
𝜕2

𝜕x2

(
𝜅(m, p, d; x)

𝜕2y
𝜕x2

)
(9)

where y(x, t) is the small amplitude and represents the deviation
from the equilibrium position, and can bemeasured with respect
to the material frame of reference of the sperm head (e1, e2), as

shown in Figure 1c,d. The magnetic force per unit length de-
pends on the distribution of bending moment (7), such that

Fmag =
𝜕2(m, p, d; x)

𝜕2x
(10)

The viscous force is

Fvisc = −𝜉⟂(x)
𝜕y(x, t)
𝜕t

(11)

In the case where the head is fixed to a solid boundary, both the
amplitude, y(0, t), and its derivative with respect to x, 𝜕y(0, t)∕𝜕x,
are zero. Once an external magnetic field, B, is applied, the
nanoparticles are magnetized and the distribution of bending
moment is introduced. Its contribution is indicated by the sec-
ond term in the left-hand side of Equation (8). The total magnetic
torque exerted on the magnetic dipole moment of the flagellum
produces a deformation about the axis e1 × e2, as shown in Fig-
ure 1d. Equations (2)–(8) complete the relation between the in-
trinsic variable stiffness due to the natural taper of the flagellum
and the nonuniform nanoparticle coating along the length. Solv-
ing for flagellum deformation, we can predict the excitation and
relaxation of the flagellum, for a given distribution of nanoparti-
cle coating along the length and geometric parameters of the flag-
ellum. If alternatively the flagellum is assumed to have a relatively
small taper factor, then the presence of nonuniform nanoparti-
cles coating leads to variable bending stiffness, resulting in a sim-
plified models and analytical solution for the relaxation time.

2.3. Relaxation of a Nonuniform Flagellum

We turn to determine the relaxation based on the elastic force
(9) which depends on varying bending stiffness along the length.
We assume that the taper factor is relatively small (f ≈ 0), and
the bending stiffness is segment-wise constant 𝜅(x) = 𝜅m for x ∈
m, 𝜅(x) = 𝜅p for x ∈ p, and 𝜅(x) = 𝜅d for x ∈ d, we have

𝜅(m, p, d; x) =
⎧⎪⎨⎪⎩
𝜅m, x ∈ m

𝜅p, x ∈ p

𝜅d, x ∈ d

(12)

This bending stiffness can also be determined using the expres-
sions of the rule of mixture (3) and moment of area (6). Assume
that the decay time of the three magnetizable segments is the
same, we have the following solution of the force balance (8)

y(x, t) = w(m, p, d; x)e−t∕ (m,p,d) (13)

where w(m, p, d; x) is the position dependent mode shape func-
tion and  (m, p, d) is the decay time of the flagellum to the initial
configuration. We show in the next section that the decay time of
any point along the length is approximately the same. In Equa-
tion (13), the mode shape of each cellular segment is given by

w(m, p, d; x) =
⎧⎪⎨⎪⎩
wm(m, p, d; x), x ∈ m

wp(m, p, d; x), x ∈ p

wd(m, p, d; x), x ∈ d

(14)
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Substituting Equation (13) for segment-wise constant bending
stiffness into Equation (8) yields

𝜅(m, p, d; x)
d4w(m, p, d; x)

dx4
=

𝜉⟂(x)
 (m, p, d)w(m, p, d; x). (15)

Then it follows that the general solution of the mode shape of the
magnetizable midpiece, wm, is given by

wm(m, p, d; x) = A1m(m, p, d)e
rm(m,p,d)x+

A2m(m, p, d)e
−rm(m,p,d)x + A3m(m, p, d) sin(rm(m, p, d)x)

+A4m(m, p, d) cos(rm(m, p, d)x)

(16)

where rm(m, p, d) is a constant for themode shape of themidpiece
determined by the shape of the flagellum. Themode shape of the
principal piece, wp, is

wp(m, p, d; x) = A1p(m, p, d)e
rp(m,p,d)x

+A2p(m, p, d)e
−rp(m,p,d)x + A3p(m, p, d) sin(rp(m, p, d)x)

+A4p(m, p, d) cos(rp(m, p, d)x)

(17)

Similarly, rp(m, p, d) is a constant for the mode shape of the prin-
cipal piece determined by the shape of the flagellum. Finally, the
mode shape of the distal end, wd, is given by

wd(m, p, d; x) = A1d(m, p, d)e
rd(m,p,d)x

+A2d(m, p, d)e
−rd(m,p,d)x + A3d(m, p, d) sin(rd(m, p, d)x)

+A4d(m, p, d) cos(rd(m, p, d)x)

(18)

where rd(m, p, d) is a constant for the mode shape of the distal. In
Equations (16)–(18), Aim(m, p, d), Aip(m, p, d), and Aid(m, p, d) are
the ith constant depending on the conditions at the midpiece,
principal piece, and distal end, respectively, for i = 1,… , 4. Now
using Equation (14) in Equation (15) we obtain

 (m, p, d) = 𝜉⟂(m, p, d)
r4m(m, p, d)𝜅m

=
𝜉⟂(m, p, d)
r4p(m, p, d)𝜅p

=
𝜉⟂(m, p, d)

r4d(m, p, d)𝜅d
(19)

Applying the boundary conditions at the two ends of the flagel-
lum, we have

w(m, p, d; 0) =
dw(m, p, d; 0)

dx
= 0 (20)

d2w(m, p, d; l)
dx2

=
d3w(m, p, d; l)

dx3
= 0 (21)

The connection between the midpiece and principal piece is con-
tinuous and smooth, such that

diwm(m, p, d; lm)

dxi
=
diwp(m, p, d; lm)

dxi

for i = 0,… , 3 (22)

Similarly, the connection between the principal piece and distal
end is continuous, we have

diwp(m, p, d; lm + lp)

dxi
=
diwd(m, p, d; lm + lp)

dxi

for i = 0,… , 3 (23)

Now using the boundary conditions (20)–(23) we obtain the fol-
lowing system of algebraic homogenous equations

(rm(m, p, d)) = 0 (24)

where  is a coefficient matrix and  is a vector with the con-
stants in Equations (16)–(18), such that

 =
[
A1m … A4m | A1p … A4p | A1d … A4d

]T
(25)

Note that is characterized by one of the constants rm(m, p, d),
rp(m, p, d), or rd(m, p, d) since they are related based on the decay
time in Equation (19). Figure 3 shows the absolute value of the
determinant of  versus rm(m, p, d)l. For each type of magne-
tizable flagella, the local minima indicate nontrivial solutions
of Equation (24). The first local minima at rm(m, p, d)l is used
together with Equations (19) to obtain the relaxation constant 
for each group. The aim is to determine the bending stiffness for
a given set of parameters for each group of nanoparticle-coated
flagella. This is an alternative approach based on the parameters
of the flagellum and can be used to directly determine the
bending stiffness without simulating the dynamic response to
determine the relaxation time. Alternatively, the relation be-
tween bending stiffness and  for homogenous tails derived by
Rikmenspoel[36] can be extended and used based on numerical
or experimental results. For groups with inhomogenous bend-
ing stiffness (𝜅 depends on x), an apparent bending stiffness is
defined as

⟨𝜅(m, p, d)⟩ = (
l
𝜇

)4
𝜉⟂

 (m, p, d) (26)

where 𝜇 = 1.875 is the first mode of the characteristic equation
of the force balance (8) when the magnetic field is removed. The
operator ⟨⋅⟩ denotes averaging over the length of the flagellum,
and  (m, p, d) is its decay time to the initial configuration. This
extended definition gives the same results for homogenous
groups. Equation (26) is valid for all eight groups (Figure 2). It
connects  with the apparent bending stiffness and by solving
Equation (8), for a given set of parameters (𝜙, Ep, and Es), we can
directly determine the bending stiffness from the calculated or
measured dynamic response of the flagellum after removal of the
magnetic fields. Consider, for example, a fully uncoated and fully
coated flagella of length l = 60 μm, the above expression (26)
reduces to

⟨𝜅(0, 0, 0)⟩ = 1.05 × 10−18
𝜉⟂(x)

 (0, 0, 0)
⟨𝜅(1, 1, 1)⟩ = 1.05 × 10−18

𝜉⟂(x)
 (1, 1, 1) (27)
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Figure 3. The absolute values of the determinant of are calculated versus rm(m, p, d)l for all groups. Theminima of || indicate nontrivial solutions of
Equation (24). a) For a fully uncoated and fully coated flagella, minimum || is found at rm(0, 0, 0)l = rm(1, 1, 1)l = 1.875. b) For distal-coated, principal
piece-coated, and midpiece-coated flagella, minimum || is found at rm(0, 0, 1)l = 1.875, rm(0, 1, 0)l = 2.266, and rm(1, 0, 0)l = 1.209, respectively. c)
For flagella with two coated cellular segments, rm(0, 1, 1)l = 3.231, rm(1, 0, 1)l = 1.086, and rm(1, 1, 0)l = 1.3127.

Note that the constant 𝜇 that minimizes || for fully coated
and fully uncoated flagella is approximately the same. However,
they differ in that each restores its original configuration at
decay rate of  (0, 0, 0) and  (1, 1, 1), respectively. By repeating
the same procedure for different groups of nanoparticle-coated
flagella, the corresponding bending stiffness are extracted from
measured or calculated  (m, p, d).
Combining Equations (19) and (26), the apparent bending stiff-

ness can be calculated as

⟨𝜅(m, p, d)⟩ = (rm(m, p, d)l∕𝜇)4𝜅m (28)

Then it is straightforward to determine the bending stiffness
based on the constant rm(m, p, d) at which || is minimum
(Figure 3). Consider, for example, distal-coated, principal piece-
coated, and midpiece-coated flagella (Figure 2b), the values of
rm(0, 0, 1)l, rm(0, 1, 0)l, and rm(1, 0, 0)l that minimize || are
1.875, 2.266, and 1.209, respectively. Again, the above expression
(28) reduces to

⟨𝜅(0, 0, 1)⟩ = 𝜅m

⟨𝜅(0, 1, 0)⟩ = (2.266
1.875

)4
𝜅m

⟨𝜅(1, 0, 0)⟩ = (1.209
1.875

)4
𝜅m (29)

This apparent bending stiffness found by calculation can then be
compared to apparent bending stiffness found from numerical
and experimental results based on Equation (26). The problem
thus reduces to finding the decay time numerically or experimen-
tally by magnetic excitation and relaxation of the magnetizable
cells and from decay time with Equation (26). If alternatively the
parameters are given, then Equation (28) can be used to estimate
the bending stiffness.

3. Magnetic Excitation and Relaxation

Since the calculation of apparent bending stiffness in Equa-
tion (26) is only for a relatively small taper factor f ≈ 0, the

force balance (8) and the boundary conditions are also solved
numerically by finite difference method. If the proximal end
of the nanoparticle-coated flagellum is constrained (y(0, t) =
𝜕y(0, t)∕𝜕x = 0), the free end will deform under the influence of
external force or torque. When an external magnetic field is ap-
plied (see Experimental Section), the field magnetizes the cluster
of nanoparticles to a magnetizationm(m, p, d; x). Although there
exist several magnetizable clusters along the flagellum, the lo-
cal magnetic torques enable the flagellum to deform in the same
direction about the axis e1 × e2. In this case, the induced magne-
tization, m(m, p, d; x), of each cluster along the flagellum is en-
closed between the local tangent along the length and the direc-
tion of the magnetic field, B, and the contribution of the mag-
netic torque is introduced by the second term in Equation (8).
The magnetic torque vanishes after the magnetic field is set to
zero and in this case the relaxation of the flagellum is governed
by balance between the elastic and drag forces only. Note that un-
like the nanoparticle-coated flagellum, the uncoated flagellum is
not influenced by the external magnetic field. Therefore, the un-
coated flagellum of bending stiffness 𝜅(0, 0, 0; x) can be excited
only by applying a contact force at the distal end.

3.1. Fully Uncoated and Coated Flagellum

The behavior of the uncoated and nanoparticle-coated flagella is
shown in Figure 4. Computations are done using the balance
of magnetic, elastic, and viscous drag forces using the above-
mentioned boundary conditions for magnetic excitation and re-
laxation. Figure 4a shows the time-dependent deformation of an
uncoated flagellum of bending stiffness 𝜅(0, 0, 0; x). In this case,
the elastic modulus is uniform (Es = 1.8 MPa) and the bending
stiffness varies along the length based on Equations (3) and (5)
due to the natural taper of the flagellum toward the distal end
(f ≈ 0.4). Note also that the displacement field shown in Figure 1
is determined by imposing distal end force such that the maxi-
mum deformation of the distal end is 10% (≈ 6 μm) of the length
of the flagellum.
Equations (3)–(5) are used to define the average bending

stiffness over the length and the deformation and relaxation
are calculated for m = p = d = 0, as shown in Figure 4a,b,
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Figure 4. Simulation results of two flagella of bending stiffness ⟨𝜅(0, 0, 0)⟩ and ⟨𝜅(1, 1, 1)⟩. Parameters: 𝜂 = 1 mPa.s, l = 60 μm, df = 1 μm, lm = 13 μm,
lp = 40 μm, and ld = 7 μm. Darker curves indicate later times. a–d) The passive flagellum is driven by distal contact force. The force is removed and
the elastic moment restores its original shape. Position of the filament at l, l∕2, and l∕4 are calculated versus time and the decay time  is calculated
from the slope of log(y). The average decay rate is 1∕ (0, 0, 0) = 0.7 s−1. e,h) The passive flagellum is driven by magnetic field and nanoparticle coating.
Energy is fed in by a magnetic torque through a distribution (1, 1, 1; x). The flagellum returns to its original shape when the applied field is removed.
The decay rate is 1∕ (1, 1, 1) = 7.2 s−1.

respectively. The amplitude normalized by the maximum de-
formation (y∕ymax) of three points at one-fourth and one-half of
the length and at the tip are shown versus time in Figure 4c.
Once a force is applied at the distal end, the amplitude of these
three points (green, red and blue circles) increases almost lin-
early with time, and decreases at slower rates after the external
force is removed. The points at one-fourth and one-half of the
length restore their initial configuration at decay rates of 0.64
and 0.69 s−1, respectively. The point at the tip of the flagellum
restores its location at faster decay rate than any other point
along the flagellum, at a rate of 0.77 s−1, as shown in Figure 4d.
Substituting the calculated relaxation time into Equation (26),
the calculated bending stiffness is ⟨𝜅(0, 0, 0)⟩ = 4.73 × 10−21

N m2. Alternatively, Equation (28) gives bending stiffness of⟨𝜅(0, 0, 0)⟩ = 4.61 × 10−21 N m2 based on the parameters of the
fully uncoated flagellum (see Experimental Section).
In the case of nanoparticle-coated flagellum at all of its cellular

segments, we havem = p = d = 1, and therefore the elastic mod-
ulus of the organic body Es and elastic modulus of the nanoparti-
cles Ep defines the intrinsic elastic modulus using Equations (3)
and (4). Similarly, Equation (5) gives the diameter of the nanopar-
ticle coated flagellum. The following magnetic field is applied
with respect to the local frame of reference (e1, e2)

B =

{
B0

(
0 1 0

)
, excitation

0, relaxation
(30)

where B0 is the magnitude of the magnetic field. The response of
the nanoparticle-coated flagellum is shown in Figure 4e,f during
magnetic excitation and relaxation, respectively. Note that unlike
the uncoated flagellum case, the response and relaxation of the

three points are much faster when the flagellum is fully coated
(Figure 4g). The points at one-fourth and one-half of the length
restore their initial locations at decay rates of 7.17 and 7.21 s−1,
respectively, while the point at the tip has a decay rate of 7.22 s−1,
as shown in Figure 4h. Note also that unlike the uncoated flag-
ellum, the decay rates of all points along the nanoparticle-coated
flagellum are the same. The response is expected as the nanopar-
ticle coating has a direct effect on the modulus of elasticity of the
coated flagellum (3) and its moment of area (6), and since each
cellular segment is coated, all points along the length restore their
locations at the same decay rate. Using Equation (26) the bending
stiffness is ⟨𝜅(1, 1, 1)⟩ = 16.38 × 10−21 N m2, whereas Equation
(28) gives ⟨𝜅(1, 1, 1)⟩ = 16.08 × 10−21 N m2.

3.2. Single Magnetized Cellular Segment

In contrast to the previous cases where the flagellum is either
fully uncoated or fully coated with nanoparticles, a flagellumwith
a single magnetized cellular segment is locally composed of an
organic body and nanoparticles. When the distal end of the flag-
ellum is coated only (m = p = 0 and d = 1), the three points at
one-fourth and one-half of the length and at the tip have a rela-
tively slow response similar to that of an uncoated flagellum, as
shown in Figure 5a–c. The decay rate of these three points are
0.71, 0.74, and 0.78 s−1, respectively (Figure 5d). Therefore, the
response and relaxation of an uncoated flagellum is similar to
that of a coated flagellum at the distal end. Using the calculated
relaxation time, Equation (26) gives apparent bending stiffness of⟨𝜅(0, 0, 1)⟩ = 6.54 × 10−21 N m2, while Equation (28) gives bend-
ing stiffness of ⟨𝜅(0, 0, 1)⟩ = 4.61 × 10−21 N m2 based on the pa-
rameters of the distal-coated flagellum.
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Figure 5. Simulation results of distal-coated ⟨𝜅(0, 0, 1)⟩, principle piece-coated ⟨𝜅(0, 1, 0)⟩, and midpiece-coated ⟨𝜅(1, 0, 0)⟩ flagella. Parameters: 𝜂 = 1
mPa.s, l = 60 μm, df = 1 μm, lm = 13 μm, lp = 40 μm, and ld = 7 μm. Energy is fed in by a magnetic field (B) and a distribution of bending moment
(m, p, d; x). Position of the filament at l, l∕2, and l∕4 are calculated versus time and the decay time  is calculated from the slope of log(y). a–d) Energy
is fed in by the distal-coated flagellum. The decay rate is 1∕ (0, 0, 1) = 0.74 s−1. e–h) Energy is fed in by the principle piece-coated flagellum and
1∕ (0, 1, 0) = 2.38 s−1. i–l) Energy is fed in by the midpiece-coated flagellum and 1∕ (0, 0, 1) = 1.25 s−1.

Figure 5e,f show the deformation and relaxation of a flagellum
coated at its principal piece (m = d = 0 and p = 1). In this case
the decay rates of the three points are 2.40, 2.39, and 2.37 s−1, as
shown in Figure 5g,h. Therefore, the relaxation of the coated flag-
ellum at the principal piece is similar to that of a fully coated flag-
ellum in that both have uniform decay rate regardless of the loca-
tion of the observation point along the length. However, the de-
cay rate decreases as the observation point approaches the distal
end, unlike the increasing decay rate toward the distal end in the
case of the fully coated flagellum. Using the average relaxation
time of the principal piece-coated flagellum, the bending stiffness
is ⟨𝜅(0, 1, 0)⟩ = 8.28 × 10−21 and ⟨𝜅(0, 1, 0)⟩ = 8.06 × 10−21 N m2

using Equations (26) and (28), respectively.
Finally, when the midpiece is coated with nanoparticles only

((m = 1 and p = d = 0)), the decay rates of the three observation
points are calculated as 1.28, 1.26, and 1.21 s−1, as shown in Fig-
ure 5i–l. The corresponding bending stiffness is calculated us-
ing Equation (26) as ⟨𝜅(1, 0, 0)⟩ = 4.72 × 10−21 N m2. The point
at one-fourth of the length has a greater decay rate than any
other point because it is the closest to the magnetized segment.
Therefore, its response and decay rates are faster due to the loca-
tion of the nanoparticles near to this point. Using Equation (28),
the calculated bending stiffness based on the parameters of the
midpiece-coated flagellum is ⟨𝜅(0, 1, 0)⟩ = 6.42 × 10−21 N m2.

3.3. Two Magnetized Cellular Segments

Now suppose we consider a flagellum coated at two cellular seg-
ments such that the head is fixed as before. In this case, the
computations of the deformation and relaxation are done for
flagella with bending stiffness of ⟨𝜅(0, 1, 1)⟩, ⟨𝜅(1, 0, 1)⟩, and⟨𝜅(1, 1, 0)⟩. Figure 6a,b show the deformation and relaxation of a
coated flagellum at the principal piece and the distal end (m = 0
and p = d = 1). The position of the three observation points with
time indicates that the decay rates are 2.51, 2.50, and 2.48 s−1,
as shown in Figure 6c,d. The response and relaxation rates of
nanoparticle-coated flagellum at the principle piece and distal
end are similar to those observed for a flagellum coated at the
principal piece, as shown in Figure 5h. The corresponding bend-
ing stiffness is ⟨𝜅(0, 1, 1)⟩ = 16.34 × 10−21 N m2, while Equation
(28) gives ⟨𝜅(0, 1, 1)⟩ = 16.03 × 10−21 N m2 based on the nomi-
nal parameters.
When the midpiece and the distal end of the flagellum are

coated (Figure 6e–h), the flagellum restores its original config-
uration at a slower rate compared to that of the coated flagel-
lum at the principal and distal end (1∕ (1, 0, 1) = 1.25 s−1), as
shown in Figure 6g,h. The decay rate of the three observation
points (from the l∕4 to l) are 1.22, 1.24, and 1.28 s−1, respec-
tively. Again, we observe that the response and relaxation rates
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Figure 6. Simulation results of principle piece- and distal-coated ⟨𝜅(1, 0, 1)⟩, midpiece- and distal-coated ⟨𝜅(1, 0, 1)⟩, and midpiece- and principle piece-
coated ⟨𝜅(1, 1, 0)⟩ flagella. 𝜂 = 1 mPa.s, l = 60 μm, df = 1 μm, lm = 13 μm, lp = 40 μm, and ld = 7 μm. Energy is fed in by a magnetic field (B) and a
distribution of bendingmoment(m, p, d, x). Position of the filament at l, l∕2, and l∕4 are calculated versus time and the decay time  is calculated as the
slope of log(y). a–d) The decay rate is 1∕ (0, 1, 1) = 2.5 s−1. e–h) The decay rate is 1∕ (1, 0, 1) = 1.25 s−1. i–l) The decay rate is 1∕ (1, 1, 0) = 6.6 s−1.

do not vary across the length as the number of magnetizable
cellular segments increases. The corresponding bending stiff-
ness of the midpiece- and distal-coated flagellum is ⟨𝜅(1, 0, 1)⟩ =
6.54 × 10−21 N m2. Alternatively, setting m = d = 1 and p = 0
and using Equations (3)–(6) and (28) the bending stiffness is⟨𝜅(1, 0, 1)⟩ = 4.64 × 10−21 N m2.
Finally, when the flagellum is coated at the midpiece and prin-

cipal piece (m = p = 1 and d = 0) the three observation points
along the flagellum restore their original locations at decay rates
of 6.71, 6.68, and 6.59 s−1, as shown in Figure 6i–l. Again, we ob-
serve that the observation points near the magnetizable cellular
segments have faster response than any uncoated cellular seg-
ment (distal end). Note also that coating of themidpiece and prin-
cipal piece allows all points along the length to restore their loca-
tions at similar decay rate of 6.66 s−1 on average. Therefore, the
corresponding bending stiffness is ⟨𝜅(1, 1, 0)⟩ = 8.29 × 10−21 N
m2 using Equation (26), while Equation (28) predicts bending
stiffness of ⟨𝜅(1, 1, 0)⟩ = 8.08 × 10−21 N m2 using the parameters
of the midpiece- and principal piece-coated flagellum.
The simulation results show how spatially varying properties

along the length affect the decay rate of the flagellum to the initial
configuration. Consequently, the bending stiffness of the flagel-
lum is directly affected by these varying properties based onEqua-
tion (28). Nanoparticle-coated flagella with more magnetized cel-
lular segments present a much greater decay rate to the origi-
nal configuration after the field is removed, and consequently

have higher bending stiffness. For example, a fully coated flagel-
lum has greater decay rate and bending stiffness than any other
nanoparticle-coated flagellum.

3.4. Optimal Actuation Frequency

It is well known that optimal swimming using transverse bend-
ing waves along a passive filament requires sperm number of
2.1.[34] In the case of magnetizable passive flagellum, the length
imposes a significant limitation in realizing this optimal value.
This is not the case with soft synthetic microrobots where the
length can be controlled during fabrication to approach Sp = 2.1
for a given actuation frequency and properties of physical sur-
rounding. Actuation frequency is also limited by the step-out fre-
quency, which is limited by the field strength,magnetization, and
the geometric and fluidic properties of the filament andmedium,
respectively. Therefore, the influence of the bending stiffness on
the sperm number is an important factor in the realization of
optimal flagellar propulsion. We allow the nanoparticles to spa-
tially vary along the length, determine the averaged bending stiff-
ness over the length, and calculate the corresponding actuation
frequency for sperm numbers in the range 1 ≤ Sp ≤ 3. Figure 7
shows that for a given Sp, the actuation frequency is directly pro-
portional to the averaged bending stiffness. For Sp = 2.1, a desir-
able actuation frequency would be proportional to the bending
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Figure 7. Actuation frequency, 𝜔, of a magnetizable segment is calculated for different bending stiffness, 𝜅, and sperm number, Sp, using Equation
(1). a) For optimal flagellar propulsion (Sp = 2.1),[34] the optimal actuation frequency is directly proportional to the averaged bending stiffness over the
length. b) Optimal propulsive time-averaged thrust force, ⟨f ⟩,[37] of a flagellum with greater bending stiffness is achieved at higher actuation frequency.
Improvement of the frequency response is achieved for flagellum with greater bending stiffness.

stiffness of the flagellum. For example, the actuation of two pas-
sive flagella with bending stiffness of 2 × 10−21 and 16 × 10−21 N
m2 at 1.1 and 10.3 rad s−1, respectively, yields Sp = 2.1.
Figure 7a also suggests that the filament can bemade relatively

flexible and actuated at low frequencies to generate maximum
propulsive thrust (see Experimental Section). The filament can
also bemade stiff but its optimal actuation frequencymust be rel-
atively high. This relationship is particularly useful as the length
of the flagellum is constant or when considering a geometric
constraint on the length of a synthetic filament. The propulsive
thrust also shows how the bending stiffness and actuation fre-
quency influence propulsion, as shown in Figure 7b. The propul-
sive thrust, f , is calculated using the resistive-force theory by ap-
plying rotating magnetic field about the axis e1 for nanoparticle-
coated flagella with range of actuation frequency between 0 and
20 Hz and for two representative bending stiffness of 1.8 × 10−21

and 16 × 10−21 Nm2. Associated with the increase in the bending
stiffness of the flagellum is an increase in the optimal actuation
frequency and overall enhancement in the frequency response.
Note that the results in Figure 7a,b are in agreement in that both
suggest low-frequency and high-frequency for flagellumwith low
and high stiffness, respectively.

4. Estimation of the Bending Stiffness

Nanoparticle-coated sperm cells are allowed to precipitate on a
slide and the various types are observed using a microscope and
camera feedback. To characterize the bending stiffness, we of-
ten exert a magnetic torque on several cells within a relatively
large field-of-view to select the cells that are fixed at the proximal
end. Once they are observed, the microscope is focused on one
of the cells within a circular field-of-view of ≈ 350 μm in diam-
eter. Two electromagnetic coils are arranged at an oblique angle
with respect to the x–y plane that contains the cells, as shown in
Figure 8a. The coils have angles of 70◦ and 20◦ with respect to

the x–y and x–z planes, respectively. The superimposed field of
the two coils at the location (small black circle) of the sample is
5 mT (Figure 8b,c). When a nanoparticle-coated cell in a viscous
fluid is subject to this magnetic field, the magnetic torque tends
to align the flagellum along the magnetic field lines. The ampli-
tude of the deformation of the flagellum is highly dependent on
the applied magnetic field and the angle between the magnetic
field and the long axis of the cell. Therefore, the magnetic ex-
citation is conducted at three angles (5◦, 10◦, and 15◦) between
the long axis of the cell e1 and the resultant magnetic field. The
nanoparticle-coated flagella tend to return to their equilibrium
state when the applied field is removed, as shown in Figure 8d.
The process is then repeated ten times for each angle and for
each group of nanoparticle-coated cells. During each trial, the de-
cay rate is measured, and then the apparent bending stiffness is
calculated using Equation (26).
Figure 8d shows a fully coated flagellum immersed in wa-

ter and fixed at its proximal end. At t = 0, the magnetic field is
set to zero and the decay rate of the distal end is measured as
2.5 s−1. At t = 0.1 s, the flagellum restores its initial configura-
tion before the magnetic field. Similarly, Figure 9 shows the re-
sponse of a distal-coated and midpiece-coated flagella when the
applied magnetic field is removed. The decay rate of these three
nanoparticle-coated flagella differs as predicted by the numeri-
cal results, which is expected due to the dependence of the av-
eraged bending stiffness on the location and concentration of
the nanoparticles.
Figure 10a shows the decay rate of a fully coated flagellum

for several magnetic excitation and relaxation trials. The decay
rate is calculated using the displacement while relaxing toward
one-half of the maximum displacement, as shown in Figure 10b.
The average decay rate of this fully coated flagellum is −3.3 ±
1.3 s−1 (n = 12). Using Equation (26), the bending stiffness is
16.61(±2.54) × 10−21 N m2. In contrast, distal- and midpiece-
coated flagella restore their original configuration atmuch slower
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Figure 8. The deformation of the flagellum is measured while relaxing toward the equilibrium configuration to determine its bending stiffness. a)
Magnetic torque is applied on themagnetizable cells using two electromagnetic coils. b) Themagnetic fields of each coil are superimposed and controlled
to dynamically excite the flagellum. The axis of each coils has an angle of 70◦ with the x–y plane and 20◦ with the x-z plane. c) Field strength of 5 mT
is applied at the position of the flagellum. d) A sperm cell is surrounded with nanoparticles and is fixed at its head to a solid boundary. At t = 0 s, the
magnetic field is removed and the energy stored in the flagellum restore its original configuration. The bending stiffness of this sample is designated
as ⟨𝜅(1, 1, 1)⟩ because all cellular segments are coated with magnetizable nanoparticles. Time-dependent deformations of the passive flagellum are
measured after the removal of the magnetic field.

Figure 9. Nanoparticle-coated flagella restore their initial state after the magnetic field with an angle ∠Be1 = 15◦ is removed. The white dashed lines
represent the initial configuration of the flagellum. a–c) Distal-coated flagellum restores its initial configuration at decay rate of 0.24 s−1 and the average
bending stiffness is ⟨𝜅(0, 0, 1)⟩ = 10.86 × 10−21 N m2. d–f) Midpiece-coated flagellum restores its initial configuration at decay rate of 1.419 s−1 and⟨𝜅(1, 0, 0)⟩ = 20.53 × 10−21 N m2.
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Figure 10. The nanoparticle-coated flagellum is driven by magnetic field and its relaxation is measured to determine the bending stiffness. The field is
removed (t = 0) and the position of its distal end is measured for various coated cellular segments. The average bending stiffness is determined from ten
different dynamic excitations using the same cell. a–c) The decay rate of a fully coated flagellum is extracted using the displacement while relaxing toward
one-half of the maximum displacement. The average decay rate is −3.3 ± 1.3 s−1 (n = 12) and the average bending stiffness is 2.49(±1.37) × 10−21 N
m2. d) Principle piece-coated flagellum with ⟨𝜅(0, 1, 0)⟩ = 15.5(±1.87) × 10−21 N m2. e) Principle piece and distal-coated flagellum with ⟨𝜅(0, 1, 0)⟩ =
15.8(±2.68) × 10−21 N m2. f) Measured bending stiffness from measured decay rate using Equation (26), simulated response using Equations (8) and
(26), and calculated bending stiffness using Equation (28).

Table 1. Relaxation time [s] and average bending stiffness ([N m2] × 10−21) of the various types of nanoparticle-coated cells. Relaxation time,  , is
measured during relaxation of the flagellum and the bending stiffness is calculated using Equation (26). The bending stiffness is proportional to the
number of coated cellular segments and the location of the coating along the flagellum.

Cell Fully uncoated and coated Single cellular segment Two cellular segments

000 111 001 010 100 011 101 110

rm l 1.8751 1.8751 1.8751 2.2657 1.2089 3.2313 1.0862 1.3127

 2.0 0.25 ± 0.04 0.49 ± 0.06 0.23 ± 0.01 0.97 ± 0.13 0.15 ± 0.10 0.28 ± 0.01 0.78 ± 0.13⟨𝜅⟩ 1.8[38] 16.61 ± 2.54 6.01 ± 0.85 12.27 ± 1.73 3.79 ± 0.38 15.86 ± 2.74 9.39 ± 0.42 5.34 ± 0.74

rates of 0.24 s−1 and 1.419 s−1 as shown in Figure 10d,e, respec-
tively. The corresponding average bending stiffness of these cells
are 6.01(±0.85) × 10−21 and 12.27(±1.73) × 10−21.
Figure 10f shows the averaged bending stiffness compared

with the numerical results for seven groups of nanoparticle-
coated cells. It is evident that the location of the magnetizable
nanoparticles has a direct effect on the bending stiffness (Table 1).
In the case of fully uncoated and fully coated flagella, the aver-
aged bending stiffness is 1.8 × 10−21 and 16.61(±2.54) × 10−21 N
m2, respectively. The bending stiffness of a fully coated flagel-
lum is greater than that of uncoated flagellum by eight times or
more, which is expected due to the friction between the particles
that coat the cell. Figures 1c and 2 show several coated cellular
segments with nanoparticles. Sliding friction between these par-
ticles is likely to provide a substantial resistance when the mag-
netic field is applied. Regardless of the location of the coating, the

bending stiffness of the particle-coated cells is greater than that
of the uncoated cell, as shown in Figure 10f.
In the case of a single magnetized cellular segment, the aver-

aged bending stiffness is entirely dependent on the location of
the cellular segment. The average bending stiffness of midpiece-,
principal piece-, and distal-coated flagella are 3.79(±0.38) × 10−21,
12.27(±1.73) × 10−21, and 6.01(±0.85) × 10−21 N m2, respectively.
The surface area of the principal piece is much greater than
that of the distal end, while the surface area of the distal
end is slightly greater than the surface area of the mid-
piece, leading to the direct relation between the measured
bending stiffness and the coated area by the nanoparti-
cles. Similarly, in the case of two magnetized cellular seg-
ments, the principal piece- and distal-coated flagellum has a
greater bending stiffness (15.85(±2.74) × 10−21 N m2) than the
midpiece- and distal-coated (9.39(±0.42) × 10−21 N m2) and the
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midpiece- and principal piece-coated (5.34(±0.74) × 10−21 N m2)
flagella.

5. Conclusions

In this work, we present a contactless electromagnetic-based
excitation method to estimate the apparent bending stiffness
of nanoparticle-coated passive flagella of bull sperm cells.
Electrostatic-based self-assembly is used to produce these soft
biohybrid systems which possess intrinsic variable stiffness
along the length. The method works by dynamically exciting the
magnetizable cells using a controlled magnetic field and mea-
suring their relaxation time after the removal of the magnetic
field. This method enables us to estimate the bending stiffness of
the passive flagella without direct contact and with minimal risk
of damage to the samples during characterization. We also de-
velop numerical models to relate the measured relaxation time
to the apparent stiffness of the nanoparticle-coated flagella. We
show theoretically and experimentally that the bending stiffness
is proportional to the location of themagnetized cellular segment
with aminimum value of 3.79(±0.37) × 10−21 Nm2 formidpiece-
coated flagellum, while fully coated flagellum exceeds this by
four times.

6. Experimental Section
Electromagnetic System: The dynamic excitation experiments were

done using an electromagnetic system and Zeiss Axio Vert.A1microscope.
The electromagnetic system consisted of two orthogonal electromagnetic
coils with a tilt angle of 70◦ with respect to the horizontal x–y plane and 70◦

with respect to the vertical x–z plane. Each electromagnetic coil (inner di-
ameter 20 mm, outer diameter 40 mm, and length 80mm) had 3200 turns
with a 0.7mmwire thickness. Themaximum superimposedmagnetic field
at the position of the samples was 5 mT. The samples were prepared and
allowed to precipitate on a horizontal slide and it was observe that the
head of the cell adheres to the surface, so that the sperm tail can be ex-
cited by the magnetic field which led to an elastic deformation of the tail.
The dynamic excitation and relaxation of the samples were recorded and
the videos were acquired using a camera a (Camera Axiocam 702 mono,
Carl Zeiss B.V., Oberkochen, Germany) and a 50× phase objective (Objec-
tive LD EC Epiplan-Neofluar 50×/0.55 DIC M27) at 45 frames s−1.

Nanoparticle-Coated Sperm Cells: Nanoparticle-coated cells were pre-
pared using electrostatic-based self-assembly.[20] Bovine sperm fromHol-
stein bulls were obtained from Masterrind GmbH Meißen and stored in
liquid nitrogen. The semen straws where thawed in 37 ◦C water bath for
2 min, before diluting the semen in 1 mL SP-TALP (Caisson labs). The
sperm sample was centrifuged at 300 g for 5 min, the supernatant re-
moved and resuspended in distilled water. This washing step was repeated
twice before adding the elongated maghemite rice gain-shaped nanopar-
ticles. Samples were stored at 5 ◦C until further use.

The elastic modulus of the organic body and nanoparticles were Es =
1.4 MPa and Ep = 22 × 104 MPa,[39] respectively. Volume of the sperm

head was 4
3
𝜋abt = 26.2 × 10−18 m3, where 2a = 10 μm, 2b = 5 μm, and

2t = 1 μm are the major diameter, minor diameter, and thickness of the
head, respectively. Volume of themidpiece was 𝜋(df∕2)2lm = 1.63 × 10−18

m3. Finally, the volume of the principal piece and distal end was 1
3
𝜋(lp +

ld)((df∕2)2 + (df∕2)r + r2) = 3.85 × 10−18 m3, where r is the diameter of
the distal end at x = l (Figure 1), such that r = df (l)∕2 = df (1 − f ). There-
fore, the total volume of the sperm cell was 31.69 × 10−18 m3.

Density of the maghemite particles was 4.86 g cm−3. Therefore, the vol-
ume of particles of mass of 9 × 10−9 g was 1.85 × 10−15 m3. The volume
of the sperm cell and the nanoparticles yielded an average volume frac-

tion of ⟨𝜙⟩ = Vp∕(Vs + Vp) = 0.98. This volume fraction was much higher
than 3.64123 × 10−5 used in simulation and calculation. Reasons could
be high concentration at the head, elastic modulus did not follow rule of
mixture, particles had smaller effective elastic modulus because they were
separated particles.

Numerical Model: Two numerical methods were used to determine
the bending stiffness of the nanoparticle-coated flagella. Both methods
made use of the equation of motion based on the nominal parameter of
the flagella. The first method (dynamic simulation) was dependent on the
time-dependent deformation of the flagellum during magnetic excitation
and relaxation, whereas the second method (stiffness calculation) directly
related the bending stiffness to the nominal parameters of the flagella with
the assumption that the taper factor was relatively small.

Dynamics Simulation: The equation of motion (8) was solved for the
deformation y(x, t) using a finite difference method based on the nominal
parameters of each group (Section 6). Once equipped with a model based
on the nominal parameters, Equation (8) was solved numerically and the
response of the flagellum during excitation and relaxation was determined
(Figures 4–6). The decay rate was determined using y(x, t) and y(l, t) and
used to determine the average bending stiffness with Equation (26). This
procedure was similar to the experiment in that the decay rate was mea-
sured from the response of the flagellum and entered into Equation (26)
to determine the average bending stiffness.

Stiffness Calculation: Equation (28) was used to determine the bend-
ing stiffness by assuming that the bending stiffness is piece-wise constant
along each cellular segment. Similar parameters (𝜙, Es, and Ep) to those
used in the dynamic simulation were used to calculate the elastic mod-
ulus and the moment of area using Equations (3) and (6), respectively.
Then the constant rm(m, p, d) of each group was determined (Table 1) and
entered into Equation (28) to determine the apparent bending stiffness.

Propulsive Thrust: The propulsive thrust, f , was calculated using

⟨f ⟩ = 1
Tc

Tc

∫
0

⎛⎜⎜⎜⎝(𝜉⟂ − 𝜉∥)

l

∫
0

𝜕y
𝜕t

𝜕y
𝜕x
d𝓁

⎞⎟⎟⎟⎠dt (31)

where Tc is the period of oscillation and the operator ⟨⋅⟩ denotes averag-
ing over the time period, and 𝜉∥ = 0.5𝜉⟂ is the tangential drag coefficient.
Oscillation of the nanoparticle-coated flagellum was induced by a time-
varying magnetic field given by

B = B0
(
1 cos𝜔t 0

)
(32)

This field magnetized the nanoparticle-coated cellular segments to a mag-
netization that trails behind B, leading to the deformation y in the time-
averaged force Equation (31).
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