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Abstract

The main purpose of this paper is to study the so-called sumsets problem.
This problem is naturally seen from the point of view of Additive Combinatorics,
yet we approach it using Algebraic Geometry. This work is divided into three
chapters.

The first chapter is devoted to Commutative Algebra. We first define basic
concepts, such as graded modules or exact sequences, which will be present through-
out the whole article, and then we introduce the concept of the Hilbert function
of a graded module. The most important result of the chapter is the fact that
this function, for sufficiently large integers, is a polynomial, which we prove by
means of the Hilbert-Serre theorem and also Hilbert’s syzygy theorem. Knowing
the coefficients of this polynomial is, in general, a very difficult problem.

In the second chapter, we link the previous one with Algebraic Geometry. We
define the Hilbert function of a projective variety and we calculate it in some
simple cases. Next, we study three invariants of projective varieties and introduce
the Veronese varieties, which are key in this work. The monomial projections of
these varieties will be fundamental to solving the sumsets problem.

Finally, in the last chapter, we show that the cardinality of the sumsets can be
modeled by the Hilbert function of a suitable monomial projection of a Veronese
variety, which proves that this cardinality asymptotically becomes a polynomial.

Notation: throughout this whole paper, if we do not say otherwise, any ring
will be a commutative and unitary ring and we are going to work over an alge-
braically closed field k with characteristic equal to zero. These assumptions could
be more general, but this would entail some technical details that are not among
our interests.

2020 Mathematics Subject Classification. 11B13, 13A02, 13C05, 13D02, 14A25
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Introduction

It is a well-known fact that the study of Mathematics covers a huge number of
different areas, which, very roughly, are usually related to either quantity (num-
ber theory), structure (algebra), space (geometry) or change (analysis). Each of
these fields has, in turn, an immense number of subdivisions. We could ingen-
uously think that all these different areas develop independently and that every
field has its own results, its own ways of understanding and its own applications.
This could not be further from the truth. When mathematicians dig deep into any
mathematical area, it is common that questions from a completely non-related
subject rise. Rather than having independent non-crossing paths, we constantly
find ourselves in a labyrinth, where completely different ways turn out to have a
stretch in common. One of the main problems we approach in this paper faithfully
highlights this fact. In the third chapter, we are going to see how the cardinality
of sumsets asymptotically behaves, which, seemingly, should be studied from the
point of view of Additive Combinatorics. Nonetheless, the utilization of Commu-
tative Algebra and Algebraic Geometry happens to be undeniably helpful, which
uncovers a fascinating connection between these fields.

We start by giving the definition of graded ring and graded module. Gener-
ally speaking, these concepts try to generalise a property found in polynomials,
namely, the property of being able to uniquely decompose into a sum of elements,
each of which is associated to a grade. In other words, a graded ring or graded
module decomposes into a direct sum and each component of such sum is called
a graded component. Since these components are usually k-vector spaces, we can
now ask the natural question of how does the dimension of these graded components
grow? This is exactly what the Hilbert function measures. For each i, this function
returns the dimension of the i-th graded component of the graded module. The
big challenge in the first chapter of this article is, precisely, showing that this func-
tion becomes a polynomial for sufficiently big entries, thus defining the Hilbert
polynomial of a graded module.

One of the ways to prove this fact relies on the famous Hilbert’s syzygy theo-
rem. In linear algebra, as we know, a linear relation between elements of a module
is a linear equation that has these elements as a solution. More precisely, if M is
a module over a ring R and m1, . . . , ms ∈ M, a relation between m1, . . . , ms ∈ M
is a sequence (r1, . . . , rs), ri ∈ R, such that r1 · m1 + · · · + rs · ms = 0. The set of all
relations between m1, . . . , ms forms a module. Generally, one is interested to the
case where M is graded and finitely generated and mi is a generating set of M. In
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viii Introduction

this case, each (r1, . . . , rs) is called a syzygy and the module they generate is called
a syzygy module of M. Higher order syzygy modules are defined recursively. A
first syzygy module of M is simply its syzygy module and a k-th syzygy module
of M is a syzygy module of a (k− 1)-th syzygy module. Hilbert’s syzygy theorem
asserts that, if k is a field and R = k[x1, . . . , xn], then every n-th syzygy module of
M is free.

In the second chapter, these results are linked to Algebraic Geometry by asso-
ciating to any algebraic variety its homogeneous coordinate ring, namely, given an al-
gebraic set Y ⊂ Pn, its homogeneous coordinate ring is the ring k[x0, . . . , xn]/I(Y),
where I(Y) is the homogeneous ideal of polynomials vanishing on Y. This ring
is a graded module over k[x0, . . . , xn] and hence allows us to consider the Hilbert
function and Hilbert polynomial of the variety. The amount of information this
polynomial encodes is vast. If PX(t) = antn + · · · + a1t + a0 is the Hilbert polyno-
mial of the variety, its dimension is n, its degree is ann! and its arithmetic genus is
(−1)n(a0 − 1).

The chapter moves on by defining the rational normal curves and, more gen-
erally, the Veronese varieties, denoted by Vn,d and defined as the image of

z = [z0, . . . , zn] 7→ [. . . , mi(z), . . . ],

where mi(z) ranges over all monomials of degree d in z0, . . . , zn. These varieties can
be described by a set of quadratic equations and they are also arithmetically Cohen-
Macaulay (briefly, ACM), meaning the projective dimension of their homogeneous
coordinate ring equals their codimension. The monomial projections of Veronese
varieties are going to be of great relevance in the third chapter. Roughly speaking,
a monomial projection of a Veronese variety is the closure of the image of the same
parametrization, but deleting some monomials from it. Now, it is very natural
that some questions arise from this procedure: how does the Hilbert polynomial
change when deleting specific monomials? Does the degree decrease? Are they
still ACM varieties? The last section of the second chapter is devoted to answering
such questions.

Lastly, the third chapter utilizes everything from the previous lines in order
to shed some light on the cardinality of sumsets. Let A, B ⊂ Zn. We define
A + B := {a + b : a ∈ A, b ∈ B} and tA := A + · · · + A for all t ∈ Z≥0. This
set is called a sumset. Khovanskii, under mild hypothesis, proved in [11] that |tA|
becomes a polynomial pA(t) ∈ Q[t] of degree at most n when t is sufficiently large,
but there is not much known about this polynomial, nor the minimum value t0

from which |tA|= pA(t). This chapter finds a suitable monomial projection of a
Veronese variety for each set A, whose Hilbert function describes, precisely, the
values |tA|.



Chapter 1

The Hilbert polynomial

This chapter starts by giving some of the fundamental notions needed to for-
mally define the Hilbert polynomial of a graded R-module. Among other impor-
tant concepts, it recalls the definition of an R-module, which is the main algebraic
structure we will work on, and defines notions such as the length of an R-module,
a gradation or an exact sequence. Next, we come to the definition of the Hilbert func-
tion and Hilbert polynomial of a graded module M. As we are going to see, the
Hilbert function H(M, n) measures the length of the n-th homogeneous piece of a
graded module M. We will further see that this Hilbert function is of polynomial
type, hence defining the Hilbert polynomial. This statement is proved by means
of Hilbert-Serre theorem and Hilbert’s syzygy theorem.

1.1 Basic concepts

Definition 1.1.1. Let R be a ring. An R-module M consists of an abelian group
(M, +) and an operation · : R×M→ M such that for all r, s ∈ R, x, y ∈ M it holds
that

1. r · (x + y) = r · x + r · y,

2. (r + s) · x = r · x + s · x,

3. (rs) · x = r · (s · x),

4. 1 · x = x, where 1 is the multiplicative identity of R.

Example 1.1.2.

(a) If k is a field, k-vector spaces and k-modules are identical.

(b) Every ring can be thought of as a module over itself.

(c) If R is any ring, then Rn is an R-module with the usual definitions of addition
and scalar multiplication, i.e., (x1, . . . , xn) + (x′1, . . . , x′n) = (x1 + x′1, . . . , xn + x′n)
and r · (x1, . . . , xn) = (r · x1, . . . , r · xn).

1



2 The Hilbert polynomial

(d) Every abelian group (G, +) can be thought of as a Z-module: for n > 0, x ∈ G,
let

n · x := x + · · · + x︸ ︷︷ ︸
n times

, 0 · x := 0, (−n) · x := −(n · x).

Conversely, any Z-module is also an abelian group. Therefore, Z-modules
and abelian groups can be thought of as the same object.

In some sense, an R-module has to be understood as the generalization of the
notion of vector space over a field, wherein the corresponding scalars are now
the elements of an arbitrary given ring. Thus, there are many concepts given in
linear algebra that are completely analogous when considering modules, such as
submodules, generating sets, sums of modules, quotients or homomorphisms. We
are going to omit the formal definition of such concepts for the sake of brevity.
However, the following three results are also very significant and we consider
they are worth recalling.

Proposition 1.1.3 (Isomorphism theorems).

(a) For any homomorphism ϕ : M→ N of R-modules there is an isomorphism

M/Ker(ϕ)→ Im(ϕ), [m] 7→ ϕ(m).

(b) For R-modules N′ ⊆ N ⊆ M we have (M/N′)/(N/N′) ∼= M/N.

(c) For two submodules N, N′ of an R-module M we have (N + N′)/N′ ∼= N/(N ∩ N′).

Nonetheless, modules do not maintain, in general, the basic properties of vec-
tor spaces. For instance, not every R-module has a basis; and even if they do (they
are then called free modules) its cardinality need not be unique. Take for example
the group of integers modulo 3 and consider it to be a Z-module, according to
Example 1.1.2 (d). In this case, one cannot find even one element which satisfies
the definition of a linearly independent set, since when an integer such as 3 or 6
multiplies an element of the group, the result is 0. This fact forces us to redefine
the notion of dimension, hence introducing the length of a module.

Definition 1.1.4. Let M be a module over a ring R. Given a strict chain of sub-
modules of M of the form

M0 ( M1 ( · · · ( Mn = M,

we say that n is the length of the chain. The length of M, l(M), is then defined to
be the largest length of any of its chains. If it does not exist, we say that M has
infinite length. A (finite) chain that has length l(M) is called a composition series for
M.

Example 1.1.5.

(a) If k is a field, the length of a k-module and its dimension as a k-vector space
coincide.
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(b) Let M be the module R[x]/(x3 − x2 + x − 1) over the ring R[x]. We want
to compute l(M). The submodules of M correspond to the ideals of R[x]
containing (x3 − x2 + x− 1). Since (x3 − x2 + x− 1) = (x− 1)(x2 + 1), we obtain
the maximal chain of ideals

(x3 − x2 + x− 1) ⊂ (x− 1) ⊂ R[x]

or
(x3 − x2 + x− 1) ⊂ (x2 + 1) ⊂ R[x],

which corresponds to the chain of submodules

0 ⊂ R[x]/(x− 1) ⊂ R[x]/(x3 − x2 + x− 1)

or
0 ⊂ R[x]/(x2 + 1) ⊂ R[x]/(x3 − x2 + x− 1).

This proves that l(M) = 2.

(c) The length of the cyclic group Z/nZ (viewed as a Z-module) is equal to the
number of prime factors of n, with multiple prime factors counted multiple
times. This can be proved by using the Chinese remainder theorem.

From now on, some of the results that are going to be used in proofs might
be given for granted, yet can be found in any conventional algebra book or any
notes on commutative algebra, such as [2, 6]. In the following proposition, for
instance, we are using the fact that any chain 0 ( M0 ( M1 ( · · · ( Mn = M of
submodules of M can be refined to a composition series of M, as long as M has
finite length. Also, if N is a non-trivial submodule of an R-module M, there is no
submodule P of M with N ( P ( M if and only if the module M/N has only
trivial submodules.

Proposition 1.1.6. Let M be an R-module such that l(M) < ∞ and N a submodule of
M. We have

l(N) + l(M/N) = l(M).

Proof. The chain 0 ⊆ N ⊆ M can be refined to a composition series for M

0 = N0 ( N1 ( · · · ( Nn = N ( M0 ( · · · ( Mm = M, (1.1)

with l(N) = n and l(M) = n + m. Setting Pi := Mi/N for i = 1, . . . , m we obtain a
chain of submodules

0 = P0 ( · · · ( Pm = M/N (1.2)

in which Pi/Pi−1
∼= Mi/Mi−1 (this follows from Proposition 1.1.3 (b)). These mod-

ules have no non-trivial submodules; otherwise, there would exist a submodule P
of M such that Mi−1 ( P ( Mi, yet this contradicts the maximality of (1). There-
fore, (2) is a composition series for M/N of length m, so we get the desired result
l(N) + l(M/N) = n + m = l(M).
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Corollary 1.1.7. Let M, N be R-modules. If ϕ : M→ N is a homomorphism, l(Ker ϕ) +
l(Im ϕ) = l(M).

Proof. This is just Proposition 1.1.6 applied to M/Ker(ϕ) ∼= Im(ϕ) from Proposition
1.1.3.

Proposition 1.1.8. Let M1, M2 be modules of finite length. We have

l(M1 ⊕M2) = l(M1) + l(M2).

Proof. Consider the composition series 0 = X0 ( X1 ( · · · ( Xp = M1 and 0 =
Y0 ( Y1 ( · · · ( Yq = M2. Then

0 = X0 ⊕ 0 ( X1 ⊕ 0 ( · · · ( Xp ⊕ 0 ( Xp ⊕Y1 ( · · · ( Xp ⊕Yq = M1 ⊕M2

is a composition series for M1 ⊕M2 of length p + q = l(M1) + l(M2).

1.2 Graded rings and modules

Definition 1.2.1. Let R be a ring. We say R is a graded ring if the underlying
additive group of R has a decomposition R =

⊕
i∈I Ri, known as gradation, where

Ri is an abelian group for all i and RiRj ⊂ Ri+j for all i, j. Usually, the index set I
is the set of nonnegative integers or the set of integers.

A nonzero element x ∈ Ri is said to be homogeneous of degree i and its degree
is denoted by deg x. By definition of direct sum, every nonzero element a of R can
be uniquely written as a finite sum a = ∑i ai, where each ai is homogeneous of
degree i.

Example 1.2.2.

(a) Any ring R can receive a gradation by letting R0 = R and Ri = 0 for all i 6= 0.
This is known as the trivial gradation of R.

(b) Given k a field, the polynomial ring R = k[x0, . . . , xn] is a graded ring, where
each component Ri is the set of all homogeneous polynomials of degree i.

Proposition 1.2.3. If R =
⊕

i Ri is a graded ring, then R0 is a subring of R, 1 ∈ R0 and
Rn is an R0-submodule for all n.

Proof. We observe that R0 · R0 ⊂ R0, which means that R0 is closed under mul-
tiplication. That forces R0 to be a subring of R. Now, if we had 1 /∈ R0, the
equality 1 · r = r would force r to have different degrees, which is nonsense. The
last statement follows from the fact that R0 · Rn ⊂ Rn for all n.

In a very similar way, it is possible to define a graded R-module, as long as R
is a graded ring. In fact, whenever we speak of a graded module, the module is
always assumed to be over a graded ring.
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Definition 1.2.4. Let R be a graded ring and M and R-module. We say M is
a graded R-module if the underlying additive group of M has a decomposition
M =

⊕
i∈I Mi, known as gradation, where Ri ·Mj ⊂ Mi+j for all i, j.

Again, a nonzero element x ∈ Mi is said to be homogeneous of degree i and
its degree is denoted by deg x. One calls Mi the i-th homogeneous (or graded)
component of M. By definition of a direct sum, every nonzero element a of R can
be uniquely written as a finite sum a = ∑i ai, where each ai is homogeneous of
degree i.

Remark 1.2.5. If M is a graded R-module, Mn is an R0-module for all n.

Example 1.2.6. Let R be any ring and let S be the graded ring R[x]. Consider the
S-module M := S[y]. One way to grade S[y] over S is the following one:

S[y] =
∞⊕

k=0

Mk,

where Mk := R[y]xk. It is easy to check that Sp ·Mq = (Rxp) · (R[y]xq) ⊂ R[y]xp+q =
Mp+q. Another way to grade S[y] over S is by saying

S[y] =
∞⊕

k=0

M′k

with M′k := ∑i+j=k Rxiyj, since

Sp ·M′q = (Rxp) · ∑
i+j=q

Rxiyj = ∑
i+j=q

Rxi+pyj ⊂ ∑
i+j=p+q

Rxiyj = M′p+q.

Definition 1.2.7. Let M, N be graded R-modules.

(a) If ϕ : M → N is a homomorphism, we say ϕ is homogeneous of degree r if
ϕ(Mn) ⊂ Nn+r for all n. The set of homomorphisms of degree r is denoted by
HomR(M, N)r. Obviously, these sets induce the gradation

HomR(M, N) =
⊕

r
HomR(M, N)r.

(b) We say M, N are isomorphic if there is an isomorphism of degree 0 from M to
N.

(c) A submodule N of M is a graded submodule of M if N is a graded R-module
and N ↪→ M is homogeneous of degree 0.

(d) A quotient Q of M is a graded quotient of M if Q is a graded R-module and the
natural projection M→ Q is homogeneous of degree 0.

Definition 1.2.8. Let R be a graded ring an I ⊂ R and ideal. I is said to be
homogeneous if it can be generated by homogeneous elements.
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Definition 1.2.9. For any graded R-module M and any l ∈ Z, we define the
twisted module M(l) by M(l)d = Md+l .

Definition 1.2.10. Let R be a graded ring. If M is a graded R-module, the annihi-
lator of M is defined as Ann M = {r ∈ R : r ·m = 0 for all m ∈ M}.

Proposition 1.2.11. If M is a graded R-module, Ann M is a homogeneous ideal in R.

Proof. First note Ann M 6= ∅, since 0 ∈ Ann M. Now, we take r1, r2 such that
ri ·m = 0 for all m ∈ M and (r1 + r2) ·m = r1 ·m + r2 ·m = 0 + 0 = 0. Finally, we take
r ∈ R and s ∈ R such that s ·m = 0 for all m ∈ M. We want to see that (rs) ·m = 0
for all m ∈ M, but (rs) ·m = r · (s ·m) = r · 0 = 0. To see this ideal is homogeneous,
we claim that

Ann M = (r ∈ R : r ·m = 0 for all m ∈ M, r homogeneous).

The inclusion from right to left is clear. From left to right, we take r ∈ R such that
r · m = 0 for all m ∈ M and write r = ∑i ri, being ri either 0 or homogeneous of
degree i. We will have finished if we see ri ·m = 0 for all i and m ∈ M. Now, for
any m ∈ M homogeneous of degree j,

0 = r ·m = ∑
i

ri ·m.

Each summand ri · m is either zero or has degree i + j. By comparing degrees,
ri · m = 0 for all i. This proves that ri · m equals zero if m is homogeneous, but
any m ∈ M can be expressed as a sum of homogeneous components and the same
idea works.

1.3 Exact sequences

Definition 1.3.1. An exact sequence of modules is a sequence of homomorphisms
between modules

· · · f−1−→ M−1
f0−→ M0

f1−→ M1
f2−→ · · ·

such that Im( fi) = Ker( fi+1). It is called a short exact sequence if it has the form

0→ M0
f−→ M1

g−→ M2 → 0.

An immediate consequence of the definition of exact sequence is the following
fact. If the exact sequence has the form

0→ M0
f1−→ M1

f2−→ · · · fn−→ Mn → 0,

then f1 is a monomorphism and fn is an epimorphism.
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Proposition 1.3.2. Let

0→ M1
ϕ1−→ M2

ϕ2−→ · · · ϕn−1−−→ Mn → 0

be an exact sequence of R-modules of finite length. Then ∑n
i=1(−1)il(Mi) = 0.

Proof. By Corollary 1.1.7 we can express this sum as

n−1

∑
i=1

(−1)il(Mi) =
n−1

∑
i=1

(−1)i(l(Ker ϕi) + l(Im ϕi)),

which, with an index shift, can be expressed as

− l(Ker ϕ1)︸ ︷︷ ︸
0

+(−1)n−1 l(Im ϕn−1)︸ ︷︷ ︸
l(Mn)

+
n−1

∑
i=2

(−1)i(l(Ker ϕi)− l(Im ϕi−1)).

However, Ker ϕi = Im ϕi−1, so this last sum vanishes and the result follows.

Proposition 1.3.3. Let Mi, i ∈ Z, be graded R-modules and let

· · · f−1−→ M−1
f0−→ M0

f1−→ M1
f2−→ · · ·

be an exact sequence of homomorphisms of degree 0. Consider for all i, n the restriction
fin := fi (Mi−1)n

. Then, for all n, the sequence of R0-modules

· · · f−1n−−→ (M−1)n
f0n−→ (M0)n

f1n−→ (M1)n
f2n−→ · · ·

is an exact sequence.

Proof. The homomorphisms fi are homogeneous of degree 0, so the sequence is
well defined, since Im( fin) = fi(Mi−1)n ⊂ (Mi)n for all i. Now, we need Im( fin) =
Ker( fi+1n), but this is easy to check using Im( fi) = Ker( fi+1).

1.4 The Hilbert function and polynomial

The Hilbert function H(M, ∗) : Z 7→ Z is defined by H(M, t) := l(Mt). Our
next step is to see that this function is of polynomial type, meaning that there is
pM(t) ∈ Q[t] such that H(M, t) = pM(t) for t� 0.

Definition 1.4.1. A numerical polynomial is a polynomial p(t) ∈ Q[t] such that
p(t) ∈ Z for all t� 0, t ∈ Z.

Lemma 1.4.2. If p(t) ∈ Q[t] is a numerical polynomial of degree r, then there are
c0, . . . , cr ∈ Z such that

p(t) = c0

(
t
r

)
+ c1

(
t

r− 1

)
+ · · · + cr.

In particular, p(n) ∈ Z for all n ∈ Z. In other words, if a rational polynomial gives
integers from some value t ∈ Z, then it gives integers for all integer values.
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Proof. We are going to use induction on the degree of p. If deg p = 0, the result is
obvious, because p(n) = c0 ∈ Z cst. for all n� 0 means p ≡ c0. Now, we suppose
that any numerical polynomial q(t) ∈ Q[t] of degree r− 1 can be written as

q(t) = c0

(
t

r− 1

)
+ c1

(
t

r− 2

)
+ · · · + cr−1,

with c0, . . . , cr−1 ∈ Z. Choose a numerical polynomial p of degree r. We have the
following equalities:(

t
r

)
=

t!
r! (t− r)!

=
1
r!

t(t− 1) · · · (t− r + 1) =
tr

r!
+ . . . .

We claim that, for any r, the set {(t
i) : 0 ≤ i ≤ r} is a Q-basis of Q[t]≤r. If we

identify Q[t]≤r with Qr+1, this set becomes

{(∗, . . . , 1/r! ), (∗, . . . , 1/(r− 1)! , 0), . . . , (1, 0, . . . , 0)},

where ∗ means any value. This is clearly a Q-basis. Therefore, p can be written as

p(t) = c0

(
t
r

)
+ c1

(
t

r− 1

)
+ · · · + cr,

with c0, . . . , cr ∈ Q. For any polynomial q we shall now define the difference polyno-
mial ∆q by ∆q(t) := q(t + 1)− q(t). Note that the degree of this expression decreases
by one and also

∆
(

t
r

)
=
(

t + 1
r

)
−
(

t
r

)
=
(

t
r− 1

)
.

From this last expression we get

∆p(t) = p(t + 1)− p(t) = c0

(
t

r− 1

)
+ c1

(
t

r− 2

)
+ · · · + cr−1,

which is a polynomial of degree r − 1 and, since ∆p(t) = p(t + 1)− p(t) ∈ Z for
t� 0, it is also a numerical polynomial. Hence, by induction there is an expression
such that

c0

(
t

r− 1

)
+ c1

(
t

r− 2

)
+ · · · + cr−1 = a0

(
t

r− 1

)
+ a1

(
t

r− 2

)
+ · · · + ar−1,

with a0, . . . , ar−1 ∈ Z. But {(t
i) : 0 ≤ i ≤ r − 1} is a Q-basis, so ai = ci for all

0 ≤ i ≤ r− 1, which means that ci ∈ Z for all 0 ≤ i ≤ r− 1. We are almost done.
We still have to check that cr ∈ Z, but this follows from the fact that p(t) ∈ Z for
t� 0.

Lemma 1.4.3. Let f : Z→ Z be a function. If there is a numerical polynomial q(t) such
that the difference function ∆ f is equal to q(n) for all n � 0, then there is a numerical
polynomial p(t) such that f (n) = p(n) for all n� 0.
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Proof. Suppose q(t) has degree r. Using lemma 1.4.2, we can write

q(t) = c0

(
t
r

)
+ · · · + cr

with c0, . . . , cr ∈ Z. We define p̃(t) as follows:

p̃(t) = c0

(
t

r + 1

)
+ · · · + cr

(
t
1

)
.

We have ∆p̃ = q, so ∆( f − p̃)(n) = ∆ f (n)− ∆p̃(n) = ∆ f (n)− q(n) = 0 for n � 0,
and this means that ( f − p̃)(n) = k cst. for all n� 0, so

f (n) = p̃(n) + k

for all n � 0. Defining p := p̃ + k, we found a polynomial equal to f for large
values of n, and p is a numerical polynomial, because Im( f ) ⊂ Z. This is exactly
what we needed and the proof is complete.

The next result is the analogue for graded modules of a well-known result for
modules of finite type over a noetherian ring.

Proposition 1.4.4. Let M be a graded module of finite type over a noetherian graded ring
S. Then there exists an increasing sequence of submodules (that is, a graded filtration)
0 = M0 ⊂ M1 ⊂ . . . ⊂ Mr = M such that for each i we have Mi/Mi−1 ∼= (S/pi)(li),
where pi is a homogeneous prime ideal of S and li ∈ Z.

Proof. To prove the existence of this filtration, we consider the set A of graded
submodules of M that admit such a filtration. This set is nonempty, because
0 ∈ A. Take any ordered chain of submodules N1 ⊂ N2 ⊂ . . . , Ni ∈ A for all i. M
is a noetherian module, so this chain has to end and this implies that there exists
M′ ∈ A maximal in A. Consider M′′ := M/M′. If M′′ = 0, then M′ = M and the
statement is true. If not, we consider the set of ideals I := {Im = Ann(m) : m ∈
M′′, m homogeneous, m 6= 0}, where Ann(m) := {s ∈ S : s · m = 0}. If there was
m such that Im = S, m would satisfy s · m = 0 for all s ∈ S, yet this forces m to
be 0, hence Im 6= 0 for all m. Besides, Im is a homogeneous ideal. Now, since S is
a noetherian ring, there is Im maximal in I. We will now see that this ideal is a
prime ideal.

To see so, let a, b ∈ S such that ab ∈ Im, but b /∈ Im. We want to see a ∈
Im. In fact, it is sufficient to prove this when a, b are homogeneous, because S
is graded and a, b can split into homogeneous components. Now consider the
element b ·m ∈ M′′. If b ·m was 0, then b ∈ Im by definition, so b ·m 6= 0. We also
have Im ⊂ Ib·m, since s ·m = 0 implies s · (b ·m) = 0. By maximality of Im, Im = Ib·m.
However, ab ∈ Im, so (ab) · m = a · (b · m) = 0, and this means a ∈ Ib·m = Im, as
wanted. Thus Im is a homogeneous prime ideal of S. Call it p.

Let m have degree l and let N ⊂ M′′ be the module generated by m, that is,
S ·m. Using Proposition 1.1.3 (a), the map

S/p→ S ·m = N, [s] 7→ s ·m
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is an isomorphism of modules. If we want it to be an isomorphism of graded
modules (that is, a homogeneous isomorphism of degree 0) we rather consider the
twisted module (S/p)(−l). Thus, N ∼= (S/p)(−l). Let N′ := π−1(N) ⊂ M, where
π : M → M/M′ = M′′ is the natural projection. Since 0 ∈ N, M′ ⊂ π−1(N) = N′

and N′/M′ ∼= N ∼= (S/p)(−l). So N′ ∈ A and also M′ ( N′, which contradicts
the maximality of M′. We conclude M′ = M, which proves the existence of the
filtration.

Theorem 1.4.5 (Hilbert - Serre). Let M be a graded module of finite type over the
polynomial ring k[x0, . . . , xn], k a field. Then there exists a unique polynomial pM(t) ∈
Q[t] such that H(M, t) = pM(t) for t � 0. Furthermore, deg pM = dim V(Ann M),
where V denotes the zero set in Pn of a set of polynomials.

Proof. Consider the short exact sequence 0 → M′ → M → M′′ → 0. By Proposi-
tions 1.3.2 and 1.3.3, it holds that H(M, t) = H(M′, t) + H(M′′, t) for all t, and also
V(Ann M) = V(Ann M′) ∪V(Ann M′′). This means that proving the statement
for M′, M′′ is also proving it for M. Due to Proposition 1.4.4, there is a filtration
of M with quotients of the form (S/p)(l), where p is a homogeneous prime ideal
and l ∈ Z. This allows us to reduce to M ∼= (S/p)(l), where the shift l is in fact
a change of variables z 7→ z + l. It is sufficient to consider the case M = S/p.
Now, if p = (x0, . . . , xn), H(M, t) = 0 for all t > 0, so pM = 0 is the corresponding
polynomial. Besides, deg pM = dim V(p), considering deg 0 and dim ∅ to be both
−1.

We now study the case where p 6= (x0, . . . , xn). We choose xi /∈ p and we de-
fine M′′ := M/xi · M. Consider the sequence 0 → M(−1)

xi−→ M → M′′ → 0,
which is an exact sequence. Then, H(M′′, t) = H(M, t) − H(M, t − 1). On the
other hand, V(Ann M′′) = V(p) ∩ {xi = 0} and, by choice of xi, V(p) * H,
where H is the hyperplane xi = 0. Now, Projective Dimension Theorem tells
us that dim V(Ann M′′) = dim V(p)− 1. Now we are going to use induction on
dim V(Ann M). We may assume that H(M′′, t) is a polynomial function, which
corresponds to a polynomial pM′′ of degree = dim V(Ann M′′). From lemmas
1.4.2, 1.4.3, the statement follows.

We have seen that the Hilbert function is indeed a polynomial from a specific
integer value t0. Finding this t0, as well as knowing other properties of this poly-
nomial, such as its degree and leading coefficient, is in our interest. The next lines
give an alternative way to reach such polynomial. We will give several previous
results and then we prove the well-known Hilbert’s syzygy theorem, which will also
allow us to prove that the Hilbert function is of polynomial type.

Proposition 1.4.6. A graded R-module admits a homogeneous generating set.

Proof. This follows from the fact that any R-module has generators - the module it-
self is an example. Since the module is graded, take the union of the homogeneous
components of each generator. This set still generates the module.
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Remark 1.4.7. If the module is finite, this procedure can be done with a finite
generating set, thus obtaining a finite homogeneous generating set.

Proposition 1.4.8. Let M be a graded R-module of finite type. There are always integers
r1, . . . , rn and an exhaustive homomorphism of degree 0 that has the form⊕

i

R(−ri)→ M.

Proof. Consider (x1, . . . , xs) a homogeneous generating set of M and ri := deg xi.
For each i we define the map ϕi : R(−ri) → M, 1 7→ xi. Here, R(−ri) has to be
understood as an R-module, so ϕi(r) = ϕi(r · 1) = r · ϕ(1) = r · xi. These maps are
clearly homomorphisms. Now, ϕ has degree 0, that is, ϕi(Rn−ri ) ⊂ Mn, beacuse
if deg r = n − ri then ϕi(r) = r · xi has degree n. Let’s now consider the sum
of these homomorphisms. It is an exhaustive map, since any m ∈ M can be
written as ∑i aixi and this is indeed the image of (ai)i, and it is also a homogeneous
homomorphism of degree 0. This is exactly what we needed.

Corollary 1.4.9. Let M be a free graded R-module of finite type. There are r1, . . . , rn ∈ Z

such that M ∼=
⊕

i R(−ri).

Proof. It follows directly from Proposition 1.4.8 and the definition of basis.

Lemma 1.4.10 (Nakayama’s lemma). Let M be a graded R-module of finite type. If
M = R+M, where R+ :=

⊕
i>0 Ri, then M = 0.

Proof. Let (x1, . . . , xl) be a homogeneous generating set of M. We can choose x1

such that deg x1 ≤ deg xi for all i. It is clear that x1 /∈ R+M, which contradicts the
fact that x1 ∈ M.

1.5 Hilbert’s syzygy theorem

The following lines are going to be devoted to the concept of syzygy, which
will eventually lead us to the famous Hilbert’s syzygy theorem. This theorem is one
of the three fundamental theorems about polynomial rings over fields, first proved
by David Hilbert in 1890, and it gives an alternative way to prove that the Hilbert
function is of polynomial type.

We shall first try to understand what a syzygy is. In linear algebra, as we
know, a linear relation between elements of a module is a linear equation that
has these elements as a solution. More precisely, if M is a module over a ring R
and m1, . . . , ms ∈ M, a relation between m1, . . . , ms ∈ M is a sequence (r1, . . . , rs),
ri ∈ R, such that r1 ·m1 + · · ·+ rs ·ms = 0. The set of all relations between m1, . . . , ms

forms a module. Generally, one is interested to the case where M is graded and
finitely generated and mi is a generating set of M. In this case, each (r1, . . . , rs)
is called a syzygy and the module they generate is called a syzygy module of M.
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Although the syzygy module depends on the chosen generating set, most of its
properties are independent.

Higher order syzygy modules are defined recursively. A first syzygy module
of M is simply its syzygy module and a k-th syzygy module of M is a syzygy
module of a (k− 1)-th syzygy module. Hilbert’s syzygy theorem asserts that, if k
is a field and R = k[x1, . . . , xn], then every n-th syzygy module of M is free.

Example 1.5.1. Let R = C[x, y] and M = R/m, where m = (x, y). A first syzygy
module is m, but it is not free. The elements x, y are not independent, since they
satisfy the non-trivial relation (−y) · x + x · y = 0. Therefore, we look at the syzygies
of m and we get a rank-one free module generated by the element (−y, x) ∈ R2, as
expected.

This procedure can be summarised with an exact sequence. Let M be a graded
module of finite type over R = k[x0, . . . , xd] and e01, . . . , e0m0 a generating set of M
with n0j := deg e0j. We have just seen that the map

ϕ0 :
m0⊕
j=1

R(−n0j)→ M, (aj)j 7→∑
j

aj · e0j

is a homogeneous epimorphism of degree 0. Now, the syzygy module is simply
Ker(ϕ0). Analogously, consider e11, . . . , e1m1 a generating set of Ker(ϕ0) with n1j :=
deg e1j and

ϕ1 :
m1⊕
j=1

R(−n1j)→ Ker(ϕ0), (aj)j 7→∑
j

aj · e1j.

The second syzygy is Ker(ϕ1). Recursively, the k-th syzygy is Ker(ϕk−1). These
maps are exhaustive, so Im(ϕi) = Ker(ϕi−1), which leads us to the exact sequence

· · · ϕ2−→
m1⊕
j=1

R(−n1j)
ϕ1−→

m0⊕
j=1

R(−n0j)
ϕ0−→ M→ 0.

Now, Hilbert’s syzygy theorem is equivalent to verifying that the following
sequence is exact:

0→
md+1⊕
j=1

R(−nd+1j)
ϕd+1−−→ · · · ϕ2−→

m1⊕
j=1

R(−n1j)
ϕ1−→

m0⊕
j=1

R(−n0j)
ϕ0−→ M→ 0,

since the 0 at the left end means that ϕd+1 maps
⊕md+1

j=1 R(−nd+1j) isomorphically
onto Ker(ϕd), that is, the (d + 1)-th syzygy of M is free.

Theorem 1.5.2 (Hilbert’s syzygy theorem). Let V := k[x0 . . . , xd] be a ring of polyno-
mials over a field k and M a graded V-module of finite type. If mi, nij ∈ Z with 0 ≤ i ≤ d
and 1 ≤ j ≤ mi and

0 K
md⊕
j=1

V(−ndj) · · ·
m1⊕
j=1

V(−n1j)
m0⊕
j=1

V(−n0j) M 0

is an exact sequence of homomorphisms of degree 0, then there exist two values md+1, nd+1j ∈
Z with 1 ≤ j ≤ md+1 such that K ∼=

⊕
1≤j≤md+1

V(−nd+1 j).
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Proof. We are going to prove this statement using induction on the number d + 1 of
variables. If d + 1 = 0, then V = k and M is a finite k-vector space. Let (e1, . . . , em) be
a homogeneous basis of M and ni = deg ei. The homomorphism fi : V(−ni)→ M,
defined by fi(1) = ei, is homogeneous of degree 0. Now, the following map is an
isomorphism of graded V-modules:

∑
1≤j≤m

f j :
⊕

1≤i≤m

V(−ni)→ M.

Suppose d + 1 > 0. We define N = Ker(
⊕

1≤j≤m0
V(−n0j) → M). The mul-

tiplication by xd is injective in V, so it is also injective in N and K, because
N ⊂ ⊕

1≤j≤m0
V(−n0j) and K ⊂ ⊕

1≤j≤md
V(−ndj). Let’s now consider the fol-

lowing commutative diagram, where rows and columns are both exact sequences
of homomorphisms of degree 0:

0 0 0 0

0 K(−1)
md⊕
j=1

V(−ndj − 1) · · ·
m1⊕
j=1

V(−n1j − 1) N(−1) 0

0 K
md⊕
j=1

V(−ndj) · · ·
m1⊕
j=1

V(−n1j) N 0

0 K/xdK
md⊕
j=1

V ′(−ndj) · · ·
m1⊕
j=1

V ′(−n1j) N/xdN 0

0 0 0 0

xd xd xd xd

where V ′ = V/xdV ∼= k[x0, . . . , xd−1]. A direct application of the snake lemma (see
[6] for more details) shows that the last row is an exact sequence of graded V ′-
modules of homomorphisms of degree 0. By induction, there exist integer values
m, li, 1 ≤ i ≤ m, such that K/xdK ∼=

⊕
1≤i≤m V ′(−li), and from this we are going to

deduce an isomorphism K ∼=
⊕

1≤i≤m V(−li).
Consider z1, . . . , zm homogeneous elements of K with deg zi = li, where the

classes in K/xdK form a basis of K/xdK. If K′ is the graded submodule of K
formed by z1, . . . , zm, we get K = K′ + xdK. Using Lemma 1.4.10, we obtain K = K′.

Finally, we suppose that there is a relation between z1, . . . , zm and we check
that it is necessarily trivial. Let a1z1 + · · · + amzm = 0 be a homogeneous non-
trivial relation of minimum degree. Since [zi] form a basis of K/xdK, this relation
becomes trivial when taking classes, which means that ai = bixd and xd(b1z1 +
· · · + bmzm) = 0. Now, xd is not a divisor of zero in K, which leads to b1z1 + · · · +
bmzm = 0. However, the relation from before had minimum degree, so bi = 0 for
all i and also ai = 0 for all i. So (z1, . . . , zm) is a basis of K, which means that
K ∼=

⊕
1≤i≤m V(−li).

Corollary 1.5.3. Let V be the polynomial ring k[x0, . . . , xd] and M a graded V-module of
finite type. There is a polynomial pM(n) ∈ Q[n] such that H(M, n) = pM(n) for n� 0.
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Proof. We consider the exact sequence given by Theorem 1.5.2:

0
md+1⊕
j=1

V(−nd+1j) · · ·
m1⊕
j=1

V(−n1j)
m0⊕
j=1

V(−n0j) M 0.

By Proposition 1.3.3, this sequence can be reduced to the homogeneous compo-
nents of its modules, hence obtaining an exact sequence of V0-modules, that is,
k-vector spaces:

0
md+1⊕
j=1

Vn−nd+1j · · ·
m1⊕
j=1

Vn−n1j

m0⊕
j=1

Vn−n0j Mn 0.

Hence, using Propositions 1.1.8 and 1.3.2, we get

H(M, n) = dim Mn = ∑
i,j

(−1)i dim(Vn−ni j).

These Vi are nothing but the k-vector spaces formed by all polynomials of
degree i. It is a well-known fact that dim Vi = (i+d

d ) = id/d! + · · · + 1 =: pV(i), i ≥ 0,
which gives, for n big enough,

H(M, n) = dim Mn = ∑
i,j

(−1)i pV(n− nij).

Definition 1.5.4. A finite free resolution of a module M of length l is an exact se-
quence of the form

0→ Ml
fl−→ Ml−1

fl−1−−→ · · · f1−→ M0
ε−→ M→ 0,

where Mi is a free module for all i and Ml 6= 0. The homomorphisms fi are called
boundary maps and the map ε is called an augmentation map.

Let R = k[x0 . . . , xn] be a ring and I ⊂ R a homogeneous ideal. One of our
aims is to find a minimal free resolution for the quotient ring R/I1, where, in this
setting, minimal means that Im fi ⊂ mMi−1. Precisely, the condition of exactness
allows us to achieve this by finding a minimal resolution for I. Consider the short
exact sequence

0→ I → R→ R/I → 0.

By splicing this sequence with the finite free resolution defined before, we obtain
the following sequence, which is also a finite free resolution:

0→ Ml
fl−→ Ml−1

fl−1−−→ · · · f1−→ M0
ε−→ R→ R/I → 0.

1Technically, this set should be understood as a ring resulting from the quotient of a ring and an
ideal, but many results seen so far revolve around modules. For the sake of coherence, any ring R
will be thought of as a module over itself and any ideal as an R-submodule.



1.5 Hilbert’s syzygy theorem 15

Now, Theorem 1.5.2 is going to be very useful when looking for such minimal
free resolutions. This theorem, as we have seen, asserts that every finitely gener-
ated R-module has a finite free resolution of length at most n + 1, which can be
reached by computing syzygy modules.

Example 1.5.5 (Free resolutions of ideals).

(a) Let I = (x2y, xy2, yz2) be a monomial ideal in R = Q[x, y, z]. We want to find a
free resolution of I. A way to start is by considering the exact sequence

R(−3)3

(
x2y xy2 yz2

)
−−−−−−−−−−−→ I → 0.

The next steps are very simple. We calculate the first syzygy module, Ker( x2y xy2 yz2 ),
and define f1 such that Ker( x2y xy2 yz2 ) = Im( f1), that is,

f1 =

−y −z2 0
x 0 −z2

0 x2 xy

 .

This allows us to extend the previous exact sequence to

R(−4)⊕ R(−5)2


−y −z2 0
x 0 −z2

0 x2 xy


−−−−−−−−−−−−→ R(−3)3

(
x2y xy2 yz2

)
−−−−−−−−−−−→ I → 0.

Now, we proceed analogously. Ker( f1) allows us to define

f2 =

 z2

−y
x

 ,

but this last map is injective, so we finally reach the free resolution that we
sought:

0→ R(−6)

(
z2

−y
x

)
−−−→ R(−4)⊕ R(−5)2

−y −z2 0
x 0 −z2

0 x2 xy


−−−−−−−−−→ R(−3)3 ( x2y xy2 yz2 )

−−−−−−−→ I → 0.

Note that the length of this resolution is 2 ≤ 3, as guaranteed by Hilbert’s
syzygy theorem.

(b) There are various software packages that give an answer to such computa-
tions. A good example is Macaulay2, a software system devoted to supporting
research in algebraic geometry and commutative algebra. In Appendix A (a)
we redo the calculations of the previous part.
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(c) Consider I = (x2, y2, z2, t2) in Q[x, y, z, t]. A free resolution of I is

0→ R(−8)
f3−→ R(−6)4 f2−→ R(−4)6 f1−→ R(−2)4 ε−→ I → 0,

where

f3 =


−t2

z2

−y2

x2

 , f2 =


z2 t2 0 0
−y2 0 t2 0
x2 0 0 t2

0 −y2 −z2 0
0 x2 0 −z2

0 0 x2 y2

, f1 =

 −y2 −z2 0 −t2 0 0
x2 0 −z2 0 −t2 0
0 x2 y2 0 0 −t2

0 0 0 x2 y2 z2



and ε =
(

x2 y2 z2 t2
)

.



Chapter 2

Veronese varieties

In the previous chapter we have seen two ways to prove that the length of the
homogeneous pieces of a graded module, for big entries, behaves like a polyno-
mial. However, the approach we have used so far is mainly algebra. This section
is going to combine the previous results with geometry, associating to each projec-
tive variety Y ⊂ Pn a polynomial PY ∈ Q[t] from which it is possible to rigorously
and intuitively introduce some of the invariants of a projective variety (dimension,
degree and arithmetic genus).

2.1 The Hilbert polynomial of a projective variety

Definition 2.1.1. Let Y ⊂ Pn be an algebraic set. Its homogeneous coordinate ring is
the set

S(Y) := k[x0, . . . , xn]/I(Y),

where I(Y) is the homogeneous ideal of polynomials vanishing on Y. S(Y) has
obviously a natural grading induced by

(k[x0, . . . , xn]/I(Y))t := k[x0, . . . , xn]t/(I(Y))t,

where this last quotient is a quotient of k-vector spaces.

Definition 2.1.2. If Y ⊂ Pn is an algebraic set, we define the Hilbert function of Y,
FY, to be the Hilbert function of its homogeneous coordinate ring S(Y), i.e.,

FY(t) := dim(k[x0, . . . , xn]/I(Y))t.

Analogously, the Hilbert polynomial of Y, PY, is defined to be the Hilbert poly-
nomial of S(Y).

Remark 2.1.3. Due to Theorem 1.4.5, we know that the degree of such polynomial
is the dimension of Y, since

deg PY = dim V

(
Ann

k[x0, . . . , xn]
I(Y)

)
= dim V(I(Y)) = dim Y.

17
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Given the fact that an algebraic set Y ⊂ Pn is the intersection of a collection
of hypersurfaces, one of the most basic problems we can pose in relation to Y
is to describe the hypersurfaces that contain it. In particular, we want to know
how many hypersurfaces of each degree contain Y; that is, for each value of t, to
know the dimension of the vector space of homogeneous polynomials of degree
t vanishing on Y. The Hilbert function of Y is meant to express this information.
FY(t) = dim(k[x0, . . . , xn]/I(Y))t tells us the codimension, in the vector space of all
homogeneous polynomials of degree t in k[x0, . . . , xn], of the subspace of those
belonging to I(Y), namely, those vanishing on Y.

Example 2.1.4 (Hilbert polynomial of a finite set of points).

(a) To start with a simple case, suppose that Y consists of three nonlinear points
p1, p2, p3 ∈ P2. The value FY(1) tells us exactly whether or not those three
points are collinear. We have

FY(1) = dim(k[x0, x1, x2]/I(Y))1 = 3− dim(I(Y))1.

Now, (I(Y))1 is the space of homogeneous linear polynomials vanishing at
p1, p2, p3. There is no such polynomial unless the three points are collinear, in
which case the space is 1-dimensional, generated by the line on which they lie.
Thus,

FY(1) =


2 if the three points are collinear.

3 otherwise.

On the other hand, we claim that FY(t) = 3, t ≥ 2, whatever the position of the
points. It is not hard to prove. Consider the homomorphism of k-vector spaces

ϕt : (k[x0, x1, x2])t → k3,

given by evaluation at some fixed class representatives of p1, p2, p3. The kernel
of this map, which is the set we are interested in, does not depend on the
chosen class representatives. Now, this map is surjective. To see that, take
l1, l2, l3 polynomials of degree 1 such that {li = 0} ∩ {p1, p2, p3} = {pi}. Now,

lt−1
2 l3

lt−1
2 l3(p1)

7→ (1, 0, 0),
lt−1
1 l3

lt−1
1 l3(p2)

7→ (0, 1, 0),
lt−1
1 l2

lt−1
1 l2(p3)

7→ (0, 0, 1),

where (lt−1
i lj)(pk) actually means evaluation at the chosen class of pk. Hence,

using Ker(ϕt) = (I(Y))t, we have

FY(t) = dim(k[x0, x1, x2]t/I(Y)t) = dim(k3) = 3

for all t ≥ 2. In short, we have seen that

(i) If p1, p2, p3 ∈ P2 are collinear, FY(t) =


2 if t = 1

3 if t ≥ 2
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(ii) If p1, p2, p3 ∈ P2 are not collinear, FY(t) = 3, t ≥ 1.

(b) Similarly, if Y ⊂ P2 consists of four points, there are two possible Hilbert
functions.

(i) If the four points are collinear,

FY(t) =



2 if t = 1

3 if t = 2

4 if t ≥ 3

(ii) If the points are not collinear, FY(t) =


3 if t = 1

4 if t ≥ 2

More generally, we see that whenever Y ⊂ Pn is a finite set of points, the
function FY(t), for small values of t, give us information about the position of
the points; FY(1), for example, tells us the size of the linear subspace of Pn

they span.

(c) The procedure used in (a) can be easily generalized. If Y ⊂ Pn consists of
p1 . . . , pd, then FY(t) = d for all t ≥ d− 1. To prove it, take the homomorphism

ϕd
t : (k[x0, . . . , xn])t → kd,

t ≥ d − 1, defined as before. Again, this map is surjective. If l1, . . . , ld are
homogeneous polynomials of degree 1 such that {li = 0} ∩ {p1, . . . , pd} = {pi},
we have

lt−d+2
2 l3 . . . ld

lt−d+2
2 l3 . . . ld(p1)

7→ (1, . . . , 0), . . . ,
lt−d+2
1 l2 . . . ld−1

lt−d+2
1 l2 . . . ld−1(pd)

7→ (0, . . . , 1).

This means that

FY(t) = dim(k[x0, . . . , xn]t)− dim(Ker ϕd
t ) = dim(kd) = d,

so FY(t) = d for all t ≥ d− 1.

Example 2.1.5 (Hilbert polynomial of an algebraic set).

(a) To give an example involving a variety of positive dimension, suppose Y ⊂ Pn

is the hypersurface V( f ) for some f ∈ k[x0, . . . , xn] = R of degree d. The
following sequence is exact and has degree 0:

0→ R(−d)
× f−→ R→ R/( f )→ 0.

This shows that
dim(R/( f ))t = dim Rt − dim R(−d)t,

so

FY(t) =
(

t + n
n

)
−
(

t− d + n
n

)
.
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(b) We can progressively generalize the example from above. Suppose f1, f2 ∈
k[x0, . . . , xn], where di = deg fi. Assuming gcf( f1, f2) = 1, the following se-
quence is exact and has degree 0:

0→ R(−d1 − d2)

(
f2
− f1

)
−−−−→ R(−d1)⊕ R(−d2)

( f1 f2 )−−−−→ R→ R/( f1, f2)→ 0.

So we can affirm that

FY(t) =
(

t + n
n

)
−
(

t− d1 + n
n

)
−
(

t− d2 + n
n

)
+
(

t− d1 − d2 + n
n

)
.

(c) When considering f1, f2, f3, the resolution becomes

0→ R(−d1 − d2 − d3)
ϕ2−→ R(−d1 − d2)⊕ R(−d1 − d3)⊕ R(−d2 − d3)

ϕ1−→
ϕ1−→ R(−d1)⊕ R(−d2)⊕ R(−d3) ε−→ R→ R/( f1, f2, f3)→ 0,

where

ϕ2 =
( f3
− f2

f1

)
, ϕ1 =

( f2 f3 0
− f1 0 f3

0 − f1 − f2

)
, ε = ( f1 f2 f3 ).

In this case, in order to make this configuration work, the condition

dim R/( f1, f2, f3) = n + 1− 3

is required. The Hilbert polynomial is obtained exactly as before.

(d) This can be generalized for a finite number of functions f1, . . . , fr ∈ k[x0, . . . , xn],
where deg fi = di. However, just as happened in (c), we need to suppose

dim R/( f1, . . . , fr) = n + 1− r.

This condition is usually referred to as complete intersection. More specifically, if
Y ⊂ Pn is a projective variety of codimension r, then the number of generators
of I(Y) is at least r and we say that Y is a complete intersection if this number of
generators of I(Y) equals r. From an algebraic point of view, Y is a complete
intersection if and only if I(Y) = ( f1, . . . , fr), where ( f1, . . . , fr) is a regular
sequence. Now, the minimal free R-resolution of I(Y) is given by

0→

Fr︷ ︸︸ ︷
R

(
r

∑
j=1
−dj

)
ϕr

r−1−−→

Fr−1︷ ︸︸ ︷⊕
1≤i1<···<ir−1≤r

R

(
r−1

∑
j=1
−dij

)
ϕr

r−2−−→ · · ·
ϕr

k−→

⊕
1≤i1<···<ik≤r

R

(
k

∑
j=1
−dij

)
︸ ︷︷ ︸

Fk

ϕr
k−1−−→ · · ·

ϕr
1−→
⊕

1≤i≤r

R(−di)︸ ︷︷ ︸
F1

εr
−→ R︸︷︷︸

F0

→ R/( f1, . . . , fr)→ 0,

where the matrices ϕr
k can be given recursively by

ϕ1
0 =

(
f1

)
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and, for all k, r such that 0 ≤ k < r, r > 1,

ϕr
k =

(
ϕr−1

k fr · Id

0 −ϕr−1
k−1

)
.

This resolution is called the Koszul resolution. A convention we used is the fact
that ϕr

0 means εr for all r. Also, if k = 0,(
ϕr−1

k fr · Id

0 −ϕr−1
k−1

)
means (

ϕr−1
k fr · Id

)
and if k = r− 1, (

ϕr−1
k fr · Id

0 −ϕr−1
k−1

)
means (

fr · Id

−ϕr−1
k−1

)
.

There are several features one might want to check, the first one being the fact
that the number of rows of ϕr

k is the rank of Fk and the number of columns of
ϕr

k is the rank of Fk+1. Clearly, the rank of Fk is (r
k). The first cases are very clear

(Example 2.1.5 (a), 2.1.5 (b), 2.1.5 (c) might help). Now, suppose the number
of rows of ϕr−1

i is (r−1
i ) for all 0 ≤ i < r − 1. Using induction on r, for any

0 ≤ k < r we rapidly get that the number of rows of ϕr
k is(

r− 1
k

)
+
(

r− 1
k− 1

)
=
(

r
k

)
,

as expected1. An analogous argument shows that the number of columns of
ϕr

k is the rank of Fk+1, so the sequence is well defined. We may as well use
induction on r to see the sequence is exact. The first cases are easy. Now,
suppose Im ϕr−1

i+1 = Ker ϕr−1
i for all 0 ≤ i < r − 2. For any 0 ≤ k < r − 1, we

have:

ϕr
k · ϕr

k+1 =

(
ϕr−1

k fr · Id

0 −ϕr−1
k−1

)
·
(

ϕr−1
k+1 fr · Id

0 −ϕr−1
k

)
=

=

(
ϕr−1

k · ϕr−1
k+1 fr · ϕr−1

k − fr · ϕr−1
k

0 ϕr−1
k−1 · ϕ

r−1
k

)
= 0.

This shows that Im(ϕr
k+1) ⊂ Ker(ϕr

k) for all k, r. To see the converse, suppose
there is a column vector g such that

0 = ϕr
k · g =

(
ϕr−1

k fr · Id

0 −ϕr−1
k−1

)
·


...

gi1 ...ik+1
...


1≤i1<···<ik+1≤r

.

1Of course, any (i
j) with j < 0 or j > i is considered to be 0, so that both cases k = 0 and k = r− 1

are also taken into consideration.
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We can split g as follows:


...

gi1 ...ik+1
...


}

g′}
g′′

where g′ = (gi1 ...ik+1)1≤i1<···<ik+1<r and g′′ = (gi1 ...ik+1)1≤i1<···<ik+1=r. We have that
g′′ ∈ Ker ϕr−1

k−1 = Im ϕr−1
k , so g′′ = ϕr−1

k · z′′. Also,

ϕr−1
k · g′ + fr · g′′ = ϕr−1

k · (g′ + fr · z′′) = 0,

which means that g′ + fr · z′′ ∈ Ker ϕr−1
k = Im ϕr−1

k+1 , so g′ + fr · z′′ = ϕr−1
k+1 · z′.

With this in mind, 
...

gi1...ik+1
...

 =

(
ϕr−1

k+1 fr · Id

0 −ϕr−1
k

)
·
(

z′

−z′′

)
,

so g ∈ Im ϕr
k+1, as desired. The last detail we may want to look at is whether

or not the exact sequence has degree 0. To see it, suppose that each component
of the column vector

g =


...

gi1 ...ik+1
...


1≤i1<···<ik+1≤r

has degree t−∑k+1
j=1 dij . We would like each component of the vector

ϕr
k · g =


...

g∗i1 ...ik
...


1≤i1<···<ik≤r

to have degree t − ∑k
j=1 dij . It is also an inductive argument. The first cases,

just as before, can be checked out in Example 2.1.5 (a), 2.1.5 (b), 2.1.5 (c). Now,
suppose that for all 0 ≤ i < r− 1 the map ϕr−1

i has degree 0. With the same
notation as before,

ϕr
k · g =

(
ϕr−1

k fr · Id

0 −ϕr−1
k−1

)
·

 ...
gi1...ik+1

...

 =

(
ϕr−1

k · g′ + fr · g′′

−ϕr−1
k−1 · g′′

)
.

By induction, each component of ϕr−1
k · g′ has degree t−∑k

j=1 dij , each compo-
nent of fr · g′′ has degree t−∑k

j=1 dij − r + r = t−∑k
j=1 dij and each component

of −ϕr−1
k−1 · g′′ has degree (t− r)−∑k−1

j=1 dij = t−∑k
j=1 dij , which exactly what we

needed. We can give some more examples:
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ϕ4
3 =

 f4
− f3

f2
− f1

, ϕ4
2 =


f3 f4 0 0
− f2 0 f4 0

f1 0 0 f4
0 − f2 − f3 0
0 f1 0 − f3
0 0 f1 f2

, ϕ4
1 =

 f2 f3 0 f4 0 0
− f1 0 f3 0 f4 0

0 − f1 − f2 0 0 f4
0 0 0 − f1 − f2 − f3

, ϕ4
0 = ( f1 f2 f3 f4 )

and

ϕ5
4 =


f5
− f4

f3
− f2

f1

, ϕ5
3 =



f4 f5 0 0 0
− f3 0 f5 0 0

f2 0 0 f5 0
− f1 0 0 0 f5

0 − f3 − f4 0 0
0 f2 0 − f4 0
0 − f1 0 0 − f4
0 0 f2 f3 0
0 0 − f1 0 f3
0 0 0 − f1 − f2


, ϕ5

2 =



f3 f4 0 0 f5 0 0 0 0 0
− f2 0 f4 0 0 f5 0 0 0 0

f1 0 0 f4 0 0 f5 0 0 0
0 − f2 − f3 0 0 0 0 f5 0 0
0 f1 0 − f3 0 0 0 0 f5 0
0 0 f1 f2 0 0 0 0 0 f5
0 0 0 0 − f2 − f3 0 − f4 0 0
0 0 0 0 f1 0 − f3 0 − f4 0
0 0 0 0 0 f1 f2 0 0 − f4
0 0 0 0 0 0 0 f1 f2 f3


,

ϕ5
1 =


f2 f3 0 f4 0 0 f5 0 0 0
− f1 0 f3 0 f4 0 0 f5 0 0

0 − f1 − f2 0 0 f4 0 0 f5 0
0 0 0 − f1 − f2 − f3 0 0 0 f5
0 0 0 0 0 0 − f1 − f2 − f3 − f4

, ϕ5
0 = ( f1 f2 f3 f4 f5 ).

We can also write down the Hilbert function of the variety V( f1, . . . , fr):

FY(t) =
(

t + n
n

)
+

r

∑
k=1

(−1)k ∑
1≤i1<···<ik≤r

(
t−∑r

j=1 dij + n
n

)
.

2.2 Geometric invariants of a projective variety

Our next goal consists of gaining some understanding about three of the ge-
ometric invariants of a projective variety X ⊂ Pn, namely, its dimension, its degree
and its arithmetic genus. These three features can be found in the Hilbert polyno-
mial PX(t) = antn + · · · + a1t + a0 and are, respectively, n, ann! and (−1)n(a0 − 1).
Now, we are already familiar with the dimension of a variety. In order to formally
define degree, we shall first take a look at the following concepts:

Definition 2.2.1. Let V, W be irreducible projective varieties. A rational map ϕ :
V → W is an equivalence class of pairs (ϕU , U), where ϕU is a morphism of
varieties from an open set ∅ 6= U ⊂ V to W and two such pairs (ϕU , U), (ϕ′U′ , U′)
are considered equivalent if ϕU and ϕ′U′ coincide on the intersection U ∩U′.

The proof that ensures this defines an equivalence relation relies on the follow-
ing lemma:

Lemma 2.2.2. If two morphisms of smooth varieties are equal on some non-empty open
set, then they are equal.

A rational map is usually represented by a dashed arrow, as follows:

ϕ : V 99K W.

Example 2.2.3. Projecting from a point p is one of the clearest examples of rational
map. We start with a hyperplane Pn−1 ⊂ Pn and a point p ∈ Pn not lying on
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Pn−1; if we like, we can take coordinates on Pn so that Pn−1 is given by xn = 0 and
the point p is actually [0, . . . , 0, 1]. We can then define a map

πp : Pn \ {p} → Pn−1

by
πp : q 7→ qp ∩Pn−1,

that is, sending a point q to the point of intersection of the line qp with the hyper-
plane xn = 0. πp is called projection from the point p to the hyperplane Pn−1 and it is
clearly a rational map. In terms of coordinates used earlier, this is merely

πp : [x0, . . . , xn] 7→ [x0, . . . , xn−1].

Nonetheless, among the ways in which rational maps fail to behave like ordi-
nary maps, the composition of rational maps is not always defined. Take

f : X 99K Y, g : Y 99K Z.

It might happen that the image of f lies outside any open subset of Y on which
g is defined, making it impossible to consider a composition, even as a rational
map. One circumstance in which this will not happen, though, is if the map f is
dominant, meaning that the closure of the image of f is Y. It is clear from the def-
initions that given a pair of rational maps f , g with f dominant, the composition
g ◦ f is a well-defined rational map.

Definition 2.2.4. A rational map f : X 99K Y is birational if there exists a rational
map g : Y 99K X such that f ◦ g and g ◦ f are both defined and equal to the identity.

With this in mind, we are ready to define the degree of a projective variety
X ⊂ Pn. It may be defined in ways mostly analogous to the notion of dimension.
As we know, we defined dimension by saying that dim Pn = n. We then said that
a projective variety X ⊂ Pn admits a surjective map to some projective space Pk

and we simply defined dim X to be k. To define degree, we may again start with
a case where we have some intuition of what degree should be: if X ⊂ Pk+1 is
a hypersurface, given as the set where a homogeneous irreducible polynomial F
vanishes, then the degree of X should be the degree of the polynomial F.

Definition 2.2.5. Let X ⊂ Pn be an irreducible k-dimensional variety. Its degree
can be described in the following two ways:

(i) Unless X is already a hypersurface, the projection map πp : X → Pn−1 from
a general point p ∈ Pn is birational onto its image. Thus, we can project
successively from general points until we get a hypersurface in Pk+1. We
may define the degree of X to be the degree of this hypersurface.

(ii) The degree of X can also be defined as the maximum number of points of
intersection of X with a linear subspace L such that dim X + dim L = n.
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Definition 2.2.6. A rational normal curve is the image of a map of the form

vd : P1 → Pd

given by
[z0, z1] 7→ [zd

0 , zd−1
0 z1, . . . , zd

1].

Proposition 2.2.7. The image of vd is the set where the polynomials Fij(x) = xixj −
xi−1xj+1 vanish for all 1 ≤ i ≤ j ≤ d− 1.

Proof. One inclusion is clear, since

Fij(zd
0 , zd−1

0 z1, . . . , zd
1) = zd−i

0 zi
1zd−j

0 zj
1 − zd−i+1

0 zi−1
1 zd−j−1

0 zj+1
1 = 0.

For the converse, consider a point [x0, . . . , xd] ∈ Pd such that xixj− xi−1xj+1 = 0 for
all 1 ≤ i ≤ j ≤ d− 1. Take x0 = 0. If i = 1, we have x1xj = 0 for all 1 ≤ j ≤ d− 1,
which means in particular that x1 = 0; on the other hand, i = 2 implies x2xj = 0 for
all 2 ≤ j ≤ d− 1, which means x2 = 0, and so forth. This procedure ends when
i = d− 1 and forces [x0, . . . , xd] to be exactly [0, . . . , 1], which is indeed an element
of the image.

We can suppose x0 6= 0. In this case, [x0, . . . , xd] = [xd
0 , xd−1

0 x1 . . . , xd−1
0 xd]. Now,

take the term xd−1
0 xk for some 2 ≤ k ≤ d. Using the fact that x0xj = x1xj−1 for all

2 ≤ j ≤ d, it holds that

xd−1
0 xk = xd−2

0 x1xk−1 = xd−3
0 x2

1xk−2 = · · · = xd−k−1
0 xk

1x0 = xd−k
0 xk

1,

which completes the proof.

Example 2.2.8. If d = 2, we get the plane conic curve x0x2 − x2
1 = 0. If d = 3, the

curve receives the name of twisted cubic and it is given by the equations

x0x2 − x2
1 = 0, x0x3 − x1x2 = 0, x1x2 − x2

2 = 0.

Example 2.2.9 (Hilbert polynomial of the rational normal curve).

(a) As a first approach, we shall first find the Hilbert polynomial of the twisted
cubic. Consider the image of the map

[z0, z1] 7→ [z3
0, z2

0z1, z0z2
1, z3

1].

As we have seen, this variety is described by the equations

x0x2 − x2
1 = 0, x0x3 − x1x2 = 0, x1x3 − x2

2 = 0.

We define I := (x0x2 − x2
1, x0x3 − x1x2, x1x3 − x2

2). By definition, the Hilbert
function of the variety is

FY(t) = dim(k[x0, x1, x2, x3]/I(V(I)))t,

but I is a radical ideal, since it is actually the kernel of the map

ϕ : k[x0, x1, x2, x3]→ k[x0, x1]
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given by
p(x0, x1, x2, x3) 7→ p(x3

0, x2
0x1, x0x2

1, x3
1).

Clearly, k[x0, x1, x2, x3]/I ∼= Im(ϕ) ⊂ k[x0, x1], which is an integral domain. I is
therefore prime and hence radical. We already know that deg PY = dim Im(v3) =
1. As we can see in Appendix A (b), we can use Macaulay2 to find the whole
polynomial, which turns out to be 3t + 1.

(b) We are now going to find a general answer. Let Y be Im(vd); we want the
Hilbert polynomial of Y. For all t consider the homomorphism of k-vector
spaces

ϕt : k[x0, . . . , xd]t → k[x0, x1]dt,

defined by p(x0, . . . , xd) 7→ p(xd
0 , xd−1

0 x1, . . . , xd
1). The kernel of this map is,

precisely, the set of polynomials of degree t that vanish on the rational normal
curve, that is, Ker(ϕt) = I(Y)t. Also, this map is clearly exhaustive. Hence

k[x0, . . . , xd]t/I(Y)t = S(Y)t ∼= k[x0, x1]dt,

and this implies

FY(t) = dim(k[x0, x1])dt =
(

dt + 1
1

)
= dt + 1.

Note that, in this case, the Hilbert polynomial and Hilbert function are identi-
cal.

The following concept is the natural generalization of the rational normal
curves.

2.3 Veronese varieties

Definition 2.3.1. For any n and d we define the Veronese map of degree d

vn,d : Pn → PNn,d−1

by sending
z = [z0, . . . , zn] 7→ [. . . , mi(z), . . . ],

where mi(z) ranges over all monomials of degree d in z0, . . . , zn and Nn,d is simply
the binomial coefficient (n+d

d ).

The image of the Veronese map is an algebraic variety of dimension n, often
called a Veronese variety. We will denote it by Vn,d. Now, let each monomial of
degree d mi(z) = zi0

0 . . . zin
n correspond to the variable xi0 ...in in PNn,d−1. We have the

following characterization:

Proposition 2.3.2. The Veronese varieties are exactly the set where the polynomials

FI JKL = xi0...in xj0 ...jn − xk0...kn xl0...ln

vanish, where I = (ih)h, J = (jh)h, K = (kh)h, L = (lh)h are multi-indices such that
ih + jh = kh + lh for all h.
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Proof. Similarly to the rational normal curves, one inclusion is obvious, because

FI JKL(. . . , mi(z), . . . ) = zi0
0 . . . zin

n zj0
0 . . . zjn

n − zk0
0 . . . zkn

n zl0
0 . . . zln

n = 0.

To prove the converse, we shall take an element [. . . , xi0 ...in , . . . ] ∈ PNn,d−1 verifying
the equations from above. The first observation we can make is the fact that these
equations are incompatible with the condition xd...0 = · · · = x0...d = 0, so we can
suppose there is a term x0...d...0 6= 0. For simplicity purposes suppose it is the first
one, i.e., xd...0 6= 0. Now, consider the product

xd−1
d...0xi0 ...in = xd−2

d...0xd−1,10...0xi0+1,i1−1...in = · · · = xd−i1−1
d...0 xi1

d−1,10...0xi0+i1 ,0...in .

We can iterate this procedure with the rest of ih, thus obtaining

xd−i1−···−in−1
d...0 xi1

d−1,10...0 . . . xin
d−1,0...1xi0+···+in ,0...0 =

= xi0−1
d...0 xi1

d−1,10...0 . . . xin
d−1,0...1xd0...0 = xi0

d...0xi1
d−1,10...0 . . . xin

d−1,0...1.

Therefore,
[. . . , xi0...in , . . . ] = [. . . , xi0

d...0xi1
d−1,10...0 . . . xin

d−1,0...1, . . . ],

which is the image of [xd...0, xd−1,10...0, . . . , xd−1,0...1].

Example 2.3.3 (Hilbert polynomial of the Veronese map). It suffices to generalize
Example 2.2.9 (b). Let Y be Im(vn,d). For all t we consider the homomorphism of
k-vector spaces

ϕt : k[x0, . . . , xNn,d−1]t → k[x0, . . . , xn]dt,

defined by p(x0, . . . , xNn,d−1) 7→ p(. . . , mi(x), . . . ) (the notation is the same as in
Definition 2.3.1). Just like before, we have Ker(ϕt) = I(Y)t. Also, this map is clearly
exhaustive. Hence

k[x0, . . . , xNn,d−1]t/I(Y)t = S(Y)t ∼= k[x0, . . . , xn]dt

and this forces

FY(t) = dim(k[x0, . . . , xn]dt) =
(

dt + n
n

)
=

dn

n!
tn + · · · .

Again, the Hilbert polynomial and the Hilbert function coincide. It is also clear
that the degree of Vn,d is dn and its arithmetic genus is 0.

One natural problem we may pose in regard to Hilbert functions and Hilbert
polynomials is to give explicit estimates for how large t has to be to ensure that
PY(t) = FY(t). This is a very difficult problem. It is already a major theorem that a
minimum t0 exists, and very little is known about its actual value, even in simple
cases. For example, Castelnuovo showed that taking t0 = d − 2 is sufficient for
irreducible curves C ⊂ P3 with Hilbert polynomial p(t) = dt + c, but we are still
miles away from understanding the general question.
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2.4 Arithmetically Cohen-Macaulay varieties

Definition 2.4.1. Let M be a graded R-module. M is said to be of finite projective
dimension if there is a free R-resolution of M that has the form

0→ Ml
fl−→ Ml−1

fl−1−−→ · · · f1−→ M0 → M→ 0.

The minimum of the length l of such free resolution is called the projective dimen-
sion of M and it is denoted by pd(M).

Definition 2.4.2. A variety X ⊂ Pn is said to be arithmetically Cohen-Macaulay
(briefly, ACM) if pd(R/I(X)) = codim X.

Hence, if X ⊂ Pn is an ACM projective variety of codimension l, a graded
minimal free R-resolution of I(X) is of the form:

0→ Fl
fl−→ Fl−1

fl−1−−→ · · · f2−→ F1
f1−→ I(X)→ 0,

where Fi =
⊕

j∈Z R(−i − j)βij for all 1 ≤ i ≤ l. The integers βij(X) are called the
graded Betti numbers of X and are usually represented in a table.

Proposition 2.4.3. All Veronese varieties Vn,d are arithmetically Cohen-Macaulay.

Proof. See [7] for further details.

We shall use Macaulay2 and check this is true for small values of n, d:

Example 2.4.4. Consider the twisted cubic, X = V1,3. As we can see in Appendix
A (c), the minimal resolution of M = R/I(X) has length 2 and codim X = 3− 1 = 2,
as expected.

Example 2.4.5. Consider now the Veronese variety X = V2,3. According to Ap-
pendix A (d), pd(R/I(X)) = 7, which equals codim X = 9− 2 = 7.

Complete intersections are one of the simplest examples of ACM varieties,
since both the length of the Koszul resolution and the codimension equal r. It is
not true, though, that any ACM variety is a complete intersection.

Example 2.4.6. Consider the twisted cubic curve C ⊂ P3, with I(C) = (x0x2 −
x2

1, x0x3 − x1x2, x1x3 − x2
2). Its minimal free resolution is the following:

0→ R(−3)2 f2−→ R(−2)3 f1−→ I(C)→ 0,

where

f2 =

−x1 x0

x2 −x1

−x3 x2

 , f1 =
(

x0x2 − x2
1 x0x3 − x1x2 x1x3 − x2

2

)
.

So the twisted cubic is ACM, yet it is not a complete intersection.
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Example 2.4.7. The smooth rational quartic curve C ⊂ P3, given by

I(C) = (x0x3 − x1x2, x0x2
2 − x2

1x3, x1x2
3 − x3

2, x2x2
0 − x3

1),

is an example of non-ACM variety. I(C) has the following minimal free resolution:

0→ R(−5)
f3−→ R(−4)4 f2−→ R(−3)3 ⊕ R(−2)

f1−→ I(C)→ 0,

where

f2 =


−x0

−x1

x2

−x3

 , f3 =


−x2

2 x1x3 −x0x2 −x2
1

0 0 x3 x2

x1 −x0 0 0
x3 −x2 −x1 −x0


and

f1 =
(

x0x3 − x1x2 x0x2
2 − x2

1x3 x1x2
3 − x3

2 x2x2
0 − x3

1

)
.

2.5 Monomial projections of Veronese varieties

Another type of projective varieties we are going to focus on is constructed
by taking the Veronese variety vn,d and projecting it from a given set of points.
Similarly to Example 2.2.3, the projection we want to work with simply consists of

π : [x1, . . . , xNn,d ] 7→ [xi1 , . . . , xir ].

Of course, when removing terms from the image, there is a risk that we get an
undefined map, so the domain has to be PNn,d−1 minus a set of points; π is
therefore a rational map, not a morphism between varieties. Consider now all
possible monomials of degree d in n + 1 variables, namely, m1, . . . , mNn,d , and a
subset of these: mi1 , . . . , mir for some 1 ≤ ij ≤ Nn,d. We want to study the clo-
sure of the image of the map ψ = π ◦ vn,d, which sends x = [x0, . . . , xn] ∈ Pn to
[mi1(x), . . . , mir (x)] ∈ Pr−1. The following commutative diagram summarises this
whole idea:

Pn PNn,d−1 Vn,d

Pr−1 Yn,d

vn,d

ψ
π

i

i

If the set of parameters of a projection is obtained by deleting one or two or
three monomials, then we call this a simple or double or triple projection of vn,d,
respectively. We want to find out which Hilbert polynomial has the resulting
variety and whether or not it is ACM. This last question is called Gröbner problem
and it is still today an open problem.

Notation: The monomials that are removed will be noted as superscripts.

Example 2.5.1 (Hilbert polynomial of simple projections of vn,d).
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(a) Consider the twisted cubic, defined by the image of

v1,3 : [z0, z1] 7→ [z3
0, z2

0z1, z0z2
1, z3

1].

Remove, according to the previous remarks, the first term, i.e.,

v3,0
1,3 : [z0, z1] 7→ [z2

0z1, z0z2
1, z3

1].

Using Macaulay2, we can obtain the ideal of polynomials I ⊂ k[x, y, z] vanish-
ing on the image, which will eventually lead us to the Hilbert polynomial of
the projection. These computations are written in Appendix A (e) and show
that the Hilbert polynomial of Im(v3,0

1,3) is 2t + 1. We now proceed analogously.
The following correspondence maps each projection to its Hilbert polynomial:

• v3,0
1,3 7→ 2t + 1 • v2,1

1,3 7→ 3t • v1,2
1,3 7→ 3t • v0,3

1,3 7→ 2t + 1

As we can observe, there seems to be some symmetry when removing mono-
mials from the Veronese map, that is, the behaviour of the polynomials ob-
tained is not completely random. This is partly due to the fact that v3,0

1,3 and
v0,3

1,3 can be simplified; note that

[z2
0z1, z0z2

1, z3
1] = [z2

0, z0z1, z2
1]

and also
[z3

0, z2
0z1, z0z2

1] = [z2
0, z0z1, z2

1].

So both v3,0
1,3 and v0,3

1,3 coincide with v1,2. This explains why both maps produce
the polynomial 2t + 1, according to Example 2.2.9 (b). On the other hand, a
mere change of variables shows that the image of v2,1

1,3 and v1,2
1,3 is identical and

thus give the same Hilbert polynomial. Now, consider the following diagram:

z3
0 z2

0z1 z0z2
1 z3

1

Removing any vertex produces the polynomial 2t + 1 and removing a term
from the inside produces the polynomial 3t. We shall see that sorting the terms
in an analogous way, even in higher dimensions, give precious information
about which Hilbert polynomials appear.

(b) Consider a more complicated case, say

v2,3 : [z0, z1, z2] 7→ [z3
0, z2

0z1, z0z2
1, z3

1, z2
0z2, z0z1z2, z2

1z2, z0z2
2, z1z2

2, z3
2].

In this case, the Hilbert polynomial of each projection is given by the following
correspondence:
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• v3,0,0
2,3 7→ 4t2 + 4t + 1

• v2,1,0
2,3 7→ 9

2 t2 + 9
2 t

• v1,2,0
2,3 7→ 9

2 t2 + 9
2 t

• v0,3,0
2,3 7→ 4t2 + 4t + 1

• v2,0,1
2,3 7→ 9

2 t2 + 9
2 t

• v1,1,1
2,3 7→ 9

2 t2 + 9
2 t + 1

• v0,2,1
2,3 7→ 9

2 t2 + 9
2 t

• v1,0,2
2,3 7→ 9

2 t2 + 9
2 t

• v0,1,2
2,3 7→ 9

2 t2 + 9
2 t

• v0,0,3
2,3 7→ 4t2 + 4t + 1

Here, the diagram sorting out all monomials zi0
0 zi1

1 zi2
2 of degree 3 is:

z3
0 z2

0z1 z0z2
1 z3

1

z2
0z2 z0z1z2 z2

1z2

z0z2
2 z1z2

2

z3
2

And again, one observes that any vertex of the triangle gives the polynomial
4t2 + 4t + 1, any monomial from the sides gives the polynomial 9

2 t2 + 9
2 t and the

element from the inside gives 9
2 t2 + 9

2 t + 1. If we were in three dimensions, we
would be coping with a tetrahedron and an analogous phenomenon would
happen.

(c) Consider the map v2,4. The Hilbert polynomial of each projection is

• v4,0,0
2,4 7→

15
2 t2 + 11

2 t + 1

• v3,1,0
2,4 7→ 8t2 + 6t

• v2,2,0
2,4 7→ 8t2 + 6t

• v1,3,0
2,4 7→ 8t2 + 6t

• v0,4,0
2,4 7→

15
2 t2 + 11

2 t + 1

• v3,0,1
2,4 7→ 8t2 + 6t

• v2,1,1
2,4 7→ 8t2 + 6t + 1

• v1,2,1
2,4 7→ 8t2 + 6t + 1

• v0,3,1
2,4 7→ 8t2 + 6t

• v2,0,2
2,4 7→ 8t2 + 6t

• v1,1,2
2,4 7→ 8t2 + 6t + 1

• v0,2,2
2,4 7→ 8t2 + 6t

• v1,0,3
2,4 7→ 8t2 + 6t

• v0,1,3
2,4 7→ 8t2 + 6t

• v0,0,4
2,4 7→

15
2 t2 + 11

2 t + 1

and the diagram is, in this case,

z4
0 z3

0z1 z2
0z2

1 z0z3
1 z4

1

z3
0z2 z2

0z1z2 z0z2
1z2 z3

1z2

z2
0z2

2 z0z1z2
2 z2

1z2
2

z0z3
2 z1z3

2

z4
2
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The same remarks as in the previous part happen again.

In the first case we discussed, v3,0
1,3, we might have observed that the Hilbert

polynomial obtained depended on whether or not the point p from which we
projected belonged to V1,3. When p ∈ V1,3, 2t + 1 is obtained; whereas when
p /∈ V1,3, 3t appears. It can be easily checked that this happens in more complex
examples, being relevant the multiplicity of the point from which we project.

Of course, we can remove more than one monomial, which leads to a huge
variety of cases. In the following example we write some of them and the Hilbert
polynomial they are correlated to. The superscripts indicate which monomials are
deleted.

Example 2.5.2 (Hilbert polynomial of other projections of vn,d).

• v(3,0),(2,1)
1,3 7→ t + 1

• v(2,1),(1,2)
1,3 7→ t + 1

• v(3,0,0),(2,1,0),(1,2,0),(0,3,0)
2,3 7→ 2t2 + 3t + 1

• v(2,1,0),(1,2,0),(0,2,1)
2,3 7→ 9

2 t2 + 3
2 t + 1

• v(1,0,3),(2,1,1),(1,1,2),(0,4,0)
2,4 7→ 15

2 t2 + 11
2 t− 1

• v(1,0,1,0),(0,1,0,1)
3,2 7→ 4

3 t3 + 4t2 + 5
3 t + 1

• v(2,0,0,0),(1,0,1,0),(0,1,0,1)
3,2 7→ t3 + 3t2 + 2t + 1

As we said before, another important issue we may want to look at is whether
or not the monomial projection obtained is ACM. With the help of Macaulay2 we
can see what happens with some of the cases we have discussed so far. The com-
putations of the first case are written in Appendix A (f); the others are obtained
analogously. As we have seen, though, some monomial projections coincide with
other Veronese varieties and due to Proposition 2.4.3 they are automatically ACM.

Example 2.5.3 (Gröbner problem).

• v3,0
1,3: codim = 2− 1 = 1, pd = 1. ACM: yes.

• v2,1
1,3: codim = 2− 1 = 1, pd = 1. ACM: yes.

• v1,2
1,3: codim = 2− 1 = 1, pd = 1. ACM: yes.

• v0,3
1,3: codim = 2− 1 = 1, pd = 1. ACM: yes.

• v3,0,0
2,3 : codim = 8− 2 = 6, pd = 6. ACM: yes.

• v2,1,0
2,3 : codim = 8− 2 = 6, pd = 7. ACM: no.

• v1,2,0
2,3 : codim = 8− 2 = 6, pd = 7. ACM: no.
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• v0,3,0
2,3 : codim = 8− 2 = 6, pd = 6. ACM: yes.

• v2,0,1
2,3 : codim = 8− 2 = 6, pd = 7. ACM: no.

• v1,1,1
2,3 : codim = 8− 2 = 6, pd = 8. ACM: no.

• v0,2,1
2,3 : codim = 8− 2 = 6, pd = 7. ACM: no.

• v1,0,2
2,3 : codim = 8− 2 = 6, pd = 7. ACM: no.

• v0,1,2
2,3 : codim = 8− 2 = 6, pd = 7. ACM: no.

• v0,0,3
2,3 : codim = 8− 2 = 6, pd = 6. ACM: yes.

• v(3,0),(2,1)
1,3 codim = 1− 1 = 0, pd = 0. ACM: yes.

• v(2,1),(1,2)
1,3 : codim = 7, pd = 7. ACM: yes.

• v(3,0,0),(2,1,0),(1,2,0),(0,3,0)
2,3 : codim = 1− 1 = 0, pd = 0. ACM: yes.

• v(2,1,0),(1,2,0),(0,2,1)
2,3 : codim = 6− 2 = 4, pd = 4. ACM: yes.

• v(1,0,3),(2,1,1),(1,1,2),(0,4,0)
2,4 : codim = 10− 2 = 8, pd = 10. ACM: no.

• v(1,0,1,0),(0,1,0,1)
3,2 : codim = 7− 3 = 4, pd = 5. ACM: no.

• v(2,0,0,0),(1,0,1,0),(0,1,0,1)
3,2 : codim = 6− 3 = 3, pd = 4. ACM: no.

There were first some efforts of Renschuch to solve Gröbner’s problem in [16,
17], but the first important result is due to Schenzel, who showed in [18] exactly
which simple projection of vn,d is ACM. A basic tool one has to work with is
the fact that the homogeneous coordinate ring of a simple projection of Vn,d is
isomorphic to the semigroup ring over k of an affine semigroup in Zn+1

≥0 generated
by Nn,d − 1 elements of the set

J = {(α0, . . . , αn) ∈ Zn+1
≥0 : α0 + · · · + αn = d}.

We denote by a the element of J deleted by the projection and set

ei = (0, . . . , d, . . . , 0) ∈ Zn+1
≥0 ,

where d stands at the i-th place, i = 1, . . . , n + 1, and

eij = (0, . . . , d− 1, . . . , 1, . . . , 0) ∈ Zn+1
≥0 ,

where d− 1 stands at the i-th place and 1 at the j-th place, i, j = 1, . . . , n + 1 with
i 6= j.

Proposition 2.5.4. A simple projection of vn,d is ACM if and only if

(1) a = ei for some i, or
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(2) a = eij for some i, j with n = 1 or (n, d) = (2, 2).

Schenzel’s method, though, could not be applied to the classification of double
projections of Veronese varieties. This was achieved by N. V. Trung [20], who used
the theory of affine semigroup rings. With the same notation as before, consider
a, b, a 6= b, to be the elements deleted from J. Again, the homogeneous coordinate
ring of a double projection of Vn,d is isomorphic to the semigroup ring over k of
an affine semigroup in Zn+1

≥0 generated by Nn,d − 2 elements of J. By a suitable
permutation we always have one of the following situations:

(1) a = e1, b arbitrary.

(2) a = e12, b 6= e1, . . . , en+1.

(3) a, b 6= ei, eij for all i, j = 1, . . . , n + 1 with i 6= j.

We denote f1 = (d− 2, 2, . . . , 0), f2 = (d− 3, 3, . . . , 0), f3 = (d− 2, 1, . . . , 0).

Proposition 2.5.5. For each case we listed before, a double projection of vn,d is ACM if
and only if the following conditions hold:

(1) b = e2, e12,

b = f1 with n = 1 or (n, d) = (2, 3),

b = e21 with n = 1 or (n, d) = (2, 3),

b23 with (n, d) = (2, 2).

(2) b = f1, f2, e21 with n = 1,

b = e21, with (n, d) = (2, 3), (2, 4),

b = e13 with (n, d) = (2, 2), (3, 2).

(3) Impossible for vn,d to be ACM.

Finally, one could ask what happens further with multiple projections of Veronese
varieties. The classification of triple projections is far more complicated that the
ones we have just seen, yet can be found in [10].



Chapter 3

Effective results on sumsets

One of the main goals of this paper is to approach a problem that concerns
sums of finite integer sets, also known as sumsets problem. This is an issue which
can be seen from the point of view of additive combinatorics, yet is rough and
simple computations do not give efficient answers. Throughout this chapter we
are going to shed some light to this problem using algebraic geometry.

3.1 Basic concepts and examples

Definition 3.1.1. Let A, B ⊂ Zn. We define A + B := {a + b : a ∈ A, b ∈ B} and
tA := A + · · · + A︸ ︷︷ ︸

t times

for all t ∈ Z≥0. This set is called a sumset. As usual, 0A is

defined to be {0}.

Definition 3.1.2. Let A ⊂ Zn any finite set. We define the numerical function

ϕA : Z≥0 →Z≥1

t 7→|tA|.

Our interest is now focused on the behaviour of this function as t grows, which
is a longstanding problem in additive combinatorics. Khovanskii proved in [11]
that ϕA(t) becomes a polynomial pA(t) ∈ Q[t] of degree at most n when t is
sufficiently large, but there is not much known about this polynomial, nor the
minimum value t0 from which ϕA(t) = pA(t). This value, by the way, is called
phase transition or regularity index.

In this chapter we will identify ϕA with the Hilbert polynomial of a suitable
monomial projection Yn,d of a Veronese variety Vn,d so that we get upper bounds
for the phase transition as well as for identifying certain coefficients of pA(t).
Notwithstanding, we can first compute some examples and, given A, get an idea
of how ϕA behaves. The following program receives an input A ⊂ Zn and gives
the values of |tA|.

35
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#include <stdio.h>
#include <stdlib.h>
#include <math.h>

void initialize(int, int, int ***, int ***, int ***, FILE *);
int sumset(int, int, int, int **, int **, int **);

int main(void){

int i, j, a, b, n, t;
int **A, **B, **sum;
FILE *input;

// Input file
input=fopen("Input_file", "r");
if(input==NULL){

printf("File error.\n");
exit(1);

}

// We initialize data
fscanf(input, "%d %d", &a, &n);
initialize(a, n, &A, &B, &sum, input);

b=a;
printf("%4s%8s\n", "t", "Phi(t)");
printf(" ---------\n");
printf("%4d%8d\n", 1, a);

// We start computing tA inductively
// A[][] will keep A and B[][] will keep (t-1)A
for(t=2; t<=10; ++t){

// sum <-- A+B, where B is in fact (t-1)A
b=sumset(a,b,n,A,B,sum);
printf("%4d%8d\n", t, b);

for(i=0; i<500; ++i) for(j=0; j<n; ++j) B[i][j]=sum[i][j];

}

for(i=0; i<a; ++i) free(A[i]);
for(i=0; i<500; ++i){

free(B[i]);
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free(sum[i]);
}
free(A);
free(B);
free(sum);

return 0;
}

void initialize(int a, int n, int ***A, int ***B, int ***sum, FILE *input){

int i, j;

*A=(int **)malloc(a*sizeof(int *));
if(*A==NULL){

printf("Memory error.\n");
exit(1);

}
for(i=0; i<a; ++i){

(*A)[i]=(int *)malloc(n*sizeof(int));
if((*A)[i]==NULL){

printf("Memory error.\n");
exit(1);

}
}

*B=(int **)malloc(500*sizeof(int *));
if(*B==NULL){

printf("Memory error.\n");
exit(1);

}
for(i=0; i<500; ++i){

(*B)[i]=(int *)malloc(n*sizeof(int));
if((*B)[i]==NULL){

printf("Memory error.\n");
exit(1);

}
}

*sum=(int **)malloc(500*sizeof(int *));
if(*sum==NULL){

printf("Memory error.\n");
exit(1);

}
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for(i=0; i<500; ++i){
(*sum)[i]=(int *)malloc(n*sizeof(int));
if((*sum)[i]==NULL){

printf("Memory error.\n");
exit(1);

}
}

// We scan A
for(i=0; i<a; ++i) for(j=0; j<n; ++j){

fscanf(input, "%d", &(*A)[i][j]);
(*B)[i][j]=(*A)[i][j];

}

}

// We compute |A+B|
int sumset(int a, int b, int n, int **A, int **B, int **sum){

int i, j, k, r, s, cont=0;

for(i=0; i<a; ++i) for(j=0; j<b; ++j){
for(k=0; k<n; ++k) sum[cont][k]=A[i][k]+B[j][k];
for(r=0; r<cont; ++r){

for(s=0; s<n; ++s) if(sum[r][s]!=sum[cont][s]) break;
if(s==n) break;

}
if(r==cont) ++cont;

}

return cont;
}

Example 3.1.3 (Computation of sumsets).

(a) Consider the input

5 1

1
2
3
4
5
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(which means A = {1, 2, 3, 4, 5}). We get

t Phi(t)
---------
1 5
2 9
3 13
4 17
5 21
6 25
7 29
8 33
9 37

10 41

According to what we wrote before, the values obtained are the images of a
polynomial pA ∈ Q[t] if t is big enough. In this case, pA(t) = 4t + 1. t0 turns
out to be 0, namely, ϕA and pA coincide for all t ≥ 0.

(b) If the program receives the input

4 2

0 0
2 0
2 2
0 1

(which means A = {(0, 0), (2, 0), . . . }), we get

t Phi(t)
---------
1 4
2 10
3 19
4 31
5 46
6 64
7 85
8 109
9 136

10 166

These values correspond to the image of 3
2 t2 + 3

2 t + 1 for all t ≥ 0. Now, we
can slightly change the input data of this example so that we realise that small
changes in the set A can turn into huge changes in the final polynomial.
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(c) If the program receives the input

4 2

0 0
2 0
2 1
0 1

we get

t Phi(t)
---------
1 4
2 9
3 16
4 25
5 36
6 49
7 64
8 81
9 100

10 121

and the polynomial, in this case, is t2 + 2t + 1. t0 is also 0.

(d) If the program receives the input

4 2

0 0
3 0
2 2
0 1

we get the values

t Phi(t)
---------
1 4
2 10
3 20
4 35
5 56
6 84
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7 120
8 164
9 216

10 276

which correspond to the image of the polynomial 4t2 − 16t + 36. In this case,
t0 is 5.

(e) The input

6 6

8 8 8 2 6 9
4 0 3 4 7 3
8 1 5 0 8 2
0 3 4 1 9 5
4 2 8 9 4 8
1 8 1 1 4 3

generates the values

t Phi(t)
---------
1 6
2 21
3 56
4 126
5 252
6 462

and these correspond to the image of the polynomial 1
120 t5 + 1

8 t4 + 17
24 t3 + 15

8 t2 +
137
60 t + 1. t0 is 0.

3.2 Sumsets and projections of Veronese varieties

The goal of this section is to establish a connection between the cardinality of
sumsets and geometry. If we do not say otherwise, A will be a finite subset of Zn.
The idea here is to find a suitable monomial projection Yn,d of a Veronese variety
Vn,d whose Hilbert function models ϕA. We will therefore conclude that ϕA is
asymptotically a polynomial pA(t) ∈ Q[t] of degree dim Yn,d.

Definition 3.2.1. We set dA = max{∑n
i=1 ai : a = (ai)i ∈ A} and we define

Ωn,dA = {xdA−a1−···−an
0 xa1

1 · · · x
an
n : a = (a1, . . . , an) ∈ A} = {m1, . . . , m|A|},

a set of monomials of degree dA in k[x0, . . . , xn]. Yn,dA will be the closure of the
image of the parametrization
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Pn → P|A|−1

[x0, . . . , xn] 7→ [m1, . . . , m|A|],

which, as we know, is a monomial projection of the Veronese variety Vn,dA .

Remark 3.2.2. Consider the translation τA : Zn → Zn, defined by x = (x1, . . . , xn) 7→
x∗ = (x1 − δ1, . . . , xn − δn), where δi = min{ai : a = (a1, . . . , an) ∈ A}. This trans-
lation verifies τA(A) ⊂ Zn

≥0 and also GCD(m ∈ Ωn,dτA(A)) = 1; it is, in fact, the
only translation verifying these two conditions. Since the cardinality of a sum-
set is invariant under translations, we can assume w.l.o.g. that A ⊂ Zn

≥0 and
GCD(m ∈ Ωn,dA ) = 1.

With this in mind, we now take the new variables ω1, . . . , ω|A|. The map

ρ : k[ω1, . . . , ω|A|]→ k[m1, . . . , m|A|],

defined by
p(ω1, . . . , ω|A|) 7→ p(m1, . . . , m|A|),

is a surjective morphism whose kernel is precisely the ideal I(Yn,dA ). So we get
that

k[ω1, . . . , ω|A|]/I(Yn,dA ) ∼= k[m1, . . . , m|A|],

and this leads to

FYn,dA
(t) = dim k[ω1, . . . , ω|A|]t/I(Yn,dA )t = dim k[m1, . . . , m|A|]tdA .

We can now devote some time to think about what dim k[m1, . . . , m|A|]tdA is equal
to. When t = 1, we get the k-vector space k[m1, . . . , m|A|]dA . This is clearly spanned
by the set

{mi : 1 ≤ i ≤ |A|} = {xdA−a1−···−an
0 xa1

1 · · · x
an
n : a = (a1, . . . , an) ∈ A},

so the dimension has to be |A|. When t = 2, the k-vector space is now spanned by

{mimj : 1 ≤ i, j ≤ |A|} = {x2dA−∑(ai+bi)
0 xa1+b1

1 · · · xan+bn
n : a, b ∈ A},

so the dimension is simply the resulting number of monomials when deleting the
repeated ones, namely, |2A|. This applies for the rest of the cases. In the end, we
get that the Hilbert function of Yn,dA models the values |tA|, as desired, and this
immediately means that |tA| behaves asymptotically as a polynomial of degree at
most n.

Since Yn,dA is a monomial projection of the n-dimensional Veronese variety
Vn,dA , its dimension is bounded by n and its degree by dn

A. However, both the
dimension and the degree of the variety Yn,dA could decrease (check [5] for some
examples), so from now onward we are going to restrict our attention to finite
subsets A ⊂ Zn

≥0 associated with n-dimensional monomial projections Yn,dA of
Vn,dA . Assuming this hypothesis we can find the Hilbert polynomial associated to
A in two specific cases:
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Proposition 3.2.3. Let A ⊂ Zn
≥0 be a finite set associated by n-dimensional projective

variety Yn,dA of degree d.

(a) If |A|= n + 1, then

ϕA(t) =
(

t + n
n

)
for all t ≥ 0.

(b) If |A|= n + 2, then

ϕA(t) =


(t+n+1

n+1 ) if 0 ≤ t < d

(t+n+1
n+1 )− (t−d+n+1

n+1 ) if t ≥ d

In particular, t0 ≤ d.

Proof.

(a) As we know, A induces a rational map Pn 99K Pn, and the closure of its image,
Yn,dA , is a subvariety of Pn of dimension n. This means that Yn,dA = Pn and

ϕA(t) =
(

t + n
n

)
for all t ≥ 0.

(b) In this case, A defines a rational map Pn 99K Pn+1 and the closure of its image,
Yn,dA , is a hypersurface of degree d of Pn+1. The exact sequence

0→ S(−d)→ S→ S/I(Yn,dA )→ 0,

where S = k[w0, . . . , wn+1], proves the claim.

Determining the function ϕA(t), the coefficients of the polynomial pA(t) and
the phase transition t0 for arbitrary finite subsets A ⊂ Zn with more than n + 2
elements is out of reach.
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Appendix A

Scripts of Macaulay2

(a) Example 1.5.5 (b).

i1 : R=QQ[x..z]
o1 = R
o1 : PolynomialRing

i2 : I = ideal (x^2*y, x*y*z^3, y*z^2, x*y^2)
o2 = ideal (x^2y, xyz^3, yz^2, xy^2)
o2 : Ideal of R

i3 : C = res I
o3 = R^1 <-- R^3 <-- R^3 <-- R^1 <-- 0

0 1 2 3 4
o3 : ChainComplex

i4 : C_2
o4 = R^3
o4 : R-module, free, degrees {4..5,5}

i5 : C.dd_2
{3} | -y -z^2 0 |

o5 = {3} | x 0 -z^2 |
{3} | 0 x^2 xy |

o5 : Matrix R^3 <--- R^3

(b) Example 2.2.9 (a).

i1 : R=QQ[x,y,z,t]
o1 = R
o1 : PolynomialRing

i2 : I = ideal (x*z-y^2,x*t-y*z,y*t-z^2)

45
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o2 = ideal (-y^2+xz,-yz+xt,-z^2+yt)
o2 : Ideal of R

i3 : M = module R/I
o3 = cokernel (-y^2+xz -yz+xt -z^2+yt)
o3 : R-module, quotient of R

i4 : hilbertPolynomial(M, Projective=>false)
o4 = 3i+1
o4 : Q[i]

(c) Example 2.4.4.

i1 : R = QQ[x,y,z,t];

i2 : S = QQ[s,t];

i3 : F = map(S,R,{s^3,s^2*t, s*t^2, t^3})
o3 = map (S,R,{s^3,s^2t, st^2, t^3})
o3 : RingMap S <-- R

i4 : I = ker F
o4 = ideal(z^2-yt,yz-xt,y^2-xz)
o4 : Ideal of R

i5 : M = module R/I
o5 = cokernel(z^2-yt,yz-xt,y^2-xz)
o5 : R-module, quotient of R

i7 : C = res M
o7 = R^1 <-- R^3 <-- R^2 <-- 0

0 1 2 3
o7 : ChainComplex

(d) Example 2.4.5.

i1 : R = QQ[x_0..x_9];

i2 : S = QQ[y_0..y_2];

i3 : F = map(S,R,{y_0^3,y_1^3,y_2^3,y_0^2*y_1,y_0^2*y_2,y_0*y_1^2,
y_0*y_2^2,y_1^2*y_2,y_1*y_2^2,y_0*y_1*y_2})

o3 = map (S,R,{y_0^3,y_1^3,y_2^3,y_0^2y_1,y_0^2y_2,y_0y_1^2,
y_0y_2^2,y_1^2y_2,y_1y_2^2,y_0y_1y_2})

o3 : RingMap S <-- R
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i4 : I = ker F
o4 = ideal( ... )
o4 : Ideal of R

i5 : M = module R/I
o5 = cokernel( ... )
o5 : R-module, quotient of R

i7 : C = res M
o7 = R^1<-R^27<-R^105<-R^189<-R^189<-R^105<-R^27<-R^1<-0

0 1 2 3 4 5 6 7 8
o7 : ChainComplex

(e) Example 2.5.1 (a).

i1 : R = QQ[x..z];

i2 : S = QQ[s,t];

i3 : F = map(S,R,{s^2*t, s*t^2, t^3})
o3 = map (S,R,{s^2t, st^2, t^3})
o3 : RingMap S <-- R

i4 : I = ker F
o4 = ideal(y^2-xz)
o4 : Ideal of R

i5 : M = module R/I
o5 = cokernel(y^2-xz)
o5 : R-module, quotient of R

i6 : hilbertPolynomial(M,Projective=>false)
o6 = 2i+1
o6 : Q[i]

(f) Example 2.5.3 (a).

i1 : R = QQ[x..z];

i2 : S = QQ[s,t];

i3 : res ker map(S,R,{s^2*t, s*t^2, t^3})
o3 = R^1 <-- R^1 <-- 0
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0 1 2
o3 : ChainComplex
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