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ABSTRACT 

Despite medical advances, cancer remains a life-threatening disease, accounting for millions of 

deaths per year. Aiming to develop novel cancer treatments, understanding the nature of cancerous 

cells and mechanisms of activation and progression at the microscale are material of study of many 

investigators. Special interest has been given to the actin cytoskeleton, whose morphology is 

altered in many cell functions -such as cell division- under tumorous processes. However, 

observing and manually identifying cells according to their intracellular architecture might be time-

consuming for the investigator. 

In light of the above, this study intents to construct a Convolutional Neural Network -a type of Deep 

Learning model- for Schizosaccharomyces pombe -a common model of study- classification 

according to their actin cytoskeleton during the cell cycle. For this purpose, a dataset containing 

representative images of different actin phenotypes was used for the training and testing phases, 

as well as for the final validation of the constructed model. 

The outcoming results demonstrate the successful learning capacity of the algorithm, whose 

evaluation metrics depicted a nearly perfect model. Nonetheless, when facing unseen data, its 

reliability is questioned, since it fails to correctly identify a considerable proportion of the introduced 

unseen images. For this reason, the algorithm prediction cannot be considered as the absolute 

truth but as a complementary tool. In order to improve the predictive ability of the model and seeking 

for a better performance, a future dataset reconstruction and expansion, with a subsequent 

validation, should be performed.  

Keywords: Actin cytoskeleton, Classification model, Deep Learning 
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1. INTRODUCTION 

Cancer is one of the leading causes of death in the world: just in 2020 an estimated number of 19.3 

million new cases were detected [1]. Although human efforts directed to find novel treatments to 

cure cancer, there is still a long pathway to eradicate such disease. The first step in this race against 

time consists in the comprehension of this illness at the molecular and cellular level.  

The actin cytoskeleton regulation under stress conditions, with special focus on its behavior during 

cytokinesis, has been described as a relevant trigger of tumor generation. Due to its role in cell 

shape maintenance and repercussion in eukaryotic cells function, it has a significant impact in 

cancer progression.  

Previous biomolecular studies conducted with Schizosaccharomyces pombe -a unicellular 

eukaryote organism- focused on whether cells could adapt or not in front of a stressed cytoskeleton 

based on their genotype. Next steps were directed to evaluate the morphological changes of the 

actin structure. Confocal microscopy images were taken, proving researchers’ suspicions: 

phenotypical changes were detected. Even so, the potential of image analysis was not exploited at 

all. 

Manual image analysis represents a horrendous task for many investigators: processing images, 

segmenting cells, detecting relevant features for classification and finally classifying them are tasks 

which require time and both patience and practice for part of the researcher. Nonetheless, part of 

the image analysis problem has been overcome thanks to the nowadays technological advances 

in the biomedical field. As biomedical engineers is our role to work hand in hand with researchers, 

scientists and medical professionals for the development of tools to ease their daily life.  

1.1 DESCRIPTION OF THE PROJECT 

The described problem underlines the need of an automatic system capable of analyze and classify 

cells eluding the time investment in front of the screen. Retrieved the project’s staring point, this 

final degree work presents an alternative methodology for cell analysis which, in contrast of the 

burdensome manual modus operandi, aims to automatize the process. In this way, we present a 

Deep Learning (DL) algorithm to automatically classify pombe cells based on their actin 

cytoskeleton phenotype in brief time. Images will be processed by the model and attributed a label 

according to the features detected. 

The project has been carried out with the Cell signaling by protein kinases and cancer research 

group in the Department of Biomedicine from the University of Barcelona. Data collection was 

performed in the Advanced Optical Microscopy Department located in the same building. A specific 

dataset was built for the project, making use of the images acquired with a confocal microscope for 

the current study taking place on the above-mentioned department. 
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1.2. OBJECTIVES 

As already started, the current study seeks to develop a pombe cells classifier according to their 

actin architecture. In comparison to the manual methodology, applying an automatic classification 

will have a direct impact on the required time for the conduction of this task: the algorithm will be 

capable of mimicking human intelligence and solve the illustrated problem in a short period of time. 

For the purpose of accomplishing the main goal, different sub-objectives have been defined: 

- Biomedicine practical sessions 

Aiming to gather information about the problem in question and develop a proper solution, 

understanding the project background and get familiarized with cell manipulation and 

sample preparation have been depicted as crucial activities. A whole week will be 

purposely dedicated to biomedical training under the tuition of a biomedical researcher, 

acquiring the knowledge necessary to reproduce the experimental protocol by oneself 

without help.   

- Review and polish our skills in data manipulation and Machine Leaning  

Gather information on data handling techniques and Machine Learning (ML) models, along 

with their development and implementation. This sub-objective implies both theoretical and 

practical perspectives: knowledge acquisition together with programming and extrapolation 

in the current study. 

- Data acquisition and management 

Construct a proper dataset to be feed into our ML algorithm with images specifically 

recorded for the project. The sample preparation and image acquisition together with the 

subsequent data processing will be in our charge.  

Bibliographic research will be done and several methodologies will be tested until adopting 

the final cell mounting approach. By means of trial and error, the optimal conditions for 

image acquisition are meant to be found, taking into account both the researcher and 

biomedical engineer student interests: on the one hand, capture images where relevant 

cell features for the investigators are visible and in the other hand, acquire pictures suitable 

for the analysis.  

- Building a DL model 

Defined as the core of the project, this sub-objective aims to set the essential pillars of ML 

algorithms’ development. The problem to solve will be described in detail and different 

solutions will be proposed. Next step will be to pass from paper into reality and start 

building, training and testing the algorithm. Finally, the performance of the model will be 

evaluated to address its functioning and behavior. 
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1.3. SCOPE AND LIMITATIONS 

The project consists of a DL model development for pombe cell classification according to their 

actin architecture and later testing and validation. The Department of Biomedicine located at the 

University of Barcelona is the place where the project was embedded. The study’s duration is 

approximately 18 weeks, from the end of January 2022 until the beginning of June 2022. This 

timeframe encompasses the completion of the complete project, including the definition and initial 

conception of the project, the biomedical practical sessions and far-reaching research on the 

subject through the model development and mandatory validation, and finishing with the writing of 

the final degree report. 

Constrains are not exempted for the project and, when thinking about the main limiting factor, time 

is the first variable that pops up in our heads. The sample cultivation presented a mean time of 

three days, limiting the data acquisition at one time per week. Strictly talking, this image acquisition 

could only be done if, additionally to satisfy the first requirement, the microscopy service could be 

booked.  

Manipulating the images is indispensable before the DL model construction, process among which 

one of the most critical steps is segmentation. Segmentation, considered to be one of the most 

non-trivial tasks in image processing, involves extracting objects from an image. The human brain 

is capable of rapidly splitting images into different regions of interest just by simply looking at them. 

Even though advances in computer intelligence have made possible to automatize and mimic many 

human labors in seconds, it often fails to reproduce the human visual system, resulting in an 

inaccurate segmentation. Although it may seem that we are shooting ourselves in the foot, 

decanting for a semi-automatic segmentation will be advantageous for the project, reducing the 

time needed to perform such labor. Last but not least, image resolution should be worth noting. 

Poor image quality has a negative impact on the segmentation outcome and therefore, reliable 

acquisition devices should be considered to mitigate its effect. 

Finally, remark the importance of the learning curve during the final degree work, including the 

biomedical training phase for the proper comprehension of the project’s framework as well as the 

knowledge acquisition in the ML field, both elements depicted as essential for the project’s 

consolidation. On the one hand, learning how to properly manipulate cells accurately following the 

experimental protocol for the subsequent image acquisition was crucial: as any other project 

involving sample handing, even a small error -prior or in the acquisition moment- can rebound on 

the data outcome, making it useless. On the other hand, the ML knowledge was learnt from scratch 

by enrolling on online courses. 
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2. BACKGROUND 

Section 2 is aimed to provide information of both parts concerning the current work: the biomedical 

part and the engineering/technological part. Reviewing the theoretical background allows to lay 

down and comprehend the project basics for the fulfillment of the stablished objectives. 

 2.1. STUDY MODEL  

Schizosaccharomyces pombe is a specie of yeast, a eukaryotic unicellular fungus, traditionally 

used as a model organism for the study of cell cycle control, DNA replication and genome integrity 

[2]. In only three hours, it can divide either by bipartition or binary fission. Additionally to showing a 

cell cycle similar to human cells, genes involved in human disease have been identified in S. pombe 

[3], making it a great model system for the identification of key cellular pathways in cancer and 

other diseases [4].   

2.1.1. CYTOSKELETON AND CELL CYCLE 

The cell cytoskeleton consists of a network of filaments that runs through the cell, structure 

composed by three elements: microtubes, actin filaments and intermedium filaments together with 

their associated proteins. Rather than being just the cell backbone, it is in charge of the basic cell 

functions, such as morphogenesis, cell migration and cell cycle. Nonetheless, these functions 

usually fail and become abnormal in cancer cells.  

In this current work, special focus is given to the cell cycle -the process by which cells grow and 

divide into two cell daughters- together with the cytoskeleton changes. In S. pombe cells, by means 

of fluorophore staining, the different filaments are visible, reflecting the phases of the cell cycle. For 

a better understanding of which will be the different labels of the DL algorithm -in other words, the 

possible actin cytoskeleton phenotypes-, we introduce a brief description of this biological process.  

The cell cycle is composed of two main stages: interphase and mitosis or M phase. At the same 

time, the interphase can be divided into three ordered phases [5]:  

- G1: The growth phase, in which the cell is preparing to divide. The RNA, proteins and 

all the elements required for the DNA replication are synthetized.  

- S: In this phase, a copy of the DNA is generated, an extra set of the genetic material. 

- G2: The genetic material is organized and condensed; step previous to the cell 

division. The RNA and all the essential proteins are finally synthesized, and the cell 

acquires the adequate size for the division. 

Finalized the G2 phase, the mitosis begins. During the M phase, the original cell -commonly 

referred as mother cell- is divided into two daughter cells, each one with an exact copy of the 

genomic material. The mitosis consists of five stages [6]: 

- Prophase: The genetic material is condensed. Next, the formation of the mitotic spindle 

takes place, structure in which the chromosomes get attached.  
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- Metaphase: The chromosomes, coupled to the microtubes, get aligned at the center of the 

cell thanks to the tension forces.  

- Anaphase: The chromatids -the two identical halves of a chromosome- get separated to 

the extremes of the cell. Furthermore, the actomyosin ring is assembled. 

- Telophase: The mitotic spindle gets disorganized and the actomyosin ring gets contracted, 

aiming to divide the cell. 

- Cytokinesis: A septum -cell wall- is form, separating the mother cell into two.  

Concluded the cell division, the described process re-starts. Figure 1 offers a visual review of the 

cell cycle. The distinct phases are represented, being observable how different behave the 

components of the cytoskeleton in each stage. More information about the relevance of such 

phenomenon for our project can be found in Section 2.2. 

 

 

 

 

 

 

 

Figure 1. Fission yeast cell cycle, from birth to division and cell separation (left image) and image legend (right 

image) [7]. 

One might ask themselves how these intracellular changes will be visible. Actin across the cell can 

be observed by means of fluorescence or confocal laser scanning microscopy (CLSM). To do so, 

cells have been genetically manipulated and actin has been tagged with Green Fluorescent Protein 

(GFP).  

2.1.2. REGULATORY ELEMENTS OF THE CELL CYCLE 

The identification of cell cycle regulatory elements has become the target of many cancer studies, 

given that the disruption of the normal regulation of such process could be caused by gene 

mutations implicated in cancer. Once discovered, new therapeutic agents targeting such genes can 

be developed. However, this task is not straight-forward. To tackle this problem, different 

experiments have to be performed, where the cell undergoes environmental stressors,guio and its 

response to confront them is analyzed. Under normal conditions is expected that cells present an 

adaptive response to external stimuli whereas mutated cells present this via affected. 

Underline the genes -and the subsequent transcription factors activated via cascade- playing a role 

in the cellular stress response is the current object of study in the Biomedicine Department of the 

University of Barcelona. The early study conducted by this research group in 2005 [8] was just the 

prelude to the analysis line regarding the CAMk family of proteins and its role in the reviewed cell 

 v 

v 

v 
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function. Special interest has been given to the Srk1 protein kinase, due to its role in cell stress 

response and its rebound effect on the cell cycle.  In addition to Srk1, many are the experiments 

conducted under this research with other proteins which have been depicted to be related to this 

one, trying to underline their contribution to cell cycle (dys)regulation.  

The Latrunculin B -or Lat B for short-, part of the family of marine toxins [9] produced by certain 

sponges -including Latrunculia, from which its name derives- has been widely used in many of the 

studies conducted. It inhibits the actin polymerization by disrupting the actin filament organization, 

causing the collapse of the actin cytoskeleton and subsequently mitotic delay [10]. Under non-lethal 

doses, wild type cells can overcome this situation and continue its cycle, whereas mutated cells, 

even though they can enter mitosis, show difficulties. Thanks to such discovery, scientists have 

been able to underline the key role of different proteins -including the Srk1- in response to actin 

cytoskeleton defects, given their role in the stability of the cell morphology during mitosis. 

 2.2. IMAGE CLASSIFICATION MODELS  

Technological advances have positively impacted our lives: what seemed impossible in the past, 

is a nowadays a reality. Great improvements have been achieved in the biomedical field thanks to 

the implementation of engineering in the described area. 

Image processing and analysis, along with recognition of biological samples are essential activities 

of the researcher’s daily life, although they usually compromise the investigator to spend hours 

analyzing images. In this context, image classification models become handily: human tasks can 

be minutely reproduced by machines in less time. Those models are capable of categorizing and 

labeling sets of pixels -digital images regions- based on their most relevant features [11]. The 

algorithm is trained with an image dataset and, finished the learning phase, it will be capable to 

face future situations with new data and classify it.  

Image classification models are englobed on the concept of Artificial Intelligence (AI), which is 

defined as technical discipline based on the use of computers to mimic tasks involving human 

intelligence [12]. Great benefits derive from the implementation of AI, mostly related to the 

overcoming of human-centered problems: error reduction, faster decision and processing of bigger 

data amount are just few examples of this revolutionary technology.  

AI can be subdivided into different branches and sub-branches. Among them, we find Deep 

Learning (DL), the most popular Machine Learning (ML) sub-field [13].   

2.2.1. DEEP LEARNING 

DL, also known as Deep structured Learning, is described as a branch of ML inspired by human 

neural networks to interpret data using Multi-Layered Neural Networks [14] -characteristic from 

which the term “Deep” arises-. Raw data is processed through the multiple stages, automatically 

extracting features with an increasing level of complexity.  

The learning landscape is very complex, englobing four large categories: supervised, 

unsupervised, semi-supervised and reinforcement learning [15]. Supervised and unsupervised 

models differ in the type of data training used. The first approach, based on an input-output pair 

relationship, requires labeled data, whereas the unsupervised approach can learn patterns with 
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unclassified data. Semi-supervised, as its name suggest, combines the two described methods. 

Finally, the reinforcement training methodology learns by interacting with the environment, aiming 

to follow those actions that will maximize the output. 

Each class presents a wide range of algorithms: selecting the most optimal one represents a 

challenge for the programmer.  Whether one category is chosen or not depends on different criteria, 

mostly focused on the kind of problem being faced and the kind of data that we are working with. 

Having considered the framework of the project and the type of data to be collected -digitalized 

images-, we decided for the implementation of supervised learning. Furthermore, owing the fact 

that previously labelling the data would ensure finding out those classes which we are interested 

in, this model is suitable for our goals. 

2.2.2. SUPERVISED DEEP LEARNING ALGORITHMS 

In this section we drill down into the three most spread DL supervised algorithms, gathering 

sufficient information to ease the decision making presented in Section 4. 

2.2.2.1. MULTI-LAYER PERCEPTRON 

The Multi-Layer Perceptron (MLP), considered to be the basic structure of Deep Neural Networks 

(DNNs), consists of an Artificial Neural Network (ANN) with a fully connected network. Every node 

in a layer is connected to each node of the following layer with its respective associated weight. It 

also presents a feed forward architecture [16]: connections are always directed from lower to upper 

layers, not allowing neurons of the same layer to be interconnected.  

The model starts with an input layer, composed by n units, 

and finishes with an output layer of e units, responsible for 

taking a decision respect to the input data -attribute a 

certain class-. Between them, one or more successive 

layers of intermediate units are found: the hidden layers 

[17]. The hidden and output layers commonly use a non-

linear activation function -modeling the human neurons 

behavior, deciding whether to fire a neuron or not-. 

Highlight that the input layer is fed up with a 1-D vector, 

aspect that rebounds in the data type which this model can 

deal with.  

2.2.2.2. CONVOLUTIONAL NEURAL NETWORK 

Convolutional Neural Networks (CNNs or ConvNets), a Multi-Layer Perceptron with special 

structure, are considered to be the most popular DL architecture, as there is no need of feature 

extraction [19]. In contrast to MLP, nodes do not need to be connected to every following node: 

layers are sparsely connected rather than fully connected. CNN also differs in the fact that, rather 

than the 1-D format of MLP, the input presents a 2-D/ 3-D- format [20], working well with data which 

presents a spatial relationship.  

Analogous to MLP, CNN presents hidden layers, which can be split into convolutional and pooling 

layers. Convolutional layers -or detection layers, given that they function as feature detectors-, are 

Figure 2. Multi-layer Perceptron with 

one hidden layer [18]. 
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composed by kernels, which convolve with the input data and create feature maps -the output of 

that layer-. Pooling layers -or down-sampling layers- compress the previous feature map by 

computing a simple function over small regions of the image, usually computing the maximum [21]. 

In this way, the number of parameters and computations drastically decreases while keeping the 

most important information. 

 

Figure 3. Convolutional Neural Network [19]. 

2.2.2.3. RECURRENT NEURAL NETWORK 

Recurrent Neural Networks (RNNs) are a 

specific type of ANN designed to work with 

sequential or temporal data [22]. Contrary to 

the previous described neural networks, RNNs 

stand out for their ‘memory’: data from 

previous inputs can flow through hidden layers 

and rebound on the current input and 

subsequent output. The feedforward 

architecture is not present anymore: self-loops 

are now possible and hence, units can feed 

into themselves [23]. More parameters are 

present on RNN, directly result of the 

additional extra weights.  

2.2.3. MODEL PERFORMANCE EVALUATION 

Evaluating the performance once the model has been built and implemented is crucial: we have to 

ensure a correct predictive behavior. Different kinds of metrics and methods can help to determine 

the model reliability, pointing out whether the model is valid or not. In this current work we will make 

use of learning curves and confusion matrix, commonly used in the evaluation of image 

classification models. 

2.2.3.1. LEARNING CURVE 

A learning curve (LC) plots the model’s execution on a given task as a function of the training time 

or number iterations/epochs for a given number of training examples [25]. In this sense, one can 

get acknowledge of which are the changes in the learning performance for those algorithms which 

learn over time in terms of varying amounts of learning effort. 

Figure 4. Recurrent Neural Network [24]. 
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Commonly, during the ML model training, dual LCs are generated: for each training step, the current 

state can be evaluated from the point of view of the training or the validation sets. And, according 

to the evaluation metric selected, multiple learning curves can be created, [26]: 

- Optimization LCs: based on minimizing metrics 

by which the model’s parameters are being 

optimized, such as loss or Mean Squared Error 

(MSE). Larger numbers reflect more learning. 

- Performance LCs: based on maximizing metrics 

by which the model will be evaluated and 

selected, such as accuracy or recall. Smaller 

numbers are a sign of how perfect the training set 

has been learnt. As it can be seen on Figure 5, 

the accuracy is expected to increase over time, 

reflecting the successful training. 

For the current study, loss and accuracy were chosen for the construction of the LCs, which result 

to be the commonly used ones for DL model assessment [26].  

The dynamics of the learning curve and its resulting shape enable to diagnose the ML algorithm 

behavior, suggesting which decisions could be taken in order to improve the model’s performance. 

Different scenarios can be encountered [27]: 

- Overfitting: The algorithm has captured too well the training data, including statistical noise 

or random fluctuations of the specific dataset. Therefore, it will be unable to generalize to 

new data, failing to accurately predict unseen data. 

- Underfitting: Contrary to overfitting, the model is uncapable of learning from the training 

dataset. The model fails to capture the relationship between the input and the output.  

- Good fitting: Ideally, one expects to observe a behavior between the above-described 
situations, resulting in a minimal error on both the training and test data. 

LCs results, rather than only depicting the model problems, are useful for proposing further 
implementations and corrections for future improvements. 

2.2.3.2. CONFUSION MATRIX 

A confusion matrix is a 2x2 table that summarizes the number of known observations and the 

predicted outcomes, including both the correct and incorrect predictions. In this way, one can get 

an insight of not only the number of errors but also at their type. 

As showed in Table 1, four different scores conforming the confusion matrix can be observed. “TP” 

stands for True Positive, the number of positive correctly predicted events whereas “FP”, the False 

Positive value, the incorrectly predicted events values. On the other hand, we have “FN” or False 

Negative, the incorrectly predicted no-events, and “TN” or True Negative, the correctly predicted 

no-events.  

Figure 5. Performance Learning Curve 

[25]. 



10 
 

 Negative Predicted Positive Predicted 

Actual Negative TN FP 

Actual Positive FN TP 

Table 1: Confusion matrix diagram 

From the values present on the confusion matrix, different useful metrics can be computed for the 

model evaluation, which are accuracy, precision, sensitivity and F1-score [28].  

The accuracy is calculated using the following formula: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Equation 1. Accuracy formula 

As shown above, accuracy represents the ratio of number of correct predictions respect to the total 

number of predictions. 

Precision is described as the ratio of correct positive predictions respect to the total predicted 

positives, that can be computed according to Equation 2. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Equation 2. Precision formula 

Another interesting parameter is the sensitivity or Recall or True Negative Rate (TNR), the ratio of 

correct positive predictions respect to the total positive examples. 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Equation 3. Sensitivity formula 

Finally, F1-Score or F-measure combines both precision and recall of a classifier into a single 

metric.  

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

Equation 4. F1-Score formula 

As seen in Equation 4, F1-score is computed as the harmonized mean (HM) between precision 

and recall [29], giving equal weight to both measures. The interesting point of this metric is its 

sensitivity to extreme values, strongly punishing them. This means that if precision and recall differ 

from each other, HM will penalize more the metric as compared to the arithmetic mean, providing 

more relevant information as regards to the model performance. 

 



 

11 
 

3. MARKET ANALYSIS 

3.1. MARKET EVOLUTION 

Advances in technology have made possible the widespread of Machine Learning algorithms in 

many industries, among which the biomedical sector has not been left out. Since the early usage 

of AI in 1961 [30], the usage of ML systems has exponentially increased in this field, thanks to its 

polyvalent nature. The applications of AI methods are wide and diverse: big data, diagnostic 

predictions, image segmenting… 

As regards DL, it has experienced a boost in its popularity over the last 5 years, mostly due to its 

multidisciplinary character and efficiency. Among the areas in which this subfield of ML can be 

applied, feature representation learning, image segmentation, image registration and classification 

of anatomical structures have become the fastest-growing areas [31].  In contrast to the classical 

ML approaches which require hand-crafted features, DL can automatically extract them without 

difficulties even with large image datasets. Over 6000 studies regarding the use of DL for image 

classification have been published in PubMed from 2015 to nowadays, demonstrating its 

interdisciplinary character, efficiency and viability in a wide variety of studies. 

After a bibliographic research looking for similar lines of work to the current study being developed, 

only a scientific article whose approach resembles ours was found, although some are the aspects 

in which they differ. Hence, given the retrieved information and the project framework, one would 

venture to say that the current study is one of the first to implement CNN for cell classification based 

on intracellular structures.  

The research group composed by Oei, R. W et al [32] presents a supervised CNN model for human 

breast-derived cell lines classification using microscope images of intracellular actin networks.  

More specifically, by means of confocal immunofluorescence microscopy, actin-labeled cell images 

were captured. The network was fed up with images from three different cell lines -two cancerous 

cell lines and a normal one, previously immunostained with GFP-. Positive results were obtained, 

highlighting the potential of CNN to tackle these types of image classification problems, even 

outperforming human capacity in terms of accuracy. 

3.2. FUTURE MARKET 

The developed code is meant to be implemented in future studies which bear a resemblance to 

ours -in other words, to similar experiments carried out with pombe cells and the GFP-labelled actin 

cytoskeleton-. Moreover, it can be seen as the preamble of the extension of the use of CNN -or 

other Deep Learning classification algorithms- for the classification of cell images according to their 

fluorescence-labelled intracellular structures in contrast to the usual extracellular morphology-

based systematization. 

As mentioned in Section 1, the image dataset will not be as extensive as we would like, given the 

time constraints retrieved. The current database could be expanded by collecting more images in 

a near future and retrain the model, increasing its accuracy. Together with an improvement of the 

segmentation algorithm, these changes would boost up the model’s performance. For this reason, 
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aiming to perform future improvements, the script and dataset will be publicly available for anyone 

who asks for it.  
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4. CONCEPTION ENGINEERING 

Manual detection of relevant images features for a posterior classification represents a long-time 

consuming labor. Therefore, developing methodologies to automatize the process is a priority 

which has to be addressed. In this context is where Deep Learning shows up thanks to its capacity 

to extract high-level features from the input data and subsequently classification in an automatic 

way. Various are the available options and thus, aiming to ease the decision task, this following 

section is devoted to review the different options for the carry-on of the project as well as the criteria 

and discussion behind the final option selection. 

4.1. PROPOSED SOLUTIONS 

Prior to the model construction, one has to evaluate different aspects of the project development 

aiming to optimize its overall performance. Therefore, three main aspects will be examined: cell 

mounting approaches, programming software and DL supervised algorithms. 

4.1.1. CELL MOUNTING 

Since pombe cells are hard to trace during live cell imaging due to their non-adherent nature, they 

need to be immobilized. Different cell mounting techniques were proposed and tested during the 

project course, aiming to find the most appropriate and optimal methodology for a proper cell 

visualization and subsequent image acquisition.  

In a first instance, the protocol proposed in Microscopy of Fission Yeast Sexual Lifecycle by Vjestica 

A. et al. [33] was tested. Easy to reproduce with minimum material, this method can be easily 

reproduced in minutes even without previous knowledge on cell mounting. Agarose is used as the 

supporting material for the cell immobilization. On top of a rectangular glass slide, a drop of 200 μL 

of liquid agarose is deposited. Deposited the melted agar, another slide is placed on top., which 

are separated with two spacers. After 10 seconds, the spacers are removed and the top slide is 

rotated and removed, leaving the substrate ready to be used. Furthermore, if more than one cell 

specimens are meant to be observed, the pad can be cut with a scalpel to make multiple minipads. 

For a proper understand of the reviewed protocol, Figure 6 summarizes the process in a visual 

way. 

 

Figure 6. Schematic representation of the protocol proposed by A. Vjestica et al. 



14 
 

The next method tested was the one proposed by Asakawa H. [34], which suggests the use of 

aqueous concanavalin A or aqueous soybean lectin (SBL) as immobilizers. We decanted for the 

use of SBL-an antinutritional seed constituent- for the cell fixation owing the familiarity of the 

biomedical group with this substance. Round microscope slide glass cover slips were coated with 

50 μL of 2 mg/mL aqueous SBL, which was uniformly spread all over the surface. After one minute, 

the excess of SBL was removed and left dry overnight. Once dried, the coated glass cover was 

ready to be used as the supporting material. 

Finally, we thought out an upgraded version of the lectin approach. Instead of using a unique 

circular glass surface for each specimen, approach which requires preparing one cover slip for 

each specimen and hence, observing only one cell line at a time, the same procedure could be 

repeated for an eight chambered cell culture slides was chosen. Hence, the described drawback is 

overcome and different cells can be observed at the same time.  

4.1.2. PROGRAMMING SOFTWARE  

For the development of the DL model, many are the software available for conducting such 

hazardous task. The above options were proposed considering our previous skills and knowledge 

alongside the facilities offered by each one. 

RStudio is an Integrated Development Environment (IDE) specifically designed for R [35], a 

programming language for statistical computing. The program offers the user the possibility of 

installing additional user-created packages which are not included in the basic installation, 

characteristic that extends the basic capabilities of R.  

From the point of view of our project, it is object of interest the R Interface to Tensorflow [36]. 

Tensorflow is an end-to-end, open-source platform specifically designed for ML, with particular 

focus on DL. Together with the Keras R package [37]  -a DL Application Programming Interface or 

API for fast computerization-, customizable layers and Deep Learning models can be built.  

MATLAB [38] is a private open-source numeric computing system developed by MathWorks with 

its own programming language -M language-, especially designed for the development of 

algorithms, data analysis, visualization and numerical calculation. The user has available an 

extensive list of Toolboxes, collections of functions built on MATLAB which may result interesting 

for a specific task.  

DL is also possible with MATLAB thanks to the Deep Learning Toolbox [39], allowing the user to 

design and implement DL for classification, regression… among other tasks. The examples and 

pretrained networks present in this toolbox make Deep Learning easy to implement, even without 

previous knowledge on this field. In addition to this package, the user can import -or even export- 

networks architectures from TensorFlow and other Deep Learning frameworks, advantageous 

characteristic since it allows importing pretrained models and weights from other frameworks.  

Python is a free programming language, characterized for an easy to learn syntax [40]. Over the 

last decades, Python has gained popularity as a scientific programming language mostly due to its 

easy-to-handle nature. In addition, many are users who openly share their State of Art Image 
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Processing tools, allowing other researchers to implement the code or even adapting it to their own 

desires.  

A vast list of packages and modules are supported by Python, list in which we can find relevant 

libraries for DL such as the TensorFlow and Keras libraries. As mentioned beforehand, these 

two tools make DL easy to handle. Nonetheless, additional libraries require to be installed, such as 

Numpy, Scypi or Pandas.   

4.1.3. DEEP LEARNING MODEL 

As previously mentioned in Section 2.2., given the nature of the data, we decanted for apply 

supervised learning: the model will be trained with labeled data. Supervised learning algorithms -

or any of the other three methods mentioned- can be divided into two types: classification and 

regression. Classification algorithms predict discrete variables -such as labels-, whereas 

regression algorithms predict a continuous one.  

The model to develop aims to automatically classify pombe cells based on their actin cytoskeleton 

phenotype. Hence, we are facing a classification problem: we aim to obtain a discrete prediction, 

which is no more than the class to be attributed to each cell. 

The models introduced in Section 2.2.2. are all valid for classification problems, although each one 

presents differential characteristics that make them more suitable for a certain scenario. All of them 

were equally considered as candidates, and the constrains and advantages of each one were taken 

into consideration for the final decision, ensuring to choose the most appropriate algorithm. 

4.2. FINAL SOLUTION 

The above-mentioned candidates were analyzed and discussed from the point of view of our 

necessities, selecting the options more suitable for the course and development of the project.  

Among all the cell mounting methods tried, placing lectin on top of the eight chambered cell culture 

dishes shown the most satisfactory results. In comparison to agarose, cells remained in place -or 

were less prone to move-, during image acquisition, with the additional fact that cells tended to 

overlap less between them, relevant aspect for the subsequent image processing. Hence, using 

lectin was indisputably the best option. When it comes to practical terms, the eight chambered 

method overcome one of the previous project limitations: time. Not only stands out for its simple 

reproduction in short time but also it allowed us to observe several cell strains at once. 

Regarding the programming software of preference, although the three options reviewed were 

suitable for the carry-on of the project, Python was the final selection. The experience gathered 

with this free programming language during our biomedical engineering degree, together with its 

easy apprenticeship, made it be the perfect candidate. Some of the libraries needed for the project 

were already familiar to us since we had previously worked with them in some of our university 

subjects. Remark that Fiji, although not discussed on the list of proposed solutions, was needed to 

open the archive containing the cell observations and save the content in a .png format, compatible 

with Python.  
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CNN was chosen as the Deep Learning model meant to be implemented. Although MLP has been 

for many years the preferred option for image classification, is nowadays deemed insufficient for 

more advanced and complicated tasks. MLP has the characteristic of presenting a fully connected 

network, aspect that makes that the total numbers of weights needed for building the model 

exponentially growth for large images. Furthermore, its dense architecture makes that easy-to-

handle tasks take long time to be solved. CNN can overcome these problems due to the 

convolutional operation, needing less parameters. Making much deeper networks it is possible 

owing the fact that layers are partially connected rather than fully connected, aspect that allows the 

extraction of more complex features for a most accurate classification. 

To sum up, Python will be the programming language used for the development of the CNN model 

based on cell images acquired with an eight chambered cell culture dishes and lectin immobilizer.  
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5. DETAILED ENGINEERING 

The current study was structured in different stages, thoroughly defined below. These tasks can be 

clustered in six phases, as shown in Figure 7.  

 

Figure 7. Detailed engineering flowchart 

This section describes in detail how was the proposed solution developed as well as the steps 

followed to implement it.   

5.1. SAMPLE PREPARATION 

As presented in the introduction, the student will be in charge of the sample preparation, starting 

from the cell strain growth and sample preparation to the cell mounting. 

Three days were required for the total conduction of the experiment, days in which rigorously 

adjusting to the settled time was our main priority. The steps had to be accurately reproduced at 

exact hours for the continuity of the experiment. Otherwise, the procedure could not be conducted 

-in the Appendix, the original experimental design can be found, which was readapted and 

shortened for practical and temporal issues-. 

This subsection briefly introduces the protocol followed, handed by the biomedical research group.   

5.1.1. CELL CULTURE 

Different pombe cells strains were cultured under the same conditions, as decided by the 

biomedical group, aiming to outline the dissimilarities among them in terms of the actin cytoskeleton 

behavior and hence, its rebound in the cell cycle.  

Prior to the beginning of the experiment, given that cell lines were cryopreserved at -80 ºC, they 

needed to be thawed rapidly and plated in cell culture dishes with YES media. Cells were left drying 

at room temperature before introducing them in an incubator during 48-72 h at 37 ºC. 

Once observed that cells started growing in the plates, we could proceed to follow the experimental 

protocol. The following steps were routinely repeated week by week: 

- Day 1 

o 9:00 h: Seed cells in 5 ml of Complete Minimal Media (MM). Incubate overnight at 

30 ºC in a shaker incubator. 

 

- Day 2 

o 9:00 h: Measure Optical Density (OD). Dilute cultures at an OD of 0.35 in 5 ml of 

Complete MM. Incubate during 4-5 h at 30 ºC in a shaker incubator. 

Sample preparation
Data 

acquisition
Data 

processing
Dataset 

construction
Initial model 
development

Functional 
model
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o 13:00-14:00 h: Measure ODs. Dilute cultures at an OD of 0.025 in 5 ml of Complete 

MM. Incubate overnight at 30 ºC in a shaker incubator. 

 

- Day 3*: 

o 9:00 h: Measure ODs. If the OD is between 0.8-1, dilution is not necessary. For 

bigger ODs, dilute at an OD of 0.8.  

o 10:00 – 11:00h: Start preparing cell cultures for sample mounting 

*Depending on the day arranged for the microscopic services, rather than the predefined three days, the experimental 

protocol could be extended until the sample visualization day. If this was the case, day 2 was repeated the day(s) prior 

to the cell observation -which would be set as the day 3-. 

At the end of the week, aiming to preserve cells alive for further experiments, subculturing was 

required. A few pombe cells were transferred to a fresh growth YES medium and introduced in the 

incubator at 37º during the weekend. In this way, we enabled the further proliferation of the cell 

strain. 

Nonetheless, it has to be said that, despite the experimental part being originally planned as one 

of the student duties, due to organizational problems and lack of time, the undergraduate could not 

be in charge of the reproduction of the experiment starting from the second week of February -

beginning of the second university semester-. For this reason, a biomedical researcher took their 

role and accurately followed the described steps. 

5.1.2. CELL MOUNTING 

On the third day, once the measured OD presented a value between 0.8-1 -or the pertinent dilution 

was done in order to obtain such value-, cell cultures were ready for the sample mounting. As 

explained in Section 4, the eight chambered slides demonstrated the best results and thus, was 

selected as the optimal procedure and reproduced in the following days. 

The day before the sample observation, lectin was deposited in each chamber following the 

reviewed protocol and left dry overnight. In each compartment, 100 µl of the cell culture were set 

down. After five minutes, the excess of liquid was removed and let dried at room temperature. Once 

the bottom of the chamber was completely dried, 400 µl of media containing LatB at the desired 

concentration was deposited on it.  

Highlight that, as it was mentioned beforehand, the original experimental design underwent some 

changes as a way of reducing the workload and the time required. For this reason, the four original 

scenarios -control and three different concentrations of LatB- that were meant to be analyzed were 

simplified to one concentration. Furthermore, the LatB was deposited few minutes prior to the 

image acquisition rather than dropping the substance at appointed times. 

5.2. DATA ACQUISITION  

Owing the fact that the project took place at the Faculty of Medicine and Health Science of the 

University of Barcelona, we took advantage of the technology owned by the Department of 

Advanced Optic Microscopy for the present study. This department is ubicated in a different area 

of the university and therefore, we needed to move to another location. To conserve the 
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fluorescence of cells, samples were covered with aluminum foil. Otherwise, the actin filaments 

GFP-labeled could lose their fluorescence upon exposure to light.  

Time-lapse images of the different cell strains were recorded during 2 to 3 hours with the confocal 

microscope Carl Zeiss LSM 880 Airyscan. Equipped with high technology and a multiline argon 

laser, it offers high sensitivity and resolution at high-speed [41][42]. Owing the fact that we do not 

have the skills required to manipulate the microscope and set the correct parameters for the data 

acquisition, a microscope technician was in charge of this task.  

For the microscope configuration, the Zeiss ZEN [43] software was used. This user-friendly 

interface allows adjusting the image parameters to our requirements and preferences. Among the 

countless functions included, highlight the sample carrier option, characteristic that enabled us to 

observe the different cell lines at once and in an automatic mode. Additionally, the microscope can 

capture multiple positions sequentially. In this way, we were able to observe different spots for each 

chamber in one acquisition. The Zeiss microscope can work with a wealth number of fluorophores. 

Among them, the GFP fluorochrome, object of interest in our study, is included. For its observation, 

a specific designed filter for the GFP dye was selected.  

Properly focusing the cells represented the most tedious task for the technician. The Z-position of 

the microscope had to be properly adjusted to the imaging plane of interest. Even though being 

placed on top of an anti-vibratory table and once configurated the microscope automatically 

performs the image acquisition, we had to observe that the cells do not move out of focus. 

Otherwise, the sample should have to be refocused. 

Using a 63x oil immersion objective and with an image resolution of 512 x 512 pixels, images were 

acquired one by one. The resulting pictures were saved as stacks -one per spot- in a czi format. 

The same parameters were reproduced on all the microscopy appointments, whatever the cell 

mounting approach -as described in Section 4- was tested. The several trials performed prior to 

the final selection of the cell mounting methodology were not in vain. Being rejected as the optimal 

approach was not link to a direct exclusion from the project. Although it has been described in the 

previous section the problems observed when testing the methods and the practical motives that 

also influenced to their rejection, the obtained images presented a quality good enough for the 

processing and segmentation steps, being used for the dataset construction. 

5.3. DATA PROCESSING 

Raw images must be correctly processed in order to present to the DL model adequate data which 

it can work with. This section is intended to describe all the steps followed along the criteria behind 

each decision.   

5.3.1. DATA CONVERSION 

Even though Python can handle with (almost) any file formats -including .czi files-, we decanted for 

a more malleable format: .png. Raw image stacks were first converted to a .png format with Fiji 

[44], an open-source platform which is basically ImageJ with additional plugins such as Bio-Formats 

[45], an add-in for reading data in many life sciences file formats.  
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The fluorescence channel contained the information relevant for our project, which is no more than 

the actin cytoskeleton. Thus, the transmitted light one was disregarded. 

5.3.2. IMAGE SEGMENTATION  

Image segmentation, as it was introduced in Section 1.1.3., is described as the process of 

separating an image into multiple objects -which, in our case, were the cells-. For this purpose, 

various approaches can be implemented: manual, semi-automatic or automatic segmentation.  

It was previously advanced the problems of computer-based segmentation procedures, failing to 

accurately reproduce human-drawn segmentation. Despite that, studies have demonstrated the 

potential of semi-automated segmentation [46], significantly faster than manual segmentation and 

with comparable performance. Even so, constraints were still present, where algorithms often fail 

to accurately perform the segmentation duty. 

Having in mind that time was against us, we decanted for the development of our own semi-

automatic algorithm. It has to be remarked that, although the overall results were satisfactory, a 

subsequent manual check was necessary as a way of eluding the bad segmented images -and 

correct them if necessary or directly discharge them from the dataset-. All the following steps are 

gathered in Image processing.ipynb.  

5.3.2.1. IMAGE MANIPULATION 

Performing a prior image preprocessing is required for an enhancement of the segmentation 

procedure. Until the final code proposed on this project was redacted, different prototypes were 

redacted and tested. Many were the issues that arose from them but, by means of trial and error, 

problems were addressed one by one till we find, what we considered to be, an acceptable 

algorithm for image segmentation. 

The algorithm parameters set -as it can be seen on the code attached on the Appendix- differed 

depending on the specific situation. Cell density and movement together with light intensity were 

the main variables changing among the different samples -or even between frames-, thus requiring 

the algorithm parameters to be readapted for each observed spot. Therefore, keeping them as 

separate stacks -or even as sub-stacks, given the stochasticity of the sample environment 

conditions-, rather than merging all the pictures into a single folder ensured a more accurate 

segmentation.  

Scikit-image is a Python library specially designed for image processing [47]. The module 

segmentation contains a wide variety of functions useful for this procedure, list among which we 

can find the watershed algorithm, a region-based tool derived from mathematical morphology [48] 

commonly used for regions-of-interest close to each other. Inspired by ridges and valleys, images 

are treated as topographic reliefs [49].  

The green channel was selected for a subsequent binarization, not only for being the less sensitive 

one to noise but also for containing the information in which we were interested in -the GFP signal-

. Since inhomogeneous lighting was observed in images, global thresholding methods are not the 

best decision to take. Rather than selecting a unique threshold for the entire image, applying an 
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adaptive threshold for each pixel or region is more convenient. Thus, we applied the Sauvola 

threshold [50], a local thresholding approach. 

Speckle-like noise was observed in all 

images, artifacts that highly influenced in the 

performance of the segmentation algorithm. 

On top of that, cells were holed, direct result 

of the image binarization process. These 

aspects were corrected with the 

morphology and ndimage modules from 

the Scikit-image library.  

As for the markers, we selected the local 

minima -the valley points- of the segmented 

objects, from which basins are flooded. To 

find them, it was first computed the Euclidean 

distance transform between the cell pixels to the nearest background pixels. Subsequently, the 

maxima of the distance -which is no more than the minimum value of the contrary of the distance- 

was set as the algorithm markers. 

Over-segmentation issues arose when directly applying the watershed algorithm: some cells 

presented more than one local minima, phenomena which was misinterpret by the algorithm and 

spitted them in multiple segments. The problem might be (partially) solved by merging incorrected 

spilt regions.  

To solve this unwelcome situation, we figure out a solution based on Euclidean distances. We 

hypothesized that the uncorrected split cells, whose origin derives from the erroneously number of 

markers detected, could be corrected thanks to the information of the neighborhood pixels. Based 

on the retrieved information, the middle point between the points detected on the same cell would 

be computed and hence, the split fragments would be merged into one. The procedure applied was 

the following: 

1. Find the centroids of the detected objects 

2. Compute the Euclidean distance derived from all the possible combination of pair of 

centroids. 

3. Calculate the Euclidean distance transform and find the maxima distance. Save the results 

as a coordinate list and as a Boolean mask. 

4. From the results obtained on step 2, those points whose distance is smaller than a certain 

cutoff -value representing the minimum distance which can be considered that two points 

form part of the same cell- will be selected. 

5. Create two subarrays of n x n pixels -where n should be specifically adjusted for the image 

being processed-, each one centered at one of the pair points from step 5, containing the 

Euclidean distance transform values. 

6. Look at the pixel values. If there are zeros in the neighborhood pixels, the analyzed pair of 

points are independent. Otherwise, they are part of the same cell.  

Figure 8. Image processing steps. 
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7. Finally, with those points that fulfill the non-zero condition, the middle point will be 

computed. The list of local peaks will be actualized: the middle point will replace the original 

points with which it has been computed. 

8. The actualized list of markers will be introduced to the watershed algorithm for the final 

segmentation.  

At this point, one may wonder about the origin of such 

condition. Imagine two points detected at a certain 

minimum distance. From them, a window of n x n pixels 

centered at each point is created, whose values are no 

other than the Euclidean distance transform. In this 

scenario, two phenomena are possible, as represented 

on Figure 9: two points belonging to the same cell -top 

image- or points from different entities -bottom image-. 

In case they are independent points, background pixels 

-valued with zero, black pixels- will be placed between 

them. Thus, the neighborhood pixels in the Euclidean 

distance transform array will acquire zero values. This condition is not met when points are part of 

the same unit, helping us to differentiate the two possible scenarios. 

The list of corrected local peaks was therefore used for the final cell segmentation. Around the 

array returned by the algorithm -the segmented regions-, a rectangular area meant to be cropped 

was drawn, containing the individual cells. Results were saved on the desired directory as .png 

files. 

5.3.2.2. DATA REMOVAL 

The results were not exempted of problems, reason why filtering the obtained cropped images was 

required. During image acquisition, not all cells were captured in the elongated plane or did not 

remain in place, picturing them in an incorrect plane. Moreover, it was observed that the algorithm 

often failed to separate adjacent cells, which were mistaken as a single entity. The first situation 

was out of our control, this phenomenon occurred independently of the protocol followed. However, 

the second issue may be corrected by particularly addressing them with a subsequent 

segmentation. Whichever was the situation, these images had to be expressly treated and removed 

them -or corrected if possible-. The following criterion was applied: 

- Scenario 1: Cluster of cells 

 

Rather than directly removing them, we opted for giving a second opportunity to those 

images containing cluster of cells as a way of not losing valuable information. The potential 

candidates for a second segmentation were those ones who meet the following 

requirements: number of bytes and pixels -height and width- larger than the most frequent 

values of the cells belonging to a same stack. 

 

Figure 9. Schematic representation of the 

scenarios encountered on the over-

segmentation proposed solution. Dependent 

(top image) and independent points (bottom 

image) 
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The prior segmentation algorithm was applied on them, although the scale difference 

required adapting the window size of the Sauvola threshold and the minimum Euclidean 

distance among the detected points to a lower value. 

 

- Scenario 2:  Bad captured cells + over-segmented cells 

 

It was observed that images containing cells in an incorrect plane were characterized for 

a lower image size -number of bytes-. Therefore, the easiest way to discharge them from 

the dataset was by stablishing a threshold and remove those ones which do not fulfill the 

stablished criteria.  

 

Over-segmented cells were also included in this context. Although optimal results were 

obtained with our suggested code, there were cases where it failed and thus, some cells 

remained over-segmented. Owing the fact that their information did not add any value, 

were not considered for the dataset assembly. The same criteria reviewed in this scenario 

was implemented on them. 

Many were the cases where both reviewed scenarios were combined, implication discussed in 

Section 6. In view of the results and the issues depicted during the process, as a way of ensuring 

the consistency of the output, images were manually inspected looking for unprocessed or 

inadequate images -and thus, discharging them-. Furthermore, as required for the supervised 

approach, images needed to be labeled, selecting only those ones containing illustrative examples 

of the actin phenotypes of interest. 

Finally, highlight that not all individual entities were used for the dataset construction. Working with 

time-lapse fluorescence microscopy, differences between frames may be insignificant. If one used 

all the retrieved information for the data frame construction, the algorithm would be feed with 

“duplicate” images: bias would be introduced in the dataset. Therefore, images obtained from 

successive frames were manually compared, looking for “identical” entities and discharging them.  

By the end of the process, from the total original number of 6529 images, after the selection and 

exclusion stages, we ended up with 2117 individual cells.  

5.3.2.3. IMAGE ENLARGING 

As required by the neural network to work properly, images need to present identical dimensions. 

Therefore, they required to be resized while preserving the original aspect ratio, which represents 

a daunting challenge.  

Two approaches can be implemented to address this problem: zero-padding or interpolation [51]. 

By means of the first technique, images are enlarged by adding borders of zero pixels around them 

until achieving the desired size. On the other hand, interpolation resize the image by adding new 

pixels whose intensity value is based on the surrounding pixels. Zero padding was used in our 

project, mainly due to two reasons: in comparison to scaling, the risk of deformation is null and 

furthermore, computationally speaking, is less expensive. Additionally, extra zero pixels do not 
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entail any kind of information relevant to distinguish between labels, as there is no relation between 

the extra black background and the bulk image 

Taking into account the rule of thumb of Machine Learning, one could consider resizing images to 

256x256 pixels, as most researchers do. Following the advice of Jeremy Howard, a data scientist 

founder of fast.ai [52], we rather decanted for smaller dimensions. Given the dimensionalities of 

the raw cropped images and aiming to minimize the padding area, we considered that an adequate 

ratio would be 150x150 pixels.  

5.4. DATASET CONSTRUCTION 

A well-structured dataset is essential for the correct Deep Learning model development. Its success 

strongly depends on the quality and size of the dataset. Therefore, the resulting processed images 

have to be properly manipulated and modified, structuring the data according to the algorithm 

requirements. This section includes the steps followed for the sake of properly constructing the 

dataset meant to be feed into the DL model, code which can be found in the Dataset 

construction.ipynb Python script. 

5.4.1. DATA SPLIT 

Prior to the train-test data splitting, as we decanted for a supervised learning, manually categorizing 

the segmented data was mandatory. Time-intensive, supervised Machine Learning can be a 

burden for many, requiring hours in front of the computer for the correct categorization of the 

images. Nonetheless, one will be future rewarded by the clarity of data and the specific definition 

of the classes to be obtained. Images were analyzed one by one, attributing them a label according 

to the observed actin arrangement, and stored on different folders according to the observed 

phenotype: 

• Non-dividing: interphase cells -G1, 

S, and G2 phases-. Actin filaments 

are found to be dispersed and 

disorganized, forming an 

entangled network [53]. 

• Dividing: mitotic cells. 

Arrangement and organization of 

the actin filaments, where it can be 

observed the formation of the actin 

contractile ring [53]. 

Class imbalance [54] has been reviewed as one of the most common problems in Machine 

Learning, especially in classification problems. An imbalance occurs when one or more classes, 

the minority groups, present significantly fewer samples as comparison to the other classes, 

resulting in unbalanced proportions. The target classes probabilities are dissimilar and therefore, 

the majority group will be overclassified whereas the minority one, misclassified. In light of the 

above, with the main purpose of overcoming this issue, we ensured that both classes were 

equilibrized.   

      

Figure 10: Examples of the data labeling. On the left, non-

dividing cell. On the right, dividing cell. 
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Figure 11. Schematics of the data before and after the train-test split. 

Figure 11 shows the data splitting results, starting from the data labelling to the train-test split. 

Images were arbitrary distributed according to the traditional 80/20 rule: the first 80% of it into the 

training set and the remaining ones, to the test set.  

5.4.2. DATA AUGMENTATION 

Provided that neural networks are usually feed with thousands of images during the algorithm 

training -expectations that were not meet in our project-, more data was required to maximize the 

model performance. In this context, data augmentation, a set of techniques that artificially increase 

the amount of data, becomes handy. Different are the techniques available to deal with the lack of 

training data, including basic image manipulation, kernel filters, random erasing… [55]. Despite 

their origin, they all pursue the same objective: increase the diversity and number of the training set.  

Prior to the augmentation phase, the data had to be properly manipulated. First of all, from each 

set, X and Y were defined, items corresponding to the input -the images or features- and output -

the labels- variables, respectively. Once defined, the ImageDataGenerator [56] function -part 

of the TensorFlow library- was therefore used, generating bundles of synthetic tensor images in 

seconds. Each image was iterated several times, generating four copies of the original image 

randomly rotated, flipped or brightened. By the end of the process, the starting number of training 

images was incremented to 8465. 

As required by the Keras framework, both the training and test sets were stored in a NumPy format, 

one of the foundational tools in ML [57]. Saving the information as arrays makes the subsequent 

computations involved in the CNN fast to compute, speeding up the process. 

5.5. INITIAL MODEL DEVELOPMENT 

After the data processing and dataset construction, the following steps focused on the DL model 

development. Although the data was ready to be used, there was a crucial aspect to be addressed: 

deciding the model architecture. This section gathers the course followed and the decisions taken 

for the final model structure to be implemented, information collected under the Bayesian 

optimization.ipynb script. 

•

Labelling

Data splitting

2117 

images 

Non-dividing:1105 

images  

Dividing: 1012 

images  

Train:1693 

images  

Test: 424 images  
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5.5.1. NORMALIZATION 

As part of the Machine Learning data preparation -although not always mandatory- the dataset has 

to be translated into a common scale, generally ranging from 0 to 1: in other words, data needs to 

be normalized. Therefore, one can avoid disproportionate weight assessment to some parts of the 

system and, subsequently, incorrect predictions. 

Normalization techniques are wide and diverse, all of them pursuing the same goal: transform data 

features to a similar scale. In our case, we rather decanted for the manual classical approach, 

which can be applied with Equation 5. 

𝑥𝑛𝑜𝑟𝑚 =  
𝑥𝑖  − min (𝑥)

max (𝑥)  − min (𝑥)
 

Equation 5: Min-max normalization formula 

Where x is the image array, xi corresponds to a particular pixel, min(x) and max(x) are the minimum 

and maximum values in the array and xnorm represents the resulting normalized pixel. 

5.5.2. DATA SHUFFLING 

Randomly mixing data up, the so-called data shuffling, was the final step of the dataset 

manipulation procedure. The training set was rearranged with the main of goal of reducing the risk 

of overfitting: if we were about to train the model with a dataset sorted beforehand with a certain 

order, the model may expect to see the same distribution of features in the test set, leading to a 

misclassification of the data.  

Thanks to the function shuffle from the Scikit-learn library, the training set -both the features 

and labels, while keeping them correlated- was randomly shuffled.   

5.5.3. HYPERPARAMETER OPTIMIZATION  

Hyperparameters, contrary to model parameters, have to be manually determined and tuned before 

the model training. Consequently, the performance of the algorithm will be strongly rebounded by 

the decision taken. 

As they cannot be estimated from the data, assessing which are the best values may be 

challenging. In the literature, different approaches have been proposed for hyperparameter 

optimization, list among which one can find the Bayesian optimization, procedure applied in our 

project, as described below. 

5.5.3.1. CNN ARCHITECTURE 

Prior to the model tuning, defining a function for the CNN structure was required, in which the 

arguments to be called are the hyperparameters to optimize. Regarding the current work, the 

dropout rate -referred as drop-, the number of output filters in the convolution -referred as filters- 

and the number of hidden layers -referred as hidden layers- were selected. As it has been reviewed 

in literature, special importance has been given to these hyperparameters, given their great 

influence on the NNs efficiency [58]. 
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Regarding the architecture defined, we rather decanted for the typical structure, consisting of the 

input layer -with dimensions equal to the cell images- followed by several convolutional -3x3 kernel- 

and pooling -2x2 kernel- layers. Subsequently, we added a flatten and a densely-connected NN 

layer. To prevent overfitting, a prior dropout layer was added before the output layer. 

As regards of the activation function in the hidden layers, whether we select one or another will 

control how well the model learns and performs. Rather than opting for the conventional sigmoid 

activation function, we went for the Rectified Linear activation Unit (ReLU) function, as is nowadays 

commonly applied [59]. Furthermore, there was another reason behind such decision: when facing 

a multilabel classification with mutually exclusive data, the sigmoid function often fails in, scenario 

in which the ReLU function works properly. 

When it come to terms of number of epochs, we have to take in mind that a high number can lead 

to overfitting while too few can drive to the opposite scenario, underfitting. For the sake of avoiding 

such hazardous situations, the early stopping method was used to finish the training once the model 

performance stops improving on the validation set. 

5.5.3.2. BAYESIAN OPTIMIZATION 

Regarding the hyperparameter optimization, the Bayesian Optimization (BO) technique, an iterative 

global optimization approach, was implemented: it combines prior information about the unknown 

function to optimize with data from the sample, deducing the optimal value to enhance the model 

performance. This tool is commonly applied in Machine Learning algorithms, thanks to its capacity 

to speed up the model selection in comparison to other optimization algorithms [60].  

As for the current work, hyperparameters were searched with the following settings of ranges: drop 

(0-0.9), filters (2-25) and hidden layers (0-6). Those ranks were chosen according to our own criteria 

and the observations during the student’s programming self-learning, where we noticed that many 

were the toy examples whose optimal working conditions were set on those values. 

As a way of getting a bit more clarity on the 

influence of the evaluated hyperparameters 

on the model performance and final accuracy, 

results were visually displayed as a pairplot, 

as shown in Figure 12. The non-diagonal 

figures -the 2D scatter plots-, show a bivariate 

relationship, whereas the diagonal ones, a 

univariate distribution, depicting the marginal 

arrangement of the data. There was not a 

trend when it comes to the hyperparameter: 

different accuracy could be obtained for the 

same -adjacent- number. That is to say that is 

the hyperparameter values combination which 

rebounds in the model’s performance rather 

than a hyperparameter by itself. 

Figure 12. Hyperparameters pairplot. 
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Among the list of the parameters probed, the ones that maximize the model’s performance were 

chosen, as it can be seen in Table 2. As for the filters and hidden layers hyperparameters, the 

values were rounded, since they require to be integer numbers. 

 

 BEST COMBINATION APPROXIMATED VALUES 

Drop 0.84 0.84 

Filters 6.7 7 

Hidden layers 4.35 4 

Table 2. BO optimal results. First column contains the best combination obtained. Second column contains the 

rounded values introduced on the model. 

5.6. FUNCTIONAL MODEL 

Once the optimal hyperparameters were found, we could proceed to the final model construction. 

The predefined CNN model was first adjusted with the best configuration obtained from the BO. 

After this, the already prepared training data -which was priorly normalized and shuffled, as it was 

introduced in the above section- was introduced to the model so it could learn from all the labelled 

images. In this way, the ConvNet algorithm would be able to extract the most relevant image 

features for a future classification. Subsequently to the model fitting, part of the training data -priorly 

selected via the hold-out method- was used to provide an unbiased evaluation of the model fit on 

the training set [61], estimating its skill and classification ability.  

Finalized the training and validation steps, the model performance was checked with the test 

dataset, so it could predict the labels of each image inserted and compare its results with the actual 

labels. The resulting output together with the metrics that could be derived from such information, 

were therefore used for the final assessment of the model’s predictive ability and generalization 

capability, as discussed in Section 6.  Results are given with probabilities, the probability of 

belonging to a certain class. This means that two scores ranging from 0 to 1 will be predicted, one 

per each class. To ease the work, the function argmax from the NumPy library was implemented 

in the results, operation that finds the class with the largest predicted probability. In this sense, 

instead of being returned with a vector of probabilities, we are retrieved with a number -0 or 1, 

which corresponds to Non-dividing and Dividing, respectively-. 

To conclude, the already functional model was saved for future implementations. The model 

architecture and weights were separated into two different files, whose formats differ according to 

the stored data: .json and .h5 formats, respectively. 

5.7. PYTHON MODULES 

In order to perform all the above-described steps, several Python modules have been used. One 

will notice that some of them were earlier introduced in the previous sections, given their relevance 

on the course of the code, while others, which were overlooked, will also be briefly described down 

below.  
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As for the initial image processing -and commonly used in the different python scripts-, the modules 

cv2, itertools, numpy, math, matplotlib, os, glob, skimage, scipy and PIL 

have been used. Regarding the os and glob modules, they allow the interaction with the operating 

system and thus, they are useful for file management The numpy, matplotlib and PIL packages 

were used to open and manipulate image as arrays. Together with the scipy and skimage 

modules, which contain mathematical and geometrical functions, images were processed. As for 

cv2, an OpenCV -Open Source Computer Vision Library- interface, its versatility allowed us from 

interacting with images to their automatically segmentation.  

Concerning the DL model, the keras and tensorflow modules provided the framework required 

for the CNN construction as well as for the obtention of all the evaluation metrics. The Bayesian 

Optimization could have not been done if it was not for the bayes-opt package which, in addition 

to the global optimization function, contains several properties to make the hyperparameter 

optimization more malleable.  

As regards seaborn and pyplot modules, they allowed a non-complex and instinctive data 

visualization for the results display and image observation. 
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6. RESULTS AND DISCUSSION 

By the end of the above-mentioned methodology, we ended up with a model whose reliability 

needed to be evaluated in detail before giving by approved its final validity and prediction 

capacitance. Hence, Section 6 includes the obtained results and evaluation metrics of the 

performed work, as well as a brief discussion of the outcome, including both the project’s 

implications and limitations. 

6.1. LEARNING CURVE ANALYSIS 

Learning curves are visual tools that underline the learning progress of a ML model, exhibiting the 

progress overtime of a certain learning metric during the training and validation steps. Thus, they 

represent a powerful instrument for problem depiction and the optimization of the prediction 

performance. As it was previously introduced, the most popular evaluation metrics -accuracy and 

loss- were selected for the model evaluation. 

6.1.1. OPTIMIZATION LEARNING CURVE 

Accuracy, described as the number of correct predictions out of all the data points -usually in 

percentage-, has been, by further, the preferred metric for model validation due to its easy-to-

understand nature and facile interpretation. Epoch over epoch, both training and validation 

accuracy values should increase, indicating that the model can capture the data complexity. By the 

end of the process, the accuracy value is expected to be as high as possible, close to 1 -scenario 

in which the model is able to correctly predict all the values-. 

The Optimization LC of our model can be observed in Figure 

13, highlighting the monitored accuracy during the training 

and validation phases. At a first glance, it can be perceived 

that there is not a no perfect fitting. Partially true, the training 

and validation accuracy are separated by a gap, phenomena 

by which one might hypothesize that we are facing a case of 

overfitting, implying that the model will perform poorly when 

predicting unseen data. Nonetheless, if we take a closer to 

the accuracy scale, it is noticeable that the existing gap is at 

the order of ~0.01. Hence, our speculations were neglected: 

it was concluded that the model successfully captured the 

data complexity, although further analysis are necessary prior 

to taking a final resolution. 

6.1.2. PERFORMANCE LEARNING CURVE 

Together with accuracy, loss is the second most well-known metric in Machine Learning. Unlike 

the above-described metric, which was given in percentage, loss is a real value, the summation of 

the incorrectly number of predictions in the model. The retrieved information is slightly different in 

comparison to the previous metric: depict how poorly (or well) the model fits the training and unseen 

data. Contrary to accuracy, its interpretation is not straightforward: according to the problem being 

Figure 13. Optimization Learning 

Curve. 
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faced, the loss tolerance might vary. Nonetheless, it is preferable that the loss value is minimized 

over the training experience. 

In an ideal situation where the model generalization ability is high, the training and validation loss 

values are reduced until reaching a stability point with a minimum gap. Nevertheless, constructing 

a model which perfectly predicts new incoming data is in practice rare to be achieved. The model 

loss is usually well-nigh lower on the training set than the validation set, situation where is expected 

to be observed the generalization gap -space between the different loss LC-. 

As it can be observed in Figure 15, further from the 

desired situation, the retrieved loss values differ: the good 

fitting scenario is out of our reach. Despite these 

discouraging results, situation in which one would be 

prone to give up, there is still light at the end of the tunnel. 

The validation loss by itself cannot be generalized as the 

overall model’s performance, given that, as it was recently 

stated, different interpretations can be given to results 

according to the point of view adopted. Hence, the loss 

metric should be validated together with another 

complementary metric, such as the confusion matrix. 

Furthermore, it has to be said that the observed spikes do 

not seem to be an insight of over-fitting: in comparison to 

the scale graph, they are not terribly large. 

6.2. CONFUSION MATRIX ANALYSIS 

The above-described metrics by themselves do not provide enough information for the final verdict 

of the constructed model. Commonly misbelieved, accuracy and loss are thought to be sufficient 

for the model robustness evaluation, despite they can give some clues of the model behavior, these 

metrics by themselves do not provide enough information for the algorithm assessment. Contrary, 

many are the variables that came into play in the model validation and thus, a deeper analysis of 

the resulting output is necessary. 

Confusion matrices, a special type of contingency tables, 

result handily in this context: the predicted category labels 

versus the true labels are presented in a visual manner. 

As a way of expanding the algorithm performance 

analysis, the confusion matrix of the tested set was 

obtained, as shown in Figure 15. From the total 424 

samples tested, only 6 out of the total number of images - 

where incorrectly predicted: Dividing samples were 

mistaken as Non-dividing. The algorithm incorrectly 

identified them and hence, failed to attribute the correct 

label. Finally, the evaluation metrics -accuracy, precision, 

recall and F1-score-, derived from the confusion matrix, 

are presented in Table 3. 

Figure 14. Performance Learning Curve. 

 

Figure 15. Confusion matrix of the test 

set. 
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As can be seen in the attached table, the resulting evaluation 

metrics shown that the model is close to the desired scenario: 

a perfect classification algorithm. Far from dictating its 

reliability in future case scenarios, the model is not yet 

exempted of problems. Obtaining such perfect results could 

be exclusively of the dataset used -in other words, the model 

works only well with the data frame used but not with new 

data- and thus, they cannot be extrapolated to general cases. Aiming to give the ultimate verdict, it 

was necessary to validate the DL model in a hypothetic genuine situation with unseen samples 

before deploying it. 

6.3. FINAL TESTING 

The final aim of the developed algorithm is to predict the phenotype of the cells. Aiming to assess 

its generalization capacity, a set of images previously set apart from the training and test sets were 

introduced into the model. For the final validation, the model predictions were contrasted with the 

actual classes of the images, previously labeled by hand. 

The confusion matrix obtained, as can be observed in 

Figure 16, demonstrates that the model’s prediction 

capacity is not thoroughly precise, especially when it 

comes to identify the positive results -Dividing label-: 27 

out of 261 samples were misclassified. As per the 

evaluation metrics derived from it, attached in Table 4, 

although the overall output has worsened, the sensitivity 

parametric has been the main rebounded -as it should be 

considering the model’s difficulty to label Dividing 

entities-.  

Given the nature of ML algorithms -referred as black 

boxes since one is unable to fully understand their 

complexity and how they work together with the 

interpretation of the results-, identifying the root of the 

problems that one may encounter is a tough task to 

address: their origins are immensely diverse. 

In light of the retrieved information, this displeasing situation might be treated as a potential case 

of imperfect data [62]: the constructed dataset does not entirely capture the real scenario in which 

the algorithm is mean to be used. Enough number of perfect annotations might lack and hence, the 

model fails to label unseen data. First and foremost, we are concerned with the quality and selection 

of the retrieved data: focusing on carefully choosing representative images, we might 

unintentionally pick images whose features are similar among them and thus, shielding the variety 

of contractile ring. Furthermore, data could be biased in favor of a specific actin ring shape, 

underrepresenting the rest of architectures and failing in the classification task. 

Evaluation metric Result 

Accuracy 0.897 

Precision 0.940 

Sensitivity 0.847 

F1-Score 0.897 
Table 4. Final testing results: evaluation 

metrics. 

 

 

Figure 16. Final testing results: 

confusion matrix. 

Evaluation metric Result 

Accuracy 0.985 

Precision 1.000 

Sensitivity 0.968 

F1-Score 0.983 

Table 3. Model evaluation metrics 
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This section just presents a toy example putting in practice the developed algorithm, but it proves 

the potential of Deep Learning in the current image classification problem. Given the uncertainty of 

the constructed algorithm, although the overall outcome could be considered satisfactory, the 

resulting classification model cannot be taken as the absolute truth but as a complementary tool 

for investigators. 

6.4. IMPLICATIONS 

Regardless of the high quality of the captured data in terms of image resolution, and the great 

number of images taken, the following processing and selection significantly reduced the dataset 

and hence, decreasing the variability of images. The data variation is also restricted by the 

underlined problems during image acquisition, such as cells captured in an incorrect plane, clusters 

of cells… and thus loosing valuable information and underrepresenting the diversity of cell 

phenotypes. The simple but efficient segmentation algorithm did occasionally overlook some of the 

cells present on the picture, aspect which also rebounded in the total number of cropped cells. 

Nonetheless, we ensured selecting a representative dataset, where the phenotypes of interest were 

perfectly identifiable.  

The high scores resulting from the training phase evidence the successful learning stage, where 

the model has been capable of extracting those features considered relevant for the classification. 

However, as the confusion matrix results point out that the model might be “so perfect” that fails to 

generalize. With the additional information extracted from the final testing stage, the constructed 

model was far from being trustworthy. For the sake of obtaining more reliable predictions and 

improving the model performance, more images should be included in the dataset, ensuring to 

cover the wide variety of cell phenotypes of the classes to be predicted. Even more, it would be 

interesting to reconstruct it and accurately select those images relevant for the model learning and 

discharge the ones not relivable enough for a robust data frame. To do so, it would also be 

interesting to partner with an expert on the field to supervise the work and ensure the consistency 

of the dataset. 

Given the reasons described, the constructed algorithm needs to be considered as a potential tool 

with still room for improvement rather than taking for granted the results obtained.  

6.5. LIMITATIONS 

Project limitations are described as constraints and handicaps recognized during or even previously 

to its development, which cannot be covered since they are beyond our possibilities. Uncapable to 

confront these challenges, some of the original goals were impartially solved -especially when it 

comes to the dataset construction goal-. Owing the fact that the solution is dependent on data 

processing and model construction, it would be expected that most of the limitations arise from the 

initial data acquisition and following processing.  

The introduced basic but efficient segmentation methodology, although originally thought to be 

automatic, ended up being a semi-manual approach. Images required to be treated as individual 

entities even though belonging to the same stack, requiring finding by hand the optimal code 

parameters that would achieve the best segmentation while minimizing the loss of information. If 

one was luckily enough, those parameters might be found in the first or subsequent trials, although 
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this scenario rarely occurred. Continuing in the same line, image acquisition was itself a challenge. 

As mentioned beforehand, the project participants mutually agreed when it comes to the image 

environmental parameters, seeking for the adequate conditions that would enable to fulfill their 

personal goals. Nonetheless, stochasticity was against our favor. Cells not properly fixed, in an 

inadequate plane or placed at the edge of the image, together with clusters of cells, were common 

issues detected in the captured images, rebounded in the total number of segmented cells and 

thus, reducing the dataset size. 

Finally, not originally contemplated to be a restrictive factor for the project execution, being 

technology-limited constituted a stone on the road. When handling with large amount of data and 

facing Big Data analytics, a multicore processor CPU may be preferred due to its high processing 

speed, tangible out of our hands. As for the current project, using the technology available, the 

running time could range from minutes to hours depending on the code complexity, enlarging the 

software development and testing period above the initial planned time.  
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7. EXECUTION SCHEDULE 

For the correct development of any kind of project, previously defining the tasks and milestones 

meant to be achieved for the accomplishment of the initial objectives in time are mandatory. The 

following section is devoted to cover this aspect, as a way of keeping track and structuring the 

different project phases. 

7.1. WORK BREAKDOWN STRUCTURE 

A Work Breakdown Structure (WBS) is a technique that ‘deconstructs’ a project in a hierarchical 

way. The project is broken down into smaller and manageable tasks -or work packages-, helping 

to determine the essential elements of the global project [63]. In this way, the project workflow can 

be managed appropriately, enabling a good organization and progress.  

In our case, the final degree project WBS was constructed with three levels of detail: 

- Top level: the overall scope of the project, which, in this case, is the development of an 

image-based Deep Learning model for Schizosaccharomyces pombe cell cycle phase 

classification. 

- Second level: the main phases of the project, starting from a more a general view to a 

close-up focus on the project specifications. 

- Final level: the work packages, obtained by fractioning the second layer blocks. 

 

Figure 16: Work Breakdown Structure of the end-of-degree project. 
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 7.1.1. WORK BREAKDOWN STRUCTURE DICTIONARY 

A WBS dictionary includes a brief definition of all the project tasks and subtasks, as is presented 

below: 

1. BIOMEDICAL TRAINING: Understanding the framework of the study with the aim of tackling the 

project’s problem and think out the best approach to addressed it.  

1.1. Basic concepts: Introduction on the subject and familiarization with the biomedical 

research field and basic concepts. 

1.2. Supervised training: Practical sessions under the mentoring of a formal biomedical 

researcher. The student will learn to reproduce the experimental protocol by themselves. 

2. PROJECT PREPARATION: Defining the basis of the project, previously reviewing all the basic 

elements and relevant aspects for the project execution.  

2.1. Objectives definition: Description of the objectives to be achieved at the end of the 

project 

2.2. Background and market analysis: Analysis of the project background, and the trends 

and environment of the market in which it is enrolled. 

2.3. Literature review: Reading articles on both image processing techniques and Machine 

Learning models to gather information. 

2.4. Programming practice: Putting in practice the reviewed concepts. Practice with Python 

and toy datasets, learning the concepts required for the development of our own data frame 

-including the prior image processing- and DL model. 

3. DATA ACQUISITION: Observation of the pombe cells and image retrieving with a confocal 

microscope.    

3.1. Cell mounting testing: Examination and testing of the proposed data acquisition 

methodologies. 

3.2. Cell mounting selection: Final assessment of the optimal cell mounting method. 

Reproduction of the approach for the following data acquisition.  

4. DATA PROCESSING: Analysis and processing of the digitalized images as well as properly 

manipulating them for a proper segmentation.  

4.1. Image processing software development: Data examination and redaction of the image 

processing code -cell segmentation and filtering-. Testing and correction of the proposed 

code.  

4.2. Dataset construction: Assembly of the image data frame meant to be feed into the 

model. Manual labelling and train-test split. 
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5. DL BUILDING: Construction of the cycle phase classification model for Schizosaccharomyces 

pombe cells. 

5.1. Model optimization: Initial development of the DL algorithm structure. Implementation 

of Bayesian Optimization for the hyperparameter tuning.  

5.2. Model training and testing: Learning phase with the training and hold-out validation 

datasets. Testing of the model with the test dataset. 

5.3. Model evaluation: Obtention of the evaluation metrics and assessment of the model 

performance. Exemplification on unseen data for the final model’s verdict. Results 

interpretation and drawing of conclusions.  

6. PROJECT WRITING: Project wrap up. Redaction of the project’ report and development of a 

brief presentation. 

 6.1. Written end-of-degree report: Writing of the final report of the project 

 6.2. Presentation: Realization of the project presentation 

7.2. GANNT DIAGRAM 

Once we had defined all the tasks and sub-tasks for the accomplishment of the initial goals, a 

timetable must be created as a way of assessing the deadline for each task and keeping track of 

the project’s progress.  

For this reason, a GANTT diagram or chart, a visual planning tool of displaying the timing of tasks 

[64], was created. As seen in Figure 17, the scale time is in weeks. Each task is represented with 

a bar: its position and length summarize the duration of such activity, including booth the starting 

and ending days.  

Figure 17. GANTT diagram. 

In the GANTT chart, the extent per weeks of the different sub-tasks is embodied. The dark orange 

palette represents the activities performed by the student, whereas the light ones, the tasks where 

a biomedical researcher took their role for the carry-on of the experimental part.  
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Data was collected for 4 days -2-3 hours/day- spread over 12 weeks. Except for the first day, which 

was only an observation trial done with the fluorescence microscope owned by the Biomedicine 

Department, the reaming days were previously appointed with the Advanced Optical Department. 

Thus, the images acquired on the 28th of January were not included on the dataset -mainly to 

reasons of low image quality-. Over those weeks, both the biomedical researcher and the student 

worked together: while the first one was in charge of the following on of the experimental protocol, 

ensuring that the cells grew in the adequate conditions, the student performed the cell mounting 

and supervised the data acquisition.  
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8. TECHNICAL VIABILITY 

A detailed analysis of the project technical feasibility is presented in this section. Both the internal 

and external aspects that might rebound in our work are reviewed, enabling us to determine the 

progress of the project together with its final success and detail those aspects which could be 

improved. 

8.1. TECHNICAL CONSIDERATIONS 

The final degree project, as it was mentioned in previous sections, was conducted at the 

Department of Biomedicine with place at the Medicine and Health Science Faculty of the University 

of Barcelona. Regarding the technological instruments for the image acquisition, we had to shift to 

the Advanced Optical Microscopy Department, ubicated on the same building. Except for the 

confocal microscope, all the necessary material, facilities and equipment for the carry-on of the 

experimental part were provided by the biomedical research team. In light of the above, the whole 

project was technically feasible thanks to the facilitations provided by the Biomedicine Department.  

8.1.1. SWOT ANALYSIS 

The SWOT analysis, one of the most well-known project management tools, enables to identify, 

from a positive and negative point of view, the internal -Strengths and Weaknesses- and external -

Opportunities and Threads- factors affecting the project. Bearing this in mind, one can obtain a 

general overview of the solution but also identify those details that make it stand out together with 

its weak points. 

 POSITIVE NEGATIVE 

IN
T

E
R

N
A

L
 

STRENGTHS 
Semi-automatic 
segmentation  
Previous Python 
experience  
High-tech microscopy 
 

WEAKNESSES 
Time-consuming dataset 
construction  
No previous experience in 
DL modeling 
Only appointed days for 
image acquisition 
Segmentation problems 

E
X

T
E

R
N

A
L

 

OPPORTUNITIES 
DL models not yet 
implemented in this area of 
work  
No similar studies have 
been reported 
 

THREATS 
No similar studies to 
compare results with 
Database expansion 
depends on the number of 
similar future experiments 
 

 Figure 18. SWOT analysis. 
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• STRENGTHS 

When it comes to the strong points of the project, both the student previous experience in Python 

and the high-tech microscope used for the image acquisition equally favor the programming of the 

semi-automatic segmentation code.   

The development of a segmentation algorithm is not a straightforward task. Starting from a robust 

base, which is not more than our previous knowledge on programming and how to tackle 

segmentation problems, can help to address this issue. With the addition of the high-quality images, 

-which could not be obtained if it was not for the use of the high-tech microscope-, constructing a 

segmentation algorithm is now less challenging.  

• WEAKNESSES 

Prior to the project development, the student had never constructed a Deep Learning algorithm. 

Additionally, when it comes to terms of the project core elements, time constraints arose. On the 

one hand, data could only be acquired on prior pointed days. On the other hand, processing it and 

-partially- correcting the segmentation problems for the following dataset construction required 

hours in front of the computer to an extent of weeks for its final development. 

• OPPORTUNITIES 

The untapped potential of DL models in this area of work is suited to tackle the described project’s 

problem. Automatically labelling individual cells helps researchers to save time, critical parameter 

in many investigation studies. 

Furthermore, given that not similar studies have been identified, we were grated with the 

opportunity of becoming one of the firsts to open the door to further implementations of DL 

algorithms in similar experimental approaches and unravel its power. 

• THREATS  

Because not similar studies have been reported, the model outputs could not be compared and 

thus, results could not be compared for a more robust validation. 

Finally, as described in previous sections, CNNs require a large image dataset, aspect not fulfill on 

our project due to time constraints and the image problems described in Section 6. As a way of 

increasing the model’s accuracy, enlarging the image dataset is desirable, aspect dependent on 

future similar experiments carried out, either by the biomedical research group or by external 

entities. 
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9. ECONOMIC VIABILITY 

Evaluating the economic impact that result from the development of a project is a crucial aspect 

which has to be addressed for its correct managing as well for delimiting the current work to an 

extension that we can economically shoulder. An estimation of the total cost and budget required 

is presented in the above section, considering both the direct and indirect expenses.  

9.1. MATERIAL RESOURCES 

9.1.1. HARDWARE 

All the materials used for the experimental part were not specifically bought for the project as the 

biomedical group already had them in stock. In light of the above, their cost was neglected in the 

economical assessment. 

The data collected for the project was acquired with the confocal microscope Carl Zeiss LSM 880, 

which belongs to the Advanced Optical Microscopy Department from the Medicine and Health 

Science Faculty of the University of Barcelona. Depending on an external entity for the cell 

observation and data acquisition, costs were derived for the microscopy service costs, presenting 

an economical value of 16.04€/hour*.  

A computer was needed for the carry-on of the project. For practical reasons, a laptop was 

preferred, given that the project was not carried out in a fixed location.  

9.1.2. SOFTWARE 

The developed program -including the data processing and manipulation as well as the model 

building, training, testing and final evaluation- was accomplished with Python, an open-source 

software. Images were recorded with the Zeiss ZEN software, already installed in the computer 

attached to the confocal microscope Zeiss LSM 880. The time-lapse images stored in a .czi format 

were converted and saved as .png  files with the usage of the free software Fiji. Last but not least, 

Microsoft Office® 365 services were used for the writing of the final report and project presentation.  

9.2. HUMAN RESOURCES 

When it comes to the human resources, two main participants have to be considered: the 

biomedical engineer student and the biomedical researcher. Additionally, we could include a third 

one: the microscope technician. Owing the fact that we did not have the required knowledge for the 

microscope manipulation, paying for the services of a microcopy operator was mandatory, resulting 

in an additional cost for the development of the project. As a way of estimating the human 

resources, and according to the previously detailed tasks, it was considered the time inverted by 

each participant in the project and the approximated salary per hour for each person.  

The engineer student invested 21 hours weekly -5 hours/day, three days a week working in the 

Biomedicine Department and 3 hours/day, two days a week tele-working as a way of overcoming 

the organizational problems introduced in Section 5-, resulting in a total of 378 hours. As for the 
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other reviewed project contributors, an approximated number of 30** hours were invested by the 

biomedical researcher and 3,5 for the services of the microscope operator. 

Weighting the work carried out by the undergraduate biomedical engineer, the salary was set at 

10€ per hour. As per the biomedical researcher, according to the average wage for these 

professionals in Spain [65], the price per hour was settle at 22€. Finally, the microscope operator 

per hour worked was of 36.27€/hour. 

9.3. TOTAL COST 

All the costs previously described are sum up in Table 5, estimating the overall budget of the 

project. 

 UNIT/HOUR PRICE (€) UNIT/HOURS TOTAL (€) 

MATERIAL RESOURCES: HARDWARE 

Lenovo V15-IIL 649 1 649 

Carl Zeiss LSM 880 

Airyscan  
16,04* 11 176,44 

SUBTOTAL   825,44 

MATERIAL RESOURCES: SOFTWARE 

Python software - 1 - 

Fiji software - 1 - 

Zeiss Zen  - 1 - 

Microsoft Office® 365*** - 1 - 
SUBTOTAL   -  

HUMAN RESOURCES 

Biomedical engineering 

student 
10 378 3.780 

Biomedicine researcher 22 [65] 30** 660 

Microscopy advanced 

technician 
36,27* 3 108,81 

SUBTOTAL    4.548,81 

TOTAL   5.374,25 

Table 5. Project cost table. 

*Owing the fact that the microscope was financed by the European Regional Development Fund (ERDF), a discount 

of the 70% on the actual price (with IVA) was applied, valid for the forthcoming two years.  Otherwise, the costs of the 

microscopy related services would be up to 44,20€ and 99,92€. 

**The hours devoted to the undergraduate training were not borne in mind. Similar to any new employee on their first 

days of work, guidance is required by a former worker, thought to be part of the worker functions and not an extra 

service. Thus, only the hours where the researcher took the role of the student and performed the experimental part 

were taken into account.  

***Free license as provided by the University of Barcelona 
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10. CONCLUSION AND FUTURE LINES 

Underlying the cancer roots represents one of the major issues to tackle in the medical field. Aiming 

to eradicate and/or palliate this disease, studies have to be conducted to underline and understand 

the basic aspects behind cancer generation and progression. For this reason, biomedical 

researchers move their focus on the cellular and molecular level, looking for those biological 

triggers and genetics changes involved in tumor formation. The subcellular organization of cells 

and its spatial rearrangement throughout the cell cycle -either in normal conditions or stress 

situations- have been described as relevant precursors of malignant growth. Along with genotypical 

information retrieved from biomedical studies conducted with different mutated cells, the 

observation of cells under microscope and analysis of its actin cytoskeleton behavior during the 

cell cycle can help to understand how the cell response and readapts when facing stressful 

situations and thus, find out which are the genes’ role and its repercussion in cancer formation. 

The hazardous and time-consuming manual cell identification evidence the need of developing 

automatic classification methods for the discrimination of images according to a certain criterion 

which, in this present study, are no more than pombe cells in relation to their actin cytoskeleton 

during the cell cycle. In this context, DL techniques -whose popularity has been exponentially 

increasing in the biomedical field over the last years- become handy. Therefore, this project aims 

to construct a Deep Learning algorithm for the problem reviewed and prove its potential benefits 

as compared to the classic manual classification in this area of study. 

In light of the obtained results, the model’s successful learning of the introduced data has been 

proved and, what we considered more interesting, what seems to be a nearly perfect classifier 

since great were the results obtained after the testing phase, stage in which just a few samples 

were misclassified. Despite that, the consistency of the model ability differs from the reviewed 

scenario: issues regarding its classification robustness arose when feeding it with new data. The 

evaluation metrics worsened when testing the model with a toy dataset composed by images set 

apart from the original dataset. After reviewing the different evaluation parameters, it was 

concluded that the dataset was imperfect, failing to capture in its total extension the wide variety of 

actin structure phenotypes. Therefore, the constructed model, rather than being taken as the 

absolute truth, has to be seen as a complementary tool for investigators.  

The uncertainty of the model’s reliability shows that there is still room for improvement, especially 

when it comes to address the reviewed data frame problem. The dataset construction, considered 

to be one of the most critical and challenging parts in any Machine Learning project, could be 

improved and rectified by acquiring new and high-quality data and, more important, focusing on the 

avoidance of a possible case of data bias. To address this issue, one has to ensure the diverse 

representation in their data to be feed into the neural network, resulting in large and balanced 

dataset capable of capturing the diversity of real-world scenarios -the variability of actin phenotypes 

during the cell cycle-. Subsequently, the model must be trained, validated and tested with the 

constructed dataset, evaluating its performance and ensuring its generalization capability with a 

great number of unseen data before its deployment in real life. 
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Although not contemplated as the main project’s objective, the retrieval of new data could be 

improved by the implementation of more complex but efficient approaches such as ANNs, 

algorithms which, after being feed with images and their respective target segmentation masks and 

following training, can automatically segment images. To do so, high-speed processors are 

indicated, given their great processing capacitance for this type of tasks. Decanting for this kind of 

technological equipment would also be beneficial for data handling and ML tasks, as some were 

the computational limitations observed when conducting those assignments with a uniprocessor 

system.  
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APPENDIX 

1. Experimental design  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cell lines 

Day 1 

 

Seed in 5 ml of Complete Minimal Media (MM). 

Incubate O/N at 30 ºC. 

Day 2 Measure ODs and dilute cell lines at an OD 0.35 

in 5 ml of Complete Minimal Media (MM). 

Incubate 4-5h at 30 ºC. 

 

Measure ODs and dilute cell cultures at an OD 

0.025 in 5 ml of Complete Minimal Media (MM). 

Incubate O/N at 30 ºC.  

Day 3 Measure ODs: 

- If the cell cultures are at an OD 0.5 start the 

treatment with LatB 

- If the cell cultures are at an OD 0.8, dilute at an 

OD 0.4 and let them grow 2-3 more hours. 

Divide the cell cultures in 4 Eppendorf of 2 ml (1 ml per 

tub) and add the corresponding concentration of LatB. 

1 ml of culture 

at t = 0 

1 ml of culture 

with 2.5 µM of 

LatB 

1 ml of culture 

with 4 µM of 

LatB 

1 ml of culture 

with 6 µM of 

LatB 

Take 100-200 µl of the 

culture and centrifugate 

at 1.5 rpm per 2 minutes. 

Remove 95 or 195 µl of 

the cell supernatant. 

Resuspend the pellet and 

start mounting. 

Incubate at 30ºC for 2 hours. Make samples of 100 or 200 every 

30 minutes. Follow the same procedure of the control cells. 
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2. Code 

Image processing.ipynb 

This notebook is meant to prepare raw images for the subsequent analysis: data will be 

manipulated and processed, preparing it for a following segmentation. The raw cropped cells will 

be filtered for the dataset construction. 

import cv2 

import itertools 

import numpy as np 

import math 

import matplotlib.pyplot as plt 

import matplotlib 

import matplotlib.patches as mpatches 

import os 

import glob 

import skimage.filters as filters 

import skimage.morphology as morph 

from skimage.feature import peak_local_max 

from scipy import ndimage 

from scipy.spatial import distance 

from skimage.measure import label, regionprops 

from PIL import Image 

from skimage.segmentation import watershed 

%matplotlib qt 

 

1. Path configuration 

1. path: directory with raw images to be processed. 
2. path2: directory where raw individual cell images will be saved. 
3. path3: directory where processed individual cell images will be saved. 

path = r"C:\Users\mirei\OneDrive\Escritorio\4 Eng biomedica\TFG\DATA 

TO ANALYZE\Raw" 

 

path2 = r"C:\Users\mirei\OneDrive\Escritorio\4 Eng biomedica\TFG\DATA 

TO ANALYZE\Crop" 

 

path3 = r"C:\Users\mirei\OneDrive\Escritorio\4 Eng biomedica\TFG\DATA 

TO ANALYZE\Corrected" 

2. Image manipulation and segmentation 

Raw images need to be segmented into individual cells. For each stack, parameters may change 
as regards to the current image requirements. 

#%matplotlib qt 

 

for file in glob.glob(path+"/*.png"):  

    im = plt.imread(file) 
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    idx = file.rfind("\\")  

    filename = file[idx+1:-4]  

 

    # Green channel selection 

    img = im[:, :, 1]  

 

    # Image binarization 

    th = filters.threshold_sauvola(img, window_size = 17, k = 0.5) 

    imb = img > th 

 

    # Correct images artifacts 

    imb2 = morph.remove_small_objects(imb) 

    imb3 = ndimage.binary_dilation(imb2, structure=np.ones((3,3))) 

    imb4 = morph.remove_small_holes(imb3) 

 

    # Pass image to uint8 format 

    imb4 = np.array(imb4, dtype=np.uint8) 

 

    # Automatic cell detection 

    retval, labels, stats, centroids = 

cv2.connectedComponentsWithStats(imb4) 

 

    # Background is detected as a label. Therefore, it has to be 

ignored 

    centroids = np.delete(centroids,0,0)  

 

    # Swap x and y 

    centroids=centroids[:,::-1]   

 

    min_dt = [] # Dictionary where the Euclidean distances will be 

saved    

 

    # Compute all possible combinations between the detected centroids 

    # and calculate the Euclidean distance  

    for subset in itertools.combinations(centroids, 2): 

        min_dt.append(distance.euclidean(subset[0], subset[1])) 

 

    # Width and minimum distance may need to be adjusted for the 

specific case 

    width = 7 # Number of neighborhood points 

 

    # Prepare the markers for the watershed algorithm 

    D = ndimage.distance_transform_edt(imb4) 

    localMax = peak_local_max(D, indices = False, min_distance = 15, 

labels = imb4) 

    localMax1 = peak_local_max(D,  min_distance = 15, labels = imb4) 

     

    # Over-segmentation corrective code 

    for subset in itertools.combinations(localMax1, 2): # all the 

combinations possible of pair of points    

        if (distance.euclidean(subset[0], subset[1]) < 60):  

            idx_left_1  = max(subset[0][1] - width, 0) 

            idx_right_1 = min(subset[0][1] + width + 1, im.shape[0] - 

1)   

            if idx_right_1 == im.shape[0] - 1:  # If the last index in 

the x axis is selected 

                idx_right_1 = None 
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            idx_bot_1   = max(subset[0][0] - width, 0)  

            idx_top_1   = min(subset[0][0] + width + 1, im.shape[0] - 

1) 

            if idx_top_1 == im.shape[0] - 1:    # If the last index in 

the y axis is selected 

                idx_top_1 = None 

            idx_left_2  = max(subset[1][1] - width, 0) 

            idx_right_2 = min(subset[1][1] + width + 1, im.shape[0] - 

1) 

            if idx_right_2 == im.shape[0] - 1:  # If the last index in 

the x axis is selected 

                idx_right_2 = None 

            idx_bot_2   = max(subset[1][0] - width, 0)  

            idx_top_2   = min(subset[1][0] + width + 1, im.shape[0] - 

1) 

            if idx_top_2 == im.shape[0] - 1:    # If the last index in 

the y axis is sele1cted 

                idx_top_2 = None 

             

            # Create the neighborhood area, one for each of the pair 

of points 

            view1 = D[idx_bot_1:idx_top_1, idx_left_1:idx_right_1] 

            view2 = D[idx_bot_2:idx_top_2, idx_left_2:idx_right_2]    

 

            if 0 not in view1 or 0 not in view2: 

                localMax[subset[0][0]][subset[0][1]] = False # Remove 

the points 

                localMax[subset[1][0]][subset[1][1]] = False 

                new_pt = (subset[0]+subset[1])/2 # Compute the middle 

point 

                new_pt = [math.trunc(x) for x in new_pt] 

                localMax[new_pt[0]][new_pt[1]] = True  # Add the new 

point as a marker 

 

    markers = ndimage.label(localMax, structure=np.ones((3, 3)))[0] 

    labels = watershed(-D, markers, mask=imb4) 

 

    #fig, ax = plt.subplots(figsize=(10, 6)) # In case of wanting to 

observe the images, uncomment the lines related with matplotlib  

    #ax.imshow(im) 

    crop = [] 

 

    for region in regionprops(labels): 

        # Take regions with large enough areas 

        if region.area >= 100: 

            # Draw a rectangle around the segmented cells 

            minr, minc, maxr, maxc = region.bbox 

            crop.append((minr, minc, maxr, maxc))  

            #rect = mpatches.Rectangle((minc, minr), maxc - minc, maxr 

- minr, 

                                      #fill=False, edgecolor='red', 

linewidth=2) 

            #ax.add_patch(rect) 

 

 

    #ax.set_axis_off() 

    #plt.tight_layout() 
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    # Save the segmented cells as individual images 

    for num, crop in enumerate(crop): 

        im_crop = im[crop[0]:crop[2],crop[1]:crop[3]]*255 

        cv2.imwrite(path2+ "/" + filename+str(num)+".png",im_crop) 

 

3. Image filtering 

Even though image acquisition is performed meticulously, some situations were out of our hands: 
cells acquired in an incorrect plane. Furthermore, it was observed that the algorithm failed to 
segment clusters of cells, loosing valuable information. 

Those problems could be partially solved applying the following criteria: 

1. Perform a subsequent segmentation on those images whose dimensionalities are larger 
than the mean size of the images -cluster of cells-. 

2. Set a threshold to remove images whose size is lower than a certain value and whose 
overall intensity does is below a certain threshold -remove cells out of plane + over-
segmented cells-. 

# Dictionaries to save the image number of bytes and the cells to be 

removed 

bts = [] 

remove_cells = [] 

 

for file in glob.glob(path2+"/*.png"):  

    im = plt.imread(file) 

     

    # Append the image shape and bytes in the corresponding images 

    bts.append(os.path.getsize(file)) 

 

bts.sort() 

bts_max = bts[-1] 

 

for file in glob.glob(path2+"/*.png"):  

    im = plt.imread(file) 

    idx = file.rfind("\\")  

    filename = file[idx+1:-4]  

     

    # Green channel selection 

    img = im[:,:,1]  

     

 

    # Image binarization 

    th = filters.threshold_sauvola(img, window_size = 29, k = 0.75) 

    imb = img > th 

     

    # Select those images big enough to be considered as clusters and 

present a size bigger than a certain threshold 

    if ((im.shape[0] >= (40)) or (im.shape[1] >= (40))) and 

(os.path.getsize(file) >= (bts_max - 5000)): 

        remove_cells.append(file) 

         



VI 
 

        # Image processing 

        imb2 = morph.remove_small_objects(imb) 

        imb3 = ndimage.binary_dilation(imb2, structure=np.ones((3,3))) 

        imb4 = morph.remove_small_holes(imb3) 

         

        # Pass image to uint8  format 

        imb4 = np.array(imb4, dtype=np.uint8) 

                 

        # Adjust width and min_distance according to the case 

        width = 10 

         

        # Markers for the watershed algorithm 

        D = ndimage.distance_transform_edt(imb3) 

        localMax = peak_local_max(D, indices = False, min_distance = 

20, labels = imb4) 

        localMax1 = peak_local_max(D,  min_distance = 20, labels = 

imb4) 

         

         # Cell clustering corrective code 

        for subset in itertools.combinations(localMax1, 2): 

            if distance.euclidean(subset[0], subset[1]) < 80: 

                idx_left_1  = max(subset[0][1] - width, 0) 

                idx_right_1 = min(subset[0][1] + width + 1, 

im.shape[0] - 1)   

                if idx_right_1 == im.shape[0] - 1:  # If the last 

index in the x axis is selected 

                    idx_right_1 = None 

                idx_bot_1  = max(subset[0][0] - width, 0)  

                idx_top_1   = min(subset[0][0] + width + 1, 

im.shape[0] - 1) 

                if idx_top_1 == im.shape[0] - 1:    # If the last 

index in the y axis is selected 

                    idx_top_1 = None 

                idx_left_2  = max(subset[1][1] - width, 0) 

                idx_right_2 = min(subset[1][1] + width + 1, 

im.shape[0] - 1) 

                if idx_right_2 == im.shape[0] - 1:  # If the last 

index in the x axis is selected 

                    idx_right_2 = None 

                idx_bot_2   = max(subset[1][0] - width, 0)  

                idx_top_2   = min(subset[1][0] + width + 1, 

im.shape[0] - 1) 

                if idx_top_2 == im.shape[0] - 1:    # If the last 

index in the y axis is selected 

                    idx_top_2 = None 

                     

                # Create the neighborhood area, one for each of the 

pair of points 

                view1 = D[idx_bot_1:idx_top_1, idx_left_1:idx_right_1] 

                view2 = D[idx_bot_2:idx_top_2, idx_left_2:idx_right_2]    

 

                if 0 not in view1 or 0 not in view2: 

                    localMax[subset[0][0]][subset[0][1]] = False # 

Remove the points 

                    localMax[subset[1][0]][subset[1][1]] = False 

                    new_pt = (subset[0]+subset[1])/2 # Compute the 

middle point 
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                    new_pt = [math.trunc(x) for x in new_pt] 

                    localMax[new_pt[0]][new_pt[1]] = True  # Add the 

new point as a marker 

                     

        # Watershed algorithm 

        markers = ndimage.label(localMax, structure=np.ones((3, 

3)))[0] 

        labels = watershed(-D, markers, mask=imb4) 

         

        fig, ax = plt.subplots(figsize=(10, 6)) 

        ax.imshow(labels) 

         

        crop = [] 

        for region in regionprops(labels): 

        # Take with large enough areas 

            if (region.area >= 100) and (region.area<=6000): 

 

                # Draw a rectangle around the segmented cells 

                minr, minc, maxr, maxc = region.bbox 

                crop.append((minr, minc, maxr, maxc))  

 

        # Save individual segmented images 

        for num, crop in enumerate(crop): 

            im_crop = im[crop[0]:crop[2],crop[1]:crop[3]]*255 

            cv2.imwrite(path2+ "/" + filename+str(num)+".png",im_crop) 

 

# Remove images 

for file in remove_cells: 

    os.remove(file) 

 

# Dictionaries to save the image intensities and the cells to be 

removed 

 

its = [] 

remove_cells = [] 

 

for file in glob.glob(path2+"/*.png"):  

    im = plt.imread(file) 

     

    if (os.path.getsize(file) < 1490) and (np.sum(im) > 2000): 

        remove_cells.append(file) 

         

# Remove images 

for file in remove_cells: 

    os.remove(file) 

 

4. Image padding 

The resulting images present different dimensions. Therefore, they need to be rescaled to a 

common size while preserving the original aspect ratio. We decided to resize them to 150x150. 

To do so, paddings can be added to the images to achieve the desired size: black borders will be 

added around them to achieve the expected dimensions. 

files = 0 

size = 150 # Wanted size dimensions 
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for file in glob.glob(path2+"/*.png"):  

    files += 1 

    im = cv2.imread(file) 

    idx = file.rfind("\\")  

    filename = file[idx+1:-4]  

    img = Image.open(file) 

    width, height = img.size  # Image shape 

 

    pad = Image.new('RGB', (size, size), color='black') # Create a 8-

bit true color image with black background 

 

    # Place the original image in the center 

    x_center = (size - width) // 2  

    y_center = (size - height) // 2 

    pad.paste(img, (x_center, y_center, width + x_center, height + 

y_center)) 

    pad = np.array(pad) 

     

    # Save the output in the corresponding path 

    cv2.imwrite(path3+"/"+filename+str(files)+".png",pad) 

 

Dataset construction.ipynb 

The model learning starts with the splitting of the dataset into two sets: train and test. 

The train set, as the name suggests, will be used to train the model -for the learning of the image 

features and future prediction- whereas the test one, to evaluate the performance of the resulting 

model. 

import glob 

import numpy as np 

import os 

import shutil 

import cv2 

from keras.preprocessing.image import ImageDataGenerator 

from sklearn.utils import shuffle 

from keras.utils import np_utils 

 

1. Path configuration 

1. path: directory with images separated according to their label 

2. path2: directory containing the train and test sets 

3. path3: directory containing the data to input on the model 

path =r"C:\Users\mirei\OneDrive\Escritorio\4 Eng biomedica\TFG\DATA TO 

ANALYZE\Corrected" 

 

path2 = r"C:\Users\mirei\OneDrive\Escritorio\4 Eng 

biomedica\TFG\Datasets" 

 

path3 = r"C:\Users\mirei\OneDrive\Escritorio\4 Eng biomedica\TFG\Data" 
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2. 80/20 split 

The dataset will be split following the traditional 80/20 rule: 80% of images to the train set and 20% 

to the test. 

# Cell classes and splitting ratio 

labels = ["Non-dividing", "Dividing"] 

test_ratio = 0.2 

 

for cls in labels:     

    files = os.listdir(path + "/" + cls) 

    # Image shuffle 

    np.random.shuffle(files) 

     

    # 80/20 split 

    train_files, test_files = 

np.split(np.array(files),[int(len(files)* (1 - test_ratio))]) 

     

    # Save the corresponding files to the train and test directories 

    train_files = [path + "/" + cls +'/'+ name for name in 

train_files.tolist()] 

    test_files = [path + "/" + cls +'/' + name for name in 

test_files.tolist()] 

     

    for name in train_files: 

        shutil.copy(name, path2 +'/Train/' + cls) 

 

    for name in test_files: 

        shutil.copy(name, path2 +'/Test/' + cls) 

 

3. Data augmentation 

Data limited, more images were required for the correct training model. Rather than obtaining new 

images, the current dataset could be increased by means of data augmentation approaches: create 

modified data from the existing one. 

# Data augmentation parameters 

datagen = ImageDataGenerator(rotation_range = 20, 

                             horizontal_flip=True, 

                             vertical_flip=True, 

                             brightness_range=[0.75,1.5]) 

 

X = [] # Images 

Y = [] # Labels 

for i, cls in enumerate(labels): 

    files = glob.glob(path2 + "/Train/" + cls +"/*png") 

    for id, file in enumerate(files): 

        img = cv2.imread(file) 

        img = cv2.resize(img,dsize=(150, 150)) 

        X.append(img) 

        Y.append(i) 

      

     

        # Convert 3d images to 4d array 
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        copy = img[None,...] 

         

        # Prepare iterator 

        it = datagen.flow(copy, batch_size = 1) 

     

        # For each image, repeat the augmentation procedure by four 

times 

        for k in range(4):   

             

            # Generate batches of images 

            batches = it.next() 

            batches = batches[0,...] # Restore 3D data from 4D 

            batches = np.array(batches, dtype = np.uint8) 

            X.append(batches) 

            Y.append(i) 

 

             

# Save the output as NumPy arrays 

X = np.array(X) 

Y = np.array(Y) 

np.save(path3 +"/X_train.npy",X) 

np.save(path3 +"/Y_train.npy",Y) 

print("Training set has augmented from {} files to {} 

files".format(sum([len(files) for r, d, files in os.walk(path2 + 

"/Train")]), len(Y))) 

 

X = [] 

Y = [] 

for i, cls in enumerate(labels): 

    files = glob.glob(path2 + "/Test/"+ cls +"/*png") 

    for id,file in enumerate(files): 

        img = cv2.imread(file) 

        img = cv2.resize(img,dsize=(150, 150))  

        X.append(img) 

        Y.append(i)         

 

print("Test set contains {} files".format(sum([len(files) for r, d, 

files in os.walk(path2 + "/Test")]))) 

 

 

# Save the test set as NumPy arrays 

X = np.array(X) 

Y = np.array(Y) 

np.save(path3 +"/x_test.npy",X) 

np.save(path3 +"/y_test.npy",Y) 

 

Bayesian optimization.ipynb 

Finding the correct hyperparameters for the DL model is not a straightforward duty. For this reason, 

as it is contained in this script, applying automatic methodologies -such as the Bayesian 

Optimization- can help to reduce the time required in comparison to the manual searching 

approach. 

import numpy as np 



XI 
 

import random 

import pandas as pd 

import seaborn as sns 

import matplotlib.pyplot as plt 

from keras.utils import np_utils 

from sklearn.utils import shuffle 

from keras.models import Sequential 

from keras.layers import Input, Conv2D,MaxPooling2D,Dense, 

Flatten,Dropout 

from tensorflow.keras.optimizers import RMSprop 

from keras.callbacks import EarlyStopping 

from bayes_opt import BayesianOptimization 

from keras.models import Model 

 

1. Path configuration 

path: directory containing the train and test sets 

path =r"C:\Users\mirei\OneDrive\Escritorio\4 Eng biomedica\TFG\Data" 

 

2. Data normalization and shuffling 

The goal of normalization is standardizing the data to a common scale without distorting the data 

information. Min-max normalization was the strategy applied on the data, scaling the pixels values 

into 0-1. 

Finally, the train set was randomly mixed, reducing the variance. 

# Load the train and test arrays 

X_train = np.load(path +"/X_train.npy") 

Y_train = np.load(path +"/Y_train.npy") 

 

x_test = np.load(path  +"/x_test.npy") 

y_test = np.load(path +"/y_test.npy") 

 

# Image normalization 

X_train = (X_train - np.min(X_train)) / (np.max(X_train) - 

np.min(X_train)) 

x_test = (x_test - np.min(x_test)) / (np.max(x_test) - np.min(x_test)) 

 

 

# Convert array of labeled data to a vector 

Y_train = np_utils.to_categorical(Y_train,3) 

y_test = np_utils.to_categorical(y_test,3) 

 

 

# Randomly mix the training set 

X_train,Y_train = shuffle(X_train, Y_train) 
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3. CNN architecture 

First of all, the CNN core structure has to be constructed. In this case, we decanted for the basic 

architecture -input layer, hidden layers (convolutional and pooling layers) and an output layer- plus 

some extra layers -flatten, dense and dropout-. 

As for the hyperparameters to be optimized, we decanted for: 

• Number of filters: dimensionality of the output space 

• Drop: fraction of the input units to drop 

• Number of hidden layers. 

3.1. Defining CNN architecture function 

def cnn_model_relu(filters, drop, hidden_layers):   

 

    filters = int(filters) 

    hidden_layers = int(hidden_layers) 

 

    # Input layer 

    inputs = Input(shape = X_train.shape[1:]) 

 

    x = Conv2D(filters, (3, 3), padding='same', 

activation='relu')(inputs) 

    x = MaxPooling2D((2, 2), padding='same')(x) 

 

    # Hidden layers 

    if hidden_layers !=0: 

        for i in range(1,hidden_layers+1): 

            x = Conv2D(filters*(2**i), (3, 3), padding='same', 

activation='relu')(x) 

            x = MaxPooling2D((2, 2), padding='same')(x) 

 

    # Flatten, dense and dropout layers 

    x = Flatten()(x) 

    x = Dense(filters*(2**(hidden_layers+1)), activation='relu')(x) 

    x = Dropout(drop)(x) 

 

    # Output- predictions 

    outputs = Dense(3, activation='softmax')(x) 

 

    # Modeling 

    model = Model(inputs = inputs, outputs = outputs) 

 

    model.compile(optimizer = 'rmsprop', 

                            loss = 'binary_crossentropy', 

                            metrics = ['accuracy']) 

     

    early_stopping = EarlyStopping(patience = 10, verbose = 1) 

 

    # Learning 

    history = model.fit( 

        X_train, Y_train, validation_split = 0.2, epochs = 30, 

batch_size = 20, callbacks = [early_stopping]) 
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    # Evaluate the model with the test set 

    score = model.evaluate(x_test, y_test) 

     

    print('Test loss:', score[0]) 

    print('Test accuracy:', score[1]) 

     

    acc_relu.append(score[1]) 

 

    return score[1] 

 

3.2. Bayesian Optimization 

The optimal hyperparameters will be found by means of the Bayesian Optimization approach. 

# Range of the possible values that the hyperparameter can take 

def bayesian_opt_relu(): 

    parameters = { 

        'drop' : (0,0.9), 

        "filters" : (2,25), 

        'hidden_layers' : (0,6) 

    } 

     

    # Define Bayesian Optimization 

    optimizer = BayesianOptimization(f = cnn_model_relu, pbounds = 

parameters) 

     

    optimizer.maximize(init_points = 10, n_iter = 20) 

    return optimizer 

 

# Run the Bayesian Optimization and return the hyperparameters   

result_relu = bayesian_opt_relu() 

result_relu.res 

result_relu.max 

 

4. Hyperparameters plotting 

Once the Bayesian Optimization has finished, we can plot the hyperparameters tried and observe 

how the accuracy behaves according to different hyperparameters combination. 

relu = ['relu' for i in range(15)] 

 

# Dictionaries containing the different hyperparameters tried 

drop_relu = [] 

filters_relu = [] 

hidden_layers_relu = [] 

results_relu = result_relu.res 

 

# Access the results obtained and saved the hyperparameters in their 

corresponding dictionary 

for pms in results_relu: 

    params = pms["params"] 

    drop_relu.append(params["drop"]) 

    filters_relu.append(params["filters"]) 

    hidden_layers_relu.append(params["hidden_layers"]) 
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# Create a data frame containing the hyperparameters     

df_relu = pd.DataFrame({'drop':drop_relu, 

                   'filters':filters_relu, 

                   'hidden_layers':hidden_layers_relu, 

                    'accuracy': acc_relu,  

                    'activation': relu }) 

 

df.reset_index(drop=True, inplace=True)  

 

# Plot pairwise relationships in the data frame  

sns.pairplot(df_rs,vars = df.columns[0:4], hue= 'activation', 

diag_kind = 'kde') 

 

plt.show() 

 

Functional model.ipynb 

This script contains the final model to be implemented with the hyperparameters properly adjusted. 

The model evaluation metrics are also contained in the current script. 

import numpy as np 

import random 

import seaborn as sns 

import matplotlib.pyplot as plt 

from keras.utils import np_utils 

from sklearn.utils import shuffle 

from keras.models import Sequential 

from keras.layers import Input, Conv2D,MaxPooling2D,Dense, 

Flatten,Dropout 

from tensorflow.keras.optimizers import RMSprop 

from keras.callbacks import EarlyStopping 

from bayes_opt import BayesianOptimization 

from keras.models import Model, load_model, model_from_json 

from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay, 

f1_score, precision_score, recall_score, confusion_matrix, 

accuracy_score 

 

1. Path configuration 

1. path: directory containing the train and test sets 
2. path2: directory where the functional model will be saved 

path =r"C:\Users\mirei\OneDrive\Escritorio\4 Eng biomedica\TFG\Data" 

 

path2 = r"C:\Users\mirei\OneDrive\Escritorio\4 Eng 

biomedica\TFG\Model" 
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2. Data normalzation and shuffling 

Similar to the Bayesian Optimization.ipynb, data need first to be normalized and for the train set, 
shuffled. 

 
# Load the train and test sets 

X_train = np.load(path +"/X_train.npy") 

Y_train = np.load(path +"/Y_train.npy") 

 

x_test = np.load(path  +"/x_test.npy") 

y_test = np.load(path +"/y_test.npy") 

 

# Image normalization 

X_train = (X_train - np.min(X_train)) / (np.max(X_train) - 

np.min(X_train)) 

x_test = (x_test - np.min(x_test)) / (np.max(x_test) - np.min(x_test)) 

 

 

# Convert the array of labeled data to a vector 

Y_train = np_utils.to_categorical(Y_train,3) 

y_test = np_utils.to_categorical(y_test,3) 

 

 

# Randomly mix the training set 

X_train,Y_train = shuffle(X_train, Y_train) 

x_test,y_test = shuffle(x_test, y_test) 

 

3. Functional model construction: training and testing 

Adjust the hyperparameters according to the values obtained from the Bayesian Optimization. 

The model will be trained with the training dataset -and validated via the hold-out method-. After 

the testing of the built model, it will be saved future usage. 

# Hyperparameters obtained from the Bayesian Optimization 

 

drop = 0.68 

filters = 13 

hidden_layers = 2 

 

 

# Input layer 

inputs = Input(shape = X_train.shape[1:]) 

 

# Convolutional and pooling layers 

x = Conv2D(filters, (3, 3), padding='same', activation='relu')(inputs) 

x = MaxPooling2D((2, 2), padding='same')(x) 

 

# Hidden layers 

if hidden_layers !=0: 

    for i in range(1,hidden_layers+1): 

        x = Conv2D(filters*(2**i), (3, 3), padding='same', 

activation='relu')(x) 

        x = MaxPooling2D((2, 2), padding='same')(x) 
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# Flatten, dense and dropout layers 

x = Flatten()(x) 

x = Dense(filters*(2**(hidden_layers+1)), activation='relu')(x) 

x = Dropout(drop)(x) 

 

# Output - predictions 

predictions = Dense(3, activation='softmax')(x) 

 

# Modeling 

model = Model(inputs = inputs, outputs = predictions) 

 

model.compile(optimizer = 'rmsprop', 

                        loss = 'binary_crossentropy', 

                        metrics = ['accuracy']) 

 

early_stopping = EarlyStopping(patience=10, verbose=1) 

 

# Learning. The validation data comes from the train set 

history = model.fit( 

    X_train, Y_train, validation_split = 0.2, epochs = 100, batch_size 

= 20, callbacks = [early_stopping]) 

 

# Evaluated accuracy for the test set 

print(model.evaluate(x_test, y_test)) 

 

# Save the model for future usage 

 

model_json = model.to_json() # Serialize model to JSON 

with open(path2 + "/Actin model" +".json", "w") as json_file: 

    json_file.write(model_json) 

     

model.save_weights(path2 + "/Actin model"+".h5") # Serialize weights 

to h5 

 

4. Model evaluation 

Assessing the model performance and accuracy is crucial to ensure that the built model properly 

predicts and labels new incoming data. 

Here, we propose two metric evaluations: 

• Learning curve -both optimization and performance LCs-. 

• Confusion matrix -and related metrics-. 

4.1. Learning Curve 

The overall learning performance can be visually evaluated with the use of Learning Curves. Two 

different metrics will be evaluated: accuracy and loss. 

# Load accuracy and loss metrics from the model history 

accuracy = history.history['accuracy'] # Accuracy for the training 

data 

val_accuracy = history.history['val_accuracy'] # Accuracy for the 

validation data 
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loss = history.history['loss'] # Loss for the training data 

val_loss = history.history['val_loss'] # Loss for the validation data 

 

# Create the Learning Curves 

fig, (axP, axO) = plt.subplots(ncols=2,figsize=(16,8)) 

plt.rcParams["font.size"] = 16 

axP.plot(accuracy,label='Training acc.') 

axR.plot(val_accuracy,label='Validation acc.') 

axR.set_title('Optimization Learning Curve') 

axR.legend(loc='best')  

axO.plot(loss,label='Training loss') 

axO.plot(val_loss,label='Validation loss') 

axO.set_title('Performace Learning Curve') 

axO.legend(loc='best') 

plt.show() 

 

4.2. Confusion matrix 

The confusion matrix is a tool that allows to observe how well does the model predict the data, 

since it directly correlates the expected results with the actual output. 

Further information can be extracted from the confusion matrix, giving a final verdict: precision, 

recall, f1-score and accuracy values. 

# Classes to be predicted 

labels = ["Non-dividing", "Dividing"] 

 

# Predictions from the constructed model 

y_predict = model.predict(x_test) 

y_true = y_test 

y_predict = np.argmax(y_predict, axis = -1) 

 

# Create the confusion matrix 

fig, ax = plt.subplots(figsize=(12, 12)) 

cm = confusion_matrix(y_true,y_predict) 

sns.heatmap(cm, annot = True, fmt = 'g', cmap = 'Wistia', xticklabels 

= labels,  yticklabels = labels) 

ax.set_title("Confusion Matrix") 

plt.show() 

 

# Print accuracy, f1, precision and recall scores 

print(accuracy_score(y_true, y_predict)) 

print(precision_score(y_true, y_predict)) 

print(recall_score(y_true, y_predict)) 

print(f1_score(y_true, y_predict)) 


