
GRAU DE MATEMÀTIQUES

Treball final de grau

Different approaches to Travelling
Salesman Problem

Autor: Roger Nogales Gine

Director: Sr. Eloi Sans Gispert

Realitzat a: Departament de Matemàtiques i Informàtica

Barcelona, January 25, 2022

Abstract

This thesis is a comparison of some to solve the Travelling Salesman Prob-
lem. The approach for the analysis by coding and compering the result. Starting
with the most primitive Brute Force Algorithm and going through more creative
and innovative ones, there is presented how do they work, a pseudo-code the
mathematical theory hidden behind each of them. The objective is to compare
and evaluate the pros and cons on different scenarios of the Salesman Travelling
Problem.

2010 Mathematics Subject Classification. 11G05, 11G10, 14G10

Acknowledgements

During the last months it has been highly important the guidance and support
of Sr. Eloi Sans, the director of this thesis. My most sincere words of thanks for
his time and the confidence he has shown on me.

Contents

Abstract iv

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement and variants . 1
1.3 Objective . 3
1.4 Report Layout . 3

2 Foundations 5
2.1 P, NP, NP-Complete and NP-Hard . 5
2.2 Markov Chains . 7

3 Algorithms 11
3.1 Brute Force Algorithm . 11
3.2 Nearest-Neighbour Algorithm . 12
3.3 K-Opt Algorithms . 14
3.4 Markov Chain Monte Carlo Algorithm 18
3.5 Simulated Annealing Algorithm . 24
3.6 Ant Colony Optimization . 28
3.7 Genetic Algorithms . 32

4 Experimental results 37

5 Conclusion 39

Bibliography 41

iii

Chapter 1

Introduction

1.1 Motivation

The Travelling Salesman Problem is a well known problem often introduced
in Graph Theory. As we will see in the next section, due to the simplicity of its
statement but at the same time its difficulty to be solved, this problem have been a
very popular target to test new and revolutionary ways to approach optimization
problems. The idea of reviewing, programming and comparing some of the most
popular algorithms was brought by Eloi and I immediately liked it. Not only
because I would have a perfect opportunity to learn Python but also learn about
Artificial Intelligence, an another interesting topic I was really interested about.

1.2 Problem Statement and variants

The Travelling Salesman Problem or TSP was first formulated in 1930 and is
one of the most intensively studied problems in optimization. Although its state-
ments are very simple, the problem have a lot of different variations. The classic
Travelling Salesman Problem state that given n ≥ 1 cities with all distances be-
tween city pairs known, the objective is to visit each city exactly once and return
to the starting city in such a way that the total distance is minimum. "Distance",
dij, is the cost associated with the travel from city i to city j. Since all cities are
visited only once, the starting city can be any of the n cities without affecting the
optimal solution. Thus, there are (n − 1)! possible solutions or tours for any n
dimensional problem.
Using G. Dantzig, R. Fulkerson and S. Johnson [2] formulation, given a network
of n ≥ 2 nodes and the distance cij associated with each arc (i, j) joining two cities
0 < i, j ≤ n. A salesman who begins the trip in node 1, which is the depot, must

1

1.2. PROBLEM STATEMENT AND VARIANTS CHAPTER 1. INTRODUCTION

visit each node exactly once and return to the node 1. The problem is to find the
shortest directed tour for visiting n nodes. The basic formulation for the TSP is as
follows:

Let

xij =

{
1, the path goes from city i to city j

0, otherwise

Want to Minimize
∑n

(i=1 ∑n
j ̸=i,j=1 cijxij

(1)
subject to

∑n
i=1,i ̸=j xij = 1, j = 1, ..., n;

(2)
∑n

j=1,j ̸=i xij = 1, i = 1, ..., n;
(3)

∑i∈Q ∑j ̸=i,j∈Q xij ≤ |Q| − 1, ∀Q ⊈ {1, ..., n}, |Q| ≥ 2
(4)

The last constraint of the DFJ formulation ensures no proper subset Q can form
a sub-tour, so the solution returned is a single tour and not the union of smaller
tours.

As mentioned previously, there are a lot of different variations of the classic TSP.
For example the asymmetric variation, where dij ̸= dji. This is an important dif-
ference, since some of the algorithms that we will further see use reformulation
operators in order to prevent itselves from being trapped at a local minimum,
so symmetrical it is needed in those cases. Another interesting variation is the
"M-Salesman Traveling Salesman Problem", deeply developed by Dennis Francis
[8], where given m salesmen and n cities, the objective is to find m tours or "sor-
ties" with minimum total travel, whereby all the cities are visited exactly once,
each salesman visits at least one city, and all salesmen return to their common
or "home" city. There are (n+m-2)! possible solutions to this problem. Another
variations exists such the ones studied by Fredrick [4] where visiting the same city
more than once is allowed, others where the salesman has to return to the home
city every k cities visited, etcetera.

The Travelling Salesman Problem also can be applied to real-world situations,
e.g., a real traveling salesman route, a school bus route, a job-shop machine sched-
ule for a given set of repeated operations, a garbage truck route, and so on. The M-

2

CHAPTER 1. INTRODUCTION 1.3. OBJECTIVE

Salesman problem, for instance, also has real applications, printing press schedul-
ing for multi-edition periodicals, and bank messenger routing where there are m
messengers and n branch banks are some examples of its applications.

1.3 Objective

The objective of this thesis is to compare 8 different algorithms that solve the
Traveling Salesman Problem with their own particular method . Those will be the
Force Brute Algorithm, the Nearest-Neighbour Algorithm, the family of K-Opt
Algorithms (in particular the 2-Opt and the 3-Opt), and 4 Markov Chain based al-
gorithms: a simple Monte Carlo Markov Chain Algorithm, the Simulated Anneal-
ing algorithm, the Ant Colony Optimization Algorithm and a Genetic Algorithm.
To do so, they will be coded into Python language and evaluated multiple times
under the same circumstances to secure impartiality.
Different initial scenarios will be presented to the algorithms in order to detect
when ones are better than the others.

A part from comparing the results, another objective is to understand how each
one of those algorithms work and why they lead to an optimal solution. The math-
ematics fundamentals behind them will be described at each algorithm section.

1.4 Report Layout

There will be four different comparisons depending on the number of cities
n ∈ {10, 20, 30, 40, 50, 75, 100, 125, 150}, where all the algorithms will be run several
times in order to get a representative mean of the computation time and the quality
of the solutions.
The code is presented in a zip folder and it have a main plus 15 tabs. On each
one, an algorithm is presented with its code and a brief explanation of its working
procedure, its functions and its parameters.

3

1.4. REPORT LAYOUT CHAPTER 1. INTRODUCTION

4

Chapter 2

Foundations

2.1 P, NP, NP-Complete and NP-Hard

In theoretical computer science, the classification and complexity of common
problem definitions have two major sets; P which is Polynomial time and NP
which Non-deterministic Polynomial time. There are also NP-Hard and NP-Complete
sets, which we use to express more sophisticated problems. In the case of rating
from easy to hard, we might label these as easy, medium, hard, and finally hardest.

The first set of problems, p, are polynomial algorithms that we can solve in
polynomial time, like logarithmic, linear or quadratic time. If an algorithm is
polynomial, we can formally define its time complexity as:

T(n)=O(C*nk)

where C > 0 and k > 0 are constant and n is input size of the problem. In gen-
eral, for polynomial-time algorithms K is expected to be less than n. An example
of this kind of problems, we have all the basic mathematical operations: addition,
subtraction, division, multiplication. All the problems in this category have a com-
plexity of O(nk) for some k. Of course, we donât always have just one input n but,
so long as each input is a polynomial, multiplying them will still be a polynomial.

The second set of problems, NP, cannot be solved in polynomial time. How-
ever, they can be verified (or certified) in polynomial 105 time.
Is expected these algorithms to have an exponential complexity, which is defined
as:

T(n)=O(C1 ∗ kC2∗n)

5

2.1. P, NP, NP-COMPLETE AND NP-HARD CHAPTER 2. FOUNDATIONS

where C1 > 0, C2 > 0, k > 0, and C1, C2 and k are constant (again n is the input
size). T(n) is a function of exponential time when at least C1 = 1 and C2 = 1. As a
result, we got O(kn). Graphs isomorphisms problems belongs to this category.
Formally, we also state that these problems must be decision problems (i.e. have
a yes or no answer) though note that practically speaking, all function problems
can be transformed into decision problems. This distinction helps us to nail down
what we mean by verified. To speak precisely, then, an algorithm is NP if it canât
be solved in polynomial time and the set of solutions to any decision problem can
be verified in polynomial time.

The next set, NP-Complete, is very similar to the previous set. In fact, all NP-
Complete problems are indeed NP but are among the hardest in the set. What
makes them different from other NP problems is a useful distinction called com-
pleteness. For any NP problem that is complete, there exists a polynomial-time
algorithm that can transform the problem into any other NP-complete problem.
This transformation requirement is also called reduction.

The last set, NP-Hard algorithms, contains the hardest, most complex prob-
lems in computer science. They are not only hard to solve but are hard to verify
as well. In fact, some of these problems are not even decidable. These algorithms
have a property similar to ones in NP-Complete which is the fact that they can
all be reduced to any problem in NP. Because of that, a NP-Hard problems are, at
least, as hard as any other problem in NP. And it is possible to a problem to be
both in NP and NP-Hard.

This is the category for the problem of this thesis, the Travelling Salesman Prob-
lem. As said, since it is possible for a problem to be both in NP and NP-Hard,
this characteristic has led to a debate about whether or not Traveling Salesman is
indeed NP-Complete or NP-Hard. Since NP and NP-Complete problems can be
verified in polynomial time, proving that an algorithm cannot be verified in poly-
nomial time is also sufficient for placing the algorithm in NP-Hard. And since
proving that a tour is indeed the solution for the TSP is not easy or polynomial
timed, define TSP as a NP-Hard problem.

Further theory and proof’s con be found in Wenhong Tian [6].
Summarizing, P problems are quick to solve, NP problems are quick to verify but
slow to solve, NP-Complete problems are also quick to verify, slow to solve and
can be reduced to any other NP-Complete problem, and finally NP-Hard prob-
lems are slow to verify, slow to solve and can be reduced to any other NP problem.

6

CHAPTER 2. FOUNDATIONS 2.2. MARKOV CHAINS

P versus NP problem is one of seven Millennium Prize Problems in mathemat-
ics that were stated by the Clay Mathematics Institute in 2000. In fact, showing
that this is truth would have devastating consequences for cryptography and also,
for example, it would transform mathematics by allowing a computer to find a
formal proof of any theorem that has a proof of reasonable length, since formal
proofs can easily be recognized in polynomial time.

2.2 Markov Chains

Some of the algorithms and methods that will be further introduced and used
to solve the TSP are based on Markov Chain. Markov Chain o Markov Process is a
stochastic model describing a sequence of possible events in which the probability
of each event depends only on the state attained in the previous event. Since this
is a huge branch in the stochastic theory, we wont get in detail into it. The idea
of this section is to understand the basics of Markov Chains and why, thanks to
it, some of the algorithms studied in this thesis work. We will be using Matthew
Richey [7] and Olivier Martin, Steve W. Otto and Edward W. Felten [3] for the
following theory section. Further concepts and proofs can be found there.

Before we define Markov chains, we must define what a stochastic process
is. A discrete-time stochastic process (DTSP) is a sequence of random variables
X0, X1, X2, ... where Xt is the value at time t. An easy example would be the num-
ber of people that goes into a shop every day: X0 is the number of people who
came on the first day, X1 on the second, and so on.

Now, given a finite state (configuration) space S = 1, 2, ..., N, a Markov Chain
is a stochastic process defined by a sequence of random variables, Xi ∈ S , for i =
1, 2,... such that

Prob(Xk+1 = xk+1|X1 = x1, ..., Xk = xk) = Prob(Xk+1 = xk+1|Xk = xk).
In other words, the probability of being in a particular state at the (k + 1)st

step only depends on the state at the kth step. We only consider Markov chains
for which this dependence is independent of k (that is, time-homogeneous Markov
chains). This gives an NxN transition matrix P = (pij) defined by

pij = Prob(Xk+1 = j|Xk = i),

7

2.2. MARKOV CHAINS CHAPTER 2. FOUNDATIONS

where for i = 1,2,...,N, ∑N
j=1 pij = 1

The (i, j)-entry of the Kth power of P gives the probability of transitioning from
state i to state j in K steps.
Two desirable properties of a Markov chain are: It is irreducible: for all states i
and j, there exists K such that (PK)i,j ̸= 0.And it is aperiodic: for all states i and j,
gcd{K : (PK)i,j ≥ 0} = 1.

The stationary distribution of a Markov Chain with n states (if one exists), is
the n-dimensional row vector π (representing a probability distribution: entries
which are non negative and sum to 1), such that

πP = π

Intuitively, it means that the belief distribution at the next time step is the same
as the distribution at the current. This typically happens after a long time (called
the mixing time) in the process, meaning after lots of transitions were taken.

An irreducible, aperiodic Markov chain must have a unique distribution π =
(π1, π2, ..., πN).

We say that the Markov chain is stable on the distribution π, or that π is the
stable distribution for the Markov chain. Markov chain methods depend on the
observation: If π is the stable distribution for an irreducible, aperiodic Markov
chain, then we can use the Markov chain to sample from π.

Since the set of all tours in the TSP is a finite set, the Markov chain can be
characterized by a transition matrix T, where the matrix element Tmn is the prob-
ability to go from tour n to m. In practice, the selection of m requires random
numbers. Given a starting tour, the application of T produces a sequence, or chain
of tours. After some transients, usually the, so called memory, of the starting point
decays, and tours appear with a limiting probability distribution P . P depends on
the matrix T , and the goal is to find T’s which lead to P(C) large for tours C of
short length. This is called biased sampling, and it leads to sampling the tours of
interest more efficiently.

If C’ is the optimal tour, is P (C’) ̸= 0? In the case of simulated annealing,
the distribution P is known because T satisfies detailed balance. In particular, the
probability of all tours is non-zero (the Markov chain is ergodic) and P(C) depends
only on the length of C. For general Markov chains, (i.e., for general choice of the

8

CHAPTER 2. FOUNDATIONS 2.2. MARKOV CHAINS

matrix T), very little can be said of the probability distribution P. It is plausible
nevertheless that within local-opt tours, our Markov chain is ergodic, and all our
runs are consistent with this.

9

2.2. MARKOV CHAINS CHAPTER 2. FOUNDATIONS

10

Chapter 3

Algorithms

3.1 Brute Force Algorithm

The first algorithm that we will see in this chapter and probably the most prim-
itive and less optimized one is the Brute Force Algorithm. As its name describes,
this algorithm lacks of any kind of optimal procedure in it and only does one
thing: calculate a tour distance. In fact, it calculates all the possible tours and fi-
nally return the shortest one. The problem with that procedure is that is not often
possible since for a large number of cities, the amount of possible different tours
that the salesman can take scale very fast and ,consequently, the computational
time of this algorithm.

Algorithm 1 Brute Force Algorithm

Number_of_tours← factorial(n)
List_of_tours← permutation(n,n)
Best_tour← List_of_tours[0]
Best_length← Length(List_of_tours[0])
for i = 1, 2, .., n do

if Length(List_of_tours[i]) < Best_length then
Best_length← Length(List_of_tours[i])
Best_tour← List_of_tours[i]

end if
end for
return Best_tour, Best_length

We can see that, yet the algorithm will always guarantee the best solution for

11

3.2. NEAREST-NEIGHBOUR ALGORITHM CHAPTER 3. ALGORITHMS

Table 3.1: Brute Force Algorithm time

cities total tours calculated time (s)

5 120 0.01
8 40320 0.25
10 3628800 24.32
11 39916800 541.04

the problem, it can only really work with tours with few cities on it. As n get big-
ger, n! grows worse than exponentially. If we wanted to use brute-force to solve
a 20-city problem, then we would need to evaluate 121645100408832000 different
permutations, and that is still nothing compared to the 99! different permutations
needed to search through for a 100-city problem.
In the code presented, there is bounded to 11 the number of cities that this algo-
rithm can afford. Otherwise, it will return zeros.

3.2 Nearest-Neighbour Algorithm

This second algorithm use a very human way of thinking in order to approach
the problem. We have seen that it is not feasible to compute for more than 11 cities
in basic computers, so the idea of making decisions (and if possible, good ones)
at some points of the tour comes to mind. Specifically, this algorithm replicate the
behaviour of the salesman if he decides to move, on each step of the tour, to the
next closest city.

This is a decision base algorithm but in fact, during all the journey the sales-
man have to make only 2 decisions and both before the journey even begins. The
first one which he will have to follow the rest of the tour is: from one city move to
the closest and not visited next city, this is, the way the salesman is going to ap-
proach the problem. The second decision is at which city is he going to start. This
is a non-trivial decision because different starting cities, which the same strategy,
leads to different results. Since the algorithm such as the salesman don’t know a
priory with city is the best one to start, it have to run the algorithm once for every
starting city and storing the best solution during the process.

At this point I would like to introduce the difference between exact algorithm
and greedy algorithms. The exact algorithms, such as the Brute Force Algorithm

12

CHAPTER 3. ALGORITHMS 3.2. NEAREST-NEIGHBOUR ALGORITHM

introduced in the last chapter, are the ones that guarantee to find the exact optimal
solution to the problem, no matter the time needed to do so. In the other hand, the
heuristic algorithm do not guarantee that, but they are designed to run quickly.
A subgroup of that class are the greedy algorithms, which are characterized by
making the locally optimal choice at each stage. In other words, a greedy strategy
does not produce an optimal solution, but can yield locally optimal solutions that
approximate a globally optimal solution in a reasonable amount of time.
If we try to find an approximate solution to an NP-hard problem using heuristics,
we need to compare the solutions using computational experiments. There is a
number called domination number that compares the performance of heuristics.
A heuristic with higher domination number is a better choice than a heuristic with
a lower domination number. The following definition and theorem, proof can also
be found there, come from Gregory Gutin, Anders Yeo, AlexeyZverovich [9]:

The domination number, d(n), for the TSP of a heuristic A is an integer such
as that for each instance I of the TSP on n vertices A produces a tour T that is not
worse than at least d(n) tours in I including T itself.

Observe that any exact algorithm for the TSP, such as the Brute Force Algo-
rithm, has a domination number of (n−1)!

2 .

In fact, as explained in Abraham Punnen, Franois Margot and Santosh Kabadi
[6], for any heuristic A algorithm for the TSP, the domination number d(n) exists
and it is at least one, as the problem is always feasible. The definition extends
directly to any minimization combinatorial problem with a feasible set F,and its
proved that if d(n)=|F|then A is an exact algorithm producing an optimal so-
lution.Thus the goal is to develop heuristic algorithms with domination number
close to |F|.

Theorem 1. Let n ≥ 4. The domination number of the Nearest-Neighbor Algorithm for
the Traveling Salesman Problem is, at most, 2n−3.

Proof. Proof can be found on Abraham Punnen, Franois Margot and Santosh
Kabadi [6]

The pseudo code for the Nearest-Neighbour Algorithm go as follows:

13

3.3. K-OPT ALGORITHMS CHAPTER 3. ALGORITHMS

Algorithm 2 Nearest-Neighbour Algorithm

for k = 0 to n-1 do
tour[0]← k
for j = 1 to n-1 do

for i = 0 to n-1, i /∈ tour do
d(j,i)← distance between city j and city i

end for
best_i← minimum(d(j,i))
tour[j]=best_i

end for
for i = 0 to n-1, i /∈ tour do

tour[n] = i
end for

end for
return tour

Table 3.2: Nearest-Neighbour Algorithm

cities total tours calculated time (s)

10 1 0.01
100 1 1.18
250 1 41.13
500 1 664.45

3.3 K-Opt Algorithms

The tour improvement framework includes a set of operations that can be used
to convert one tour to another. Formally, the tour improvement algorithm tries to
reduce the cost of an initial sub-optimal tour repeatedly until no improvement can
be made. Particularly, the k-opt algorithm is the most popular heuristic method
for the TSP, where k means the number of edge exchanges/re-permutation within
certain neighborhoods. However, existing k-opt approaches are not adaptive, and
the number k is either fixed or sequentially probed following certain probing or-
der. In practice, the most widely used tour improvement algorithms are probably
the 2-opt and the 3-opt (k is fixed to be 2 and 3, respectively.) The 2-opt or 3-opt
methods are advantageous in that, the implementation is relatively easy and the
methods can be terminated at any point (anytime algorithms).

14

CHAPTER 3. ALGORITHMS 3.3. K-OPT ALGORITHMS

Figure 3.1: 2-Opt

Figure 3.2: 3-Opt

Figure 3.3: Figures used from matejgazda.com

For example, the 2-opt algorithm is simply an iterative approach where in
each iteration it strategically replaces two old edges with two new ones, so that all
edges still form a tour (the total number of edges remains the same) and the oper-
ation decreases the tour cost. The 3-opt method is quite similar to the 2-opt, with
the only difference that there are 3 edges needed to be appropriately replaced in
each iteration and the number of 3-edge combinations is larger than that of the 2-
opt. There are also 4-opt, 5- opt, etc. However, the complexity of manipulating the
edge replacements increases exponentially as the number k grows, thus in practice
it is very rare to see implementations of 4-opt and those opts with k greater than 4.

In each step, 2-Opt Algorithm deletes two edges thus creating 2 subtours and
reconnects it with opposite edges (Figure 1) in case that the replacement reduces
the length of the tour. One 2-Opt move has time complexity of O(n2). This is be-
cause in one 2-Opt move, in the worst case, we need to check for one broke edge to

15

3.3. K-OPT ALGORITHMS CHAPTER 3. ALGORITHMS

(nâ2) other edges that could be broken to improve the tour - thus the O(n). Since
we need to check it for all the edges, therefore we get the equation nO(n)=O(n2).
3-opt Algorithm works in the similar fashion. Instead of breaking the tour by
removing 2 edges, it removes three edges, therefore breaking the tour into 3 sep-
arate sub-tours that can be reconnected in 8 possible ways (including the original
tour) as shown on Figure 2. The 3-Opt Algorithm have a time complexity of O(n3).

In terms of domination number, we have seen that is a good way to compare
heuristic algorithms so as Abraham Punnen, Franois Margot and Santosh Kabadi
[6] proved in their paper, we have those two following theorems involving 2-Opt
and 3-Opt (proofs can be found there):

Theorem 2. The domination number of 2-Opt is at least (n−2)!
2 when n is even and

(n− 2)! when n is odd.

Proof. Proof can be found on Abraham Punnen, Franois Margot and Santosh
Kabadi [6]

Theorem 3. The domination number of 3-Opt is at least (n−2)!
2 .

Proof. Proof can be found on Abraham Punnen, Franois Margot and Santosh
Kabadi [6]

The pseudo code for both of this algorithms go as follows:

Algorithm 3 2-Opt Algorithm

input a tour to improve tour_to_improve
min_length← length(tour_to_improve)
best_tour← tour_to_improve
for i=1,2,...n-1 do

for j=i+2,...,n do
if distance(i,i+1) + distance(j,j+1) > distance(i,j) + distance(i+1,j+1) of the

tour_to_improve then
best_tour[i+1,j+1]← reversed(tour_to_improve[i+1,j+1])
tour_to_improve← best_tour

end if
end for

end for
return best_tour

And the table with the results:

16

CHAPTER 3. ALGORITHMS 3.3. K-OPT ALGORITHMS

Algorithm 4 3-Opt Algorithm

input a tour to improve tour_to_improve
min_length, current_length← length(tour_to_improve)
best_tour, current_tour← tour_to_improve
while improvement == True do

for i = 1,2,....,n-5 do
for j = i+2,...,n-3 do

for k = j+2,...,n do
swap all possible 3 cities of the tour as in Figure 3.2 of current_tour
if length(swapped_tour) < min_length then

min_length← length(swapped_tour)
best_tour← swapped_tour

end if
end for

end for
end for
if best_tour == current_tour then

Improvement = False
else

current_tour← best_tour

return best_tour

17

3.4. MARKOV CHAIN MONTE CARLO ALGORITHMCHAPTER 3. ALGORITHMS

Table 3.3: 2,3-Opts Results obtained from a random tour

cities 2-Opt Improvement 3-Opt Improvement time difference

10 20,95% 41,75% 0,08
25 9,40% 69,02% 3,26
50 6,15% 78,92% 117,73
75 3,98% 81,25% 987,51

Table 3.4: 3-Opts Results from Nearest-Neighbour solution

cities 3-Opt Improvement time difference

20 9,56% 0,31
30 8,49% 2,41
40 11,59% 9,09
50 13,66% 25,81
65 15,23% 69,68

3.4 Markov Chain Monte Carlo Algorithm

The Monte Carlo Markov Chain (MCMC) is a method that makes it possible to
efficiently sample from a large combinatorial set according to a desired probability
distribution and can be used for function optimization, as for example in our case
the length of a tour. In fact, this method facilitates the development of simple,
efficient, and general solutions to whole classes of decision problems.

Decision and optimization problems involving graphs arise in many areas of
artificial intelligence, including probabilistic networks, robot navigation, and net-
work design. Many such problems, as we have seen with TSP, are NP-complete;
this has necessitated the development of approximation methods, most of which
are very complex and highly problem specific.

Suppose that Ω is a large, finite combinatorial set and that f : Ω→ R is a func-
tion defined on Ω. We want to find a solution x ∈ Ω such that f (x) is minimal
or maximal, depending on the problem we are optimizing. The MCMC method
requires that we define an undirected, connected graph Λ on all possible solutions
to the problem and a set of one or more moves, i.e., relatively simple operations
that transform one element of Ω to another. Each vertex of Λ represents a member

18

CHAPTER 3. ALGORITHMS3.4. MARKOV CHAIN MONTE CARLO ALGORITHM

Figure 3.4: 3-city tours and 2 element permutation operation

of Ω, i.e., one possible solution, and each edge represents a move. Λ is called a
neighborhood structure because the neighbor vertices of any vertex x correspond
to the set of solutions reachable via a single move from the solution represented
by x.
And here is the interesting part, because by representing each vertex of Λ with a
set of features and each edge as a change to one feature, we can simulate a Markov
chain through the space of possible solutions Ω). A random walk on the vertices
of Ω then represents a sequence of solutions in which each solution differs from
the previous solution by at most one feature (solutions can repeat). This sequence
is a Markov chain because at each step in the sequence, the choice of the next
solution depends only on the current solution and not on any previous ones.

Summarizing, the MCMC approach to optimization and decision problems in-
volves simulating the Markov chain for some number of steps T, beginning with
an arbitrary initial solution, and then either outputting the best solution seen so
far or outputting whether a solution has been found. Due to the Markov property,
seen in Markov Chain Theory chapter, any algorithm based on generating a ran-
domized sequence of solutions does not need to maintain a data structure for the
entire graph Λ luckily since most of the cases, this would be impossible given the
large size of Ω.

Introducing some bias and probabilities into the random walk produces better
solutions. This usually means always accepting transitions of the Markov chain
to states with higher f value but occasionally accepting transitions to states with
lower f value. In particular, suppose degree(x) denotes the degree of vertex x in
Λ, and suppose D(Λ) denotes an upper bound on the maximum degree. Then, as
described in Timothy Huang, Yuriy Nevmyvak [10], the transition from a current
vertex x to the next vertex y is specified as follows:

19

3.4. MARKOV CHAIN MONTE CARLO ALGORITHMCHAPTER 3. ALGORITHMS

Algorithm 5 Markov Chain Monte Carlo Algorithm

I. With probability 0.5 let y=x, otherwise II.
II. Select y according to the distribution:

Pr(y) =


if y is a neighbour of x

if y=x

0, otherwise

III.With probability min{1,α f (y)− f (x)}, transition to y; otherwise y←x.
return y =0

Note that in the algorithm, α ≥ 1; this ensures that transitions to neighbors
with lower f values are always accepted and that transitions to neighbors with
higher f value are rejected with probability (1 - α f (y)− f (x)) < 1. The last inequality
holds since f (y) - f (x) < 0 when the state denoted by y is a less desirable state;
thus, 0 < α f (y)− f (x) < 1 and (1 - α f (y)− f (x)) < 1.

To show that the resulting Markov chain converges to a stationary distribu-
tion, we note the following properties: First, since Λ is connected by definition,
the Markov chain is irreducible, i.e., any state can eventually be reached from any
other state. Second, since all self-loop probabilities are required to be non-zero,
the chain is aperiodic and hence ergodic, i.e., there are no fixed cycles through
which states will alternate. The probability distribution of this chain can then be
defined as

πα = α f (x)

Z(α) , for all x ∈ Ω
where Z(α) is a normalizing constant that ensures πα is a probability distribution.
Finally, we note that the chain is also reversible, i.e., it satisfies the detailed balance
condition:

πα(x)P(x,y)=πα(y)P(y,x), for all x,y ∈ Ω.
These conditions guarantee that the Markov chain converges to the stationary dis-
tribution πα. Detailed definitions of each requirement and proofs of convergence
can be found in Richard L. Smith and Luke Tierney [11]. A Markov chain of this
form is known as a Metropolis process.

Notice also that the parameter α influences the rate at which the algorithm
finds better solutions and the ability of the algorithm to move beyond local maxi-
mum in the solution space. Lower values of α smooth out the distribution πα and
help keep the chain from getting stuck in local maximum; higher values of α make

20

CHAPTER 3. ALGORITHMS3.4. MARKOV CHAIN MONTE CARLO ALGORITHM

the distribution πα more peaked around optimal solutions and help find better so-
lutions more quickly. At the two extremes, we have an unbiased random walk on
the graph Λ when α = 1 and a greedy search when α = inf. Hence, some inter-
mediate value for α is usually preferred. Jerrum and Sinclair provide a detailed
analysis of the Metropolis algorithm at α a in Jerrum and Sinclair[13]. Varying α

while the process is simulated results in a simulated annealing algorithm, which
we will see further on.

For the code we present for this method, we used the same idea as Timothy
Huang, Yuriy Nevmyvak [11], but since the algorithm is attached to a number of
iterations, is not interesting to us the idea of not moving around on each iteration,
this is, letting y ← x at any time. We will focus on moving around the vertices of
Λ only taking care of the probability to move to the next one, and this probability
will be the same for all possible neighbours of the current state. In other words:
on each iteration we will move towards a neighbour state (i.e solution) with the
same probability. Then, if this next state result to be better, we will always stay
there and move to the next iteration. If it is not the case, there would be still a
little chance to remain there. If still is not the case, then finally we will keep at the
same beginning state.
The operation we use to move towards a neighbour is the permutation of a subtour
belonging of length desired. As shown in Figure X, all tours that can be obtained
from a permutation of a subtour of length desired form all the possible next states
to move towards. With that in mind, our proposed code need to have defined
beforehand the number of iterations, the permutation number (p) , i.e the length
of the subtour that we are going to swap and the alpha value already defined. The
pseudo code goes as following:

21

3.4. MARKOV CHAIN MONTE CARLO ALGORITHMCHAPTER 3. ALGORITHMS

Algorithm 6 Simple MCMC Algorithm

for i = 1, 2, .., n do
Current_solution← random or defined starting state
Next_solution← Current_solution
Start_subtour← random(0,n)
Sub-tour_to_swap← Current_solution[Start_subtour][Start_subtour + p]
Sub-tour_swapped← Sub-tour_to_swap randomly swapped
Next_solution[Start_subtour][Start_subtour + p]← Sub-tour_swapped
if length_next < length_current then

Current_solution← Next_Solution
else

With probability αlength(next)−length(curr), Current_solution← Next_Solution
end if

end for
return Current_solution

We have experimented with the values of α and the permutation number value
p (i.e the length of the sub-tour that is swapped).
First and in order the find the optimal, or at least a good estimation, value for
α, we fixed the permutation number p to 5. This is, to move from one vertex to
another of the meta-graph, we have to perform a 5 cities sub-tour permutation.
Also, we fixed n = 150 the number of cities and a number of iteration of 2000.
Then we run the experiment 50 times for each value of α, each time starting in the
same initial tour. The following tables shows the result:

22

CHAPTER 3. ALGORITHMS3.4. MARKOV CHAIN MONTE CARLO ALGORITHM

Table 3.5: Finding optimal α for MCMC

α iterations average tour length average time

1 2000 78604,76 0,32
3 2000 44579,23 0,35
5 2000 44888,79 0,34
7 2000 44688,35 0,31
9 2000 44795,68 0,34
11 2000 44702,61 0,32
13 2000 44650,66 0,32
15 2000 44982,06 0,31
17 2000 44883,29 0,31
19 2000 45084,38 0,33
21 2000 44566,84 0,37
23 2000 44721,88 0,35
25 2000 44709,66 0,37
27 2000 45129,29 0,31
29 2000 44604,14 0,31
31 2000 44687,69 0,39
33 2000 44733,70 0,39
35 2000 44401,07 0,34
37 2000 45017,48 0,34
39 2000 44399,22 0,35
41 2000 44553,64 0,35
43 2000 44887,65 0,34
45 2000 44880,52 0,34
47 2000 45008,85 0,35
49 2000 44942,46 0,36

We can see that, both in terms of average length and time, almost all α gave
similar values. Since the compute time is less than a second, it wound be relevant
for the decision. And sorting by increasing average distance we get that the better
values for α are:39, 35, 41, 21, 3, 29... (depending of the number of cities n, we will
pick one or another in that order).
Now, fixing α = 39, the same 2000 iterations and n = 150, we will try to find out
the best value for the parameter p:

23

3.5. SIMULATED ANNEALING ALGORITHM CHAPTER 3. ALGORITHMS

Table 3.6: Finding optimal p for MCMC

p iterations average tour length average time

2 2000 64409,63 0,30
3 2000 52254,95 0,33
4 2000 45611,91 0,40
5 2000 44381,81 0,33
6 2000 43456,99 0,33
7 2000 43487,71 0,33
8 2000 45254,26 0,34
9 2000 45931,84 0,44
10 2000 46133,48 0,36
11 2000 48267,33 0,35
12 2000 49000,90 0,36
13 2000 49683,98 0,36
14 2000 50622,34 0,37
15 2000 51440,70 0,49
16 2000 51821,75 0,53
17 2000 52596,77 0,47
18 2000 53491,98 0,39
19 2000 53471,28 0,38
20 2000 54228,75 0,38

As before, the average time is so low that will be irrelevant for the choosing of
p. Sorting the average tour length values in a increasing order, we find that the p
that produce shortest tours are: 6, 7, 5, 8, 4, 9... (curiously, 2 is the worst value by
far).

With that, we will be using the MCMC algorithm with values α = 39 and p = 6
from now on.

3.5 Simulated Annealing Algorithm

Simulated annealing is so named because of its analogy to the process of phys-
ical annealing with solids, in which a crystalline solid is heated and then allowed
to cool very slowly until it achieves its most regular possible crystal lattice config-

24

CHAPTER 3. ALGORITHMS 3.5. SIMULATED ANNEALING ALGORITHM

uration (i.e., its minimum lattice energy state), and thus is free of crystal defects.
If the cooling schedule is sufficiently slow, the final configuration results in a solid
with such superior structural integrity. Simulated annealing establishes the con-
nection between this type of thermodynamic behavior and the search for global
minimum for a discrete optimization problem. Furthermore, it provides an algo-
rithmic means for exploiting such a connection.

At each iteration of a simulated annealing algorithm applied to a discrete op-
timization problem, the objective function generates values for two solutions (the
current solution and a newly selected solution) are compared. Improving solu-
tions are always accepted, while a fraction of non-improving (inferior) solutions
are accepted in the hope of escaping local optima in search of global optima. Un-
like the MCMC algorithm seen in the last chapter where on each step we had a
probability of moving to a worst state depending on the actually difference be-
tween both states, here the probability of accepting non-improving solutions de-
pends on a temperature parameter, which is typically non-increasing with each
iteration of the algorithm. The key algorithmic feature of simulated annealing is
that it provides a means to escape local optima by allowing hill-climbing moves
(i.e., moves which worsen the objective function value). As the temperature pa-
rameter is decreased to zero, hillclimbing moves occur less frequently, and the
solution distribution associated with the inhomogeneous Markov chain that mod-
els the behavior of the algorithm converges to a form in which all the probability is
concentrated on the set of globally optimal solutions (provided that the algorithm
is convergent; otherwise the algorithm will converge to a local optimum, which
may or not be globally optimal).

The proof of this convergence approach for the simulated annealing algorithm
is based on inhomogeneous Markov chain theory and can be found on S. Anily
and A. Federgruen [5].

The acceptance probability of moving from state i to state j is defined by (8):

Aij =

{
exp(length(y)−length(x)

T), if length(y) > length(x)

1, otherwise

Our proposed code for this algorithm needs just 4 initial values to run: an ini-
tial temperature which needs to be big so it can start decreasing from this point,
a minimum temperature value which will be a threshold to stop the algorithm, a
maximum number of iterations allowed and a value of alpha similar to the MCMC
we have already seen. Moving from one state to another is defined as applying

25

3.5. SIMULATED ANNEALING ALGORITHM CHAPTER 3. ALGORITHMS

2-opt algorithm to a subtour of the current solution of random length (< n). Then
an acceptance function will decide if move or not to that next state depending on
the probability defined above.
The pseudo code is as follows:

Algorithm 7 Simulated Annealing Algorithm

current_solution← random_tour
minimum_length← length(current_solution)

while temp > min_temp and iter < iter_max do
next_solution← 2-Opt applied to a subtour of current_solution
if length(next_solution) < length(current_solution) then

current_solution← next_solution
else

current_solution← next_solution with probability exp(length(y)−length(x)
T)

end if

Decrease temperature

return current_solution

Anticipating the results, this algorithm have proven to be very efficient, pro-
viding the best solution on almost every experiment and also very fast in terms of
time.

In order to choose the best way to decrease the temperature value on each iter-
ation, we have tried different approaches to it. The first one simply will multiply
by a constant β ∈ (0, 1) and we will try three different values for it. The second
and the third way of decreasing will be following a lineal and a logarithmic func-
tion. On each number of cities it has been tried 25 times each way, and having
1000 and 0 as initial and lowest temperature value.

26

CHAPTER 3. ALGORITHMS 3.5. SIMULATED ANNEALING ALGORITHM

Table 3.7: Simulated Annealing Algorithm

cities alpha improvement iterations time

25 0,79 44,58% 109 0,01
25 0,89 52,91% 219 0,01
25 0,99 65,32% 2522 0,09
25 lineal 52,91% 2001 0,07
25 logarithmic 64,64% 3000 0,11
- - - - -

50 0,79 30,75% 109 0,01
50 0,89 42,62% 219 0,01
50 0,99 69,99% 2522 0,15
50 lineal 56,85% 2001 0,12
50 logarithmic 75,70% 3000 0,19
- - - - -

100 0,79 23,79% 109 0,01
100 0,89 35,38% 219 0,03
100 0,99 72,87% 2522 0,32
100 lineal 52,35% 2001 0,24
100 logarithmic 74,22% 3000 0,36

- - - - -
150 0,79 15,83% 109 0,02
150 0,89 26,38% 219 0,04
150 0,99 68,17% 2522 0,5
150 lineal 45,43% 2001 0,36
150 logarithmic 70,53% 3000 0,54

We can see that, in terms of time, all the runs take less than a second to com-
pute so it almost won’t be important when choosing the best fit for alpha. Also
we notice that the improvement goes hand by hand with the number of iterations,
so for this algorithm from now on we will work with the logarithmic decrease
function for the temperature which we can see give a better improvement of the
length of the tour.

27

3.6. ANT COLONY OPTIMIZATION CHAPTER 3. ALGORITHMS

3.6 Ant Colony Optimization

Ant colony optimization (ACO) is a discrete combinatorial optimization algo-
rithm based on the foraging behavior of ants. Over a period of time ants are able to
determine the shortest path from their home to a food source. This shortest-path-
finding process of the colony can be viewed as a form of swarm intelligence. This
process is achieved by the colonyâs accumulation of information about the sur-
rounding area, which is communicated to the individual ants in the form of trails
of pheromone, a chemical substance laid by the ants themselves. Isolated ants
essentially wander randomly until they come across a previously laid pheromone
path, which they will, by instinct, be more inclined to follow as opposed to con-
tinuing to wander randomly. As an ant traverses the path, it too lays pheromone,
thus reinforcing the existing pheromone strength of the current path and, hence
attracting further ants to follow it. Gradually over time, the shorter paths between
destinations will increase in pheromone intensity due to lower traverse times, and
so the colony gradually determines the optimum route between the destinations.
This phenomenon is best illustrated in the figure below:

Figure 3.5: Example of evolution of pheromone trails, Figure from [x]

In Figure 3.5, a system comprising a colony home (H), a food source (F), and an
obstacle (A,B) is depicted. The obstacle is placed such that there are two paths of

28

CHAPTER 3. ALGORITHMS 3.6. ANT COLONY OPTIMIZATION

unequal lengths, and it is assumed that path HAF takes two time steps to traverse
and path HBF takes a single time step to traverse. At time t = 0, [Fig. 3.5(a)], eight
ants are placed into the system with the objective of getting food from F back to
H. As their initial selection of the path they take is random, it is assumed that four
ants select each of the two alternate paths.
At t = 1, [Fig. 3.5(b)], the ants that traversed HBF have acquired food and begin to
journey back to H. As there is existing pheromone on FBH the ants have a higher
probability of utilizing this path, consequently three ants select FBH and one ant
selects FAH. The ants that are traversing HAF are only half way along this path.
At t = 2, [Fig. 3.5(c)], the three ants that traversed FBH are home again while the
ant that embarked on FAH is only half way along this path. The four ants that
were traversing HAF have made it to and embark on their journey back to via
either FAH or FBH. Path FBH has a greater amount of pheromone on it (note that
the pheromone intensity is represented by the darkness of the path) as it has been
traversed seven times, whereas FAH has only been traversed five times. Conse-
quently, by probability, three ants select path FBH and one ant selects FAH.
At t=4, [Fig. 3.5(d)], all ants have returned to H (note that the ant that embarked
on FBH at t = 2 arrived at H at t = 3). From Fig. 3.5(d), it is seen that the shorter
path HBF has a greater amount of pheromone on it as it has been traversed ten
times in total, while the longer path HAF has been traversed only six times. Future
ants entering the system will have a higher probability of selecting path HBF. In
the pattern illustrated here the operation of swarm intelligence to determine the
shortest path is seen.
In addition to the positive feedback strategy illustrated in the example, the pheromone
trails also decay with time. This means that paths that are not regularly given ad-
ditional pheromone will eventually decay to zero intensity. This decaying quality
of pheromone also aids in the ability of the ant colony to find the shorter paths.
The longer paths, which receive less pheromone, will decay more rapidly enabling
shorter paths to have a higher probability of being selected.

Thus, applying Ant Colony Optimization to our TSP problem goes as follows:
At each time t, an ant in city i has to choose the next city j it goes to, out of those
cities that it has not already visited. The probability of picking a certain city j is
biased by the distance between i and j and the amount of pheromone on the edge
between these two cities. Let Πij denote the amount of pheromone (also called
trail) on the edge between cities i and j and let ηij be the visibility of j from i
defined as:

ηij =
1

distance(i,j)

Then the bigger the product of Πij and ηij , the more likely it is that j will be

29

3.6. ANT COLONY OPTIMIZATION CHAPTER 3. ALGORITHMS

chosen as the next city. The trail and visibility are now weighted by parameters α

and β and we arrive at the following formula (where pi,j (t) is the probability of
choosing city j from city i at time t and allowed_k is the set of cites that are still
allowed (unvisited) for ant k:

pij(t) =


Πα

ijη
β
ij

∑k∈allowed_k Πα
ikη

β
ik

, if j ∈ allowed_k

0, otherwise
This probabilistic choice however does not guarantee that the optimal solution

will be found. In some cases, a slightly worse than optimal solution may be found
at the very beginning and some sub-optimal arcs may be reinforced by deposited
pheromones. This reinforcement can lead to stagnation behaviour resulting in the
algorithm never finding the best solution.

After all of the ants have completed their tours, the trail levels on all of the arcs
need to be updated. The evaporation factor Ï ensures that pheromone is not accu-
mulated infinitely and denotes the proportion of âoldâ pheromone that is carried
over to the next iteration of the algorithm. Then for each edge the pheromones
deposited by each ant that used this edge are added up, resulting in the following
pheromone level-update equation:

Πij(new) = p ∗Πij(old) + ∑m
k=1△Πk

ij

where m is the total number of ants on the system, and △Πk
ij is the amount of

pheromone deposited by ant k onto the edge from i to j at the current iteration.
This amount is based on a constant Q, which is the total amount of pheremome
that can be distributed on each iteration, divided by the length of the tour found
by ant k denoted Lk.

△Πij(t) =


1

Llength_o f _best_tour(t)
, if arc (i,j) ∈ best_tour

0, otherwise
And for the first iteration, since the ants have no pheromone to follow, we will

be using:

Π0 = (n ∗ Lnn)−1,

where n is the number of cities and Lnn is the tour length produced by the
nearest neighbor heuristic.

For the rest of the parameters, we will be using Dorian Gaertner and Keith

30

CHAPTER 3. ALGORITHMS 3.6. ANT COLONY OPTIMIZATION

Clark [14], where suggest different kind of optimal parameters based on experi-
mental tests. In our case, we will be picking α, the parameter that controls the
influence of distance, equal to 1; β, the parameter that controls the influence of
pheromone, equal to 5; the evaporation rate parameter p equal to 0.5; a number
of maximum iteration set as 40 and the constant Q equal to the total number of
pheromones equal to 100.

The pseudocode for the Ant Colony Algorithm goes as follow:

Algorithm 8 Ant Colony Optimization

input algorithm parameters
initialize pheromone matrix
for iteration < iter_max do

for all ants k=1,...,m do
Create tour_k based on the actual pheromone matrix

end for
Best_tour← evaluate and find the best of all m tours
Upgrade pheromone matrix according to the algorithm

end for
return Best_tour
=0

And the following table shows the results of this algorithm, where for every n
cities it have been run 20 times and computed its mean:

31

3.7. GENETIC ALGORITHMS CHAPTER 3. ALGORITHMS

Table 3.8: Ant Colony Optimization

cities iterations improvement from a random tour time (s)

25 20 65,15% 0,72
25 30 68,55% 1,14
25 40 68,97% 1,59
- - - -

50 20 74,28% 6,30
50 30 76,59% 9,38
50 40 73,52% 13,41
- - - -

100 20 82,70% 58,54
100 30 82,18% 87,91
100 40 82,35% 115,54

- - - -
150 20 85,21% 224,80
150 30 85,80% 330,97
150 40 85,81% 446,06

Â¡We can see that doing 30 iterations on this method give almost the same
result as doing 40, but with nearly 26% less time. For this reason, we will be
using the Ant Colony Optimization with 30 iterations because it have a better
improvement/time ratio.

3.7 Genetic Algorithms

In nature, there exist many processes which seek a stable state. These processes
can be seen as natural optimization processes. Over the last 30 years several at-
tempts have been made to develop global optimization algorithms which simulate
these natural optimization processes. Some of these attempts have resulted in the
already seen optimization methods: Simulated Annealing, based on natural an-
nealing processes; Ant Colony Optimization, based on the ants behaviour and the
one we will see in this chapter, Evolutionary Computation, based on biological
evolution process.
Genetic Algorithms were introduced in 1975 and belong to one of the Evolution-
ary Computation’s branches. In these algorithms the search space of a problem
is represented as a collection of individuals and the purpose of using a genetic

32

CHAPTER 3. ALGORITHMS 3.7. GENETIC ALGORITHMS

algorithm is to find the individual from the search space with the best âgenetic
materialâ. The quality of an individual is measured with an evaluation function.
The part of the search space to be examined is called the population. Roughly, a
genetic algorithm works as follows:

Algorithm 9 Abstract Genetic Algorithm

Make initial population at random
while Not stop do

Select parents from the population
Produce children from the selected parents
Mutate the individuals
Extend the population adding the children to it
Reduce the population

end while
return the best individual found

First, the initial population is chosen, and the quality of this population is de-
termined. Next, in every iteration parents are selected from the population. These
parents produce children, which are added to the population. For all newly cre-
ated individuals of the resulting population a probability near to zero exists that
they will mutate, i.e. that they will change their hereditary distinctions. After
that, some individuals are removed from the population according to a selection
criterion in order to reduce the population to its initial size. One iteration of the
algorithm is referred to as a generation.
The operators which define the child production process and the mutation process
are called the crossover operator and the mutation operator respectively. Mutation
and crossover play different roles in the genetic algorithm. Mutation is needed
to explore new states and helps the algorithm to avoid local optima. Crossover
should increase the average quality of the population. By choosing adequate
crossover and mutation operators, the probability that the genetic algorithm re-
sults in a near-optimal solution in a reasonable number of iterations is increased.
As you can imagine, there are a lot of different crossover and mutation operators
and it is very difficult to determine which ones are better than the others. For this
algorithm, we will be using Omar M.Sallabi and Younis El-Haddad [z] paper’s
idea and using theirs operators.
The first approach to the genetic algorithm turned not to be very accurate (it can
be found in the code folder). This method kind of looks very intuitive and easy
to implement by only looking at its abstract pseudo code, but in reality you have
to be very precise and make sure that on each generation a large range of search

33

3.7. GENETIC ALGORITHMS CHAPTER 3. ALGORITHMS

space is discovered, no loops of population are produced and secure some random
noise is added to the actual population.
Returning to Omar M.Sallabi and Younis El-Haddad [15], it introduces a new
crossover technique for genetic algorithms in order to perform the Improved Ge-
netic Algorithm (IGA).
Their idea for this method is to start by a population of only 2 individuals. Then, a
Swapped Inverted Crossover (SIC) is applied to them in order to produce 12 chil-
dren. Afterwards, 10 copies for each one of those 12 new children are made, where
on each one of the copies a different mutation method is applied. All this produce
the population which will be analysed, this is to say, a total of 134 individuals. A
fitness function will calculate all their lengths and the best two individuals will
be selected. Finally, a partial local optimal mutation operation for the next gen-
eration is applied and also a population reformulates operation. This techniques
ensures that new cities will be at the middle part of the cycle, ready for a possible
improvement and not stuck at the sides of the tour.

So going into detail on each part of this method, as said It starts with 2 indi-
viduals called parents and a Swapped Inverted Crossover is applied to them. The
main idea of the SIC is to backtrack different ways to search for better tours and
can be applied with a one or two point crossover, or both, as is done here. With
the Two Point SIC, two random cut points (p1 and p2) are defined in order to cut
the parents tour in three parts: a head, contain (1,2,...,p1-1), the middle containing
(p1,...,p2), and the tail containing (p2+1,...,n). Then the head and tail of each par-
ent are flipped, and then the head of the first parent is swapped with the tail of
the other parents, and vice versa. Applying this process will create two children:
O1 and O2, as seen in the Figure below. For the other 10 children, O3 to O12, the
One point SIC will be applied. With almost the same idea, cutting one part of one
parent and replacing it with another part of the second parent is how the rest of
the children are born.

Figure 3.6: Children’s birth from 2 parents, details can see in [z]

Then, a rearrangement operation is done to the newborn children, were it finds

34

CHAPTER 3. ALGORITHMS 3.7. GENETIC ALGORITHMS

the longest distance between two cities of the tour and swap them for three dif-
ferent cities located on three different positions on the tour (beginning, middle,
and the end). The best position, plus the original position will be accepted. Since
this operation works in random matter, it may not achieve any improvement after
several iterations, but it may take big jump and improve the result.
After that, the multi mutation operator is applied to the children. It produces 10
copies of each one with different city’s swaps on it, so the mutations still got the
genetic of the parents but with different permutations.
Now we already have all the population of the new generation created and a fit-
ness function will determine all their length and choose the best 2 tours, that will
be used as the parents for the next generation. But before that, 2 more operations
have to be applied to both of them: the partial local optimal mutation operation
(PLOO), which will apply the 2-opt algorithm to a subtour of one of the parents in
order to produce a local minimal on it; and the population reformulates operation,
which is no other than just a reformulate of the city’s indexes of the tour.

The pseudo code for the Improved Genetic Algorithm is the following:

Algorithm 10 Improved Genetic Algorithm

input number of parents, number of maximum iterations, number of children
per generation, mutation number
initialize population matrix
current_parents← random_tours
for iteration t=1,2,...,iter_max do

new_children← SIC(current_parents)
rearranged_children← rearrange_oper(new_children)
mutated_children← multi_mutation_oper(rearranged_children)
population_matrix← current_parents,rearranged_children,mutated_children
new_parents← select_parents(population_matrix)
optimal_new_parents← PLOO(new_parents)
current_parents← reformulate_oper(optimal_new_parents)

end for
return current_parents

In order the find an optimal number of iterations ([z] suggest 2000), we will
try different values and compare the efficiency for them:

35

3.7. GENETIC ALGORITHMS CHAPTER 3. ALGORITHMS

Table 3.9: Genetic Algorithm iteration comparison

cities iter improvement vs random improvement vs NN time diff vs NN

25 500 68,11% 8,90% 2,63
25 1000 67,19% 7,43% 5,17
25 2000 68,87% 11,14% 10,63
25 3000 67,29% 7,64% 16,14
- - - - -

50 500 74,12% 11,22% 5,66
50 1000 75,23% 12,10% 12,67
50 2000 77,06% 8,86% 20,54
50 3000 77,45% 7,52% 30,69
- - - - -

100 500 84,21% 10,33% 10,07
100 1000 84,91% 7,09% 22,03
100 2000 84,60% 7,92% 47,79
100 3000 85,26% 8,45% 72,32

- - - - -
150 500 86,61% 8,73% 12,53
150 1000 86,40% 5,86% 32,58
150 2000 86,89% 7,97% 79,36
150 3000 86,59% 8,29% 117,18

36

Chapter 4

Experimental results

In this chapter, all the algorithms seen will be compared to each order in differ-
ent scenarios in order to know which one performs better. The algorithms that use
parameters will be using the bests and optimal ones found on their own section.

Table 4.1: Comparison of the algorithms in terms of quality

n BF NN 3-Opt MCMC SA AC GA

10 100% 93,77% 96,94% 98,56% 99,29% 98,87% 100%
20 0% 86,80% 98,69% 69,31% 96,49% 95,28% 99,23%
30 0% 90,48% 98,69% 38,04% 93,67% 92,84% 99,14%
40 0% 84,59% 99,08% 5,49% 88,99% 89,54% 98,80%
50 0% 85,79% 99,94% 2,34% 82,67% 88,86% 97,13%
75 0% 88,16% 0% 1,98% 67,31% 85,60% 100%

100 0% 87,28% 0% 1,67% 27,75% 88,65% 100%
125 0% 90,36% 0% 1,34% 5,26% 90,03% 100%
150 0% 92,99% 0% 1,23% 4,97% 94,75% 99,82%

37

CHAPTER 4. EXPERIMENTAL RESULTS

Table 4.2: Comparison of the algorithms in terms of computation speed, in seconds

n BF NN 3-Opt MCMC SA AC GA

10 25,03 0,01 0,01 0,06 0,06 0,08 5,31
20 0,00 0,01 0,91 0,09 0,12 0,77 10,57
30 0,00 0,01 7,74 0,09 0,13 2,19 12,76
40 0,00 0,04 36,69 0,11 0,16 5,11 16,76
50 0,00 0,09 121,60 0,14 0,21 10,27 21,15
75 0,00 1,46 0,00 0,59 0,89 46,87 133,23
100 0,00 5,01 0,00 1,29 1,5 128,72 172,97
125 0,00 11,05 0,00 1,03 1,63 274,89 231,94
150 0,00 20,94 0,00 1,17 2,26 452,72 289,39

The column’s labels are BF for Brute Force algorithm, NN for nearest neigh-
bour algorithm, SA for Simulated Annealing, AC for Any Colony and GA for
Genetic Algorithm.
At the first table, there are shown the results of the comparison in terms of quality
of the solution. This is to say, the best tour produced by all algorithm on each
iteration gets a 100%, and then the other tours are compared with that tour.
The second table shows the time average, in seconds, which each algorithm pro-
duce a solution depending on the number of cities n.
For each n shown, all algorithms were run at least 5 times and computed its aver-
age of quality and time.

38

Chapter 5

Conclusion

It have been proved that Brute Force algorithm always returns the best solution
for the TSP but it is limited to a number of 11 cities, otherwise its computational
time is extremely large. In order to solve TSP for n ≥ 11, heuristics methods such
2-opt and 3-opt are used because they work very efficient when n ≤ 50 as shown
in Figures 4.1 and 4.2. With n bigger than 50 its computational time increase faster
than exponentially and it is when the presented Markov Chain’s based algorithm
take a step forward. Ant Colony Optimization and Genetic Algorithm both pro-
duces good quality solutions with almost the similar computation speed, but it
is the Genetic Algorithm that almost always guarantees to find the best solution
among the others.

39

CHAPTER 5. CONCLUSION

40

Bibliography

[1] Chandra, Barun Karloff, Howard Tovey, Craig. New Results on the Old k
-opt Algorithm for the Traveling Salesman Problem, SIAM J. Comput., 28, (1999),
1998-2029.

[2] G. Dantzig, R. Fulkerson and S. Johnson, Solution of a Large-Scale Traveling-
Salesman Problem, INFORMS , 88, no. 1, (1954).

[3] Martin, Olivier and Otto, Steve and Felten, Edward. Large-Step Markov Chains
for the Traveling Salesman Problem, Complex Systems, 5, (1997),

[4] Ben-Ameur, Walid. Computing the Initial Temperature of Simulated Annealing,
Computational Optimization and Applications, 29, (2004), 369-385.

[5] S. Anily and A. Federgruen. Simulated Annealing Methods with General Accep-
tance Probabilities, Journal of Applied Probability, 24, (1987), 657-667

[6] Wenhong Tian. On the Classification of NP Complete Problems and Their Duality
Feature, International Journal of Computer Science Information Technology,
10, (2018),

[7] Matthew Richey. The Evolution of Markov Chain Monte Carlo Methods, Pub-
lished Online, (2017), 383-413

[8] Dennis Francis Roerty. M-SALESMAN BALANCED TOURS TRAVELING
SALESMAN PROBLEM WITH MULTIPLE VISITS TO CITIES ALLOWED,
Thesis, (1974).

[9] Gutin, Gregory and Yeo, Anders and Zverovich, Alexey. Traveling Salesman
Should not be Greedy: Domination Analysis of Greedy-Type Heuristics for the TSP,
Discrete Applied Mathematics, (2002), 117, 81-86

[10] Timothy Huang, Yuriy Nevmyvaka. A Practical Markov Chain Monte Carlo
Approach to Decision Problems Department of Mathematics and Computer
Science, (2001).

41

BIBLIOGRAPHY BIBLIOGRAPHY

[11] Richard L. Smith and Luke Tierney. EXACT TRANSITION PROBABILITIES
FOR THE INDEPENDENCE METROPOLIS SAMPLER, (1996).

[12] Timothy Huang, Yuriy Nevmyvaka. A Practical Markov Chain Monte Carlo
Approach to Decision Problems Department of Mathematics and Computer
Science, (2001).

[13] Mark Jerrum Alistair Sinclair. THE MARKOV CHAIN MONTE CARLO
METHOD: AN APPROACH TO APPROXIMATE COUNTING AND INTE-
GRATION,Online, 12, (1996). 482-520

[14] Gaertner, Dorian and Clark, Keith. On Optimal Parameters for Ant Colony
Optimization Algorithms. Proceedings of the 2005 International Conference
on Artificial Intelligence, ICAI’05, 1, (2005). 83-89

[15] Sallabi, Omar and Elhaddad, Younis. An Improved Genetic Algorithm to Solve
the Traveling Salesman Problem. (2009).

42

