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Abstract

The main goal of this work is to understand the best model for describing neu-
ronal activity, the Hodgkin-Huxley model, doing simulations of it and studying
simpler models that are able to display some of the Hodgkin-Huxley activity. We
are going to study FitzHugh-Nagumo, Morris-Lecar and Hindmarsh-Rose model.
In addition, since we want to study neuron activity via dynamical systems, we
also study bursting behaviour. We want to understand how different kinds of bi-
furcations in dynamical systems affect neuron activity, studying the bifurcations
that take part in such activity.
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Introduction

Mathematics in neuroscience permits another insight into the activity of neu-
rons, leading to a wide range of discoveries and improvements. The relation be-
tween neuroscience and dynamical systems provides you with more information
about how neurons communicate. In neuronal activity, the major phenomena that
occur are resting or quiescent, action potential or spiking, chaotic behaviour and
bursting, all of them covered in this project.

In the first chapter, we introduce the more famous and quintessential model
that describes neurons dynamics: the Hodgkin-Huxley model. Since it is a four-
dimensional model, it is a difficult model to analyze. This caused the emergence
of simpler models that displayed some neuron activity that resembles the one
exhibited by the Hodgkin-Huxley. In this project, we are going to see FitzHugh-
Nagumo, Morris-Lecar and Hindmarsh-Rose model.

In the next chapter, we are going to study the FitzHugh-Nagumo model, which
is a simpler model that does not take into account the biological information of
neurons focusing exclusively on the mathematical properties. We are going to fo-
cus on periodic neurons’ activity, doing simulations of such activity integrating
the equations of the model.

The last chapter introduces an important phenomenon in neuronal communi-
cation that allows the transmission of more information between neurons: burst-
ing excitability. We are going to simulate such phenomena integrating Morris-
Lecar and Hindmarsh-Rose model. Those models are fast-slow models with a
one-dimensional slow variable. Such underlying structure of the models is essen-
tial to create the bifurcation sequences leading to bursting.

In the end, we include a brief summary and conclusions of the work adding
some future work we could consider.
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Chapter 1

Hodgkin and Huxley Model

1.1 Previous Content

Alan Lloyd Hodgkin and Andrew Huxley [16] are well-known for their studies
on bifurcations in neuronal models, being the first ones to relate bifurcations on
dynamical systems to neuroscience and creating the most accepted model to de-
scribe neurons kinetics. Neuronal models provide information about how neurons
interact, how information is transmitted through them. The connection between
mathematics and neuroscience leads to a wide range of discoveries, such as the
computations of neurons.

Hodgkin-Huxley model is the most important model computed by Hodgkin
and Huxley in 1952 studying the axon of a squid, chosen because of its huge-
ness compared to other neurons. They studied the different changes in mem-
brane voltage that the cell undergoes, applying different amplitudes of currents
experimentally focusing on the abrupt changes of the membrane voltage, similarly
called action potentials or spikes. An action potential is an abrupt and transient
change of resting membrane voltage or resting membrane potential, this spike is
perceived by other cells and is their communication media. The cell membrane
can be depolarized, the membrane voltage can become more positive; it can be
hyperpolarized, the membrane potential goes far away from the resting state in a
negative way; and repolarized, the membrane voltage lows until the resting state
is achieved. The model wanted to study the generation and propagation of an
action potential.

The model was issued from studying the neuron as an electric circuit and
applying all the properties known there. Firstly, they observed that the membrane
had an associated electric capacitance and an electric potential difference between
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Figure 1.1: Equivalent circuit proposed by Hodgkin and Huxley. Figure taken from [4].

the inside and the outside of the cell, being the inside negative over the exterior.

Definition 1.1. An ion is a charged atom, i.e. an atom that loses or gains one or more
electrons. Ion channels are macromolecular pores located in all cells membranes that are
constantly opening and closing to signals and responses.

Ion channels play an important role in the excitability of nerve and muscle, as
they have as main function to establish a resting membrane potential. In addition,
each channel is like an excitable molecule because it responds to some stimulus
such as membrane potential changes, other chemical stimulus, synapses1... Hence,
the cell membrane needs to be studied as a circuit containing the conductance of
the currents2, i.e. the ability of an ion to fluctuate across the cell membrane, and
the membrane capacitance. As not all ions are allowed to flow in and out and the
membrane can be permeable or impermeable to some kind of ions, a membrane
capacitance is utterly necessary.

Definition 1.2. Gating is the opening or closing of the pore when the channel responds to
stimulus. A gate is a channel capable of gating.

There are a lot of ions that take part in biological procedure in human body,
some of them are H+, Mg2+, Cl−, Na+, K+, Ca2+, HCO−

3 and HPO2−
4 . When it

comes to the nervous system, Na+, K+, Ca2+ and Cl− are the main responsible
for the action. The giant axon has three major currents: persistent outward K+

current with four activation gates, transient inward Na+ current with one inacti-
vation gate and three activation gates, and a leak current mostly carried by Cl−

ions experimentally. Inward Na+ current depolarizes the membrane potential and
outward K+ current hyperpolarizes it. The leak current is constant and it does not
depend on the conductance, so it does not have activation and inactivation vari-
ables as the other ones do. Moreover, on cell membranes, there are places where

1A synapse is a connection between neurons.
2A current is any net flow of charges.



the current flows naturally and we cannot control it, which is why we consider
the leaky current.

Experimentally, Hodgkin and Huxley applied two different techniques: space
clamp or voltage-clamp. The space clamp technique consists of preserving a uni-
form spatial distribution of the membrane current, removing the spatial depen-
dence. Hence, having an ordinary differential equation. The voltage-clamp tech-
nique consists of maintaining the voltage of the membrane at a desired value.

1.2 Background of the equations

The net current of an ion, using Ohm’s law3, is V = IR and the conductance of
the membrane is given by g = 1/R, where R is the membrane resistance, V is the
potential difference and I is the intensity current, being R, V and, in consequence,
I different for each kind of ion. Hence, the size of the current is determined by
two factors: the potential difference and the electrical conductance. Joining the
prior, we get the expression of the intensity for each ion: Iion = gionVion.

Definition 1.3. [24] The conductance, g, is the ease of flow of current between two points.
The resistance is the reciprocal of the conductance.

Definition 1.4. [24] The potential difference, V, is the work needed to move a unit test
charge in a frictionless manner from one point to another.

Definition 1.5. Nernst equilibrium potential value[4] is a potential value for which the
current flowing through the membrane stabilizes and equals 0, i.e. net crossing membrane
is 0. Due to the depolarizing and hyperpolarizing of the membrane, its goal is to stabilize
itself reaching an equilibrium called Nernst equilibrium. The Nernst equilibrium is given
by the expression proposed by Walter Nernst:

Eion =
R∗T
zF

ln
(
[Ion]out
[Ion]in

)
,

where T is the temperature in Kelvins, F is the Faraday’s constant, R∗ is the universal gas
constant, z is the valence4 of the ion, [Ion]in is the concentration of the ion inside the cell
and [Ion]out is the concentration of the ion outside the cell.

3The Ohm’s law states that the current through an electric circuit between two points is directly
proportional to the voltage across such two points. The constant of proportionality is the resistance
of the circuit. Hence, we arrive at the mathematical expression: I = V/R.

4Valence of an ion is the combining capacity with other atoms when forming molecules or chem-
ical elements. For example, if an atom has valence 1 it can be combined with only one atom.



In the model, Vion is called the driving force and is considered V − Eion where
Eion is the ion’s Nernst equilibrium potential, which depends on every ion, and V
is the global membrane voltage. The driving force is the difference between the
global membrane voltage and the Nernst equilibrium. In a current of ions, the
voltage needs to be considered V − Eion because the current will be inward or out-
ward depending on the Nernst equilibrium. We will have more or less intensity
of a current of an ion if the global membrane voltage is further or closer to the
Nernst equilibrium of such ion. We will have an inward or outward current if
the membrane voltage is bigger or lower than the Nernst equilibrium. For exam-
ple, when the sodium concentration is bigger than its equilibrium, the current is
inward. In conclusion, the intensity of the current of ions is

Iion = gion(V − Eion), (1.1)

being the conductance of an ion, gion, not constant on channels because there is
a transient inflow or outflow of them and the Nernst equilibrium potential, Eion,
constant although it can hold different values in different experiments.

Furthermore, the intensity of a current is the instant change of charge: Ic =
dq
dt ,

where Ic in the model is the intensity current of the membrane, which has been
studied as an electric circuit, and q the charge of the current. The charge is related
to the capacitance of the membrane, Cm5, and the global voltage membrane, V,
having q = CmV. Deriving with respect to time, we get dq

dt = Cm
dV
dt = Ic. In con-

sequence, using First Kirchhoff’s law6 and considering that the total current that
travels through the membrane is formed by the intensity current of the membrane,
Ic, and the intensity current of the ions, Iions, we have the expression:

Ic + Iions = 0, (1.2)

and Ic = Cm
∂V
∂t = −Iions.

When we have an external current, carried out by synapses or applied ex-
perimentally, the sum of (1.2) equals the intensity of the applied current, i.e.
Iext = Ic + Iions, where Iions = ∑

k
gk(V − Ek), where k ranges over the finite set

of ions we have.

5The membrane capacitance, Cm, is considered constant in order to simplify experiments and
research.

6The first Kirchhoff’s law states that the sum of all intensities inside a circuit equals 0 if no
external current is applied, i.e. in a circuit point the sum of all inward currents equals the sum of
all outward currents.



The behaviour of an electric current can be described by the equations: Cm
dV
dt +

Iion = Iext. A positive external current, i.e. Iext > 0, will tend to depolarize the
cell, whereas a positive ionic current, i.e. Iion > 0, will hyperpolarize the cell.
Taken into account the different ions on the squid axon, we get the equation that
expresses the change in the membrane voltage according to the different channels

CmV̇ = Iext − IK − INa − IL, (1.3)

being V̇ = dV
dt .

When it comes to the net current of an ion on a channel, we have to take into
account that the conductance is a time and voltage-dependent function. Accord-
ing to the creation of an action potential, we can see how the flow of each ion
changes over time and voltage. Voltage sensors located on the membrane open an
activation gate and allow selected ions to flow through the channels or open an
inactivation gate that blocks the channel. That is why g for transient ions currents
is defined as

g = ḡmahb, (1.4)

where m is the probability of an activation gate being in the open state, h is the
probability of an inactivation gate being in the open state, being 0 for closed and
1 for opened, a is the number of activation gates, b is the number of inactivation
gates, being a+ b the total sum of gates, and ḡ is the maximum conductance when
all the channels are opened. The parameter ḡ is determined experimentally and it
is considered constant for each ion. If an inactivation gate is completely opened,
the channel is blocked and ions cannot pass through. Probabilities m and h are
also known by gating variables and are not constant due to the procedure of cre-
ating an action potential, as we are going to see in section 1.4.

1.3 Equations of the Hodgkin-Huxley model

Combining equations (1.1), (1.3) and (1.4) and assuming that in the squid giant
axon there are three major current: the potassium current, with 4 activation gates
with probability n each and 0 inactivation gates, the sodium current, with 3 activa-
tion gates with probability m each and 1 inactivation gate with probability h, and
the leaky current(carried out mostly by chlorine ions) with no activation gates, i.e.
with a = b = 0 in equation (1.4) and gL = ḡL, we can express the Hodgkin-Huxley
gate model

CmV̇ = Iext − ḡKn4(V − EK)− ḡNam3h(V − ENa)− gL(V − EL), (1.5)



where Iext is the applied current and each activation variable changes with
respect to time so we have

ṅ = αn(V)(1 − n)− βn(V)n =

(
αn(V)

αn(V) + βn(V)
− n

)
(αn(V) + βn(V)),

ṁ = αm(V)(1 − m)− βm(V)m =

(
αm(V)

αm(V) + βm(V)
− n

)
(αm(V) + βm(V)),

ḣ = αh(V)(1 − h)− β(V)h =

(
αh(V)

αh(V) + βh(V)
− n

)
(αh(V) + βh(V)),

(1.6)

where

αn(V) = 0.01
10 − V

exp
( 10−V

10

)
− 1

, βn(V) = 0.125 exp
(
−V
80

)
,

αm(V) = 0.1
25 − V

exp
( 25−V

10

)
− 1

, βm(V) = 4 exp
(
−V
18

)
, (1.7)

αh(V) = 0.07 exp
(
−V
20

)
, βh(V) =

1
exp

( 30−V
10

)
+ 1

,

creating a coupled four-dimensional system.

The Nernst equilibrium potentials and the maximal conductance are predeter-
mined at a temperature of 6.3C◦, see [4], as

Ek = −12mV, ENa = 120mV, EL = 10.6mV,

ḡK = 36mS/cm2, ḡNa = 120mS/cm2, gL = 0.3mS/cm2. (1.8)

The membrane conductance, Cm, is considered 1 in all experimental data Hodgkin-
Huxley used. Functions αx(V) and βx(V) for x = n, m, h describe the transition
rates between open and closed states of the channels and are voltage-depending
functions. These two functions are wisely chosen experimentally to match experi-
mental data using the voltage-clamp technique.

Definition 1.6. Steady-state activation or inactivation value(n∞, m∞ and h∞) is a value
that the gating variables tend to when time tens to infinite and the membrane voltage is
clamped. The steady-state value is given by the expression

x∞ =
αx

βx + αx
, (1.9)

for x = n, m, h .



Commonly the model is used in a standard form applying the forward change
of variables: x∞ = αx

αx+βx
and τx = 1

αx+βx
for x = n, m, h, being x∞ the steady-state

activation or inactivation function and τx the voltage-dependent time constants.
Hence, we can rewrite (1.6) as

ṅ =
n∞(V)− n

τn(V)
, ṁ =

m∞(V)− m
τm(V)

, ḣ =
h∞(V)− h

τh(V)
.

The former equations can be solved as x(t) = x∞ + (xo − x∞) exp
(

t
τm

)
defining

the initial value as x(0) = x0 for x = n, m, h.

Hodgkin-Huxley model is a one-parametric four-dimensional model having
only the applied current, Iext, as a parameter. Hence, if we want to study its
dynamics, we have to study the different kinds of bifurcations being Iext the bi-
furcation parameter. Nevertheless, there is a huge limitation when computing the
bifurcation diagram of the model because of its dimension. In consequence, there
have been studies on simpler planar vector fields and other simpler systems that
illustrate some of the solutions of the model, but of course not that exhaustive. For
example, we find a twisted homoclinic orbit that for topological reasons cannot be
found in a planar system, but there are planar systems that have the same qual-
itative properties as the Hodgkin-Huxley without its complexity and having an
easier analysis. Some of this simpler models are going to be discussed in sections
1.6 and 2.1.1 and in chapter 2.

1.4 Action potential on Hodgkin-Huxley model

Figure 1.2 shows how an action potential, an abrupt change in membrane volt-
age, works being Vrest = 0 the resting state 7. Due to the higher extracellular
concentration of Na+, the current of Na+ flows in, i.e. the probability function
m(t) is no longer zero and it starts to increase. This inflow leads to an upstroke
on the membrane voltage until the sodium Nernst equilibrium is reached, as we
can see on the blue point in figure 1.2. In consequence and in order to stabilize the
membrane voltage, the activation of Na+ current leads to a decrease in h(t) and
to an increase in n(t) augmenting the K+ outward current. When all activation
and inactivation gates are active, the membrane voltage repolarizes again decreas-
ing the membrane voltage until reaching the potassium Nernst equilibrium, the

7The resting state is considered Vrest = −70mV in most of the references and experiments, but
sometimes is normalized to be at zero, as in [2].



orange point on figure 1.2, and going through a period where the neuron is not
capable of spiking again, called refractory period.

Definition 1.7. A refractory period is a period where there is no possibility of a new action
potential and it is located after the upstroke and right before the resting state.

Figure 1.2: Action potential in Hodgkin-Huxley model when Iext = 0. Figure obtained using the
code A.1 with parameters as (1.8) and equations (1.5) and (1.6).

There is no possibility of a new spike until the neuron is on its recovery phase,
close to the resting state and when n(t) and h(t) stabilize. When the membrane
voltage is close to Vrest, recovery of n(t) and h(t) is slow, as we can see in figure
1.3, where we displayed the gating variables functions. Hence, the outward K+

current is still activated causing V to go below Vrest causing what is called an after-
hyperpolarization, depicted on figure 1.2 between the orange and the green point.
We can see how the resting state is a stable equilibrium, even if we have a strong
or a brief depolarization and even if there is inward current enough to generate a
spike, the neuron goes back to rest.

On figure 1.3, we can prove that all functions stabilize and tend to a number,
which has to be the steady-state value. Using the equation (1.9) and the code
in A.1, we can calculate the steady-state value and see if it concurs with figure
1.3. For the potassium activation function, n(t), probability functions stabilize to
αn ≈ 0.05820 and βn ≈ 0.12499, being n∞ ≈ 0.31768, concurring with the red curve
in figure 1.3. For the sodium activation function, m(t), probability functions stabi-
lize to αm ≈ 0.22357 and βm ≈ 3.99994, being m∞ ≈ 0.05293, concurring with the
red curve on figure 1.3. Finally, for the sodium inactivation function, h(t), proba-



bility functions stabilize to αh ≈ 0.069999 and βh ≈ 0.04743, being h∞ ≈ 0.59811,
concurring with the approximate 0.6 value that the black curve tends to in figure
1.3. In addition, we can also see that m(t) initializes and stabilizes fast, faster
than the others, and also reaches the maximum value. Activation variable m(t) is
incredibly fast, leading to simpler models not taking into account this gating vari-
able, such as Morris-Lecar model discussed on section 1.6. Furthermore, we can
also see that when m(t) starts to increase, h(t) starts to decrease and n(t) starts to
increase, according to the process of creating an action potential explained before.

Figure 1.3: Gating variable functions in Hodgkin-Huxley model when Iext = 0, being the sodium
activation function, m(t), the blue curve, the potassium activation function, n(t), the red curve and
the potassium inactivation function, h(t), the black curve. Figure obtained using the code A.1 with
parameters as (1.8) and equations (1.5) and (1.6).

In both figures, we have seen that the fast activation and the slow inactivation
of the sodium current is the reason for the creation of an action potential. Hence,
the amplitude of the action potential depends on the concentration of sodium on
the outside of the cell.

1.5 Analysis of the model

When the injected current is low, the cell remains quiescent; when the injected
current is higher, the cell can fire repetitively or a single spike depending on the
intensity of the current injected. If the current we apply is bigger and longer
enough we can have a periodic spiking.

Definition 1.8. A periodic spiking is a set of action potentials that happen repeatedly not
necessarily with the same amplitude each. In this case, we have a transition from quiescent
to repetitive spikes. From the dynamical systems point of view, we have a transition from
a stable equilibrium point to a stable limit cycle considering the injected current, Iext, our
bifurcation parameter.



I computed a voltage over time graph that exhibits the behaviour of the action
potentials for different values of Iext, for different values of applied current. In
addition, I graphed how the activation and inactivation gating variables behave
for different values of applied current. I computed it using Colab and Python lan-
guage and using the experimental data Hodgkin and Huxley used, considering
Cm = 1pF/cm2, a temperature of 6.3C◦ and all the constant parameters as in (1.8).
When defining the intracellular potential, one is free to choose a convention that
defines the resting intracellular potential or the extracellular potential to be zero. I
assumed that my initial potential in this study is V = −70mV, so my extracellular
potential is 0 and my intracellular potential would be 70mV at first.

When I apply a current that is constantly 0, Iext = 0µA, only one spike is gen-
erated and then it goes directly to rest, without any kind of oscillation exhibiting
the same structure as figure 1.2 and 1.3. In consequence, the Vrest is a stable equi-
librium point.

If we apply a constant intensity of 20µA, Iext = 20µA, a periodic spiking activ-
ity is observed in figure 1.4. A stable limit cycle was born and the amplitude of it
is constant except from the first spike. If we do not apply any change, the neuron
would spike forever via a periodic spiking behaviour.

Figure 1.4: Action potential(left) and activation and inactivation of sodium and potassium chan-
nels(right) on Hodgkin-Huxley model when Iext = 20µA. Figure obtained using the code A.1 with
Cm = 1, T = 6.3C◦, parameters as in (1.8) and equations (1.5) and (1.6).

When we keep augmenting the intensity, the periodicity of the spikes is being
maintained but its amplitude is lower every time until a certain value is reached
and the neuron does not spike and goes back to rest. In figure 1.5, where we
applied an intensity current of 75µA, the amplitude of the action potential is lower
and it would be even lower if we keep on increasing the applied current.



Figure 1.5: Action potential(left) and activation and inactivation of sodium and potassium chan-
nels(right) on Hodgkin-Huxley model when Iext = 75µA. Figure obtained using the code in A.1
with Cm = 1, T = 6.3◦, parameters as in (1.8) and equations (1.5) and (1.6).

Provided that a certain value of Iext is reached, approximately around Iext =

125µA, the neuron is not able to spike periodically and it goes back to rest oscil-
lating, as we can see in figure 1.6. In this case, Vrest is a stable equilibrium point
and the stable limit cycle has vanished. We can see that our equilibrium point
is approximately V = 25mV. In fact, if we solve the equation (1.5) for V, being
Iext = 200, Cm = 1, gx and Ex for x = Na, K, L as (1.8) and the activation and inac-
tivation function being equal to their steady-state value for this applied intensity,
i.e. n(t) = n∞ = 0.669956, m(t) = m∞ = 0.479992 and h(t) = h∞ = 0.054814, we
get the solution V ≈ 24.5702, concurring with figure 1.6(left).

Figure 1.6: Action potential(left) and activation and inactivation of sodium and potassium chan-
nels(right) on Hodgkin-Huxley model when Iext = 200µA. Figure obtained using the code in A.1
with Cm = 1, T = 6.3C◦, parameters as in (1.8) and equations (1.5) and (1.6).

If we keep on augmenting the applied current over Iext = 200µA, the oscilla-
tions before going back to rest are shorter every time. If we keep on augmenting
the intensity, the action potential resembles the one in figure 1.2.



We can also study the phase plain of the activation and inactivation variables
over other activation and inactivation variables and over voltage. For example, we
can plot the (n, h), (m, n) and (V, n) graph when Iext = 15µA, following [10].

Figure 1.7: Phase plane projections for equations (1.5) and (1.7). The left one is n versus h, the center
one is m versus n and the left one is V versus n. Figures obtained from A.1 with Iext = 15µA,
Cm = 1, the values of the parameters as in (1.8) and the equations (1.5) and (1.6).

In figure 1.7(left), we can see that there exists a correlation between the activa-
tion variable of the potassium, n, and the inactivation of the sodium, h, concretely
h ≈ 0.8− n, see [4]. In addition, in figure 1.7(center), we can see how the activation
variable of the sodium, m, is faster than the activation variable of the potassium, n,
concurring with the procedure of creating an action potential explained in section
1.4 and with figure 1.3. Lastly, in figure 1.7(right) we can see how the value of n
oscillates creating a limit cycle over the membrane voltage, V.

To sum up, the (t, V)-graph passes through three stages: an equilibrium stage,
a single-spike stage and a limit cycle stage, i.e. periodic spiking stage. When no
external current is applied, we have a stable equilibrium point. If the external
input increases enough, a stable limit cycle is created undergoing a supercritical
Andronov Hopf bifurcation, the bifurcation associated with the birth of a limit
cycle from a stable equilibrium point. Moreover, if we increase the external applied
current the system has a stable equilibrium point again undergoing an Andronov
Hopf bifurcation, explained in section 2.3.1.



1.6 Morris-Lecar model

Hodgkin-Huxley model is capable of exhibiting a single spike, a train of spikes,
periodic spikes, bursting and chaotic behaviour.

Definition 1.9. Bursting is a neuron behaviour created when there is a period of spiking
activity followed by a period of quiescent activity and creating a periodic loop of quiescent
and spiking activity.

Simplifying Hodgkin and Huxley model can lead to new models that can not
exhibit complex and important behaviour as bursting and chaos. Via bursting
behaviour, neurons are capable of transmitting a wide range of information, less
information is transmitted on a single spike. Hence, Morris-Lecar model should
be considered as it is a simpler model that can be used in other systems that ex-
hibit bursting behaviour.

Catherine Morris and Harold Lecar[17] started studying the barnacle muscle
fiber, which has an added calcium current and started working on a reduced sys-
tem of Hodgkin-Huxley model based on the relevant fact that the sodium current
can be considered instantaneous, as we can see in figure 1.3, being Ca+ and K+ the
only currents considered, besides the leakage current that is also considered. In
consequence, it is also known as ICa + Ik model. This model exhibits similar topol-
ogy results as Hodgkin-Huxley model but it is a two-dimensional model and, in
consequence, easier to analyze.

Morris-Lecar model combines the simplicity of FitzHugh-Nagumo model, which
will be explained in chapter 2, with the biological details of Hodgkin-Huxley
model. It is a multi-parameter model that with proper measurement of the pa-
rameters it can display a single spike or a train of spikes.

1.6.1 Equations of Morris-Lecar Model

We consider equation (1.5), delete the sodium current, add the calcium one,
assume that the calcium has one activation gate with probability m, which is equal
to the steady-state function, i.e. m = m∞, and we assume that the new variable, w,
illustrates the variation over time of the probability function of the activation gate
of the potassium, n, and of the inactivation gate of the calcium, h. According to
the previous, we arrive at the following Morris-Lecar equations

CmV̇ = Iext − gCam∞(V)(V − ECa)− gKw(V − EK)− gL(V − EL),

ẇ = λ(V)(w∞(V)− w),
(1.10)



where Cm is the membrane capacitance, gk is the respective constant conductance
for k = Ca, K, L, w is the recovery variable of the voltage membrane and Ek are the
respective Nernst equilibrium potentials for k = Ca, K, L. There are two persistent
voltage-gated currents: the depolarizing current is carried by Ca2+ and the hyper-
polarizing current by K+.

The steady-state values are defined as:

m∞(V) =
1
2

(
1 + tanh

(
V − V1

V2

))
,

w∞(V) =
1
2

(
1 + tanh

(
V − V3

V4

))
,

λ(V) =
1
3

cosh
(

V − V3

2V4

)
,

(1.11)

where V1, V2, V3 and V4 are voltage parameters that are adjusted to have the
wished pattern. This model is considered the fast subsystem in a lot of fast-
slow systems and, most important, a lot of fast-slow bursters, systems that exhibit
bursting, i.e. using the equation (1.10) and a linear slow subsystem, we can create
a system that exhibits bursting behaviour, as we are going to see in chapter 3.

1.7 Excitability

We are going to define what is known as an excitable neuron and how Hodgkin
and Huxley classified neurons via their excitability.

Definition 1.10. The threshold is the place where the decision to fire or not to fire is made.
If the membrane voltage is below the threshold, the neuron does not exhibit an action
potential or a spike.

Definition 1.11. A neuron is quiescent if the membrane potential is at rest or it illustrates
small amplitude oscillations, called subthreshold oscillations.

Definition 1.12. Subthreshold oscillations are small amplitude oscillations located on the
resting state being consequence of stable equilibrium points or small stable limit cycles on
the resting state. These kinds of oscillations are not significant enough to be considered
action potentials.

Definition 1.13. A neuron is excitable when a small perturbation on the quiescent state
due to input currents results in a long orbit before it comes back to quiescent, which
corresponds to a fixed point. Such a long orbit is what we call an action potential or spike.



When the former orbit is a large amplitude limit cycle, the neuron can fire periodically
creating a sequence of spikes.

From the dynamical systems point of view, a neuron is excitable because it
is near a bifurcation for a change on Iext, i.e. a transition from quiescence to
repetitive firing or backward varying the bifurcation parameter Iext. If we have a
system that has a global attractor equilibrium point(for example a stable focus),
it is excitable if there is a large amplitude periodic pseudo-orbit passing near the
equilibrium. Otherwise, small perturbations will not create longer trajectories that
lead to action potentials, being impossible for a neuron to spike.

Definition 1.14. Being I ⊆ R an interval of time, t0, t1 ∈ I the initial and the final
instant respectively and x(t) the solution of the equation at the instant t, if ∥x(t1) −
x(t0)∥ < ϵ, being ϵ small enough, the orbit is called a periodic ϵ-pseudo-orbit.

There is a famous classification of neurons in integrators or resonators. More-
over, Hodgkin and Huxley also suggested a way of classifying neurons.

Definition 1.15. A neuron acts as an integrator if an increase in the frequency of the
incoming current leads to a spike sooner. The more frequency we apply, the sooner the
spike is generated. These kinds of cells have the property of all-or-none spikes8 with a low
frequency.

Definition 1.16. A neuron acts as a resonator if it only responds to a certain frequency
input. These kinds of neurons do not have the all-or-none spike property and a well-defined
threshold.

1.7.1 Classification of excitability according to Hodgkin and Huxley

Hodgkin and Huxley proposed a classification via the class of excitability of
the neuron determined by the frequency of the emerging spike, i.e. the frequency
of the large amplitude limit cycle that appears.

Class 1 neural excitability

Action potentials can be generated with a low frequency and the frequency
increases if we increase the applied current. This kind of neuron can exhibit oscil-
lations with a low frequency and the interval between every oscillation is random
since this kind of neuron is sensitive to small perturbations of time. Class 1 ex-
citable neurons are considered integrators.

8All-or-none spikes happen when either the solution crosses the threshold producing a spike or
the solution orbit does not cross the threshold and it goes directly back to rest.



Class 2 neural excitability

Action potentials are generated in a certain frequency interval, which is in-
sensitive to changes in the applied current and varies from neuron to neuron.
These kinds of neurons are quiescent or firing with a regular interspike9. Un-
like class 1 neurons, they can fire in response to weak inhibitory pulse, known as
post-inhibitory spikes. After the spike, they have a period where they can exhibit
another spike without applying any added current. Neurons that exhibit class 2
neural excitability are resonators.

There is a last and less used classification of neurons called Class 3 neural ex-
citability, which corresponds to a single action potential in response to a pulse of
current. Its inability to generate a sequence of spikes makes it simpler and less
relevant.

9Interspike is the period between every spike or every action potential.



Chapter 2

FitzHugh-Nagumo Model

The Hodgkin-Huxley model is considered a model that exhibits the major phe-
nomena that are observed in neuron activity: resting or quiescence, action poten-
tial or spiking, chaotic behaviour and bursting. Due to its dimension, they focused
on studying simpler models that allowed to compute effective phase planes.

2.1 Background of the equations: Van der Pol oscillator.

The equations of the FitzHugh-Nagumo model are based on the Van der Pol
equation, they studied the Van der Pol oscillator and modified it in order to get
periodical spiking behaviour.

Definition 2.1. [12] The Van der Pol equation is a differential equation that exhibits the
temporal evolution of a non-conservative 1 oscillator with nonlinear damping2 3. The basic
system can be written in the form

ẍ + µϕ(x)ẋ + x = βp(t),

where ẋ is the derivative with respect to time, i.e. ẋ = dx
dt , ϕ(x) is an even function and

ϕ(x) < 0 for |x| < 1 and ϕ(x) > 0 for |x| > 1. The function p(t) is a periodic function
that in most neuronal models is considered zero, and µ and β are non-negative parameters.

When β = 1 and ϕ(x) = x2 − 1, the differential equation that describes the
movement of such oscillator is

ẍ + µ(x2 − 1)ẋ + x = p(t), (2.1)
1A non-conservative force is a force where the total work done is independent of the path taken.
2Damping is the process that dissipates the energy stored in an oscillation. It is an influence that

affects reducing or preventing the oscillation.
3Nonlinear damping occurs when the energy is dissipated at large amplitudes and generated at

low amplitudes.
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where x is a function of time, t, that indicates the position and µ ∈ R indicates
the nonlinearity and the strength of the damping. When µ = 0, the equation de-
scribes the simple harmonic oscillator with non-damping and with conservation
of energy. When µ > 0, the system enters a stable limit circle near the origin. Near
the origin the system is stable and far from it is damped. Moreover, if x is small,
x2 is negligible creating a system with negative damping and, if x is large, the
system has positive damping due to the dominance of the quadratic term. Con-
cerning equation (2.1) phase plain, we can state that the nullclines are a vertical
and a cubic line that intersect in a single equilibrium point, (x, y) = (0, 0), and its
stability depends on µ, as we are going to see in section 2.1.1.

Being p(t) = 0 and renaming g(x) = x and f (x) = µ(x2 − 1) in equation (2.1),
we have a Liénard equation.

Definition 2.2. [18] Let f and g be two continuous and differential functions on R, being
f an even and g an odd function. The second order differential equation of the form

ẍ + f (x)ẋ + g(x) = 0 (2.2)

is called a Liénar equation.

We can rewrite Liénard equation (2.2), using a change of variable x = x and
y = ẋ, getting a two-dimensional system

ẋ = y, ẏ = − f (x)y − g(x), (2.3)

and using the Liénard transformation ȳ = y + F(x), being F(x) =
∫ x

0 f (ξ)dξ, and
renaming y = ȳ, the previous system can be rewritten in the form

ẋ = y − F(x), ẏ = −g(x).

Considering F(x) = µΦ(x), where Φ(x) =
∫ x

0 ϕ(ξ)dξ and ϕ(x) is the even
function quoted in definition 2.1, and applying the change ŷ = y/µ, we get

ẋ = µ(y − Φ(x)), ẏ =
−g(x)

µ
,

and applying the change on time τ = −µt we get a system that starts to resemble
the equations of the FitzHugh-Nagumo model, equations (2.10),

ẋ = Φ(x)− y,

ẏ =
1
µ2 g(x),

(2.4)



assuming µ ̸= 0.

The main reason why they used the Van der Pol equation is that the Van der
Pol equation satisfies the Liénard theorem.

Theorem 2.3. Liénard Theorem[18][25]: If a Liénard equation, i.e. the equation (2.2),
satisfies the following conditions:

1. f : R → R and g : R → R are continuous;

2. F(x) =
∫ x

0 f (ξ)dξ is an odd function in x, i.e. F(−u) = −F(u);

3. limx→+∞ F(x) = ∞;

4. Exists u > 0 such that F(x) < 0 if 0 < x < u;

then the system has a unique and attractor limit cycle surrounding the origin.

The existence of the stable limit cycle leads to the existence of periodic spiking
and action potentials, making Van der Pol equations more appealing for neurosci-
entists.

2.1.1 Forced Van der Pol oscillator

The Van der Pol oscillator does not present chaotic behaviour, but using a
sinusoidal force, i.e. being p(t) in equation (2.1) a sinus function, it might exhibit
periodic oscillations leading to chaos and bursting behaviour, as we are going to
see below. Hence, modifying the forced Van der Pol oscillator can lead to systems
that can exhibit bursting behaviour.

Definition 2.4. The forced Van der Pol oscillator follows the differential equation

ẍ − µ(1 − x2)ẋ + x − A sin(ωt) = 0, (2.5)

where x(t) is the position function over t, µ ∈ R indicates the nonlinearity and the
strength of the damping, A is the amplitude or displacement of the oscillator from the
equilibrium point and ω is the angular velocity.

We can rewrite equation (2.5) using the change of variables x = x and ẋ = y as

ẋ = y,

ẏ = µ(1 − x2)y − x + A sin(ωt),
(2.6)

having a non-autonomous system, a system that depends on the time. Hence, if
we consider A = 0, we have an autonomous system without any periodic force



that has a unique equilibrium point at (0, 0) that its stability depends on µ. In
consequence, if µ > 2, it is an unstable node; if 0 < µ < 2, it is an unstable focus;
if µ = 0, we have the harmonic oscillator and it is a center; if −2 < µ < 0, it is a
stable focus; if µ < −2, it is a stable node.

When A ̸= 0, we do not have that equilibrium point because it changes over
time. We are going to see via the implicit function theorem and the Poincaré map
that such equilibrium point evolves creating a 2π/ω-periodic orbit.

Theorem 2.5. (Implicit function theorem): Let

f : I × Λ ⊂ Rn × Rm −→ Rm

(x, λ) 7−→ f (x, λ)

be a continuously differentiable function and with parameter λ ∈ Rm, and (x0, λ0) ∈
Rn × Rm a fixed point, i.e. f (x0, λ0) = 0 ∈ Rm. If the determinant of Dx f (x0, λ0) is
different from zero, i.e. det(Dx f (x0, λ0)) ̸= 0, there exists I0 × Λ0 ⊂ I × Λ, a neigh-
bourhood of (x0, λ0), and a continuously differentiable function x̄ : Λ0 −→ I0 such that
f (x̄(λ), λ) = 0 for all λ ∈ Λ0.

Definition 2.6. Let Ω be the phase space and φ(t; x0, y0, A) the evolution process associ-
ated to a system in Rn with initial conditions (x0, y0) and with parameter A, the time-τ
Poincaré(stroboscopic) map is

f : Ω ⊂ Rn × R −→ Rn

(x0, y0, A) 7−→ P(x0, y0, A) = φ(τ; x0, y0, A)

If we want to see that the equilibrium point (x, y) for a parameter value A of
the autonomous system is a 2π/ω-periodic orbit at the non-autonomous, we have
to see that is a fixed point of the Poincaré map, i.e. P(2π/ω; x, y, A) = (x, y, A),
having an orbit of period τ. Hence, we are going to apply the implicit function
theorem to the map g(x, y, A) = P(2π/ω; x, y, A)− (x, y, A), being (x, y) = (0, 0)
and A = 0, since it is the only equilibrium point when A = 0.

Let’s see if the conditions of the theorem 2.5 hold. First, applying that (0, 0)
is a fixed point when A = 0, g(0, 0, 0) = P(2π/ω; 0, 0, 0)− (0, 0, 0) = (0, 0). Sec-
ondly, we need det(D(x,y)g(0, 0, 0)) ̸= 0. Taking into account the definition of the
function g, we have det(D(x,y)g(0, 0, 0)) = det(D(x,y)φ(2π/ω, 0, 0)− Id). Solving
the first variational and evaluating on t = 2π/ω, we get

det(D(x,y)φ(2π/ω, 0, 0)− Id) = (−1 + exp ((µ − S)π/ω)) (−1 + exp ((µ + S)π/ω)) ,



where S =
√

µ2 − 4.

When µ ̸= 0, the determinant does not vanish. When µ = 0 and the frequency
is 2πk/ω for k ∈ Z, the determinant is 0. Hence, we can apply the implicit func-
tion theorem when µ ̸= 0 and we have proved the existence of a periodic orbit of
period 2π/ω.

As we have stated, the forced Van der Pol oscillator might present chaotic
behaviour. In consequence, we are going to illustrate such chaotic behaviour with
parameters A = 1.05, µ = 7.48 and ω = 2π/10 in system (2.6). Integrating the
system and representing in a ẋ − x graph every 2π/ω seconds, we get the phase
plane with a possible strange attractor independent from the initial conditions we
consider.

Figure 2.1: Possible chaotic behaviour in system (2.6) with parameter values (A, ω, µ) =

(1.05, 2π/10, 7.48), values taken from [29] and figure obtained via the code in A.2.

In figure 2.1, we have plotted 1000 iterates of the Poincaré map with initial
condition (0, 0) and we can see what resembles a strange attractor because the
iterates do not fill the whole attractor limit cycle. If we restrict to such attractor,
we have sensibility over initial conditions leading to a possible chaotic behaviour,
see [29] for further details.

2.2 Equations of the model

FitzHugh and Nagumo aimed to find a two-dimensional model that imparted
a mathematical idea about the mechanism of neuron excitability. A model that
imitated qualitatively the generation of an action potential, as Hodgkin-Huxley
model did, without taking into account ionic currents.

Definition 2.7. A fast-slow system is a Rn system

ẋ = f (x, y), (2.7)

ẏ = ϵg(x, y), (2.8)



where x ∈ Rm, y ∈ Rn−m, f and g are two continuous functions and ϵ ∈ R, 0 <

ϵ ≪ 1 the parameter that creates a slow dynamic for the variable y. The equation (2.7) is
considered the fast subsystem and (2.8) is considered the slow one.

Remark 2.8. As a fast-slow system has two time-scales, we can study the fast
subsystem applying the change of variable τ = ϵt in (2.7) and (2.8), getting

ẋ =
1
ϵ

f (x, y),

ẏ = g(x, y),

being ϵ ≈ 0 a positive parameter.

FitzHugh and Nagumo wanted a two-dimensional fast-slow system

V̇ = f (V, w),

ẇ = ϵg(V, w),
(2.9)

where V is the membrane voltage, w is a recovery value of the membrane voltage
that mimics activation of an outward current, needed because the neuron activates
during an impulse and then goes back to the initial resting, and ϵ is a constant that
bestows the slow-fast dynamic wanted and it controls the speed of the slow vari-
able, as we have seen in definition 2.7. Hence, the recovery value is considered to
evolve in much slower time-scaling than the membrane voltage.

FitzHugh and Nagumo studied the fast-slow systems and modified the Van
Der Pol equation (2.2) getting

V̇ = Φ(V)− w + Iext(t),

ẇ = ϵ(g(V)− υw),
(2.10)

where Φ(V) is a cubic function that forms oscillations, g(V) is a linear mono-
tonically increasing function, υ is a constant parameter and Iext(t) is the injected
current that is modified over time. We can observe that if υ = 0 and Iext(t) = 0,
we have the system (2.4) being ϵ = 1/µ2.

2.3 Analysis of the model

The model is commonly analyzed with the form

V̇ = V − V3

3
− w + Iext,

ẇ = 0.08(V + 0.7 − 0.8w),
(2.11)



assuming that Iext(t) is constant, i.e. Iext(t) = Iext and Φ(V) = V − V3/3, g(V) =

V + 0.07, ϵ = 0.08 and υ = 0.8 in system (2.10).

2.3.1 Andronov-Hopf bifurcation

The Andronov-Hopf bifurcation is associated with the appearance or disap-
pearance of a limit cycle. In neuronal terms, having an Andronov-Hopf bifurcation
leads to periodic spiking activity, so we are going to see if the FitzHugh-Nagumo
model undergoes an Andronov-Hopf bifurcation.

In this kind of bifurcation, a periodic solution is born or destroyed at the equi-
librium point, so no equilibrium points arise. When the limit cycle shrinks to
the equilibrium point and disappears, the equilibrium point absorbs its stability.
Meanwhile, if a limit cycle is born it absorbs the stability of the fixed point. Hence,
there are two kinds of Andronov-Hopf bifurcations: supercritical and subcritical.
The supercritical bifurcation occurs when the equilibrium at the bifurcation is sta-
ble. Whereas the subcritical one occurs when the bifurcation orbit is unstable.

Definition 2.9. [28] Being
ẋ = f (x, α), x ∈ Rn, (2.12)

an autonomous system of ordinary differential equations and α our bifurcation parameter.
If the system has a set of equilibrium points and the Jacobian matrix has one pair of complex
eigenvalues

λ1,2(α) = µ(α)± iω(α),

which becomes purely imaginary when α = 0, i.e. µ(0) = 0. If α = 0, we have the
purely imaginary eigen values λ1,2 = ±ω0, being ω(0) = ω0. Then, as α passes through
α = 0 we have an Andronov-Hopf bifurcation, the equilibrium point changes stability
and a unique limit cycle bifurcates from it. Hence, the Andronov-Hopf bifurcation is
characterized by a single bifurcation condition, Re(λ1,2) = 0, being a codimensional one
bifurcation.

Theorem 2.10. (Andronov-Hopf Bifurcation Theorem)[28]: Let ḟ = fα(x) = f (x, α) be
a family of systems of differential equations in Rn with equilibrium x̄ = 0 for all α. Let
µ(α)± iω(α) denote a complex conjugate pair of eigenvalues of the matrix D fα(0) that
crosses the imaginary axis at a nonzero rate at α = 0; that is, µ(0) = 0, ω = ω(0) ̸= 0,
and µ′(0) ̸= 0. Then a path of periodic orbits bifurcates from (α, x) = (0, 0). The periods
of these orbits approach 2π/ω as orbits approach (0, 0).



On one hand, in figure 2.2, we plot the phase plain of the supercritical Andronov-
Hopf bifurcation. Before the bifurcation, the equilibrium point is stable. During
the bifurcation, a limit cycle is born absorbing the stability of the fixed points, i.e.
an attractor limit cycle is born. After the bifurcation, the attractor limit cycle has
expanded and the equilibrium point has lost its stability and now is unstable.

(a) Phase plain before the bifurcation. Parameter α < 0
in the system (2.12).

(b) Phase plain after the bifurcation. Parameter α > 0 in
the system (2.12).

Figure 2.2: Phase plane of the system (2.12) modifying the bifurcation parameter α. When α = 0,
the supercritical Andronov-Hopf bifurcation occurs.

On the other hand, in figure 2.3, we illustrate the phase plain of the subcrit-
ical Andronov-Hopf bifurcation. Initially, we have a limit cycle surrounding the
origin, which is unstable. During the bifurcation, the limit cycle shrinks onto the
equilibrium point and the point absorbs the stability of the limit cycle. Hence,
after the bifurcation, we have an unstable equilibrium point.

(a) Phase plain before the bifurcation. Parameter α < 0
in the system (2.12).

(b) Phase plain after the bifurcation. Parameter α > 0 in
the system (2.12).

Figure 2.3: Phase plane of the system (2.12) modifying the bifurcation parameter α. When α = 0,
the subcritical Andronov-Hopf bifurcation occurs.



In the Andronov-Hopf bifurcation, we have a loss of stability because the eigen-
values go from having a real negative part to a real positive part, crossing the
imaginary axis. Hence, if we want to study when there is an Andronov-Hopf bi-
furcation, the real part has to be equal to 0, having purely imaginary eigenvalues.
Hence, the trace of the Jacobian matrix needs to be 0 and its determinant needs to
be positive4.

Once we have introduced the bifurcation, we are going to analyze if the system
(2.11) undergoes an Andronov-Hopf bifurcation. Firstly, we are going to study the
phase plain and we are going to compute the nullclines in order to find their
intersections, i.e the equilibrium points,

w = V − V3

3
+ Iext (V − nullcline),

w =
V + 0.7

0.8
(w − nullcline),

getting the equilibrium points equation

−V3

3
− V

4
− 7

8
+ Iext = 0. (2.13)

In order to have an Andronov-Hopf bifurcation, we need one equilibrium point.
Hence, we need the discriminant of the equation (2.13) to be negative5, so we have
disc = −4(− 1

3 )(−
1
4 )

3 − 27(− 1
3 )

2(− 7
8 + I)2 = −3(I − 7

8 )
2 − 1

48 < 0.

We have seen that we only have one equilibrium point because the discriminant
is always negative. Moreover, in order to have a Hopf bifurcation we need a
purely imaginary eigenvalue, so the trace of the Jacobian matrix must be 0 and
the determinant positive, as explained in section 2.3.1. Let X denote the vector
field of equations (2.11), one has

DX(u, v) =

(
−v2 + 1 −1

0.08 −0.064

)
,

so the trace, τ, is −V2 + 0.936 and the determinant, △, is 0.064V2 + 0.016, which
is always positive. In order to have the trace equal to 0, we need the solutions

4The eigenvalues, λ, of a matrix can be calculated solving the equations λ2 − τλ +△, where τ is
the trace and △ is the determinant of such matrix.

5Being ax3 + bx2 + cx + d = 0, a ̸= 0, the discriminant of a cubic equations is defined as disc =

18abcd − ab3d + b2c2 − 4ac3 − 27a2d2. If disc = 0, the equations has multiple zeros. If disc < 0,
the equation has one real and two conjugate complex solutions. If disc > 0 the equation has three
different real solutions.



V1 ≈ −0.967471 and V2 ≈ 0.967471. For that value of membrane voltage, we have
a Hopf bifurcation because the trace is 0 and the determinant is positive.

Solving the equilibrium equation (2.13), we get the value of the parameter,
Iext(V), i.e. the value of the intensity current applied as Iext(V) = V3

3 + V
4 + 7

8 ,

so we get I(1)ext (V1) ≈ 0.331281 and I(2)ext (V2) ≈ 1.41872. We are going to study the
bifurcations of each of the equilibrium points as a function of the parameter Iext,
being (V1, I(1)ext ) ≈ (−0.967471, 0.331281) and (V2, I(2)ext ) ≈ (0.967471, 1.41872) the
equilibrium points, i.e. we are going to study if we have appearance or disappear-
ance of a limit cycle.

According to figure 2.4(where I displayed the linear stability of the equilib-
rium points according to the determinant and the trace of the Jacobian matrix), if
τ2 − 4△ < 0 and τ > 0, we have an unstable focus. Nevertheless, if τ < 0 we have
a stable focus. In consequence, if v ∈ (−0.967471, 0.967471), we have an unstable
focus and if v /∈ (−0.967471, 0.967471) we have a stable focus.

Figure 2.4: Classification of lineal stability of equilibrium points. Unstable focus: complex eigen-
values and positive real part. Unstable node: real positive eigenvalues. Stable focus: complex
eigenvalues and negative real part. Saddle node: real eigenvalues and different signs.

Let’s study what happens near V1 and I(1)ext . According to the previous, if
V < V1, we have a stable focus and for V > V1 we have an unstable focus, so
the equilibrium goes from stable to unstable when the voltage membrane is in-
creased. We can see in figure 2.5 that when Iext < I(1)ext we have a spiral sink, i.e
a stable focus, but when we increase the input, being Iext > I(1)ext , we have the ap-
pearance of a stable limit cycle that has absorbed the stability of the fixed point,
making it unstable. When it comes to neuronal dynamics, the stable focus in fig-
ure 2.5a corresponds to small damped oscillations or only one oscillation or action



potential. On the other hand, the limit cycle in figure 2.5b, corresponds to periodic
spiking. To conclude, if we increase the applied intensity above I(1)ext , the system
undergoes a supercritical Andronov-Hopf bifurcation, a stable limit cycle has ap-
peared and the equilibrium point went from stable to unstable. In neuronal terms,
we went from a single spike to a periodic spiking behaviour.

(a) Positive semi-orbit in system (2.11) when Iext =

0.30µA and the initial conditions are (V0, w0) =

(−0.96,−0.3).

(b) Positive semi-orbit in system (2.11) when Iext =

0.35µA and the initial conditions are (V0, w0) =

(−0.96,−0.3).

Figure 2.5: Phase plain before and after the Andronov-Hopf bifurcation. Figures obtained using the

code taken from A.3 with Iext = 0.30 < I(1)ext and Iext = 0.35 > I(1)ext , respectively.

Now, we are going to study what happens near V2 and I(2)ext . If V < V2, we have
an unstable focus and if V > V2, we have a stable focus. Hence, the equilibrium
goes from unstable to stable when undergoes the Andronov-Hopf bifurcation. In
figure 2.6a, we can see how initially we have a stable limit cycle and an unstable
focus or a spiral source. The limit cycle collapses on the equilibrium point and
we have a stable focus. It shrinks onto the equilibrium point, which absorbs the
stability of the limit cycle and becomes stable, as we can see in figure 2.6b. We can
see that if Iext > I(2)ext , we stop the periodicity spiking and we have only damped
oscillations or only one action potential or spike. The system undergoes a sub-
critical Andronov-Hopf bifurcation, leading to the disappearance of an attractor
limit cycle that surrounds an unstable equilibrium point, which becomes stable af-
ter the bifurcation. From neuronal dynamics point of view, the neuron presented
periodic spiking behaviour before the bifurcation and resting behaviour once the
bifurcation occurred.



(a) Positive semi-orbit in system (2.11) when Iext =

1.40µA and the initial conditions are (V0, w0) =

(0.96, 0.3).

(b) Positive semi-orbit in system (2.11) when Iext =

1.45µA and the initial conditions are (V0, w0) =

(0.96, 0.3).

Figure 2.6: Phase plain before and after the bifurcation. Figures obtained using the code A.3 with

Iext = 1.40 < I(2)ext and Iext = 1.45 > I(2)ext , respectively.

FitzHugh-Nagumo model is not capable of generating bursting and chaos and
does not take into account a lot of parameters, all the ionic currents have been
underestimated. Given its dimension, it is not a used method when we want to
study neurons with specific properties and cells that transmit a lot of informa-
tion. Nevertheless, when it comes to action potential creation, the model showed
the same kind of properties as the Hodgkin-Huxley. Moreover, as we have men-
tioned in section 2.1.1, the forced Van der Pol equation exhibits chaotic behaviour.
Hence, there is also a modified FitzHugh-Nagumo Model, using the forced Van
der Pol equations, that is capable of exhibiting bursting behaviour involving the
sinus function.

Due to the importance of bursting in neuronal activity and transmission of in-
formation and since the FitzHugh-Nagumo model we analyzed is not capable of
generating bursting, on the next chapter we are going to focus on bursting activity
simulating some different types of bursting excitability.



Chapter 3

Bursting

When a neuron exhibits one single spike, less information is transmitted than
when a neuron is capable of illustrating bursting behaviour, capable of illustrating
a bunch of spikes and transmitting more information. Moreover, only a single
spike is an inaccurate method of communication because it depends on a specific
time. The spikes occur in a specific moment and just in that millisecond, another
neuron has to perceive it and encode the information. Hence, spikes have a higher
possibility of failing in crossing a synapse. Whereas on bursting behaviour, there
is a higher possibility of crossing a synapse because the timing is not that specific.
We have a bigger interval of spiking activity, having more time where the neuron
can transmit information and interact with other neurons. In addition, bursting
takes place in a lot of motor, sensory and cognitive brain behaviours and even in
some diseases like epilepsy, making bursting an attractive aspect to study.

Definition 3.1. Bursting is a dynamical phenomenon that occurs when a neuron fires
repeatedly a group of spikes separated by a quiescent state, which can be resting or sub-
threshold oscillations, creating a periodic loop that goes from resting to spiking. Each group
of spikes is called a burst, a burst of two spikes is called a doublet, a burst of three spikes is
called a triple and so on.

Almost every neuron can burst if it is manipulated pharmacologically, stated
in [23]. Hence, one can distinguish two different kinds of bursting: the forced one
caused by a time-dependent input or the autonomous one when the neuron can
burst on its own. Most excitable neurons are able to burst if we apply a current
that slowly drives the neuron above and below the firing threshold. This slowly
driving is related to the slow variable evolution of the slow subsystem. Moreover,
bursting can occur due to the interaction of fast currents responsible for spiking
activity and slow currents that modulate their activity, i.e. it can occur when we
have a fast-slow system as in (2.9).
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3.1 Fast-slow bursters

Fast-slow systems allow a description of this oscillatory behaviour based on
two-time scales: one that modulates the fast dynamics and the other one that
modulates the slow one, making small oscillations around the firing threshold
and, in consequence, creating the bursting behaviour.

A fast-slow burster in Rn is a fast-slow system

ẋ = f (x, u)

u̇ = ϵg(x, u)
(3.1)

where x ∈ Rm represents the fast-spiking behaviour, also called intraburst oscil-
lation, and u ∈ Rn−m is a vector of parameters that represents the slow process
that modulates x, called interburst oscillation. The variable u is called a quasistatic
bifurcation parameter1 and it depends on x(t) and the parameter ϵ represents the
small ratio of time scales between resting and spiking.

In bursting, we normally consider fast-slow bursters, where the slow variable u
controls the spiking behaviour. If u goes through spiking and quiescent areas pe-
riodically, the neuron exhibits periodic bursting behaviour. Hence, the sustained
bursting activity of the fast-slow system corresponds to the periodic activity of the
reduced slow subsystem. The number of spikes in every burst is also controlled
by u, because it depends on the time it spends on the spiking area.

In order to have bursting activity, the fast subsystem needs to be bistable, i.e.
needs to have two different stable equilibrium states, the change from one state to
the other is what creates the burst. That is why not all fast-slow systems are able
to exhibit bursting, as we have seen in FitzHugh-Nagumo model in chapter 2, the
fast subsystem must be complex enough to create bistability. In addition, there
is the intuition that Hodgkin-Huxley model is a minimal model for bursting 2, so
any model that is a strict simplification of it without any kind of modification is
unable to burst. Hence, they invented qualitative models that have intrinsic math-
ematical interest in bursting but they are far from the biological behaviour of the

1The parameter changes slowly and with a constant rate.
2A minimal model for busting is a model that if we remove any current or gating variable, the

system is unable to burst.



neuron, as we do not take into account currents of ions.

As bursting is described via a fast-slow system, it is studied dissecting the
model making ϵ = 0 and studying the fast and the slow subsystems separately.
The goal is to study the fast subsystem and treat the other one as a vector of slowly
changing bifurcation parameters.

Different phase plains configurations lead to different bursting activity. Com-
monly, the fast system has an attractor limit cycle for some values of the slow
variable and an equilibrium attractor for other values of the slow variable, which
means that the fast subsystem has an Andronov-Hopf bifurcation, seen in section
2.3.1.

Definition 3.2. A burster is planar when the fast subsystem is a two-dimensional system.

According to the dimension of the slow subsystem, we can have different types
of bursting. We are going to focus on hysteresis loop periodic bursters. In this
kind of bursting, quiescent state of x, pushes u outside the resting area and u goes
through the spiking area, initiating the spiking activity after a while. Then, repet-
itive firing of x pushes u outside the spiking area going through the resting area
and making the neuron rest. This previous process is repeated periodically cre-
ating bursting. The two stable equilibrium states co-exist for the same value of u
on the fast subsystem, creating bistability of resting and spiking state. The former
bistability is what creates a hysteresis loop. In this case, u can be one-dimensional.

When it comes to bursting, there are two important questions: what initiates
sustained spiking during a burst and what terminates it temporally creating a
quiescent state. Hence, the fast-slow bursters involve two different kinds of bifur-
cations: from a quiescent state to repetitive spiking and from repetitive spiking
to a quiescent state. Switching between spiking and resting occurs because the
slow variable drives the fast subsystem through a bifurcation, involving a stable
equilibrium point and a stable limit cycle. According to that, the classification of
different types of bursting is based on their bifurcation from one state to the other.
Different types of bifurcations result in different topological types of bursting and
the last one results in different neurocomputational properties. In addition, there
are not only these two bifurcations, sometimes there is a bifurcation that leads to
an increase of the membrane voltage but the neuron is not spiking yet, another
bifurcation is needed in order to start the spiking behaviour, as we are going to
see in some of the following examples.



We are going to focus on planar bursting and we are going to classify the dif-
ferent types of planar bursting and study some of them. We are going to make
simulations of the bursting behaviour of both Morris-Lecar, see section 1.6, and
Hindmarsh-Rose models, explained below. Classification is made based on the
structure we have on the resting state and the quiescent area, we can have an equi-
librium point, a limit cycle attractor, a torus... Hence, we can find the point-cycle,
cycle-cycle, point-torus, cycle-torus, point-point and cycle-point bursters. Each
one defines what exists in the quiescent state and what in the spiking state, being,
for example, a point-cycle bursting when the quiescent state is a stable equilibrium
point and the spiking state is a limit cycle attractor.

Gathering the bursting classification information from [7], in table 3.1 we sum-
marize the different bifurcations that are responsible for creating planar bursting,
being the first one the bifurcation that starts spiking activity and the second the
one that ends spiking activity and starts the resting state. As mentioned before,
the slow variable u plays the role of a bifurcation parameter and is considered to
be one-dimensional in planar bursting. Hence, all the bifurcations mentioned in
this table are of codimension 1.

fold/circle fold/homoclinic fold/Hopf fold/fold cycle

circle/circle circle/homoclinic circle/Hopf circle/fold cycle

Hopf/circle Hopf/homoclinic Hopf/Hopf Hopf/fold cycle

subHopf/circle subHopf/homoclinic subHopf/Hopf subHopf/fold cycle

fold cycle/circle fold cycle/homoclinic fold cycle/Hopf fold cycle/fold cycle

homoclinic/circle homoclinic/homoclinic homoclinic/Hopf homoclinic/fold cycle

Table 3.1: Classification of codimension 1 planar fast-slow bursters, i.e. fast-slow bursters being u in
equation (3.1) a one-dimensional system. Hopf refers to supercritical Andronov-Hopf bifurcation,
subHopf refers to subcritical Andronov-Hopf bifurcation, circle refers to saddle-node bifurcation on
an invariant circle, fold cycle refers to fold limit cycle bifurcation and homoclinic refers to saddle
homoclinic orbit bifurcation. Further information in [7].

We are going to study the planar bursters written in bold making simulations
of them via Hindmarsh-Rose and Morris-Lecar models, and we are going to ex-
plain the necessary bifurcations in order to understand the examples illustrated in
section 3.3.



3.2 Hindmarsh-Rose model

J. L. Hindmarsh and R. M. Rose[21] aimed to find a simpler model than
Hodgkin and Huxley that exhibited rapid firing and bursting. The Hindmarsh-
Rose remains one of the most popular mathematical models that describe qualita-
tively well the dynamics of a certain class of neuronal models using the Hodgkin-
Huxley formalism.

As we have seen in chapter 2, FitzHugh-Nagumo model with the parame-
ters I analyzed is not capable of bursting because there is no bistability, we have
only one equilibrium point, see section 2.3 and equations (2.11). So we are going
to introduce an attractive model capable of generating bursting behaviour. This
model shows the transition between quiescence, tonic spiking and bursting, creat-
ing multi-stability regions using the proper parameter values.

Definition 3.3. Tonic spiking is a kind of spiking activity that occurs at an elevated rate
for an extended period of time but the number of spikes created is too low to be classified as
a burst. Tonic spiking happens when the neuron exhibits regularly spaced spikes that are
not considered bursting behaviour.

3.2.1 Equations of the model

Hindmarsh and Rose proposed a three-dimensional Hindmarsh-Rose model
in 1984[21] using the basis of the equations (2.10) of FitzHugh-Nagumo changing
g(x) for a quadratic function and adding a slow variable, z,

V̇ = −aV3 + bV2 + w + Iext − z,

ẇ = c − dV2 − βy,

ż = ϵ((V − V0)s − z),

(3.2)

where V is the membrane voltage and V0 is the V-coordinate of the stable sub-
threshold equilibrium point in the case Iext = 0, i.e. V0 is the stable equilibrium
of the resting state when no current is applied. In addition, w is the fast variable
associated to the membrane recovery, i.e. channels that open during the action
potential, and z is the slow variable that describes the activation or inactivation of
some currents, having a rate of change of the order of ϵ. Moreover, a, b, c, s, β and
ϵ are real constants, being 0 < ϵ ≪ 1 the constant that bestows the slow dynamics.

Hindmarsh-Rose model, system (3.2), is a fast-slow subsystem having a two-
dimensional fast subsystem with variables V and w, and a one-dimensional slow



subsystem when it comes to z. Moreover, system (3.2) becomes a fast-slow burster
for some proper values of the parameters, as we will show in section 3.3. In
consequence, this model is commonly used for its simplicity and its capacity of
exhibiting bursting behaviour.

3.3 Planar point-cycle bursting

The goal of this section is to exhibit planar point-cycle bifurcations by doing
simulations of Morris-Lecar and Hindmarsh-Rose model. As we have stated in
section 1.6, Morris-Lecar model is really important because is the fast subsystem
of a lot of fast-slow bursters. Hence, if we couple equations (1.10) with a linear
slow subsystem, we are capable of exhibiting bursting behaviour, i.e. we are going
to consider a system like

V̇ = I(u)− gL(V − EL)− gKw(V − EK)− gCam∞(V)(V − ECa),

ẇ = λ(V)(w∞(V)− w),

u̇ = µ f (V),

(3.3)

where u is the slow variable, f (V) is a continuous function that we are going to
consider lineal and I(u) is the applied current, Iext, that is a function of u. In
the next section, we are going to see that for different values of µ, gx and Ex for
x = K, Ca, L, and different functions f (V) and I(u), system (3.3) shows different
bursting behaviour.

We are going to study some kinds of bursting excitability and simulate them
via Morris-Lecar or Hindmarsh-Rose model. We are going to study the different
bifurcations that take place and we are going to study how the action potential
behaves. In consequence, we are going to study time-voltage graphs indicating
where each bifurcation occurs. The figures marked with an asterisk are from [7]
and available on this website: Bursting excitability. Moreover, in the following
time-voltage figures, fold holds for fold bifurcation, homo holds for saddle homo-
clinic orbit bifurcation, AH for Andronov-Hopf bifurcation, SNIC for saddle-node
on invariant cycle bifurcation and cycle for fold limit cycle bifurcation.

https://www.semanticscholar.org/paper/Neural-excitability%2C-Spiking-and-bursting-Izhikevich/335f05f4cd540ef255e88999ba07e99d6b9fb0e9#extracted


3.3.1 Fold/homoclinic bursting (square-wave)

In this type of bursting, the resting state disappears via a fold bifurcation, so
we are going to introduce it.

Fold bifurcation

A fold or saddle-node bifurcation occurs when two equilibrium points collide
and annihilate each other or two equilibrium points are created, one that is a node
and the other a saddle.

Definition 3.4. Being
ẋ = f (x, α), x ∈ Rn,

an autonomous system of ordinary differential equations and α our bifurcation parameter.
The system undergoes a saddle-node bifurcation if we have two equilibrium points when
a < a0, one equilibrium point if a = a0 and no equilibrium points if a > a0. We could
also have no equilibrium point, then only one and, in the end, two equilibrium points.

Theorem 3.5. [27] (Saddle-Node bifurcation) Suppose ẋ = fα(x) = f (x, α) is a first-
order differential equations for which

1. fα0(α0) = 0;

2. f ′α0
(x0) = 0;

3. f ′′α0
(x0) ̸= 0;

4. ∂ fα0
∂α (x0) ̸= 0.

Then this differential equation undergoes a saddle-node bifurcation at α = α0

As we previously mentioned, the resting state disappears via a fold bifurcation,
having two equilibrium points that collide and annihilate each other, leading to
the appearance of the spiking period. In figure 3.1, we can see the two branches
of each equilibrium point that has emerged. The branch located on the resting
state corresponds to the attractor and the branch of the saddle is the one that has
the limit cycle. We have an attractor equilibrium point at the resting state that
via a fold bifurcation disappears and, as we have an attractor limit cycle on the
spiking area, the spiking behaviour begins. As we can see in figure 3.1, there is not
any limit cycle on the resting state, so there is not any kind of oscillations on the
resting state. Once the neuron is on the spiking area, it goes on spiking until the
homoclinic orbit bifurcation occurs, explained below, and the spiking disappears.



Figure 3.1: Fold/Homoclinic bursting via a fold/homoclinic hysteresis loop. Figure from [7]*.

Homoclinic orbit bifurcation

The homoclinic orbit bifurcation or saddle homoclinic orbit bifurcation occurs
when the stable and unstable manifolds of the saddle surround an attractor limit
cycle, see [20] where the former bifurcation is also called Andronov-Vitt bifurca-
tion. We can see in figure 3.2a how the stable and unstable manifold of the saddle
surrounds the limit cycle. This attractor limit cycle grows until it collides with
the manifolds creating a homoclinic orbit to the saddle, see figure 3.2b. After the
bifurcation, the limit cycle has disappeared and there is not any kind of attractor
as depicted in figure 3.2c.

(a) (b) (c)

Figure 3.2: Phase plane of the system ẋ = 2y; ẏ = 2x − 3x2 +−y(x3 − x2 + y2 − c), changing the
bifurcation parameter c. Figure (a) is the phase plain of the previous system when c = −0.1. Figure
(b) is the phase plain of the previous system when c = 0. Figure (c) is the phase plain of the previous
system when C = 0.1. We can observe that when c = 0 the bifurcation occurs. Values of c taken
from [26].



Once the system undergoes the homoclinic bifurcation, there is not any kind
of attractor on the spiking state, what leads to the end of the spiking activity since
we have a stable node on the resting state. The system goes back to the resting
state because we have a stable equilibrium point there.

In figure 3.3, we simulated this type of bursting on Morris-Lecar and Hindmarsh-
Rose model and indicated where each bifurcation takes place. We can observe that
both models generated the same actions potentials behaviours qualitatively. As we
mentioned previously, the spiking activity begins when the system undergoes a
fold bifurcation and it ends when the system undergoes a homoclinic bifurcation.

(a) (b)

Figure 3.3: (a): Time-voltage graph of the Fold/homoclinic bursting. Figure obtained using the
code from A.4.3 using Morris-Lecar model with an intensity function I(u) = −u and parameters
(V1, V2, V3, V4, EL, EK , ECa, gL, gK , gCa) = (−0.01, 0.15, 0.1, 0.05,−0.5,−0.7, 1, 0.5, 2, 1.2) in equations
(1.10) and (1.11) and µ = 0.005 in slow subsystem (3.3), see [7].
(b): Fold/homoclinic bursting behaviour in the Hindmarsh-Rose model, equations (3.2) with pa-
rameters (Iext, a, b, c, d, s, ϵ, β, V0) = (4, 1, 2.7, 1, 5, 4, 0.01,−1.6), following [14] and using the code in
A.4.1.

3.3.2 Fold/Hopf bursting (tapered)

In this kind of bursting, the rest state disappears via a fold bifurcation, seen
in the previous section, and the periodic limit cycle disappears via a supercriti-
cal Andronov-Hopf bifurcation, explained in section 2.3.1. Hence, after the Hopf
bifurcation, the fixed point that remains is still stable, so in order to go to the
resting state, another bifurcation is needed. The previous equilibrium point needs
to become unstable in order to go to the resting state and to create bursting. In
figure 3.4, this extra bifurcation is the fold one but we could have another kind
of bifurcation. Hence, there are different kinds of hysteresis loops that can lead
to that same kind of bursting. Moreover, in figure 3.4 the fast subsystem under-



goes two bifurcations while being excited: one corresponds to the termination
of repetitive spiking and the other corresponds to the transition from the excited
equilibrium point to resting via a saddle-node or a fold bifurcation. The super-
critical Andronov-Hopf bifurcation ends the oscillations and the fold bifurcation
sends the neuron to the resting state annihilating the stable equilibrium point. The
first bifurcation determines the topological type of bursting and the second one is
essential for determining the type of hysteresis loop. In addition, in figure 3.4 we
can see how the branch of the saddle of the resting state connects with the branch
of the saddle of the spiking state, the two branches of the saddle point on both
fold bifurcations connect.

Figure 3.4: Fold/Hopf bursting via fold/fold hysteresis loop. Figure from [7]*.

In figure 3.5, we displayed this kind of bursting in Hindmarsh-Rose model,
see section 3.2, and we can see how it goes vertically to spiking and that the
amplitude of the action potential decreases(in a square root shape) as we approach
the supercritical Hopf bifurcation. In this process, the limit circle shrinks causing
each time a lower amplitude oscillation in the voltage. As we have stated before,
the fold bifurcation starts the spiking behaviour, the membrane voltage oscillates
until the Andronov-Hopf bifurcation occurs and the fold bifurcation sends the
neuron back to the resting state creating a loop that causes bursting.



Figure 3.5: Fold/Hopf bursting behaviour in the Hindmarsh-Rose model, equations (3.2) with pa-
rameters (Iext, a, b, c, d, s, ϵ, β, V0) = (4, 1, 2.52, 1, 5, 4, 0.01,−1.6), following [14] and using the code in
A.4.1.

3.3.3 Circle/Fold cycle bursting

In this kind of bursting, the spiking behaviour initiates via a saddle-node on
invariant circle bifurcation, having previously a fold bifurcation, explained in sec-
tion 3.3.1, or a subcritical Andronov-Hopf bifurcation, see section 2.3.1, which
ends the resting state. Moreover, the spiking state disappears via a fold limit cycle
bifurcation. The fold limit cycle bifurcation is the appearance or disappearance of
two limit cycles, one stable and the other unstable.

Saddle-node on invariant circle bifurcation

The saddle-node on invariant circle bifurcation is a fold bifurcation that takes
place in an invariant circle. On the one hand, the saddle and the node are con-
nected by a heteroclinic orbit and the fold bifurcation occurs there, the two points
shrink and we have a homoclinic orbit. Nevertheless, we can also have a limit
cycle where a saddle and an attractor node emerge.

The appearance of a saddle and an attractor node is displayed in figure 3.6. In
figure 3.6a, we have a limit cycle and in figure 3.6c we have an attractor node and
a saddle-node that have emerged from a limit cycle.

This kind of bursting can be created via two different kinds of hysteresis loop:
fold/fold cycle hysteresis loop, depicted in figure 3.7a, and a subHopf/fold cycle
hysteresis, where there is a coexistence of resting and spiking states, depicted in
figure 3.7b.



(a) Before the bifurcation. (b) During the bifurcation (c) After the bifurcation.

Figure 3.6: Phase plane of the saddle-node on invariant circle bifurcation. Two equilibrium points
emerge from a limit cycle.

(a) Circle/Fold Cycle bursting via Fold/Fold Cycle
hysteresis loop.

(b) Circle/Fold Cycle bursting via subHopf/Fold Cy-
cle hysteresis loop.

Figure 3.7: Circle/Fold Cycle bursting. Figures from [7]*.

Concerning figure 3.7a, probably there might be parameters with which the
system describes this type of bursting behaviour via a fold/fold cycle hysteresis
loop. Nevertheless, we are going to focus on figure 3.7b and we are going to dis-
play its bursting behaviour. In this kind of bursting, the membrane potential starts
to increase via a saddle-node on invariant circle and the voltage starts to oscillate
initiating the spiking behaviour because of the existence of the attractor limit cy-
cle. It goes on spiking until it undergoes a fold limit cycle bifurcation and the
limit cycle disappears. The membrane voltage keeps constant for a while because
of the stable point until it reaches the subcritical Andronov-Hopf bifurcation and
it becomes unstable. Then, the neuron goes back to rest because of the stable point
located on the resting state and the loss of attraction on the spiking area, starting
the whole process again.



When it comes to figure 3.8, we have made a simulation of the action potential
behaviour on the subHopf/fold cycle hysteresis loop in Morris-Lecar model, see
section 1.6. As we can see in the figure, at the end of the spiking period, there is a
thoughtful decline in the amplitude of the action potential after the fold limit cy-
cle bifurcation, increasing a little bit and going directly to rest once the subcritical
Andronov-Hopf bifurcation has occurred.

Figure 3.8: Time-voltage graphic of the Circle/Fold Cycle bursting via subHopf/Fold Cycle hys-
teresis loop. Figure obtained from the code in A.4.4 using Morris-Lecar model, equations (1.10) and
(1.11), with intensity function I(u) = −u and parameters (V1, V2, V3, V4, EL, EK , ECa, gL, gk, gCa) =

(−0.01, 0.15, 0.1, 0.16,−0.5,−0.7, 1, 0.5, 2, 1.36) coupled with the slow subsystem u̇ = µ(0.1+V) with
µ = 0.003, see [7]*.

3.3.4 SubHopf/Homoclinic bursting

In this type of bursting, the quiescent state disappears via a subcritical Andronov-
Hopf bifurcation, see section 2.3.1, and the spiking state disappears via a saddle
homoclinic orbit bifurcation, explained in the previous section. We are going to
focus on the bursting generated by a subHopf/homoclinic hysteresis loop.

The stable equilibrium point on the resting state disappears via a fold bifur-
cation and we jump on the attractor equilibrium point of the upstate, having an
increase on the membrane voltage but the spiking activity has not started yet. It
is not until the fold limit cycle bifurcation that the neuron presents spikes. As
a stable limit cycle has appeared via the previous bifurcation, the neuron starts
to generate action potentials that are lower every time because of the subcritical
Andronov-Hopf bifurcation. Once the Andronov-Hopf bifurcation has occurred,
the equilibrium point is unstable so we go to the other attractor limit cycle that
co-exists leading to a spiking activity again until the saddle homoclinic orbit bi-
furcation is reached. The homoclinic bifurcation leads to the disappearance of the



attractor limit cycle and the neuron goes back to rest because of the attractor on
the resting state.

Figure 3.9: SubHopf/Homoclinic bursting via fold/homoclinic hysteresis loop. Figure from [7].

As we can see in figure 3.10, when the system undergoes the fold bifurcation
the membrane voltage increases. The spiking behaviour starts because of the fold
limit cycle bifurcation and the amplitude of the oscillations decreases because the
system undergoes an Andronov-Hopf bifurcation. After the Hopf bifurcation, the
point is unstable so the neuron starts to spike again because of the existence of
an attractor limit cycle. The spiking behaviour stops when the system undergoes
a saddle-homoclinic orbit bifurcation and the membrane voltage goes back to its
resting value.

Figure 3.10: Time-voltage graph of subHopf/Homoclinic bursting. Figure taken from A.4.5
simulating the Morris-Lecar model, equations (1.10) and (1.11), with intensity function I(u) =

0.08− 0.03u, voltage function V3(u) = 0.08− u and parameters (V1, V2, V4, EL, EK , ECa, gL, gK , gCa) =

(−0.01, 0.15, 0.04,−0.5,−0.7, 1, 0.5, 2, 0.9) coupled with the slow subsystem u̇ = µ(0.22 + V) where
µ = 0.003, following [7]*.



3.3.5 Hopf/homoclinic bursting

In this type of bursting, the quiescent state disappears via a supercritical
Andronov-Hopf bifurcation, explained in section 2.3.1, and the periodic limit cycle
attractor, corresponding to repetitive spiking, disappears via a saddle-node homo-
clinic bifurcation, see section 3.3.1.

Initially, the neuron is at the resting state and the resting equilibrium point
is stable. So, as in all the previous examples, we have a fold bifurcation, see
figure 3.11, and there is not any equilibrium point after it on the rest state and the
neuron goes to the attractor point on the upstate. Hence, there is an increase in the
membrane voltage but the neuron is not generating action potentials yet. Then,
is when the supercritical Andronov-Hopf bifurcation starts the spiking behaviour
because an attractor limit cycle is created. The neuron oscillates until the limit
cycle disappears via a saddle homoclinic orbit bifurcation and it goes back to the
stable equilibrium point on the resting state, creating a loop that generates this
kind of bursting.

Figure 3.11: Time-voltage graph of Hopf/Homoclinic bursting via Fold/Homoclinic hysteresis
loop. Figure obtained from the code in A.4.5 using Morris-Lecar model, equations (1.10) and (1.11),
with intensity function I(u) = 0.08 − 0.03u, voltage function for the parameter V3 V3(u) = 0.08 − u
and parameters (V1, V2, V4, EL, EK , ECa, gL, gK , gCa) = (−0.01, 0.15, 0.02, 0.05,−0.5,−0.7, 1, 0.5, 2, 0.9)
coupled with the slow subsystem u̇ = µ(0.22 + V) where µ = 0.01, see [7].





Chapter 4

Conclusions and future work

4.1 Conclusions

We have studied the equations of Hodgkin-Huxley model understanding their
origin and the different types of biological properties behind them. In addition,
we understood the creation of an action potential and displayed a different kind
of spiking behaviour on this model changing the applied current. We saw that we
can go from one spike to periodic spiking and the other way around augmenting
the applied current. In addition, we introduced Morris-Lecar model, a simplifica-
tion of Hodgkin-Huxley model really important in fast-slow busters.

In the second chapter, we studied the origin of the FitzHugh-Nagumo equa-
tions and their periodicity behaviour when undergoing an Andronov-Hopf bifur-
cation. We saw how an Andronov-Hopf bifurcation takes an important role in the
creation of periodicity behaviour with particular values of the parameters on the
FitzHugh-Nagumo model.

Lastly, we focused on some of the different types of planar point-cycle bursting
excitability describing the bifurcations that create it. We displayed the bursting
behaviour simulating the Hindmarsh-Rose and Morris-Lecar model and we saw
how different types of bifurcations lead to different types of bursting behaviours.
Nevertheless, nowadays is not clear their biological consequence, we do not know
the biological consequence if, for example, the resting state disappears via a fold
bifurcation or a fold limit cycle bifurcation.

4.2 Future work

The following ideas could be considered in the future:
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• It could be interesting to do simulations of bursting directly from Hodgkin-
Huxley model, as done in [32], and compare them to the ones we obtained
via simpler models.

• We could study the connection and the interaction of a net of neurons. There
is a lot of research that studies the previous doing periodic perturbations, but
it is not clear what kind of periodicity.

• Future research should consider different types of bursting, such as cycle-
cycle bursting among others. In addition, we could consider other neuronal
models than Morris-Lecar and Hindmarsh-Rose that display bursting be-
haviour, such as Wilson-Cowan, see [31], and Gavrilov-Shilnikov model, see
[30].

• It would be interesting to study deeply the chaotic bursting behaviour such
as the famous blue-sky catastrophe, seen in [7].

• We could also consider fast-slow bursters with two slow variables and study
the different bursting behaviour they display.



Appendix A

Python’s code

We did all the simulations in Google Colab and in Python. Moreover, we inte-
grated the ordinary differential equations presented in this work with the odeint
integrator, an integrator that uses the stepper algorithm Runge-Kutta4.

A.1 Hodgkin-Huxley model

1 import matplotlib.pyplot as plt
2 import math
3 import numpy as np
4

5 gl, gna , gk = 0.3, 120, 36 #we set the values of the constants
6 El, Ena , Ek = 10.6, 120, -12
7 C = 1
8

9 #equations of alpha and beta for initial values
10 V=[]
11 V.append (-70) #we initialize the initial constant values
12 #my initial voltage is -70
13 alpha_n = []
14 beta_n = []
15 alpha_m = []
16 beta_m = []
17 alpha_h = []
18 beta_h = []
19 alpha_n.append (0.01 * ( (10-V[0]) / (math.exp((10-V[0]) /10) - 1)))
20 beta_n.append (0.125* math.exp(-V[0]/80))
21 alpha_m.append (0.1 * (25-V[0]) /(math.exp((25-V[0]) /10) -1))
22 beta_m.append (4 * math.exp(-V[0]/18))
23 alpha_h.append (0.07 * math.exp(-V[0]/20))
24 beta_h.append (1 / (math.exp((30-V[0]) /10) +1))
25 n = []
26 m = []
27 h = []
28 n.append(alpha_n [0]/( alpha_n [0] + beta_n [0])) #inital gate variables
29 m.append(alpha_m [0]/( alpha_m [0] + beta_m [0]))
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30 h.append(alpha_h [0]/( alpha_h [0] + beta_h [0]))
31

32 #creat the time constants
33 time_total = 100
34 time_incr = 0.01
35 t = np.arange(0, time_total+time_incr , time_incr)
36 #t is our time vector
37 #we create our intensity vector
38 I=np.zeros(len(t)) #all 0’s
39 I[:]=500 #we keep the applied current constant
40 #I kept changing this value
41 #observing the different kind of action potentials
42 for i in range(0, len(t) -1):
43 #I apply the hh equations
44 alpha_n.append (0.01*(10 -V[i])/(np.exp((10-V[i]) /10.0) -1))
45 beta_n.append (0.125* np.exp(-V[i]/80.0))
46 alpha_m.append (0.1 * ((25-V[i]) /(np.exp((25-V[i]) /10.0) -1)))
47 beta_m.append (4 * np.exp(-V[i]/18.0))
48 alpha_h.append (0.07 * np.exp(-V[i]/20.0))
49 beta_h.append (1 / (np.exp((30-V[i]) /10.0) +1))
50

51

52 Ina = gna*(m[i]**3)*h[i]*(V[i]-Ena);
53 Ik = gk*(n[i]**4)*(V[i]-Ek)
54 Il = gl*(V[i]-El)
55 Iion = I[i] - Ina - Ik - Il
56

57 #I calculate the next values using the euler’s first order aproximation
58 V.append(V[i] + time_incr*Iion/C)
59 n.append(n[i] + time_incr *( alpha_n[i]*(1-n[i])-beta_n[i]*n[i]))
60 m.append(m[i] + time_incr *( alpha_m[i] *(1-m[i]) - beta_m[i] * m[i]))
61 h.append(h[i] + time_incr *( alpha_h[i] *(1-h[i]) - beta_h[i] * h[i]))
62

63 plt.plot(t, V, color = "black", linewidth =1)
64 plt.xlabel("time␣(ms)")
65 plt.ylabel("Voltage␣(mV)")
66 plt.title("Voltage␣over␣time")
67

68 plt.plot(t, m, label = "m(t)␣K␣activation", color="blue", linewidth =1)
69 plt.plot(t, n, label ="n(t)␣Na␣activation", color="red", linewidth =1)
70 plt.plot(t, h, label="h(t)␣Na␣inactivation", color="black", linewidth =1)
71 plt.xlabel("time␣(ms)")
72 plt.ylabel("m,␣n␣and␣h")
73 plt.legend ()
74 plt.title("activation␣or␣inactivation␣gating␣variables")

A.2 Forced Van der Pol oscillator

1 import matplotlib.pyplot as plt
2 import math
3 import numpy as np
4 from scipy.integrate import odeint
5



6 w=2* math.pi/10
7 def model(z, t):
8 mu , A = 7.48, 1.05
9 x, y = z

10 dxdt = y
11 dydt = mu*(1-x**2)*y-x+A*math.sin(w*t)
12 dzdt= [dxdt , dydt]
13 return dzdt
14 print (2* math.pi/w)
15 t = [i for i in range (10001)] #an array of time
16 z0=[0, 0]
17 sol = odeint(model , z0, t)
18 plt.figure(figsize =(15 ,4)) #I want a rectangular graph
19 for k in range(1, 1001):
20 plt.scatter(sol[k*10,0], sol[k*10,1], color="black")
21 plt.xlabel("x")
22 plt.ylabel("y=dx/dt")

A.3 FitzHugh-Nagumo model

Python code that computed the solutions of the equation (2.11):
1 import matplotlib.pyplot as plt
2 import numpy as np
3 from scipy.integrate import odeint
4

5 def model(z, t): #time not used , is an autonomous system
6 I=0.35 #the parameter I keep on changing.
7 v, w = z
8 dzdt = [v - (v**3)/3 - w + I, 0.08*(v+0.7 -0.8*w)] #equations of the model
9 return dzdt

10

11 t = np.linspace(0, 200, 1500) #an array of time
12 z0 = [-0.96, -0.3] #initial conditions
13 sol = odeint(model , z0, t)
14 plt.plot(sol[:, 0], sol[:, 1], color="black", linewidth =1)
15 plt.xlabel("membrane␣voltage ,␣V")
16 plt.ylabel("recovery␣variable ,␣w")

A.4 Bursting excitability

A.4.1 Simulation of bursting in Hindmarsh-Rose

1 import matplotlib.pyplot as plt
2 import math
3 import numpy as np
4 from scipy.integrate import odeint
5

6 def model(x, t):
7 Iext = 4
8 a, c, d, s, beta , v0, e = 1, 1, 5, 4, 1, -1.6, 0.01



9 b = 2.52 #the parameter I change
10 V, w, z = x
11 dvdt = -a*V**3 + b*V**2 + w + Iext - z
12 dwdt = c - d*V**2 - beta*w
13 dzdt = e*(s*(V-v0)-z)
14 dxdt = [dvdt , dwdt , dzdt]
15 return dxdt
16

17 t = np.linspace (0,900, 15000)
18 x0 = [-1, 0, 0] #our model is insensitive to changes on the initial values.
19 sol = odeint(model , x0, t)
20 plt.xlabel("time␣(ms)")
21 plt.ylabel("membrane␣voltage␣(mV)")
22 plt.plot(t, sol[:, 0], "black")
23 plt.xlim (180, 770)
24 #If I scale the x-axis like this the bursting behaviour is clearly observed.

A.4.2 SubHopf/homoclinic bursting

1 import matplotlib.pyplot as plt
2 import math
3 import numpy as np
4 from scipy.integrate import odeint
5 def minf(V, V1, V2):
6 return (1/2)*(1+ math.tanh((V-V1)/V2))
7

8 def winf(V, V3, V4):
9 return (1/2)*(1+ math.tanh((V-V3)/V4))

10

11 def landa(V, V3, V4):
12 return (1/3)* math.cosh((V-V3 )/(2*V4))
13

14 def model(z, t):
15 #we define the different parameters
16 #this is what we keep changing
17 El, Ek , Eca = -0.5, -0.7, 1
18 gl, gk , gca = 0.5, 2, 0.9
19 mu = 0.003
20 v1, v2 , v4 = -0.01, 0.15, 0.04
21 v, w, u = z
22 #in this bursting V3 is a function of u
23 dzdt = [0.08 -0.03*u-gl*(v-El)-gk*w*(v-Ek)-gca*minf(v, v1, v2)*(v-Eca),
24 landa(v, 0.08-u, v4)*( winf(v, 0.08-u, v4)-w), mu *(0.22+v)]
25 #in the partial of the membrane voltage the intensity is I(u) = -u
26 return dzdt
27

28 t = np.linspace (0,1500, 1500)
29 z0 = -0.25, 0, 0
30 sol = odeint(model , z0, t)
31 plt. plot(t, sol[:, 0], color = "black", linewidth =1)
32 plt.xlabel("time(ms)")
33 plt.ylabel("membrane␣voltage(mV)")



A.4.3 Fold/homoclinic bursting

1 import matplotlib.pyplot as plt
2 import math
3 import numpy as np
4 from scipy.integrate import odeint
5 def minf(V, V1, V2):
6 return (1/2)*(1+ math.tanh((V-V1)/V2))
7

8 def winf(V, V3, V4):
9 return (1/2)*(1+ math.tanh((V-V3)/V4))

10

11 def landa(V, V3, V4):
12 return (1/3)* math.cosh((V-V3 )/(2*V4))
13

14 def model(z, t):
15 #we define the different parameters
16 #this is what we keep changing
17 El, Ek , Eca = -0.5, -0.7, 1
18 gl, gk , gca = 0.5, 2, 1.2
19 mu = 0.005
20 v1, v2 , v3 , v4 = -0.01, 0.15, 0.1, 0.05
21 v, w, u = z
22 dzdt = [-u-gl*(v-El)-gk*w*(v-Ek)-gca*minf(v, v1, v2)*(v-Eca),
23 landa(v, v3, v4)*( winf(v, v3 , v4)-w), mu *(0.2+v)]
24 #in the partial of the membrane voltage the intensity is I(u) = -u
25 return dzdt
26

27 t = np.linspace (0,350, 1500)
28 z0 = -0.3, 0, 0
29 sol = odeint(model , z0, t)
30 plt. plot(t, sol[:, 0], color = "black", linewidth =1)
31 plt.xlabel("time(ms)")
32 plt.ylabel("membrane␣voltage(mV)")

A.4.4 Circle/fold circle bursting

1 import matplotlib.pyplot as plt
2 import math
3 import numpy as np
4 from scipy.integrate import odeint
5 def minf(V, V1, V2):
6 return (1/2)*(1+ math.tanh((V-V1)/V2))
7

8 def winf(V, V3, V4):
9 return (1/2)*(1+ math.tanh((V-V3)/V4))

10

11 def landa(V, V3, V4):
12 return (1/3)* math.cosh((V-V3 )/(2*V4))
13

14 def model(z, t):
15 #we define the different parameters
16 #this is what we keep changing
17 El, Ek , Eca = -0.5, -0.7, 1



18 gl , gk , gca = 0.5, 2, 1.36
19 mu = 0.003
20 v1 , v2 , v3 , v4 = -0.01, 0.15, 0.1, 0.16
21 v, w, u = z
22 dzdt = [-u-gl*(v-El)-gk*w*(v-Ek)-gca*minf(v, v1, v2)*(v-Eca), landa(v, v3, v4)*( winf(v, v3 , v4)-w), mu *(0.1+v)]
23 #in the partial of the membrane voltage the intensity is I(u) = -u
24 return dzdt
25

26 t = np.linspace (0,750, 1500)
27 z0 = -0.3, 0, 0
28 sol = odeint(model , z0, t)
29 plt. plot(t, sol[:, 0], color = "black", linewidth =1)
30 plt.xlabel("time(ms)")
31 plt.ylabel("membrane␣voltage(mV)")

A.4.5 Hopf/homoclinic bursting

1 import matplotlib.pyplot as plt
2 import math
3 import numpy as np
4 from scipy.integrate import odeint
5 def minf(V, V1, V2):
6 return (1/2)*(1+ math.tanh((V-V1)/V2))
7

8 def winf(V, V3, V4):
9 return (1/2)*(1+ math.tanh((V-V3)/V4))

10

11 def landa(V, V3, V4):
12 return (1/3)* math.cosh((V-V3 )/(2*V4))
13

14 def model(z, t):
15 #we define the different parameters
16 #this is what we keep changing
17 El, Ek , Eca = -0.5, -0.7, 1
18 gl, gk , gca = 0.5, 2, 0.9
19 mu = 0.01
20 v1, v2 , v4 = -0.01, 0.15, 0.02
21 v, w, u = z
22 #in this bursting V3 is a function of u
23 dzdt = [0.08 -0.03*u-gl*(v-El)-gk*w*(v-Ek)-gca*minf(v, v1, v2)*(v-Eca),
24 landa(v, 0.08-u, v4)*( winf(v, 0.08-u, v4)-w), mu *(0.22+v)]
25 #in the partial of the membrane voltage the intensity is I(u) = -u
26 return dzdt
27

28 t = np.linspace (0,1000, 1500)
29 z0 = -0.25, 0, 0
30 sol = odeint(model , z0, t)
31 plt. plot(t, sol[:, 0], color = "black", linewidth =1)
32 plt.xlabel("time(ms)")
33 plt.ylabel("membrane␣voltage(mV)")
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