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Abbreviations 

Particle Size: PS 

Contact Time: CT 

Point of Zero Charge: PSZ 

Fourier Transform Infrared Spectroscopy: FTIR 
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1. INTRODUCTION 47 

The use of urban and soilless agriculture is becoming more common in the past years to 48 

supply the ever-increasing food demand and to deal with water/land scarcity, leading to 49 

pollution potential. Wastewater from greenhouses, besides having high concentration of nitrates 50 

and phosphates are usually drained and discharged to the environment without proper treatment 51 

(Prystay and Lo, 2001).  The leaching of N and P causes several environmental impacts such as, 52 

contamination of groundwater, eutrophication of surface waters and losses of ecosystem 53 

biodiversity (Oenema et al. 2011). Therefore, the treatment of wastewaters generated by soilless 54 

agriculture may play an important role, with regards of ensuring food security, sustainable 55 

management of water resources and environmental protection, once this type of agriculture can 56 

be implemented at both, urban and rural environments. 57 

Conventional wastewater treatments such as, reverse osmosis, ion exchange, 58 

electrodialysis, and ultrafiltration are efficient, however have high maintenance and operation 59 

costs (Koide and Satta, 2004; Gagnon et al., 2010; Park et al., 2015). Therefore, nature-based 60 

solutions (NBS), such as constructed wetlands (CWs) and denitrification filters, may represent a 61 

sustainable and low-cost alternative to remove nitrogen from hydroponic wastewaters before 62 

discharge (Park et al., 2008; Gagnon et al., 2010; Abbassi et al.,2011; Park et al., 2015).  63 

However, nitrogen removal from hydroponic wastewaters, by using NBS can be a 64 

challenge, since this water is known to have high concentration of nitrates and low carbon 65 

(Prystay and Lo, 2001). The availability of carbon is one of the main limiting factors regarding 66 

the efficiency of biological denitrification (Vymazal, 2007a; Wu et al., 2014; Mutsvangwa and 67 

Matope, 2017). According to Mutsvangwa and Matope (2017) and Amy et al. (2008) 68 

wastewaters with low carbon to nitrogen ratio, usually require an external carbon source to 69 

improve denitrification. However, the use of external carbon sources such as, methanol, ethanol, 70 

acetic acid and fructose besides increasing operational costs can cause negative environmental 71 

impacts (Park et al., 2008).  72 
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Therefore, alternative organic materials such as, plant biomass (Wen et al., 2010; Zhang 73 

et al., 2014), flower straws (Chang et al., 2016) and plant pruning (Park et al., 2008) have been 74 

proposed as an external carbon source, mainly because of their low cost, availability and 75 

renewable biomass. In addition, in the past 5 years, authors have shown the potential of roots 76 

exudates as a carbon source for denitrification (Zhai et al., 2013; Chen et al., 2016; Wu et al., 77 

2017).  78 

Moreover, some authors have suggested the use of organic filter media to enhance 79 

denitrification for NBS treating wastewaters, such as a pond culture with mud (Erbanová et al., 80 

2012), bioreactor with woodchip (Nordström and Herbert, 2017), green wall with coconut 81 

fibber and light expanded clay (Masi et al., 2016) and green walls with Coco coir (Prodanovic et 82 

al., 2017). Results of Prodanovic et al. (2017) indicated that biological processes are enhanced 83 

by the addition of organic substrate. The coco coir increased the retention time, and thus, 84 

enhanced at the same time the microbiological removal processes. On the other hand, the 85 

increase of retention time can lead to an accumulation of total nitrogen in the effluent. The study 86 

of Masi et al., (2016) showed an increment of total Kjeldahl nitrogen when using coconut fibber 87 

as substrate and light expanded clay, possibly by the increment of retention time, which favours 88 

the release of organic compounds, such as organic nitrogen.  89 

Nevertheless, reusing organic by-products, as filter media transforms what was once an 90 

external source, into an integrated part of the system, reducing operation costs while preserving 91 

natural capital. In this regard, cork granulated seems to have potential to be used as a 92 

sustainable “internal” organic source for the treatment of hydroponic wastewaters.  93 

Cork by-product is generated from several operations of wine industry and it is 94 

considered as a natural, renewable, biodegradable raw material (Olivella et al., 2011a; Ramos et 95 

al., 2014; Boschmonart, 2011). The cork oak trees are planted, the bark is stripped for the first 96 

time when tree is 20 to 25 years old; the next stripping are carried out every 9 to 12 years 97 

(Boschmonart, 2011), with an expected productive life from 150 to 300 years depending on the 98 

tree’s health.  In the Iberian Peninsula, the annual production of cork waste reaches 50.000 tons, 99 
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corresponding on average 40% of the cork processing industry that is discarded and sent to 100 

landfill.   101 

Moreover, several researches have shown the potential of cork to remove contaminants 102 

such as, polycyclic aromatic hydrocarbons (Olivella et al., 2011a), methyl orange (Krika and 103 

Benlahbib, 2015), ofloxacin (Crespo-Alonso et al., 2013), Biphentrin (Domingues et al., 2005) 104 

ibuprofen, carbamazepine and clofibric acid (Dordio et al., 2011) or heavy metals (Pintor et al., 105 

2012). On the other hand, not much is known about the behaviour of cork regarding the release 106 

of organic carbon.  107 

The main goal of this paper was to investigate the potential of granulated cork as an 108 

organic carbon source. The chemical release of organic carbon can play an important role 109 

regarding the establishment of biofilm in natural wastewater treatments. Moreover, the chemical 110 

organic carbon released by the substrate can enhance denitrification process while reducing the 111 

use of external carbon sources and thus, ensuring a long-term performance on pollutant 112 

removal, reducing operation costs and environmental hazard. The granulated cork was 113 

characterized (PZC, FTIR, chemical and elemental constitution) and batch studies were 114 

performed using synthetic hydroponic wastewater in order to understand the role of PS, pH and 115 

CT on the release of organic carbon. 116 

2. MATERIALS AND METHODS 117 

2.1 Synthetic Hydroponic Wastewater 118 

The composition of hydroponic wastewaters varies according to the crops, type of 119 

fertilizers used for the nutrition solution, frequency of application, time of the year and type of 120 

system (closed or open). A literature research was made to establish a reliable range of 121 

contaminants to guide the preparation of synthetic hydroponic water (Table 1). The compounds 122 

used to prepare the solution were potassium Nitrate (KNO3), calcium chloride dihydrate 123 

(CaCl2*2H2O), ammonium dihydrogen phosphate (NH4H2PO4), sodium hydroxide (NaOH), 124 

magnesium sulphate heptahydrate (MgSO4*7H2O) and zinc sulphate heptahydrate 125 
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(ZnSO4*7H20).  The hygroscopic compounds were dried in an oven (105ºC) for 4 hours and all 126 

compounds were mixed with tap water. When it was necessary, the water was stored in a freezer 127 

at 10°C in order to avoid losses of N- ammoniacal by volatilization. However, the water was not 128 

stored for more than 3 days. The wastewater was prepared five times during the experiment in 129 

order to provide the same initial concentrations of contaminants to all treatments. All data and 130 

the standard deviation can be seen in Table 1.  131 

2.1 Cork preparation  132 

High density cork granulates generated during the production of wine stoppers were 133 

provided by the Catalan Cork Institute (ICSURO). The granulate extracted from cork oak trees 134 

(Q. suber) is the commonly used material to seal wine bottles. This material is also called "cork-135 

wood" and it is a mixture of the denser part of the cork, which has part of the back of the cork 136 

bark (woody part), part of the belly (part that is in contact with the tree) and the one that is 137 

understood by cork. The cork for the test was washed 3 times with demineralized water, dried in 138 

an oven for 48 hours at 105°C and sieved to obtain PS of 4 mm and 8 mm. 139 

2.2 Cork characterization  140 

A Fourier Transform Infrared Spectroscopy (FTIR) test was performed using Cary 630 141 

FTIR according to the internal protocol PNTM 7.5-54 by triplicates (Ortega-Fernández et al., 142 

2006; Prades et al., 2010; Miranda et al., 2013). Chemical constitution analysis methods have 143 

previously been described by Jové et al., 2011. The elemental analysis of C, H, N and O were 144 

performed with 4 samples (replicates), using elemental analyser EuroVector EuroEA3000 145 

equipped for analysis of CHNS.  146 

The determination of point of zero charge for each PS of cork (4 mm and 8 mm) was 147 

based on the immersion technique (adapted from Bourikas et al., 2003; Hafshejani et al., 2016; 148 

Fiol and Villaescusa, 2009). The pH value at the point of zero charge of cork was determined by 149 

adding 250 ml 0.1 M NaCl solution into a series of 500 ml plastic flaks. The initial pH of the 150 

aqueous solutions was adjusted in the range of 1-10 by the addition of HCl (0,5-1M) or NaOH 151 
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(0,5-1M). After the pH adjustment, 15 grams of cork were added to each flask and the 152 

suspension was shaken for 24 hours, at 40 rpm and 22 ± 1◦C. The solution was finally filtered 153 

on 0.45 mm cellulose acetate membrane filter and the final pH was measured using digital pH 154 

meter (Metrhom) standardized by NBS buffers. The experiment was performed in triplicates. 155 

The variation of pH (ΔpH = initial pH – final pH) was plotted versus initial pH.  156 

2.3 Batch studies 157 

The batch studies were carried out at the Department of Bioscience - Aarhus University 158 

(Denmark). For all batch experiments, constant conditions for the initial concentration of 159 

contaminants (Table 1), adsorbent dosage (100 g L
-1

) and temperature (20°C ± 1°C) were 160 

maintained. The experimental design was based on the following factors and levels: PS: 4 mm 161 

and 8 mm, pH: 3,5,7,9 and CT: 0 – 24 hours.  All the experiments were performed in triplicates. 162 

Control samples, without cork, were used to adjust the results.  163 

2.3.1 Effect of particle size and pH on the release of organic carbon 164 

The initial pH of synthetic hydroponic wastewater (SHW) was adjusted at different pH 165 

values (3, 5, 7, 9) by using HCl (0,5-1 M) and NaOH (0,5-1 M) and the SHW was characterized 166 

in order to know if initial concentrations were in accordance with the literature range (Table 1). 167 

Initial values of organic carbon were considered to be zero. The adsorbent dosage of 100 g L
-1

 168 

was achieved adding the desired amount of adsorbent and aqueous solution into plastic flasks 169 

(250 mL). The suspensions were shaken at 40 rpm at 20±1°C during 24 hours. The solutions 170 

were filtered and immediately, the final pH of filtered samples was measured using a HACH 171 

digital probe and the non-purgeable organic carbon (NPOC) was measured.  172 

A factorial ANOVA (4 x 2) was performed in order to analyse main effects and 173 

interaction for significance of 4 mm and 8 mm PS and pH 3, 5, 7 and 9 on the release of organic 174 

carbon (OCI - described in section 2.4.1). Post Hoc test (Tukey HSD 5%) were carried out just 175 

for the pH independent variable (more than 2 levels) in order to determine the significance of 176 

the differences between the means across the levels.  177 
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2.3.2 Kinetics 178 

Kinetic experiments were conducted under pH 7, normally based in hydroponic 179 

wastewaters (Table 1), by varying the CT: 0.5, 1, 3, 12, 24 hours following the previously 180 

methods described before.  After the pre-established CT, the samples were filtered using a 181 

cellulose membrane filter, and non-purgeable organic carbon (NPOC) analysis were performed.  182 

A factorial ANOVA (5 x 2) was performed to analyse the effects of PS ( 4 mm and 8 183 

mm) and CT ( 0.5, 1, 3, 12 and 24 hours) on the release of organic carbon. Post Hoc test 184 

(multiple comparisons – Tukey HSD 5%) were carried out just for the CT (more than 2 levels) 185 

to determine the significance of the differences between the means across the levels. In order to 186 

determine the specific relationships between both independent variables (PS and CT) across 187 

levels, an analysis of simple effects was conducted, using general linear model.   188 

2.3.3 Organic Carbon release indicators 189 

In order to analyse the data from the batch studies, 3 indicators are proposed. The 190 

description of the indicators can be seen below. 191 

                                                                                                              192 

OCI (mg) = mass balance or the mass of organic carbon released. Where, NPOCf is the 193 

final concentration of non-purgeable organic carbon (mg L
-1

) and V is aqueous volume of 194 

the sample (L). 195 

                          
   

                                                                                             196 

OCII  (mg of organic carbon / g of cork ) = The amount of organic carbon released per 197 

gram of cork. Where M is the mass of cork in the samples (g) (adapted from Crespo-198 

Alonso et al.; 2013; Hafshejani et al., 2016; Mor et al., 2016; Rajeswari et al., 2016) 199 

                            
       

   
                                                              200 

OCIII (%) = % of OC released related to total OC in the sample. Where MCi is the initial 201 

mass of organic carbon in the sample. MCi was calculated considering the elemental 202 
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analysis performed (66% of the total mass is organic carbon) and the mass of cork in the 203 

sample.  204 

2.3.4 Statistics 205 

As mentioned before, for both experimental stages an ANOVA factorial analysis was 206 

carried out using the software IBM SPSS Statistics (version 23), in order to understand the main 207 

effects of PS, CT and pH on the chemical release of organic carbon. Only the indicator OCI was 208 

used for statistical analysis. 209 

Moreover, the effects on each factor have been individually analysed by a “trial and 210 

error” approach. Therefore, for kinetics studies, the design of the needed experiments was 211 

carried out using Design Expert® (Design-Experts Software Version 7.0). The DoE technique 212 

allows for verifying whether or not there is a synergistic effect between the variables on the 213 

final response (Montgomery, 2007; Formosa et al., 2012)., and which parameters can influence 214 

the release of organic carbon (OCI) to a greater extent. The objective was to quantify the results 215 

according to the PS and CT which are related with the kinetics. On this manner, a desirable OCI 216 

can be obtained by varying the parameters under study (i.e.: PS and/or CT). The statistic 217 

approach was a response surface methodology (RSM), specifically a historical data in order to 218 

further perform an optimization process by using the results previously obtained. The analysis 219 

of DoE results is based on the analysis of variance (ANOVA) (Montgomery, 2007).  220 

3 RESULTS AND DISCUSSION 221 

3.1 Characterization of cork 222 

3.1.1 FTIR 223 

Cork is mainly composed by suberin and lignin (Miranda et al., 2013). Based on the FTIR 224 

spectra (Figure 1), most characteristic absorption bands were between 2800 and 3000 cm-1, 225 

corresponding to the link C-H of suberin (Cordeiro et al., 1998), similar to other previous results 226 

(Miranda et al., 2013). 227 
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The analysed samples showed other bands at 1738, 1630 and 1605 cm-1 corresponding 228 

respectively to the C = O bond of suberin and aliphatic acids, C = C bonds of suberin and lignin. 229 

Bands from 1600 to 1125 and 1087 to 1035 cm-1 were related, respectively, to different bonds 230 

of lignin and C-O bonds of polysaccharides (cellulose + hemicellulose) (Marques et al., 1994). 231 

As can be seen in Figure 1, both PS (4 mm and 8 mm) showed similar behaviour regarding their 232 

bands and peaks. The heterogeneity of the samples can be explained by some differences 233 

between replicates.  234 

3.1.2 Chemical constitution. 235 

The suberin was the major chemical compound, representing 51.3 % of the total 236 

composition (Table 2). Together, suberin and lignin represented 65.4 % of the total chemical 237 

composition of cork (Q. suber) analysed in this present study. The content of lignin and suberin 238 

can vary within the same species and for different species (Miranda et al. (2013). 239 

Other authors showed similar results, where the suberin plus lignin of Q. suber ranged 240 

from 69.8 % - 70.1%. Olivella et al. (2011a and 2011b) results of lignin contents were, 241 

respectively, 2.2 and 1.8 times higher than the lignin content of Q. suber on our present study. 242 

On the other hand, the suberin content of Q. suber in our present study (51.3 %) was higher 243 

when comparing with the result of Q. suber (Olivella et al., 2011a; Olivella et al., 2011b) and 244 

1.35 to 1.8 times higher comparing with Q. cerris (Olivella et al., 2011b).  245 

On the other hand, the variation within the same species might be related with the 246 

extraction part (belly, back and cork). As can be seen in Table 2, the content of suberin tends to 247 

be higher in the belly and cork than in the back part, fact that is in accordance with Jové et al. 248 

(2011). 249 

The samples of the present study are a mixture of back layer (woody part), belly 250 

(innermost part) and the one that is understood by cork, while the samples of Olivella et al. 251 

(2011a and 2011b) were just composed by the belly layer. Therefore, the higher content of 252 



10 
 

suberin in our study in comparison with other works could be explained by the heterogeneity of 253 

our cork sources.  254 

This heterogeneous composition confers cork a unique characteristic and makes it a very 255 

interesting natural material to investigate (Olivella et al., 2013a). In fact, not much is known 256 

about the influence of the chemical composition of cork on the release of organic carbon.  257 

3.1.3 Elemental analysis 258 

In our samples, carbon was the main element, representing 61.7 % of the total mass of the 259 

sample, a similar result obtained from other authors (Olivella et al., 2011b), and can correspond 260 

to the ranges of cork and belly (extraction parts) founded in literature (Table 3).  261 

The proportion of material coming from belly and cork layers of our samples might be 262 

greater than the back layer, justifying the previously mentioned highest content of suberin. In 263 

fact, the content of carbon from Q. cerris is slightly lower than the results from Q. suber, which 264 

might be related to the lower content of suberin mentioned in the previously section. 265 

On the other hand, the organic nitrogen composition might be an issue to be considered in 266 

the scope of selecting organic by-products as substrates on NBS for water treatment. The results 267 

of Masi et al. (2016) showed an increase of total Kjeldahl nitrogen, which was probably related 268 

to the release of organic nitrogen from the substrate (coconut fibber). The organic nitrogen 269 

released will be mineralized, and eventually, will change to mineral forms, such as ammonium, 270 

nitrates and nitrites.  This flow of total nitrogen from the substrate needs to be addressed during 271 

the design of such technologies. In our case, the nitrogen content represented less than 1% of 272 

the total composition of the samples and was lower than all results founded in the literature 273 

(Table 3).  274 

Moreover, the release of greenhouse gases such as CO2 and N2O can be increased when 275 

organic filter media are used. According to the review made by Maucieri et al. (2017), the 276 

increase of organic C and N can lead to higher greenhouse gases emissions in CWs, and 277 

denitrification process can increase N2O emissions (Gentile et al., 2008; (Sarkodie-Addo et al., 278 
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2003). Consequently, the high C:N ratio from our substrate could help to enhance denitrification 279 

and, at the same time, balance the characteristic higher GHG emissions from low C/N ratio 280 

hydroponic wastewaters. 281 

3.1.4 PZC 282 

The PZC can be defined as the pH value in which the surface of the biosorbent has zero 283 

charge (or the same number of positive and negative charges). Biosorbent surface net charge 284 

plays an important role in the sorption/desorption processes, and to explain protonation / 285 

deprotonation behaviour in the aqueous medium. As can be seen in Figure 2, performing the 286 

immersion technique, the point of zero charge from granulated cork were between pH 5.5 and 287 

5.8, respectively, to PS 8 mm and 4mm. 288 

Above pH 6, the surface of the samples is negatively charged, mainly because of the presence 289 

of phenolic -OH or carboxylic groups (-COOH). However, the results of Fiol and Villaescusa, 290 

(2009) showed a point of zero charge of around pH 3,5 regardless the methodology used, with 291 

cork waste from wine industry from Spain.   292 

As previously mentioned (section 3.1) the chemical composition of cork might vary according 293 

the species and the extracted part and, therefore, different chemical compositions might lead to 294 

different behaviour of protonation / deprotonation process that can influence the point of zero 295 

charge.  296 

3.2 Effect of PS and pH on the release of organic carbon 297 

The extractives of cork include several organic compounds such as waxes, triterpenes, 298 

fatty acids, glycerides, phenols and polyphenols. The pH influences the chemical speciation and 299 

the diffusion rate of solutes, the dissociation of sorbent functional groups and the sorbent 300 

surface charge  (Rahmani et al., 2010; Glestanifar et al., 2016). It is assumed that the PS affects 301 

the release of organic carbon, since it is directly related to surface area, although this effect 302 

might vary according to the initial wastewater pH.  303 
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The results indicated that the null hypothesis can be rejected for PS (F(1,16) = 293 > 304 

4.49, p = 0.05) and pH (F(3,16) = 9.61> 3.24, p = 0.05), indicating the existence of main effects. 305 

On the other hand, there was insufficient evidence to reject the null hypothesis of interaction 306 

effect (F(3,16) = 2.66 < 3.24, p = 0.05). Therefore, the main effects of PS and pH are discussed 307 

below (Figure 3.). 308 

Regardless the pH, as smaller the PS as higher is the release of organic carbon, due to 309 

more available surface area. Regarding the effect of pH, the release was not affected from pH 3 310 

to 7, but a significant effect was obtained from pH 7 to 9 (Tukey HSD, 5%), with higher release 311 

at pH=9, perhaps due to the deprotonation of phenolic –(OH) or carboxylic groups (–COOH) at 312 

pH 8-9. No significant interaction effect was obtained (p=0.083). The main effect of PS (95% of 313 

the variance) is stronger than the main effect of pH (64% of the variance).  314 

Moreover, 95% of the variance on the release of organic carbon can be attributed to the 315 

PS, while 64 % was explained by the variance of initial pH, fact which, suggest that the main 316 

effect of PS is stronger than pH. Therefore, comparing each PS across levels of pH, separately, 317 

the pH did not affect the release of organic carbon for PS 8 mm. On the other hand, for PS 4 318 

mm, the differences between pH 3-7 and 7-9 were statistically different, decreasing and 319 

increasing, respectively. These results might indicate that as lower the PS as greater can be the 320 

effect of pH on the release of organic carbon.  321 

3.3 Kinetics 322 

The null hypothesis can be rejected for PS (F(1,20) = 931.33 > 4.35, p = 0.05) and CT 323 

(F(4,20) = 232.93 > 2.87, p = 0.05), indicating the existence of main effects of CT and PS on 324 

the release of organic carbon. The results showed significant effect of PS and CT on the release 325 

of organic carbon, increasing with smaller PS (p<0.05) regardless the CT. Indeed, the mass of 326 

carbon released by PS 4 mm was two times higher than the release of organic carbon by PS 8 327 

mm for all CT, except for CT 3 hours which was 1.7 time higher. This may indicate the 328 
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presence of a possible inverse exponential relationship between PS and release of organic 329 

carbon. 330 

The post hoc tests (Tukey HSD, 5%) indicate that the multiple comparisons across levels 331 

of CT were significant, increasing the release of organic carbon when the CT increases, 332 

regardless the PS (Figure 4).   333 

An interaction effect was noticed on the release of organic carbon (PS*CT - F(4,20) = 334 

28.87 > 2.87, p = 0.05). All eta squared (η2) were greater than 0.14, indicating that both, main 335 

and the interaction effects, are representing great influence on the release of organic carbon. 336 

However, while the main effects of PS and CT represents 98% of the release of organic carbon, 337 

the interaction effect between then represents 85%, suggesting that the main effects of PS and 338 

CT are slightly greater than the interaction effect.  339 

The pairwise comparison results showed no significant differences on the release of 340 

organic carbon in the periods, 3-12 hours and 12-24 hours, for PS 8 mm. However, the release 341 

of organic carbon after 24 hours was significantly higher than after 3 hours. Moreover, there 342 

was significant differences between all the means across CT, for PS 4 mm. These results 343 

indicate that in the period of 3-12 hours and 12-24 hours the release of organic carbon was 344 

influenced by PS and/or that there is an interaction between the independent variables. This 345 

result might indicate that the CT may have a stronger effect on PS 4 mm than on PS 8 mm, in 346 

other words, with smaller PS the effect of CT is higher on the release of organic carbon. 347 

Considering the mass of carbon released after 24 hours as the total released it is possible 348 

to conclude that approximately 32 % and 11 % of total carbon released took place during the 3 349 

to 24 hours period, respectively for PS 4 mm and PS 8 mm.  350 

On the other hand, more than 70% of the released organic carbon occurred during the first 351 

3 hours, for both PS. Therefore, the release of organic carbon might get slower when the CT 352 

increases. In addition, this effect might be stronger with the increase of PS.  Considering that 353 

the specific surface area and PS are inversely related, the surface area might have an effect not 354 
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just on the amount of carbon released but also at which the speed that the release of carbon 355 

takes place.   356 

Table 4 summarizes the results following the RSM obtained using the software Design 357 

Expert® for the best fitted model. Both factors (PS and CT) present significant effect on the 358 

response (OCI) in the range of the study. In this case, the best fitted model is a response surface 359 

reduced cubic model which presents interaction between the factors under study (PS and CT) 360 

with a p-value<0.05. In addition, there is a cubic interaction (see factor CT
2
PS and p-vales<0.05 361 

in Table 4). Besides, a quadratic and a cubic effect on the response is presented for the CT 362 

factor in the range of the study. 363 

PS factor does not fit in the proper manner when is in quadratic and/or cubic function, for 364 

that reason these terms where discarded on the final equation. In addition, it should have been 365 

emphasized that the lack of fit is not significant. Consequently, there is only a 0.01% chance 366 

that the model occurs due to noise. 367 

All the results derived from the modification of any of the controllable variables can be 368 

translated into a predictive mathematical model. This model can quantitatively predict the 369 

response within the operating range of controllable variables. It can also give some suitable 370 

formulations when a certain response is required. The model only incorporates the statistically 371 

significant factors and interactions. Therefore, the mathematical model can be written by the 372 

following equation: 373 

322

1 004.0002.0163.0069.0506.0137.2471.5·)( CTPSCTCTPSCTPSCTmgOC   374 

 375 

Figure 5 presents the surface plot obtained for OCI.  An increase of PS or CT lead to a 376 

decrease of OCI. When both factors are increased their combined effect is found to be lower 377 

than the expected form considering the sum of each factor separately. Therefore, it can be 378 

concluded that there is significant negative interaction between both factors: as higher the PS 379 

the lower the response of OCI, as we previously explained.   380 
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3.4 Cork as an organic carbon source for denitrification. 381 

In order to estimate the denitrification provided by granulated cork through the chemical 382 

release of carbon, a series of assumption were made, considering the following theoretical 383 

stoichiometry for denitrification: 1 g org-C per g nitrate-N (Zhai et al., 2013). Moreover, the 384 

density of cork was considered to be 123 Kg /m
3
 and 125 Kg /m

3
 for PS 8 mm and 4 mm, 385 

respectively (Source: internal data from ICSURO). The averages of OCII (mg of organic carbon 386 

released / g of cork) at 24 hours were used for the calculations. Indeed, the hydroponic 387 

wastewater to be treated (Table 1) and temperatures were considered as the same as the one 388 

used at lab conditions. 389 

Therefore, the chemical release of organic carbon, considering a batch bio filter with 390 

unknown dimensions filled up with 1 m
3 

of cork, would be approximately 265 g (PS 4mm) and 391 

120 g (PS 8 mm) after 24 hours. If one considers that all the organic carbon released is 392 

consumed by the denitrification process it means that 3.9 m
3
 and 1.8 m

3 
of hydroponic 393 

wastewater could be treated, using respectively PS 4 mm and 8 mm.  394 

It is well known that PS is a crucial parameter when NBS are designed for wastewater 395 

treatment. The PS besides influencing the hydraulics of the system, also strongly affect the 396 

performance of contaminants removal by adsorption, complexation and precipitation and as 397 

well by microbiological process since influence the biofilm growth (Vymazal, 2007
b
; Wu et al., 398 

2015). The results mentioned above showed that by using a 4 mm PS, the amount of water 399 

treated after 24 hours of batch treatment was more than 2 times that for PS 8 mm. Moreover, 400 

results of Capodici et al. (2014) showed that the PS might have a greater influence on organic 401 

carbon release than the total organic carbon content itself. The author compared several 402 

materials, including cork. Cork presented the lowest result regarding the release of organic 403 

carbon, even though it had the highest total organic carbon content. Fact, which were related to 404 

its biggest PS of cork in comparison with the other materials. Moreover, the kinetics results 405 

highlighted that organic carbon release from granulated cork decreases with time, and this effect 406 

is stronger when the PS increases. Therefore, the effect of PS on the release of organic carbon 407 
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should be considered when NBS treatments are designed using cork as filter media and organic 408 

carbon source.  409 

As can be seem in Figure 6., the chemical release of organic carbon was less than 1% of 410 

the total content of carbon after 24 hours, for both PS, suggesting that cork could be suitable for 411 

a long-term carbon organic source.  412 

According with previously results, the release of organic carbon gets slower with time, 413 

fact which could be a limitation regarding cork long-term efficiency as carbon source. In the 414 

present study, after 24 hours 2.12 (for PS 4 mm) and 0.98 (for PS 8 mm) mg of organic 415 

carbon/g of cork was released. In the other hand Capodici et al. (2014) results showed that, after 416 

50 hours the peak of carbon release was reached being 5.6 mg of organic carbon / g of cork. 417 

After 50 hours the increment of carbon released was slower and linear. Those results suggest 418 

that even that the organic carbon release gets slower with time it keep taking place, fact which 419 

highlight the importance of models to predict it.  420 

Moreover, it is important to take into account that the performance of cork as carbon 421 

source will be influenced also by real scale features such as, type of treatment (bio filters, CWs, 422 

green walls and others), design and operation factors (type of flow, saturated or unsaturated 423 

conditions, retention time, hydraulic and contaminants load among others), cork features 424 

(chemical composition) and environmental conditions (temperatures). Therefore, further studies 425 

on long-term efficiency of organic carbon release from cork are needed. 426 

4 CONCLUSIONS 427 

The main compound and element of cork are Suberin and carbon, representing 428 

respectively, more than 50% and 60% of the samples composition. Also, when comparing the 429 

results with other researches, it was noticed that might be a variance on the content of suberin 430 

across species, within the same species and depending on the extraction part (Belly, cork and 431 

back). Furthermore, the lignin content seems to vary within Q. suber specie. However, no 432 

statistical analysis was performed to validate this hypothesis. Nevertheless, as not much is 433 
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known about the influence of the chemical composition of cork on the release of organic 434 

carbon, further researches on it might facilitate standards to ensure an efficient performance of 435 

cork as carbon source in accordance with its chemical constitution.  436 

The point of zero charge of cork was between pH 5 and 6, which was different than the 437 

result founded in literature (3.5). This difference was attributed to the variance of cork chemical 438 

composition which might lead to different behaviour of protonation / deprotonation. 439 

As smaller the PS as higher is the organic carbon released, regardless the pH or CT. 440 

Regarding the pH main effect, the results suggest that as lower the PS as stronger the effect of 441 

pH on the release of organic carbon. The kinetics results showed that as the CT increases the 442 

release of organic carbon is increased as well, regardless the PS. However, an interaction effect 443 

between PS and CT was noticed, indicating that as smaller the PS becomes the higher the effect 444 

of CT has on the release of organic carbon. In addition, more than 70 % of the carbon released 445 

took place during the first 3 hours for both PS, indicating that the release of organic carbon 446 

might get slower as CT increases. Those results highlight that the effect of surface area affects 447 

the amount carbon released and as well the velocity that the carbon is released.  448 

When using cork as carbon source of NBS treating wastewater, the effect of PS on the 449 

release of organic carbon can play an important role at designing such systems. Estimations 450 

showed that the amount of water treated by using PS 4mm was more than 2 times that would be 451 

for PS 8 mm, considering that all carbon released would be consumed by denitrification. In this 452 

regard, the results of surface response methodology indicate that optimization could be 453 

performed to facilitate the design of technologies considering the interaction between PS and 454 

CT at releasing organic carbon.  455 

Using cork as a source of carbon for denitrification seems to be a promising alternative to 456 

reduce costs and environmental hazard of NBS treating wastewaters with low carbon content 457 

and high nitrates. By using organic substrates, the development of microbiota also might be 458 

facilitated and thus, microbiological removal process. However, this practice might lead to 459 

losses of hydraulic conductivity and adsorption surface area, fact that can influence treatment 460 
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efficiency. Moreover, long-term conditions can influence the cork behaviour at releasing 461 

organic carbon, since other external factor will be involved (type of treatment, design and 462 

operation factors, cork features and environmental conditions). Therefore, validating the use of 463 

cork as a carbon source for denitrification at real and long-term scales can be an interesting line 464 

of research. Furthermore, the effect of such practice on the release of greenhouse gases also 465 

should be considered. 466 

Nerveless, the reuse of organic by-products as filter media seems to be an environmental 467 

and economic friendly alternative to enhance denitrification in NBS. This approach can help 468 

preserve natural capital, reduce the dependency of external inputs, treatment costs, increase self-469 

efficiency, all of it leading to a sustainable technological development in the scope of 470 

wastewater treatments. 471 
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Table 1. Composition of hydroponic synthetic wastewater (Adapted from Prystay and Lo, 2001; 
Koide and Satta, 2004; Huett et al., 2005; Taylor et al., 2006; Park et al., 2009; Gagnon et al., 

2010; Gruyer et al., 2013; Dunets et al., 2015; Park et al., 2015; Chang et al., 2016) 

  
 Synthetic Hydroponic wastewater Literature RANGE  

Compounds Unit Average (
a
SD ±) Min Max 

N total mg L
-1

 70.89 ± 1.1 2.8 122.0 

NO3
-
-N mg L

-1
 66.28 ± 1.0 10.0 414.0 

NH4
+
-N mg L

-1
 4.61 ±  1.4 0.8 36.7 

PO4
-3

-P mg L
-1

 11.01 ± 3.3 0.7 99.3 

b
K

+
 mg L

-1
 189.18 13.0 459.0 

b
Na

+
 mg L

-1
 83.00 83.0 108.0 

b
Ca

2+
 mg L

-1
 123.52 21.0 295.0 

b
Mg

2+
 mg L

-1
 90.00 10.0 105.0 

b
Cl

-
 mg L

-1
 41.00 3.9 80.0 

b
Zn

2+
 mg L

-1
 0.50 0.03 1.4 

pH  9.6 ± 0.08 5.5 7.3 

c
EC dS m

-1
 2.2 ± 0.05 1.3 2.3 

d
SAR meq L

-1
 1.96 1.8 2.0 

a Statistical deviation (SD) was performed using IBM SPSS. b Equal to concentration calculated by the amount of compound used 
(same for all water prepared). cElectrical conductivity. d SAR: The Sodium Adsorption Rate was calculated based on (Pescod,1992). 

To determine the literature range, the SAR was calculated considering the values of Na+, Ca2+ and Mg2+ found in the following 

papers: Koide and Satta, 2004; Park et al., 2009. 
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Table 2. Comparison of chemical composition from granulated cork of present study with 

literature results. 
 Species *Extraction part 

Chemical 

compounds (%) 

Q. Cerris Q. Suber Cork Belly Back 

Suberin 
2
28.5 

 

1
51.3 (± 0.2) 

2
44.1 

3
38.5 

4
34.4 – 48.7 

5
33.5 – 48-7 

4
33.5 – 53.1 

4
21.1 – 40.7 

5
21.1-40.7 

Total lignin 
2
28.1 

1
14.1 (± 0.6) 

2
25.7 

3
31.6 

4
14.6 - 25.3 

5
13.4 - 31 

4
14.9-31 

4
18.9 – 28 

5
23.9 – 27.9 

Suberin + Lignin 
2
56.6 

1
65.4 

2
69.8 

3
70.1 

4
54.4-71 

5
54.7 – 71.4 

4
55 – 69.8 

 

4
41.6 – 64 

5
49 – 64.6 

* Range: lower and the highest results from different origin area for each extraction part.1Results of the present study. The Standard 

deviation was calculated with triplicates using the software IBM SPSS (values in brackets). 2Adapted from Olivella et al., 2011b. 
3Adapted from Olivella et al., 2011a. 4Adapted from Jové et al., 2011. 5Adapted from Olivella et al., 2013a. 
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Table 3. Comparison of elemental composition of granulated cork found on our study and 

literature results.  
 Species

 
*Extraction part 

Elements (%) Q. Cerris Q. Suber
 

Cork Belly Back 

Carbon (C) 
2
50.7  

1
61.7 (± 0.97) 

2
61 

3
58.5 – 63.1  

3
60.2 – 62.5 

3
51.5 – 59.7 

Hydrogen (H) 
2
7.3 

1
7.7 (± 0.2) 

2
8.7 

3
7.1 - 8 

3
6.8 - 9 

3
6.6 – 7.3 

Nitrogen (N) 
2
1.73

 1
0.68 (± 0.05) 

2
1.7 

3
1.3 – 2.1 

3
1.3 – 3.1 

3
1.2 - 2 

Oxygen (O) 
2
31.4

 1
29.8 (± 1.14) 

2
22.57  

3
26.8 – 36.1 

3
28.4 – 36.1 

3
31-42 

* The range: lower and the highest results from different origin area for each extraction part.1Results of the cork granulated used for 
this study (Q. Suber). The Standard deviation was calculated with triplicates using the software IBM SPSS (values in brackets). 
2Adapted from (Olivella et al., 2011)3 Adapted from (Olivella et al., 2013). 
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Table 4. ANOVA for Response Surface Reduced Cubic Model. 

Factors Sum of squares 
a
df Mean square F-value 

b
cv 

c
ρ-value 

Model 225.73 6 37.62 329.91 2.60 ρ < 0.05 

PS 5.10 1 5.10 44.72 4.35 ρ < 0.05 

CT 41.45 1 41.45 363.47 4.35 ρ < 0.05 

PS*CT 11.57 1 11.57 101.47 4.35 ρ < 0.05 

CT
2
 8.95 1 8.95 78.49 4.35 ρ < 0.05 

CT
2
PS 0.99 1 0.99 8.66 4.35 ρ < 0.05 

CT
3
 12.45 1 12.45 109.23 4.35 ρ < 0.05 

Lack of Fit 0.33 3 0.11 0.99 3.10 ρ > 0.05 

Pure Error 2.29 20 0.11 - - - 

Total 228.36 29 - - - - 
adf = Degrees of freedon. b Critical value of F distribution.  cρ < 0.05 = significant. ρ > 0.05 = not significant 
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Figure 1. FTIR results - cork granulate Quercus suber
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Figure 4. Main effect of CT on the release of organic carbon.
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Figure 6. Effect of CT on OCIII (described in section 2.4.1).
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