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Stochastic learning processes for a specific feature detector are studied. This technique is applied
to nonsmooth multilayer neural networks requested to perform a discrimination task of order 3 based
on the T-block—C-block problem. Our system proves to be capable of achieving perfect generalization,
after presenting finite numbers of examples, by undergoing a phase transition. The corresponding
annealed theory, which involves the Ising model under external field, shows good agreement with

Monte Carlo simulations.
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I. INTRODUCTION

A modern issue in neural network physics is under-
standing in what ways the training of a system can be
made more efficient. The key to this matter is the gen-
eralization curve of the model, which gives us an idea
of the rate of improvement in the response to new data
as a function of the number of examples presented (see,
e.g., [1,2]). In this work we will apply this sort of
analysis to a two-dimensional image-processing task, re-
alized by grids of mutually overlapping feature detec-
tors in a hidden-layer feed-forward network. The use of
supervised-learning methods in problems of this sort [3,
4] has been one of the contributing elements for renewing
the interest in vision-related functions by neural nets.

The particular design introduced in this paper has been
motivated by the so-called T-C problem [5]. Finding so-
lutions to this problem means creating network schemes
suitable for telling the block-T from the block-C patterns
in Fig. 1(a). The distinction must be invariant under
translations and m/2-generated rotations. This task has
been described as worthy of study for its nonobvious dif-
ficulty. All the patterns consist of five “+1” pixels, and
within each of the four T-C pairs, the shapes differ from
each other by just one square. In spite of what rotational
invariance might suggest, considering simple distances is
not enough, because both letters have the same “order-2
spectrum,” i.e., the two sets of distances between all the
pairs of points in each shape coincide. Further, there is
the same number of occurrences for each distance value.
Therefore, as any separation method must involve prop-
erties depending on triplets of squares, the task has been
called “problem of order three” in [5].

Some solutions based on the “receptive field” princi-
ple have been obtained, by backpropagation, in a special
hidden-layer network described in [6]. There, the hid-
den units form an array of replicated local detectors for
mutually overlapping regions, and the learning process is
restricted by constraints in order to preserve the repeated
structure. In the present work we employ a similar hid-
den layer, but with a new type of feature detector. The
local regions scanned will consist of just three squares—
instead of nine—and the weights will be discrete, not
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continuous. Further, they will no longer be subject to
replica constraints.

Our scheme, which we call the “H” solution, differs
from those in a previous study [7] in two main aspects:
each detector is sensitive to severallocal patterns and the
model is more amenable to theoretical analysis. The first
point suits the purpose of maintaining the required rota-
tional invariance without having to use several detector
“families” specialized in one feature. This is of interest
when it comes to simplifying the architecture, as we will
manage to perform the task employing only one family of
replicated detectors. By lack of an exact quenched the-
ory, an annealed approximation (AA) is made. Actually,
a replica-symmetric or similar approach would also be
possible but, for our aims, the annealed method suffices.
At first sight, one may be surprised to see that it works
quite well even at low temperatures. This is not so amaz-
ing in the light of a recent analysis [8] determining the
types of problems for which the qualitative predictions of

(b)

FIG.1. (a) Shapes defining the T-C problem. (b) The four
local patterns employed to distinguish both letters. Their sum
of occurrences is 3 for a T block and 4 for a C block.
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this technique continue to be valid at low temperature.
In our case, it is the realizability of the rule studied that
makes such an approach acceptable.

After evolution under the training dynamics, the sys-
tem has to perform the right type of feature-counting,
i.e., the task which solves the problem not just on the
sets presented, but on the whole input space. Thus, we
seek states of perfect generalization. In these situations
the adequate training process is, rather than backpropa-
gation, some sort of stochastic learning [1], which entails
the controlled introduction of random errors during the
learning phase.

Section II is a brief review of the formalism. The first
model we introduce is described in Sec. III, together with
the theory predicting its behavior and simulation results.
A variant of that scheme is described in Sec. IV. Section
V contains the final comments. A calculation of quite
general applicability appears in the Appendix.

II. GENERALIZATION FUNCTIONS

Training a neural network means supplying it with
examples, made of sets of p input patterns, {S*, u =
1,...,p}, where S¥ = (SY,...,S%;) for every p, and their
associated outputs N[S#]. Given a fixed architecture,
each possible “network” is characterized by the weight
matrix w. The objective of any learning procedure is to
find a mapping N,,[S] as similar as possible to the tar-
get rule N[S]. This is often achieved by minimizing the
training error or energy

P

Eu(wi {S}) = 3 e(w; 1), (1)

p=1

where €(w; S) o< (Nu[S]) — N[S])? measures the deviation
of the existing N, [S] from the ideal N[S]. Nevertheless,
as explained in recent works (see, e.g., [1], [2], [8], or [9]),
the best way of assessing the efficiency of a network is to
measure its performance on any possible input data, not
necessarily in the training set, by means of the general-
ization error

€g(w) = (e(w; ) s, (2)

where (--)s = [du({S})-- = [TTomy du(S¥)-- de-
notes a quenched average over the whole distribution of
example sets {S}, du(9) being a normalized measure. If,
by randomness, the distributions of sets and of individual
patterns coincide, this operation is done by just averaging
over all the single S’s. When the system is asked to de-
duce the whole target rule from the examples shown—as
will be the case—the decrease of ¢, must be guaranteed,
even at the expense of tolerating errors for some E;’s.
That is the reason why stochastic learning is particularly
appropriate in these situations. For processes of this na-
ture, the resulting w’s have long-time distributions of the
Gibbs type, with probabilities

1 mio
Pysy () = e BN, 3)

where
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Zisy = [ dutw)eoBe) @)

is the partition function, and du(w) = Po(w)dw denotes
the a priori normalized measure in weight space. T =
1/B is the training temperature determining the allowed
level of stochastic noise, in the sense that 7" = 0 forces
the system to minimize E;, while T — oo permits any
set of weights with equal probability. Except for Py(w),
the above quantities depend on {S}, as they are referred
to E;, which varies for every chosen set.

The average training error over sets of p patterns is
defined as

et(B,p) = %« (Bu(w; {SP)1 s, (5)

which involves two averages: thermal ()r, i.e., using
Pisy(w), and quenched, here limited to {S}’s of p ele-
ments. Interchanging the averages and using (3) we come
to

«(or)=1 <<% [ dutresB D B i (sh)))

s
10
=—=-—{(InZ . 6
paﬁ« (s1)s (6)
Introducing the average free energy per weight f(8,p)
—N.Bf(B,p) = (InZs3)) s, (7

with N, being the number of evolving weights, the above
relation is expressed as

(6,) = ~ ¢ 55 (67(6,1), ®)

where a = p/N,, is the relative size of the training sets.
Analogously, the average generalization error for p-
pattern sets is

€g(8,p) = ((e(w; 8)))s- (9)

The deviations of the typical values of E; and e(w;S)
from their thermal and quenched averages are supposed
to vanish as N,, — 0. €(8,p) and €4(8,p), viewed as
functions of p, are the learning and generalization curves,
and encode the system’s ability to learn and infer rules.

III. LINEAR H SOLUTION

Our system must work in such a way that it produces
different outputs for the T and C shapes in Fig. 1(a).
The input layer is a screen of M = N x N elements with
41 values, where binary images are formed. Since the
order-2 spectra of both letters coincide, any local detec-
tor aimed at their discrimination must scan regions of
three sites at least. On a square grid, no single three-
pixel set can be invariant under 7 /2-generated rotations.
Therefore, translationally repeated copies of a detector
for one specific feature cannot be enough. However, we
have found a solution of this nature with a replicated de-
tector activated by several different bidimensional local
patterns. These are four different features: rows of three
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+1’s, or with two +1’s and one —1 in any of the three
sites [Fig. 1(b)]. It is not difficult to verify—and this is
our goal—that the total sum of occurrences of these com-
binations is three for any T, and four for any C, regardless
of orientation, i.e., although every individual feature is
not rotationally invariant, the sum of the four actually
is. An analogous solution with columns instead of rows
would equally work.

The hidden layer is a two-dimensional array of binary
(0,1) units, which shall be called H; ;. Every one of these
neurons controls the region formed by the corresponding
S;,; and its two horizontal nearest neighbors on the input
layer. All the hidden units feed into a single integer-
valued output neuron A, that adds up the activation
states of all of them (Fig. 2). This is why we call this
model “linear.” H;; will be active—and thus have unit
value—if its input region contains either three or two +1
pixels. By construction, the working of this system is
translationally invariant.

The required detection is realized by the weights,
threshold, and logistic function contained in the expres-
sion

H;;(8) = ©(Sij-1+ Sij + Sije1+6), (10)
where ©(z) = 0 for z < 0 and 1 otherwise, and 6 can
be any number satisfying 0 < § < 1. Bearing in mind

that the S;;’s are sign-valued variables, these activation
states can be conveniently written as

H;;(8) =3+ 1 (Sij-1+Sij + Sijn
—55,-15i,755,j+1)- (11)
The output unit will take on the value of their sum, i.e.,
NS =) Hi;(9), (12)
%,J

Hapgc 4,5(8) = ©(A4,;Si,5-1 + Bi,jSi; + CijSij+1 +0)
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FIG. 2. Structure of the H network. A two-dimensional
hidden layer scans all the possible three-squarc rows.

which is the total number of successful feature detections.

This task will be learned in networks with the same
connection architecture, keeping all the thresholds and
the weights from hidden to output layer fixed, but allow-
ing the weights from input to hidden units to take on sign
values, given by +1 variables A, ;, B; ;, and C; ; entering
in the way

=3 + 1 [AijSij-1 + BijSi;j + Ci3Sijr1 — AijBi;Ci;Sij-153Si5+1] - (13)

Then, the function evaluated by one of these {A, B,C} networks is Napc[S] = E” Hape i,3[S)], and its error—
referred to the target rule—when presenting a certain input pattern S reads

(4, B, 03 8) = 35 (NasclS] - N1S))?

1

T 16N? | £
(2%}

which, by summing over all the S#’s of a given exam-
ple set, yields the training energy F:(A,B,C;{S}) =

Z=1 €(A, B,C; S*). The generalization ability of such
a model can be tested by starting from a network
with random A;;’s, B;;’s, and C;;’s, and letting the
system evolve by stochastic learning governed by the
E.’s associated to training sets randomly drawn. The

> [(Aiy = 1)Sij1 + (Biy — 1)Si; + (Ciy — 1)Sij1 — (AijBiiCig — 1)8i,5-154,3Si 1]

(14)

[

point is how hard it is now to reach the configura-
tion A;; = B;; = C;; = 1Vi,j, which constitutes
the exact solution of the problem on the whole input
space. This difficulty is measured by the generaliza-
tion error €4(A4, B,C) = {(e(A4, B,C; S)))s. Since the S’s
are totally random and sign valued, formally we have
du(S) = Hi,j[%é(&-,j —1)+16(Si; +1)]dS;,;, as a result
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of which {---)s = 2—,{,—; Z{S,~,,»=il} -+- . Averaging over
all the S patterns, we obtain

€g(A,B,C) = {5 (14— 6((A)o + (B)o + (C)o)
+2({(AB)g,—1 + (BC)o,—1 + (AC)o,-2)
—2(ABC)0,0,0], (15)

with the notations

1
(X)o= 2 > X
4,3

1
(XY)on =77 D XiiYijtns (16)
0
1
(XY Z)o00= 775 > XiiYiiZi;,
0

where X,Y, Z stand for any of A, B,C. In order to sim-
plify the situation, we further restict the problem by look-
ing at particular cases with just one evolving matrix

(1) By ; = C; ; = 1V4,j. Only the A weights evolve

€(4,1,1) = %(1 — (A)o), 17

where the matrix denoted as 1 has all its coefficients
equal to 1. The dynamics is purely based on an “ex-
ternal field” equally influencing all the A weights, which
would not interact among them.

(2) Bi,j = 1V’L,], Ci’j = Ai’j evolving

(4,1, 4) = (3 — 4(A)o + (AA)o,2) = ¢4(4).  (18)

This generalization error can be interpreted as a Hamil-

tonian for an Ising-fashion evolution in the A lattice with

(i) an external field term which prevents symmetry under

global sign flip, thus reminding us that A;; = —1Vi,j

cannot be a solution; (ii) weight interaction between

next-to-nearest (but not nearest) horizontal neighbors.
(3) Cs,; = B,,; = A; j evolving

€o(A, 4, A) = §(7 — 10(A)o + 2(AA)o,-1 + (AA)o,2),
(19)

with the same characteristics as the previous case plus
the usual nearest-neighbor interaction term ~ (AA)g —1.

Taking into account both simplicity and physical inter-
est, we have chosen to study model 2. Its resulting long-
time behavior will not significantly differ from that of a
system under the effective dynamics (18). Perfect gen-
eralization can be achieved by arriving, after evolution,
at the state A; ; = 1Vi, j. Since the system is discrete, a
discontinuous transition should not be ruled out. How-
ever, given that the ground state is unique, the typical
competition effects will not be present. Therefore, what
we certainly cannot expect is a phase transition involving
sign symmetry breaking.

A. Annealed theory

The basic assumption of the annealed approximation
(AA) method is the validity of replacing ((In Z;s}))s with
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In((Z(sy))s in expression (7). In [8], the authors have
shown the limitations and advantages of this technique.
Although in general important deviations from the AA
results are to be expected at low temperatures, there are
at least two cases in which the qualitative behavior pre-
dicted is correct down to fairly low Ts: realizable rules or
networks with Boolean output. This property was found
for perceptrons, but we feel it can be extended to our
model, as the roles played by the weight vectors employed
in that work and by our A matrix are completely analo-
gous. The reason why the AA is applicable here is that,
by construction, our rule is realizable, i.e., there exists
an A* such that €(4*;S) = 0VS, namely A}, = 14, j.

We have supposed that the a prior: random distribu-
tion of the sign-valued weights for the trained system is
uniform, i.e.,

du(A) = [[[36(Ai; — 1) + 36(As; + 1)]dAs 5,
%]
which turns the partition function (4) into a discrete sum

Zis =/du(A)e“’E‘(A;{S”

1
9N? Z

{A; j==%1}

e~ BE(A{S}) (20)
Then, its quenched average is

«e—BEt(A;{S})»S.

(Zsyhs = 5,17,7 >

{4 ;==%1}
Taking advantage of the usual relation
(e PE(ALSHY o = ((e=P(A{SDYE ' one arrives at
1 -
(Zisyhs = 5 D" P Gunld), (21)
{45}
with
eG4 = (e=PelAS)y) 5. (22)

Gan is sometimes called the annealed effective Hamilto-
nian. Here the error €(A4; S) is a function of the type (14),
with Bi,j = ]., Ciyj = A-i,j7 which reads

€(A;S)=¢€(A,1,4;9)

2
1
= 16N2 D (Aiy = 1)(Sijo1+ Sije1)| - (23)
0

(Notice that inside the square brackets there are terms
just linear in the S’s.) In the Appendix we have found,
as a general result for all the possible e(A4; S)’s of a larger
class including this case, and in the large-N limit
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Gan(4) = 1 In[L + 28¢,(A)]. (24)

Both the type of function and the dependence on A
through €, are corroborated by the particular calcula-
tions in (3], [8], and [4]. In our model, we have the ¢,
given by (18), that we conveniently rewrite into the form
€g(A) = 3[3 — m(A)] = ¢g[m(A)], where

(Zsyhs=mr O

1 1
m(4) = 57 D Ay - 1 D AiAee (25)
i Wi

can be regarded as a macroscopic property to which we
shall associate an order parameter. Thus

/ dm e~ /D WMI+AG/4=m) g _ m(A))

{45}
2
/ /m N dk o= (p/2) In[14B(3/4—m)]—N?km ) N2 km(4) (26)
{45}
r
where a Fourier representation of the é§ distribution has 1 sinh &
been introduced, and a simple variable change has taken m=-z + \/'_2—k
. . . s sinh“k + e

place. Now, the sum over {A;;} in the integrand is in- &
terpreted as the partition function for a discrete system 1 € . (30)
with Hamiltonian N2m(A) at “temperature” 1/k, which 2 cosh kV/sinh? k + e + sinh? k + ek

is equivalent to a set of effectively one-dimensional Ising
models subject to an external field and with the nearest-
neighbor interaction replaced by a next-to-nearest neigh-
bor one. Taking some care with the new index grouping,
we apply the standard transfer-matrix method and, in
the large-N limit, get

Z eN”km(A)
{Ai;}

2

N
~ [e‘k/4 coshk + Ve—*/2sinh? k + ek/z] . (27

This sort of calculation using the knowledge of the weight
partition function is similar to the method applied in
(3], although no external-field term was present there.
The same technique was employed in [4] for a two-
dimensional Ising model with graphic methods. The an-
nealed free energy per weight f must satisfy (Z{s}))s ~

[ dm [ dk e=N*Bf(m:k) We thus identify

k

Bf(m, k)= S Infl + B —m)] + km + 7
—1In [cosh k + Vsinh?k + ek] , (28)
where we have recalled @ = p/N?, as N, = N2. In

the thermodynamic limit (N — oo) the integral will be
dominated by its saddle point, i.e., at any given o and 8,
the relevant values are those minimizing f(m, k), which
leads us to 8(8f)/0m = 0, 8(8f)/0k = 0. These two

equations can be written

aB/2

= 1T8G/A—m)

= k(m), (29)

As aff — o0, k — oo and thus m — 3/4. Rising
means increasing the number of examples, and growth
in B amounts to reducing the noise level. This value of
m is expectable, as the limit in question should take us,
sooner or later, to the “perfect generalization” solution
A;; = 1V4,j, which yields m(A) = 3/4. On the other
hand, af@ — 0 gives £ — 0 and therefore m — 0. This
is logical, too, as a state of maximal disorder—random
A; j's—gives m(A) = 0.

The study of the annealed free energy becomes much
easier by solving one of the two saddle-point equations.
Taking k(m) as given by (29), we get

Bf(m) = Bf(m, k(m)), (31)

and then,

(Zisy)slgp ~ / dm e~N*85(m)

~ e"Nzﬂf(msp),

SP

where SP means that the saddle-point value is taken.
Thus the properties of the system can be described by
one single order parameter m. Since in the large-N limit
stochastic fluctuations can be neglected, in most cases
the system must converge to the m corresponding to the
global minimum of f(m). The existence of local minima,
associated with metastable states, depends in general on
the details of the problem and on the values of « and 5.
Here we see that 8f(m) — 0 as a8 > 1 and m — 3/4.
However, since m = 3/4 is the boundary of the domain
for f(m), some care is called for. Figure 3 shows the
shape of Bf(m) for 8 = 100 and different values of a.
As o goes away from zero, it is clearer that Sf(m) — 0
decreasing when m — 3/4 on the left. In this sense,
Bf(3/4) = 0 can be considered as a “minimum.” Below
agz = 0.49, another minimum—a true one—for a certain
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FIG. 3. Representation of Bf(m) (f being the free energy
per weight) for the linear *H’ model as a function of the order
parameter m for 8 = 100. The line @ = a; marks the ther-
modynamic transition. In all cases 8f(3/4) = 0, while the
minimum at m = mo < 3/4 gives 8f(mo) < 0 for a < a; and
Bf(mo) > 0 for a: < & < 2. & = a2 is the spinodal, above
which the minimum at m = mo no longer exists.

m = mg < 3/4 exists. Within this range, for a < oy =
0.335 the global minimum is at m = myg, the one at
m = 3/4 being simply local, while above oy the situation
is reversed.

Starting with random initial weights—i.e., m ~ 0—
when a < o; the system will evolve to settle down at
mg. If we rise a by supplying sets of more examples,
then, on arriving at a;, the value at which the network
stabilizes will ideally shift from m = mg to m = 3/4,
achieving the perfect generalization state. Therefore, a
thermodynamic transition occurs at o = o4. The value
a3, bounding the region in which more than one minima
exist, is a spinodal. Above as there is no local mini-
mum for m < 3/4, and the system will converge fast
to the state m = 3/4. At a = ap, it is said to un-
dergo a spinodal transition. This is of the greatest prac-
tical importance, since for moderately large networks the
observable transitions are the spinodals rather than the
thermodynamic ones. If the size tends to infinity, the
time necessary to escape from a local minimum becomes
exponentially large. As a result, the system gets stuck in
the nearest metastable state as long as such states exist,
which, by the above observation, happens until a = a3 is
reached. It is then—and not earlier at a = a;—that the
discontinuous drop signaling the transition takes place.

Next we outline how the values of €4(8, p) are predicted
in this formalism. Interchanging averages in (9) and us-

ing (2) we can write €;(8, @) = (¢4(A))7. Now, (21) sug-
gests replacing the initial Gibbs probabilities with the
“annealed” distribution

_ 1 —p Gan(A)
Panld) = 1750s° :

Doing so, we obtain the standard AA formula

eo(B,0) = m / du(A) e PS¢ (4). (32)

Manipulating this integral like the previous one, we arrive
at

(8, @)sp ~ m/dm e~ NI ¢, [m] . (33)

It is now clear that
€4(B, @)sp = €glmsp] = £(2 — mgp). (34)

In order to evaluate €,(08, ) as a function of « for fixed
3, increasing values of o until & = ay are taken. Each
time, we solve numerically the saddle-point equation for
m finding the minimum—within the interval (0,3/4)—
of (31), which is mgp, and (34) gives us the value of ¢,
for the o in question. The set of points thus obtained
is shown in Fig. 4, for a certain value of 3, as the curve
drawn in a solid line. For the already mentioned practi-
cal reason, the transition worthy of being predicted is the
spinodal. Taking this into account, we have increased o
until as selecting always the minimum m = my, even for
oy < a < az, when it is just local. As for the thermody-
namic transition itself, the curve would be the same but
with the vertical line on a = a; instead of on as.

Further study of the function Bf(m) suggests that,
within this theory, the passage to the sate of perfect gen-
eralization ceases to be a sharp transition when T'=1/3
is above a certain critical temperature 7.

Though not theoretically evaluated in this work, the
average training error can also be calculated. De-
parting from the general expression (8), we apply AA
by saddle point as before, and arrive at €:(8,a)sp =
—(1/a)(8/8B)(Bf(msp)), which would give us the de-
sired prediction in terms of mgp.

B. Simulation

A number of training sessions have been simulated by
means of a Metropolis-Monte Carlo program [10]. Start-
ing from random A, ;’s, sets of a p = 1 pattern are sup-
plied, each of them giving rise to a new training energy
> =1 €(A; S#), with the €(A; S) in (23). The weight-flip
probabilities will depend on the set in question through
E;, and, of course, on . A thermal average of €4(A) is
computed for each set, and, afterwards, an average over
all the p-pattern sets generated is also taken.

The method is repeated for increasing values of p, thus
yielding new ¢,(3,a)’s (o = p/N?). In order to reduce
the edge and size effects, we have used weight arrays sub-
ject to periodic boundary conditions maintained through
the whole process of weight updating. Typical results of
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FIG. 4. Monte Carlo simulation depicting
the generalization curve €4(3, &) as a function
of the relative size of the example set o corre-
sponding to a fixed 8 = 100, for linear H net-
works of 64 and 256 evolving weights (squares
and triangles, respectively). The solid line is
the result of the annealed theory. The drop in
the generalization error takes place between
the thermodynamic transition value o = o,
dashed line, and the spinodal & = a2, vertical
solid line, as expected.

L T T
0.00 0.20 0.40 0.60

processes at § = 100 are shown in Fig. 4. A transition
is completed at the spinodal a3, and there is good quali-
tative agreement with the AA prediction, even at such a
low temperature. The points are closer to the theoretical
curve for small o’s, and, in spite of the slight deviations
for intermediate values, the domain where the general-
ization error vanishes is accurately predicted.

IV. BOOLEAN H MODEL

Here we present a modified version of our scheme,
where the linear output is replaced with a Boolean unit
B, setting

Bis)=o (sl - o).

for the solution and for the learning network, respec-
tively. NTS] is given by (12) and (11) and N4[S] by
(12) and (13) for C = A,B =1.

We can choose 87, so that the values N' = 3, for T,
and N = 4, for C, be separated. This is achieved if
3 < 61 < 4, producing B=0 (1) for T (C). The error
function in this situation is appropriately written as

(4;5) = O (—%,—(NA[S] — 61) = (VIS] - em) . 36)

(35)
BalS]|=6 (-]lv(./\f a[S] — GL)) ) Hence, the generalization error for a given A is now
J
€g(A) = (e(4; )5
_ / dz / dy ©(—zy) / g_i g% BT+ I+ (E4)(O/N=N/2)] = (G/4AN) GNAIS+NTSDy (37)

& distributions and their Fourier representations have been introduced. The new quantities $N[S] = N[S] — N2/2,

$Na[S8] = N4[S] — N2 /2, contain only S-dependent terms. In regard to the last factor in the integrand, a calculation
similar to those in Appendix A gives, as a result in the large-N limit,

1 A R .
<<exp ~iN > [+ §)Si,;(1 — Sij—1Sij41) + (£Ai; + §)(Sij—1 + Sijr1)] >>
1,7 S

=~ exp{—15[m1(A4)2? + 59° + ma(A)£9]}, (38)
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where
m]_(A) = (AA)oy_z + 2<A>0 + 2,
(39)
ma(A) =4+ 6(A)o,
in the notation (16).
Evaluating the integral (37), we arrive at
’I’TE2(A) 32 G_L _ E 10 2m1(A) 2m2(a))
o) = T arcos (z\/sml (A)) wen” (% - 5wy R R
=¢ [ml(A)» m2(A)], (40)

where
R(A) = 1/20m1(A) — m3(4), (41)
and
t t s
I(t;a,b,c) E/ d:c/ dy e~ —by t+ezy, (42)
0 0

Even though this means changing the initial problem, the
model becomes more amenable by choosing a threshold
61 = N?2/2, as the second term of €4(A) vanishes, leaving
just

2+ 3(A)o
A AAT0 T 2(A0 T 2)) -

In view of this result, the same reasoning as in [3] for
the “contiguity problem” is in order. The singular de-
pendence of the derivative of €4(A) on (A)g, (AA)o,—2 at
(A)o = (AA)o,—2 = 1 gives rise to a discontinuous tran-
sition from “high” €4 to €g = 0 at any temperature.

An AA approach would also be possible, but a bit more

€g(A) = arccos (

[

involved than in the linear model. We will just outline
how to proceed. Since (36) is binary,

(e P D)5 = eg(A)e™ +1 o). (44)

Therefore the annealed effective Hamiltonian from (22)
reads

Gun(4) = —In[1 — (1 — e™P)ey(A)). (45)

This time two order parameters are called for, as a result
of which

(Zisyhs

~ / dm / dma / dky / dky e~ N*BF(mamakika)

(46)

with the annealed free energy

Il

-
|
B3 1@%

FIG. 5. Curve e(a) = ¢€4(8,) (fixed
B), for a Monte Carlo training session of a
Boolean model of 64 weights at 8 = 50, show-
ing the discontinuous order transition from a
nonvanishing e, to €g = 0 at a finite a.
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Bf(mi,mg, k1, ka) = %ln{l — (1 — e P)eglmy, ma]}
+kimi + kz(mz - 1)

— In[sinh k; + 1/ cosh? k; + e—4k2].

(47)

Again, the partition function of the Ising model with ex-
ternal field in the N — oo limit has been used. The AA
predictions would follow from the saddle-point equations
for this f. The result of simulating a training session at
B = 50 is shown in Fig. 5, where the discontinuous order
transition is visible.

V. CONCLUDING REMARKS

An alternative solution to the T-C problem has been
found. Is is based on a structure of replicated detectors
for overlapping regions, counting four different features
whose sum is invariant under 7/2-generated rotations.
The model’s architecture is relatively simple, as one ar-
ray or “family” of such detectors in a single hidden layer
is enough. The learning process leading to the corre-
sponding feature-counting task has been studied taking
advantage of the one-dimensional Ising model with exter-
nal field. The results offer further evidence, in the line of
[3, 4], that some properties discovered for single percep-
trons [2, 8], and conjectured to hold for a more general
class of networks, are valid in hidden-layer networks with
discrete evolving weights.

In the linear H model, a transition from “poor” to
perfect generalization takes place. Below a certain tem-
perature, it is a sharp drop in the average of ¢, for a finite
value of a. Following the discussion in [2], the asymp-
totic value of the minimal gap per example in the dis-
continuous spectrum of E; is here of O(1/M), M = N?,
i.e., smaller than O(1/v/M). Thus, the occurrence of the
sharp transition depends on the particular values of T,
as indicated by the existence of T,. Although the one-
dimensional Ising model by itself has no genuine phase
transition, when embedded in this system as an entropic
contribution to the free energy (28), it is capable of in-
ducing one.

The discontinuous drop takes place at all temperatures
after replacing the linear output with a Boolean unit, at
least for a certain choice of the external threshold. This
can be explained by a different asymptotic form of the
minimal gap per example, which now is of O(1/v/M),
ultimately caused by the arccos function in (43). We
therefore have a result analogous to those for the domain
counter and the “contiguity problem” in [3] concerning
hidden-layer networks. This type of alteration parallels
the change in behavior when—considering systems with
“Ising” weights—one goes from linear to Boolean percep-
trons [11,12], and is effected by a similar mechanism.

The annealed approximation turns out to be quite
good, even at fairly low 7”’s. This agrees with—and
has also been encouraged by—the critical analysis car-
ried out in [8], based on a study of G,,, which gives
grounds to foresee this behavior both for the case of real-
izable rules and for networks with a single Boolean out-

AUGUST ROMEO 47

put. Even though these conclusions were drawn by con-
sidering single-layer perceptrons, the analogous depen-
dence of € on the weights allows us to carry them over
to our systems. The two models here presented—linear
and Boolean—are about rules which are clearly realiz-
able and, in addition, the second has a single binary out-
put. Yet, we must not discard the possible presence of
spin-glass effects manifested as noticeable slowing down
in some of the simulations performed.

A disadvantage of our models is nonlocality in the sense
that patterns containing the adequate number of features
give the same result independently of their spatial sep-
aration (our objective was not recognition, but rather
discrimination between different classes of fixed shapes).
This issue has been partly dealt with, though for a dif-
ferent scheme, elsewhere [7]. However, a simple answer
would be the addition of a preprocessor analyzing the
two-spectrum and thus sieving out any pattern different
from a T or C block.

The letter problem has just been a good motivation,
as the sort of design introduced can be helpful for any
task realizable by counting detections of similar kinds.
The presence of discontinuous drops in the generalization
error signals the possibility of attaining sharp increases
in learning efficiency by a good choice of the number of
examples and of the training temperature.
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APPENDIX: EVALUATION OF G, (w)

In multilayer networks with random discrete weights
and linear output, one often encounters error functions
of the type

2

| X M
ew;S) = > AwSiS;+ Y BiSi (A1)

2
M I,J=1 I=1
I#£J

A can be taken to be symmetric, as the antisymmetric
part does not contribute. I, J,... are general indices, and
can label bidimensional sites. We assume that both the
Ars’s and Bj’s are polynomial functions of the w’s, with
coefficients of the order of one unit. Thus, inside [ --]?
there are terms at most quadratic in the S’s, of O(M?),
and with randomly alternating signs.

First, consider the calculation of €4(w) = (e(w; S))s.
Using
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(Srhs =0, (SrSsSk)s =0,
(S1Ss)s = b1, (A2)
(S1SsSkSLYs|rpsknr = 501xbiL + 61065K),

we get

eg(w) = M2 Z Afy+ ZB, (A3)
I;éJ
Now, we go to Gan,
e~ Gan(w) — «e—ﬂe(w;s)»s
s 1(_BY\
o = nl M2
n
X << Z Ar;SrSs + ZBISI >>
2 g s
(A4)

By multinomial expansions of |- -
we find

-]™ and employing (A2),

n

<< S° ArsSiSs+ 3 Brs: >>

1,J=1 I=1
I#J

= even terms in A and B

2
M M "
of | Y A+ B (A5)
g e I=1

Bearing in mind that the Ay;’s and By’s are of O(MO),
and assuming that they can have alternating signs as a
result of the random variation of w, then, by counting
the number of terms of every type, we realize that the
right-hand side is

(2n—1)” Z 'AIJ+ZBI

I,J=1
I#J

n

+O(M?Y)

= (2n — YUM> [eg(w)]" + O(M?*~1),  (A6)

[(=1)!! = 0] where the leading term is of O(M?2"). In-
serting this into (A4), we are left with

e~ Can(w) — 2(2"_1_)_( —B) eg (W)™ + O(M ™).

n=0
(A7)

Recalling the square-root Taylor expansion

Z( 1)"(2n—1)“ n

1+x

n=0

one realizes that, in the M — oo limit, the expression
found is e~ Ger(@) = (1 4 28¢,(w)]~'/2. Hence
2 1In[l + 2B¢4 (w)]. (A8)

Gan(w) =

* Present address: Dept. MAIiA, Fac. de Matematiques,
Universitat de Barcelona, Granvia 585, 08071 Barcelona,
Spain.

(1] D. Hansel and H. Sompolinsky, Europhys. Lett. 11, 687
(1990).

[2] H. Sompolinsky, N. Tishby, and H.S. Seung, Phys. Rev.
Lett. 65, 1683 (1990).

[3] H. Sompolinsky and N. Tishby, Europhys. Lett. 13, 567
(1990).

[4] I. Kocher and R. Monasson, Int. J. Neural Systems 2,
115 (1991).

[5) M.L. Minsky and S.A. Papert, Perceptrons (MIT, Cam-

bridge, MA, 1969) [expanded edition (1988)].
[6] D.E. Rumelhart and J.L. McClelland, Parallel Dis-
tributed Processing (MIT, Cambridge, MA, 1986), Vol.
1.
[7] A. Romeo (unpublished).
[8] H.S. Seung, H. Sompolinsky, and N. Tishby (unpub-
lished).
[9] G. Parisi and F. Slanina, Europhys. Lett. 17, 497 (1992).
[10] K. Binder, Applications of the Monte Carlo Method in
Statistical Physics (Springer, Berlin, 1984).
[11] E. Gardner and B. Derrida, J. Phys. A 22, 1983 (1989).
[12] G. Gyérgyi, Phys. Rev. A 41, 7097 (1990).



