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Abstract: The single polarization C-Band weather radar network of the Meteorological Service of
Catalonia covers the entire region (32,000 km2), which allows it to apply a series of corrections that
improve preliminary estimations of the rainfall field (hourly and daily). In addition, an automatic
re-processing using automatic weather stations helps to incorporate ground-based information. The
last process of the quantitative precipitation estimation (QPE) is running the end-product again eight
days later, when the data have been reviewed and corrected in the case of detecting anomalies in
the radar or gauge data. These corrections are applied operationally, with the fields generated and
stored automatically. The QPE fields are generated in the GeoTIFF format, allowing easy use with
multiple applications and simplifying processes such as quality control. In this way, the analysis of
a 10 year period of GeoTIFF QPE daily data compared with ground rainfall values is introduced.
The results help to understand different points regarding the functioning of the network such as
the dependance on the type of precipitation and the seasonality. In addition, the description of a
heavy rainfall episode (22 October 2019) shows the variations and improvements in the different
products. The main conclusions refer to how using GeoTIFF combined with point data (rain gauges),
it is possible to ensure simple but effective quality control of an operational radar network.
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1. Introduction

The main issue in monitoring and analyzing real-time flood events is having the
required instrumentation to obtain enough quantitative observations [1]. The possibility
of having good coverage of precipitation measurements is therefore shown as the better
solution, in the sense that they are the primary source of information to describe the event,
and, in addition, they can provide the main input for hydrological modeling [2]. One
of the best-known hypotheses in hydrometeorology is that rain gauges provide the true
ground-based precipitation at a certain point (or “ground truth”) [3]. However, they cannot
always be representative of large areas surrounding them, mainly in the case of convective
or orography precipitation types. Furthermore, rain gauges can be subject to large errors
that can affect real measurements [4]. In comparison to rain gauges, weather radars have
the advantage of giving excellent spatial (to the order of one kilometer or less) and temporal
(from 5 to 15 min) resolutions [5]. However, the main constraints of weather radars are that
they only estimate the precipitation through the reflectivity in altitude. In addition to this,
their measurements are subject to the errors and limitations caused by internal (electronics,
mechanics) and external (topography, electromagnetic sources, and non-meteorological
echoes) factors, and coverage may vary depending on the range, azimuth, and from storm
to storm [6–9]. Quantitative precipitation estimation (QPE) fields from radars usually show
good qualitative results (the shape of the precipitation structure) but bad quantitative
values (compared to rain gauges).
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There are many methods for interpolating precipitation exclusively using data from
rain gauges: kriging, inverse distance weighting (IDW), spline functions, and multiple
regression analysis with correction of the residuals, among others [4,10]. In these cases,
interpolation techniques normally predict rainfall at a set of points using the available local
data. These methodologies are very sensitive to the distance between points on the network
and the topography, among other factors [11]. To reduce these errors, some techniques
blend both types of sources, rain gauges and weather radar, in an attempt to minimize the
known errors by means of geostatistics [12,13].

QPE quality estimation is usually calculated through a comparison with rain gauge
data at the measuring point locations [14,15]. Different techniques help to understand
the spatial and temporal performance of single or composite (combining different radars)
products, which is a basic point in operational purposes. The understanding of the weak
and strong points of the products is necessary when monitoring flash-flood events, and
when integrating the QPE fields in hydrological models [16,17], it shows the large impact
caused by flash-flood events in Catalonia and how recurrent they are.

The main goal of this research was to present the analysis of 10 years of different
types of QPE fields in Catalonia: from individual to composite products and from single
corrections to more sophisticated improvements, considering an integration of radars
and rain gauges. The authors also wanted to show how, when using geo-referenced
products—GeoTIFF—the methodologies of quantifying the errors are simpler. First, the
paper introduces the operational methodologies for calculating QPE and estimating errors.
Then, results taken from a 10 year period allow us to understand the different behaviors
associated with the different products. The following section presents a direct comparison
of the products in a specific episode of floods, showing the main spatial and temporal
differences in real time, which constitutes a key point in monitoring this type of event.
Finally, the paper ends with concluding remarks.

2. Operational Methods of QPE at the Meteorological Service of Catalonia (SMC)

This section introduces the two sources for generating QPE fields at the Meteorological
Service of Catalonia, as well as the different products and their error estimation.

2.1. The Conveniences of Using the GeoTIFF Format

Raster files divide space into cells of equal size, or pixels, which contain values that
explain the spatial behavior of a magnitude. There are several raster formats, most of
them associated to a certain software (for instance, ENVI of ESRI) or an organization (e.g.,
netCDF—Network Common Data Form of the University Corporation for Atmospheric
Research, UCAR). The main capability of raster data is the feasibility for managing large
amounts of spatial information with fast and precise operations such as selecting areas
exceeding a certain threshold and algebraic operations of different files. The different
formats usually present a header, with the geographic information, and the matrix of the
considered magnitude values. Then, the main advantage of using GeoTIFF is the way the
data are compressed, whereby the size of the files is notably lower without losing a part of
the main information.

Table 1 shows the differences among the main raster formats for a QPE field with
269 rows and 272 columns, respectively, for the size and the necessity of auxiliary files
(mainly header and additional geographic information). Although the differences in size
are not especially high (between 153 and 676 Kb), the fact that the analysis refers to large
data sets (e.g., in the particular presented cases: 3652 files) increases the necessity of larger
amounts of space (between 559,000 and 2,470,000 Kb). Thus, GeoTIFF appears to be the
more flexible format, making it the best candidate. The differences in size are related to the
data compression and a simpler header, in respect to other formats. The other favorable
point is that it is a common format integrated in practically all GIS (geographic integrated
systems) software platforms. This helps the sharing of these files among institutions of
different typologies without any type of problem.
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Table 1. File size of the different raster formats for the QPE field as of 9 September 2012.

Format Name Description Size (Kb) Auxiliary Files

GeoTIFF Georeferencing information to be
embedded within a TIFF file 131 No

SAGA System for Automated Geoscientific
Analyses 572 2

ENVI Format of ENVI software from ESRI 286 2
NetCDF Network Common Data Format 578 No
IDRISI Format of IDRISI software 286 No
ASCII Format of ArcGis software (ESRI) 548 No

ERDAS Erdas Imagine Image 807 No

Other advantages of raster file management are that it allows for easy geographic
operations: selection of the points (i.e., rain gauges) not farther than a certain distance to the
center of the image or adding/removing points (measurement stations that are included or
dismantled from the network) as two examples. In the case of the addition of new stations,
the integration of the new values becomes simple because only the coordinates are needed
for determining the geographic influence of the new data.

2.2. XRAD and XEMA Networks

Catalonia is located in the northeasterly part of the Iberian Peninsula (Figure 1a).
Because of its topography and location (proximity to the Mediterranean Sea), the region is
regularly affected by convective activity that causes severe weather and intense rainfall [18].
This geographical configuration also plays an important role in the fact that numerical
weather prediction models have great difficulties in reproducing convective episodes at the
scale of thunderstorms [19]. Because of this, using weather radar (XRAD) and rain gauges
(XEMA) from automatic weather stations (AWS), the networks provide the results that are
strictly necessary for surveillance tasks in the region. This point is further accentuated by
the short-time response of most of the drainage basins in the region [20,21].
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Figure 1. (a) Area of interest; (b) XRAD network radar coverage (short and long range). The red dots and labels correspond 
to the four radars: CDV (Creu del Vent), LMI (La Miranda), PBE (Puig Bernat), and PDA (Puig d’Arques). 
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Furthermore, the complexity of the terrain and the influence of the sea means that inter-
polations using exclusively AWS data are not simple and have many limitations [23]. 

2.3. Simple Corrections 
Except for some specific differences (regarding specific geographic issues: height of 
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Corrections in this case are based on a series of filters that consider different relationships 
between quality control parameters depending on the radar variables (more information 
about the filter process can be found in [14,19]). The final reflectivity field products (COR1 
in Figure 2) only remove topographic echoes, but many other non-meteorological echoes 
remain uncorrected (electromagnetic interferences, bright band effect, beam blockage, 
wind farms, etc.). The removal process consists of selecting those pixels with a radial ve-
locity equal to zero and converting the reflectivity to null data. The QPE1 results of the 
application of the classical Marshall–Palmer Z/R relationship is Z = 200R1.6, in which Z 
(mm6 m−3) is the reflectivity factor and R (mm h−1) is the rainfall rate. Because radar fields 
measure dBZ (radar reflectivity factor, a logarithmic dimensionless technical unit), the fi-
nal conversion to QPE is: 

R = [(10 (dBZ/10))/200] 5/8 (1)

where R is the rainfall rate in mm per hour. It is important to note that this relationship 
has many limitations, mainly in convective rain regimes. However, from the operational 
experience of the technical staff of the SMC along the years, it has been concluded that 
applying different constants produces more errors in the final QPE field. One of the main 
reasons for this is the high variability of the precipitation fields in the region due to the 
contribution of different factors such as mountains and valleys, the sea, and air masses 
[1,3]. This variability makes applying more than one relationship generate more errors in 
the resulting field, which is also confusing for the forecast team. In addition, the short 

Figure 1. (a) Area of interest; (b) XRAD network radar coverage (short and long range). The red dots and labels correspond
to the four radars: CDV (Creu del Vent), LMI (La Miranda), PBE (Puig Bernat), and PDA (Puig d’Arques).

Because both of the Meteorological Service of Catalonia (SMC) networks have been
widely presented [8,14,20,21], only their main features are briefly introduced here. In the
case of the XRAD, it is made up of four single-polarization C-Band Doppler radars (CDV,
PBE, PDA, and LMI in Figure 1b) that cover Catalonia and the local areas in two scattering
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modes (Figure 1b): long (one single low-elevation process generating reflectivity fields
from a range of 250 km) and short (15 low- and mid-atmosphere elevations generating
volumetric reflectivity fields with a range of 130 km, except CDV radar with a range of
150 km) ranges. The whole process for each radar has a cycle of 6 min, including the antenna
returning to its initial position. The entire process, from the volumetric reflectivity raw
acquisition to the visualization of the products and the GeoTIFF conversion, is managed
using IRIS software [22].

The XEMA network has 181 automatic rain gauges that transmit rainfall information
every minute. Considering that Catalonia covers an area of 32,000 km2, the spatial density
is one rain gauge per 177 km2. However, the distribution of the AWS is not uniform,
meaning that some areas (the more remote and hilly areas) have a lower density of rain
gauges. Furthermore, the complexity of the terrain and the influence of the sea means that
interpolations using exclusively AWS data are not simple and have many limitations [23].

2.3. Simple Corrections

Except for some specific differences (regarding specific geographic issues: height of
the system or proximity to the sea, which is a defining factor in the anomalous propagation
of the beam [24]), all the radars in the XRAD network have similar performances including
hardware, software, mechanics, electronics, and the programmed elevations. Corrections
in this case are based on a series of filters that consider different relationships between
quality control parameters depending on the radar variables (more information about
the filter process can be found in [14,19]). The final reflectivity field products (COR1 in
Figure 2) only remove topographic echoes, but many other non-meteorological echoes
remain uncorrected (electromagnetic interferences, bright band effect, beam blockage, wind
farms, etc.). The removal process consists of selecting those pixels with a radial velocity
equal to zero and converting the reflectivity to null data. The QPE1 results of the application
of the classical Marshall–Palmer Z/R relationship is Z = 200R1.6, in which Z (mm6 m−3) is
the reflectivity factor and R (mm h−1) is the rainfall rate. Because radar fields measure dBZ
(radar reflectivity factor, a logarithmic dimensionless technical unit), the final conversion
to QPE is:

R = [(10(dBZ/10))/200]5/8 (1)

where R is the rainfall rate in mm per hour. It is important to note that this relationship
has many limitations, mainly in convective rain regimes. However, from the operational
experience of the technical staff of the SMC along the years, it has been concluded that
applying different constants produces more errors in the final QPE field. One of the main
reasons for this is the high variability of the precipitation fields in the region due to the
contribution of different factors such as mountains and valleys, the sea, and air masses [1,3].
This variability makes applying more than one relationship generate more errors in the
resulting field, which is also confusing for the forecast team. In addition, the short distance
between radars (Figure 1b) makes the selection of the relationship possibly even more
complex. However, the good radar coverage has many benefits, such as a reduction in the
signal attenuation produced by the cores of the thunderstorms or a beam blockage caused
by the topography (see the example in Section 3.3), mainly in those regions covered by
more than one radar. The time resolution of radar imagery at the SMC is 6 min. Assuming
that the rain rate is more or less constant during these 6 min periods, the cumulated
precipitation (P6min) for that period results from the instant rain rate R as P6min = R/10.
Finally, the total daily accumulation results into QPE = ∑ P6min, with a summation for the
entire set of images (240 in total).
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2.4. EHIMI (Hydrometeorological Integrated Forecasting Tool) Corrections

Since 2004, the SMC, in collaboration with the Catalan Water Agency (ACA) and the
Centre of Applied Research on Hydrometeorology (CRAHI), started a project for applying
a set of more sophisticated corrections to reflectivity fields [14,25,26]. In 2010, the SMC
put the new configuration into operation, the EHIMI (Hydrometeorological Integrated
Forecasting Tool), which has been practically unaltered until 2020, except for some minor
modifications. The main characteristics of the corrected volumes, COR2, which are also
based on the raw files, are fuzzy logic algorithms for removing most non-precipitating
echoes. The identification of bright band and the different types of precipitation has
made using the vertical profile of reflectivity. This allows for processing of, among other
properties: estimating the ground-level reflectivity; removing the main electromagnetic
interferences of the most punished azimuths (for which the echoes are removed in the
individual radar volumes, avoiding affecting the final composite product); correcting
the anomaly associated to partial and total beam blockages at the lowest elevations. In
addition, QPE2 generation considers the main flow advection of the reflectivity fields,
with the purpose of smoothing the effect of the maxima associated with thunderstorm
trajectories. This is the operational product used at the SMC for providing warnings of
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short periods of heavy rainfall (more than 20 mm in 30 min). The method for estimating
the QPE field is the same as that in the previous case but with different reflectivity input
maps. Although operationally, the QPE2 is the product used for all hydro-meteorological
purposes, the QPE1 remains functioning in real-time for a simple reason: it is the least
modified in respect to the original radar measure, allowing for an easier understanding of
whether each radar system is functioning well or poorly. The main equation used in the
correction procedure, corresponding to the feature histograms (hk,e) for different echo types
obtained with the fuzzy logic algorithm, allowing for the identification of meteorological
and non-meteorological echoes over land and sea, is:

hk,e(x)= p[Xk = x|e]n(Xk= x∩ e)
n(e)

(2)

where n(Xk = x∩ = e) stands for the number of bins, and the echo has been classified as
type e; n(e) is the total number of bins classified as echo type e. The possible echo types are
precipitation, ground clutter, and sea clutter.

2.5. EHIMI Corrections Combined with Rain Gauge Data

COR2 and QPE2 provide good reflectivity and rain fields from a meteorological
point of view. However, another step should be taken to acquire a good compromise for
hydrometeorological purposes. This step was a combined effort made in 2010 by ACA
and SMC that integrated the AWS rain gauge data of the XEMA network to the previous
fields. A preliminary analysis revealed the necessity of applying a correction factor to
QPE2, to make it comparable to XEMA values. References [12–14] give the main clues to
the geostatistical process (in this case, KED or kriging with external drift) for integrating
the two sources in a unique field, QPE3, which provides more accurate data for integration
in the hydrologic models. However, the main issue of this process is the time delay (~2 h)
necessary to include a large number of rain gauge points. This point is important in the
region of interest due to the short response for most of the hydrological basins (even less
than one hour) and constitutes a key challenge for the future policies of SMC and ACA.
The way of estimating the new QPE field considers the rainfall data provided by the rain
gauges and includes the effect of the radar with a factor λ for each pixel where ground
information exists. Then, the QPE estimated at a certain point results in:

P (x0, KED) =
n

∑
i=1

λ(i, KED) PG (xi) (3)

where P(x0, KED) is the rainfall estimated, n is the number of rain gauges used for each
point (which is dependent on the spatial distribution of the gauges, and it should be larger
or equal to 10), λ(i, KED) is the estimator at the surrounding point xi, and PG is the rainfall
measured by the gauge. The estimators or weights are calculated considering the radar
variability and the constraint that for the full set of points the sum is one.

2.6. Post-Processed EHIMI Corrections Combined with Rain Gauge Data

The last point in the operative chain is related to quality control of XRAD and XEMA
data. Real-time registers can suffer unexpected anomalies caused by different issues. In
the case of radar data, the only change made in respect to the previous step consists of
re-processing data (this is, to run the software offline generating the products again but
with all the data missed in real time) from radars when some volumes have suffered delays
in the process of transferring it from the radar to the hub computer (see Figure 2a) at
the SMC headquarters or fading [27]. However, XEMA data can suffer many corrections,
depending on the characteristics of each gauge (again, problems with communications,
under-sampling caused by the topography, evaporation, wind, or funnel losses, among
others [28]). The real-time quality control of XEMA data consists in the application of some
tests of validation of the different variables, according to a series of thresholds defined
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based on the experience of the staff who manage the network. Moreover, during the next
days after the register, the same staff apply different techniques (such as comparing with
radar animations, satellite imagery, lightning data, spotter reports) to validate or change
it manually. Once XRAD and XEMA have been processed again, the same technique
applied in the previous step runs 8 days later, integrating the new data into a new field,
QPE4. Although the product does not have real-time usefulness, it is important from a
climatological point of view.

2.7. Bias Estimation

Reference [14] summarizes the process of evaluation for all QPEs generated at the
SMC (see Figure 2b). Only a few comments need to be added: the new processing chain
generates a GeoTIFF format for all products, making the comparison process between
rain gauges and QPE fields easy; all the processes are run on a server computer (SRV in
Figure 2a), avoiding differences in formats or changes in projections or resolution; lastly,
the SRV computer publishes these products to all users (from the forecast team at the SMC
to ACA staff, and many more). The bias compares QPE with ground values and provides
information regarding the quality of the products, areas with systematic under-estimation
or over-estimation, problems in one radar, and many other points that are fundamental in
maintaining the XRAD network. The QPE products generated at the SMC go from 30 min
to 24 h accumulation. In this research, only the daily rainfall bias fields are presented.

The daily bias is estimated as follows: First, the QPE radar (Pr) is estimated for each
rain gauge location, where the measured rainfall is Pg. The ability of the GeoTIFF format
helps to make a more accurate identification of the associated pixel. For each pair of data,
the coefficient of the QPE radar estimation for a certain i gauge results in:

Qi = Pr
i/Pg

i (4)

Then, the daily bias results as the evaluation of this factor for the full set of rain gauges
with valid information (this is, points closer than 100 km to the radar location and without
a quality control flag):

biasday = 10 log ∑
i

Qi (5)

Another advantage of using the GeoTIFF format is the easier definition of the area
of validity for the rain gauges around the radar location. The daily bias and the monthly
averaged values of the uncorrected QPE field’s (QPE1) result is of great interest for under-
standing the state of the different radars (under- or over-estimations). If the technician has
a good knowledge of the rainfall regimes during the selected period and the calibrating
factors of the radar, it is possible to have an accurate idea of the functioning of the sys-
tems and to easily and quickly detect possible errors in the radar data acquisition. Once
the remote sensing staff have evaluated the different possibilities, maintaining the unit
re-calibrates the radar, which is performed systematically at a monthly frequency (but only
if it is required). It is also important to say that bias is compared systematically with the
root mean square factor (RMSf) to estimate the deviation of the measures, which also is a
good indicator of the type of dominant precipitation during the selected period. In any
case, the experience over the years on the data analysis has minimized the use of the RMSf,
which has a similar behavior according to the period of the year.

3. Results
3.1. Radar Bias Evolution for the Period 2011–2020

The bias skill score provides useful information regarding the functioning of each
XRAD radar. Figure 3 shows the daily evolution of this parameter for the four radars for
the 10 year period from 2011–2020 in the case of the QPE1 field (this means with simple
corrections). The choice of this product avoids false anomalies caused by the application of
corrections that can be minimized when a radar functions poorly (e.g., the data provided
does not satisfy the bias quality control in any sense, where the mechanics and electronics
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have bad pointing accuracy or it is not well-calibrated), at least for a period. The red
lines show the 15 day moving average, which smooths anomalous values and superfluous
outliers. Keeping in mind that the “perfect bias” corresponds to the zero value (i.e., blue
horizontal line) and that acceptable values are between −2 and 2 (i.e., dark blue lines),
we can see the continuous under-estimation (i.e., negative values) of all radars. In any
case, this trend was not the same across all the radars and, for instance, the LMI showed
values closer to zero than the other radars. On the other hand, the PDA presented a clear
under-estimation around a value of −5. The lack of data for PBE during the 2013–2016
period was caused by changes in technology, showing a clear improvement in the bias
parameter in the second period (from values of approximately −5 to near −2). This first
analysis helps us understand the main contribution of each radar to the composite QPEs
and, on the other hand, identify possible anomalies in each of the elements of the XRAD
network.
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Figure 3. Bias estimation for a simple QPE of the 4 radars ((a) CDV, (b) LMI, (c) PBE, and (d) PDA) for the 2011–2020 period.

The composite products at the SMC were created by considering the maximum value
at each point of the new field obtained from the combination of all the available radars. This
penalizes radars underestimating QPE, favoring those that provide more acceptable values.
However, this method has limitations, such as a larger influence from the bright band
effect, especially in winter events when the melting level is close to some radar heights.
Although the correction procedure has a module for reducing this phenomenon, the results
are not always satisfactory, and some imagery can present a reflectivity overestimation
during winter events. In any case, the number of composites affected by this situation was
limited and did not exceed 0.5% of the total annual. Figure 4 shows the bias values for
the same period as Figure 3 for the three operational composite QPEs (i.e., QPE1, QPE2,
and QPE3). All the composite products showed better bias values than the individual
products because of the minimization of the underestimations caused by composites (e.g.,
a beam blockage that had a negative effect on a concrete area of an individual product was
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reduced when other radars contributed to that area). However, it shows how the different
steps in the correction scheme allowed new fields to be produced with bias values close
to zero in most cases. An interesting point was that QPE2 had larger positive bias values
than QPE3 in some seasons. This does not mean that the first product had better values,
rather that it was more affected by heavy rainfall or hail. Then, the integration of the rain
gauges reduced this anomaly. According to the parameters indicated above with respect to
better bias behavior, QPE3 generally showed better fitted values, always between −2 and
2 thresholds (except an initial period with some tests that generated unrealistic values).

Table 2 summarizes the behavior of the seven daily QPE fields for the 2011–2020
period, according to their percentiles (0, 25, 50, 75, and 100). With respect to individual
radars, the values indicated the best bias results for LMI and the worst results for PDA,
while PBE and CDV showed an intermediate level of quality. This implies that PDA radars
contribute less than the average and, on the other hand, LMI appears to provide more
to the composite, around the region of influence. Regarding composite products, large
differences between QPE1 and QPE2 and QPE3 can be appreciated. These differences are
caused by the notable hydrological improvements in the corrections; it is important to be
reminded that these corrections are focused on the generation of accurate rain fields, to
produce good alerts and assimilations in hydrological models. From this table, it seems
that QPE3 did not provide any improvements to the QPE2 field. However, as shown in
Figure 4, the values for concrete episodes or periods showed significant differences. These
differences will be discussed in the following sections, in the analysis of a concrete event.
In any case, the large differences between the QPE estimated by individual radars and the
composites with corrections are well reflected in the table.

Table 2. Quartile values of bias for the QPE products presented in Figures 3 and 4.

Radar Q0.0 Q0.25 Q0.5 Q0.75 Q1.0

CDV −6 −5 −3 −2 0
LMI −5 −3 −2 0 1
PBE −6 −5 −3 −2 0
PDA −7 −6 −4 −3 −2
QPE1 −5 −3 −2 0 0
QPE2 −3 −2 0 1 2
QPE3 −3 −2 0 1 2

3.2. The Yearly Cycle of the Bias

Figures 5 and 6 show a boxplot with the weeks of the year (that is, a boxplot of all the
values for each week of the year, considering 0 as the first one—from 1 to 7 January, 1 for the
second week—8 to 14 January, etc.). In every case, similar behavior can be detected, with
minimum values for the period from week 37 to week 12 (cold season) and a maximum for
weeks 13 to 36 (warm season). It is worth noting that these were not fixed periods, and it
seems the variations were highly dependent on the global temperature of the region and
local areas. This means that for years that were colder than average, the cold season will be
a bit larger, while, on the other hand, it will be shorter for warmer years. This behavior has
a clear relationship with the type of precipitation [29,30]. During cold seasons, scarce to
moderate convective regimes dominated, with low to moderate reflectivity values and a
clear need for a notable increase in the QPE estimation (bias ranges from −5 in the worst-
case scenario, PDA, to −2 in the best QPE1, considering that we excluded the corrected
QPEs from this part of the analysis). On the other hand, during the warm season, deep
convective regimes with heavy precipitation and hail, should produce large reflectivity
values. This implies, in most cases, that values were close to −3 (again, PDA) and 0 (QPE1),
indicating that under-estimation was notably reduced during this season.
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A different case is presented for corrected QPE (QPE2 and QPE3) that shows bias
values around zero for the entire year because of corrections. It is important to note that in
the case of QPE3 (corrections combined with rain gauges), the effect of the ground data is
important, but the product does not provide the exact value of the gauge. This is because
the radar field forces the interpolation to adapt to the same pattern of the QPE2. In the
case that the value provided by the gauge does not fit with the shape, the interpolation
minimizes the effect of the ground data. In any case, a different type of behavior can be
appreciated when the XEMA data are included (QPE3), with a smaller range of values
between the maximum (1 in front of 2 for QPE2) and the minimum (−1, −2 for QPE2).
Moreover, the extreme periods were concentrated in shorter windows. This means that
EHIMI corrections, even when notably improving the QPE fields, need contribution from
rain gauges for hydrological purposes. This point is better explained with a practical
example such as the one given in the following section.
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3.3. The Episode of 22 October 2019

On the afternoon and night of 22 October 2019, a very heavy rainfall event produced a
dramatic increase in the flow of many small rivers in southern Catalonia. The result of this
event was large-scale damage (estimated at more than €700,000) in some villages and, more
importantly, four deaths in the region. However, further points in Catalonia were affected
by heavy rain (especially in the northeast and central coastal regions), and there was even
a tornado (also on the central coast). The QPE fields generated show the large variations
depending on the corrections and the source considered (Figures 7–10). The GeoTIFF files
allow larger differences to be detected, as well as some less evident changes in QPE. All
the maps were generated using QGIS [31], a free and open-source cross-platform desktop
software geographical information system (GIS).

If the only available QPE field was the one with simple corrections (Figure 7, top), one
would suppose that the event was important (exceeding 100 mm in 24 h is significant),
but it was focused on the area of interest (the southern region), where estimations reached
70 mm in an area of 1800 km2. In the rest of Catalonia, rainfall accumulated values ranged
between 5 and 60 mm. Moreover, this figure reveals some limitations, apart from the
real estimation of the QPE1: there are important discontinuities in the field caused by the
different contributions from each individual radar (the under-estimation of PDA must be
remembered, in the northeastern part), the black pixels associated with the position of
the different radars, the green pixels in the central part of Catalonia associated with some
wind farms, and the clear under-estimation of precipitation in the northern region, caused
by the beam blockage (see Figure 7, bottom) of the interaction with mountains exceeding
2500 m. The total maximum value was 111 mm but in a very reduced pixel region (not a
robust estimation). According to Figure 7, bottom, (the beam blockage affectation at the
lowest beam), the topography did not play a relevant role in the rainfall field, at least in
the area with the highest amounts of precipitation. However, it was a negative factor in
the northern region, where only the last QPE field was able to estimate the real values of
precipitation (see the last part of this section for more details).

Most of the previous limitations in rain fields are drastically reduced when EHIMI
corrections were considered (Figure 8, top): the estimation was more continuous in space
or local under-estimations were notably reduced. Besides, the values were larger, with an
area of 780 km2 exceeding 125 mm, and an area of more than 5300 km2 showing values
over 70 mm (three times the QPE1 estimated area for this threshold). Finally, with the
exception of the northern part of the region, all of Catalonia recorded values over 40 mm
in 24 h. The differences in this field—QPE2—respecting the uncorrected one—QPE1—are
shown in Figure 8, bottom, where it is possible to observe how the differences were larger
in the area with the highest cumulated values. These records better reflect the description
of the event, but considering the nature of other historical cases [17] or the season of the
year (between the warm and cold season, which implies an under-estimation of QPE2),
QPE3 should be looked at more closely. In this case, the maximum value reached 177 mm,
clearly greater in QPE1, and, more importantly, surrounded by other similar values.
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Figure 9, top, shows the integration of XEMA and XRAD data, providing the QPE3
field. Again, changes with regard to the previous map are notable. For instance, the total
area exceeding 70 mm was close to 20,000 km2 (nearly four times the QPE2 estimation),
and many regions exceed 125 mm, mainly in mountainous areas close to the coast. This
point is very important from a hydrologic point of view, because the affected basins have
a very short time response period of less than one hour (or even less). Otherwise, the
last point of note is that the maximum value was 198 mm (20 mm more than for QPE2).
Figure 9, bottom, indicates that the gauges’ influence was very important, mainly on those
areas with problems caused by the topographic blockage, a part of those regions with the
highest cumulated values.

Finally, Figure 10, top, shows QPE4, the final estimation for the episode, obtained
8 days later. Again, there were some changes with respect to the previous map (QPE3).
These changes were not as important as in the preliminary steps, but, in any case, they
were interesting enough to be noted. Even the general shape of the rainfall field suffered
scarce or no changes; in the most-hit area, there were values close to 300 mm (maximum of
282 mm, that is, more than 90 mm more than in the previous case). This large difference
was due to the quality control of the XEMA series for some AWS in the affected area.
The analysis revealed that it was an under-estimation of the precipitation caused by poor
functioning of the sensors as a result of the large amounts of rainfall that accumulated in
a few minutes. The comparison with several manual gauges in the region allowed for a
reliable evolution of the event in those points, leading to the final map. It is also worthy
to note that in the northern and mountainous part of Catalonia, the differences were also
evident. In this case, the beam blockage reduced the algorithms capabilities and only the
final contribution of the gauges at highest elevations (see Figures 9 and 10, top) helped to
produce an accurate rain field.

Using the geostatistical packages of R software [32], such as Raster [33] or Map-
Tools [34], we reprojected and resampled all the fields to the same resolution and projection
without losing any spatial information. This process allowed for a simple comparison of the
total cumulated precipitation estimated for the entirety of Catalonia (32,000 km2). Table 3
summarizes the differences between the QPE fields through several parameters. In general,
all the statistical parameters (sum of the total amount of rainfall pixels—SUM, the mean,
and the 90th percentile) indicate the same behavior, doubling values of QPE2 compared
to QPE1, and for QPE3 over QPE2. These results show the importance of corrections in
the rainfall field. This doubling trend was not observed in the case of QPE4 and QPE3,
where the differences were subtle (one mm in the case of the mean or 0.3 mm for Q0.90).
However, if we analyze areas exceeding a certain threshold (in this case, 100 and 200 mm),
crude variations between all the fields are shown. QPE1 shows a small area exceeding the
first threshold and none for the second one. The last value (0 pixels exceeding 200 mm) is
also shown in the case of QPE2 and QPE3, while only QPE4 showed an area of 190 km2

with values over that value. In the case of the 100 mm threshold, the change between QPE1
and QPE2 was 2677.3% and 302.1% for QPE2 and QPE3. In the latter case, the variation
was reduced to 1.1%.
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Table 3. Different parameters (from left to right: total sum of rainfall for all pixels 1 × 1 km2 with
precipitation over Catalonia; mean rainfall value for the same set of pixels; 90th percentile; number of
pixels with QPE over 100 mm; number of pixels with QPE over 200 mm) obtained for geostatistical
analysis of the GeoTIFF files associated with each QPE field for the 22 October 2019 event.

Field SUM (mm) MEAN (mm) Q0.90 (mm) N>100 N>200

QPE1 698,107 21.7 39.7 44 0
QPE2 1,216,320 37.8 69.2 1222 0
QPE3 2,356,831 73.3 116.1 4914 0
QPE4 2,391,484 74.3 116.4 4969 189

4. Discussion

The purpose of this research was to show the capabilities of GeoTIFF format files to
analyze the quality control of weather radar data and to monitor and understand heavy
rainfall events from a meteorological point of view. The change in the data format of
the QPE files used in the bias estimation for each of the radar products allowed for the
simplification of the process and, more importantly, avoided issues in terms of changes in
the location of the calibration points. The georeferenced files made it easier to compare
rainfall field and ground observations. This point was crucial when putting the process
into operation in near real-time (the script generates the bias values 2 h after the last
product arrives to the SRV computer, considering that QPE4 was not analyzed with this
methodology).

Generating the QPE products in real time was very helpful in terms of maintaining
the XRAD network, because it allowed us to detect anomalies in radar behavior. However,
the yearly variation of the factor must be considered, which is highly dependent on the
type of precipitation and the season in question (warm, cold, and transition period). This
behavior was observed in other meteorological issues in the region such as the occurrence
and intensity of mesoscale convective systems (MCS, [35]). Research has shown some
examples of anomalies in the different radars of the XRAD network. Moreover, it has
presented normal functioning interval values for all the radars and, also, of the different
composite products (with simple corrections, with EHIMI corrections, and with EHIMI
plus XEMA corrections).

The differences among all the QPE fields were evident, and they showed the impor-
tance of the contributions of the different algorithms (i.e., EHIMI corrections, rain gauges
data interpolation, and quality control integration) to rainfall estimation. The understand-
ing of the corrections’ influence is crucial, mainly for hydrological purposes, because the
changes caused by each one of the different algorithms affect the input field into the models.
However, future research could integrate QPE data in a hydrological model, to show the
differences in outputs. In any case, from the feedback provided by the ACA staff in the
flood emergency plan for Catalonia (INUNCAT, [17]), we know that the time response of
many of the Catalan basins is to the order of one hour or even less (in particular for coastal
areas). We must therefore evaluate the previous results from a different perspective, that is,
from a surveillance point of view. Disregarding the QPE4 for obvious reasons, we focused
on the other three products (i.e., QPE1, QPE2, and QPE3). The first was generated in just a
few seconds, when the technician received the GeoTIFF file or the imagery five minutes
later than in real time because of processing the entire raw volumes used to generate the
rainfall field. A few seconds later (nearly 30 s later), EHIMI generated QPE2 and sent
it to the SRV computer. It was evident that the improvement shown in the preliminary
section makes QPE2 more useful than QPE1. However, at the time of evaluating QPE3,
the good results shown earlier were masked by the time it took for the product to be
generated. This is hardly sensitive to the type of precipitation, and it needs a large set
of rain gauge data (more than 80%). The current process at the SMC indicates that the
generation period is between 30 min (optimal time) and 3 h (worst scenario). Considering
the previous hydrological time constraint, it is clear that QPE3 has limited usefulness for
real-time processes.
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In any case, both QPE3 and QPE4 have many uses, such as bias estimation or the
quantification of heavy rainfall events, as previously presented. In addition, the use
of GeoTIFF files is very helpful when investigating the rain characteristics of the event,
through tools, such as GIS, or software such as R. Different techniques help to understand
the nature of the event and improve disaster mitigation techniques.

5. Conclusions

The use of the GeoTIFF format allowed for real-time procedures to be generated for
analysis of the quality of QPE data from each radar on the XRAD network. The fact that
this format generates files of smaller size without losing quality of the data helps to archive
and manage large amounts of data easily. Moreover, different composite products are
analyzed daily, compared with rain gauge data. This process allows poorly functioning
radars to be detected or regions to be identified with systematic under-estimations of QPE
because of different factors (mainly geographic and environmental conditions). It is also
interesting to conclude the importance of the geo-statistical processes in the correction of
the QPE, including the high role of the rain gauge data, which combined with the corrected
field estimated by the radar, allows generating a final product with a high potential for
hydro-meteorological purposes.

We defined the quality values for all four radars and for the three main composite
products. These thresholds will be put into operation as a system that warns of possible
anomalies in the QPE generated. However, as presented above, the seasonal factor must be
considered before deciding to make an intervention in a radar or change the parameters of
an algorithm.

Finally, GeoTIFF files have been especially useful when analyzing individual episodes,
allowing us to detect the performance of a product by means of different geostatistical
procedures. This analysis is very helpful when detecting weak points in current warning
systems in civil protection emergency plans, making it easier to improve.
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